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We derive an approximate formula for the mean first-passage time (MFPT) to a small absorb-
ing target of arbitrary shape inside an elongated domain of a slowly varying axisymmetric pro-
file. For this purpose, the original Poisson equation in three dimensions is reduced an effective
one-dimensional problem on an interval with a semi-permeable semi-absorbing membrane. The ap-
proximate formula captures correctly the dependence of the MFPT on the distance to the target,
the radial profile of the domain, and the size and the shape of the target. This approximation is
validated by Monte Carlo simulations.
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I. INTRODUCTION

The concept of first-passage time, i.e., a time taken for
a diffusing particle to arrive at a given location, is very
common in describing many natural phenomena. Nowa-
days it is widely used in chemistry (geometry-controlled
kinetics), biology (gene transcription, foraging behavior
of animals) and many applications (financial modelling,
forecasting of extreme events in the environment, time to
failure of complex devices and machinery, military oper-
ations), see [1–20] and references therein.

Most former works were dedicated to the mean first-
passage time (MFPT), which is also related the overall
reaction rate on the target region. Since exact formulas
for the MFPT are only available for a few special cases
of highly symmetric domains (such as sphere or disk), a
variety of powerful methods have been developed. In par-
ticular, many approximate solutions were derived in the
so-called narrow escape limit when the target size goes
to 0 [21–35]. While these asymptotic results are valid
for generic domains, their accuracy can be considerably
reduced when the confining domain is elongated (e.g., a
long truncated cylinder or a prolate spheroid). In this
case, the target region can still be very small as com-
pared to the diameter of the confining domain (i.e., the
size of the domain along the longitudinal direction), but
comparable to the size of the domain in the transverse
directions. The effect of the confinement anisotropy onto
the MPFT was studied in [36]. Recently, we proposed a
simple yet efficient method for deriving approximate so-
lutions of the MPFT in elongated domains on the plane
[37]. The aim of this paper is to extend this method
to three dimensions and to derive a general approximate

∗Electronic address: denis.grebenkov@polytechnique.edu
†Electronic address: alex.skvortsov@dst.defence.gov.au

formula for the MFPT in an elongated three-dimensional
domain with reflecting boundaries. The shape of the do-
main is assumed to be axisymmetric, smooth and slowly
varying in the longitudinal direction (without deep pock-
ets and enclaves), but otherwise general. The target is
assumed to be small, but also of an arbitrary shape. We
validate our findings by Monte Carlo simulations.

II. APPROXIMATE SOLUTION

We consider an elongated axisymmetric domain of
“length” ℓ, which is determined by a smooth profile r(z):

Ω = {(x, y, z) ∈ R
3 : x2 + y2 < r2(z), 0 < z < ℓ}. (1)

Throughout the paper, we assume that the aspect ra-
tio r0/ℓ of the domain (with r0 = max{r(z)}) is small
and its boundary profile is smooth, dr(z)/dz ≪ 1. A
small absorbing target is located inside the domain at
(xT , yT , zT ), see Fig. 1.
Similar to planar domains [37], the main analytical for-

mula will be derived by employing a three-step approx-
imation. First, the absorbing target is replaced by an
absorbing disk of the same trapping coefficient K; the
disk is oriented perpendicular to the symmetry axis of
the domain. Far away from the target such a replace-
ment is justifiable because at the distance greater than
the size of the target (but still much smaller than r(zT )
and ℓ) the absorption flux can be characterized by the
first (monopole) moment of the shape of the target, and
this equivalence simply preserves it. The trapping co-
efficient is proportional to the electrostatic capacitance
C of the target, K = 4πDC, where D is the diffusion
coefficient [38, 39]. For a variety of shapes (e.g., sphere,
ellipsoid, cube, prism, perturbed axisymmetric shapes,
or even some fractals objects), capacitance is well-known
or can be accurately estimated from various approxima-
tions, see [39–46] and references therein. For a disk of
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FIG. 1: Projection onto xz-plane of three domains used for
Monte Carlo simulations: truncated cylinder, r(z) = 1 (i),
truncated cone, r(z) = 1 + z/ℓ (ii), and a domain with an
oscillating profile r(z) = 1 + 1

2
sin(2πz/ℓ) (iii), with ℓ = 5.

Vertical dotted line shows the vertical symmetry axis along z
direction (r = 0); horizontal dashed line indicates the location
of uniformly distributed starting points (at z = 2). A target
(in black) is located at (xT , 0, ℓ/2): a disk of radius ρ = 0.2
with xT = 0 (i), a cube of edge 2ρ = 0.4 with xT = 0.6 (ii),
and a sphere of radius ρ = 0.2 with xT = −0.4 (iii). On the
right, an example of a simulated trajectory inside the domain
with oscillating profile, colored from dark blue to dark red
according to elapsed time until the first-passage to the target
(black sphere) at the center.

radius a, the capacitance is (2/π)a [43]. Knowing the ca-
pacitance C of a given target shape, one can thus easily
deduce the radius a = (π/2)C of the equivalent absorbing
disk.
Second, we introduce the semi-permeable and semi-

absorbing vertical boundary (membrane) across the do-
main that passes through the equivalent absorbing disk,
i.e., at z = zT , where zT is the longitudinal target loca-
tion. In line with the conventional arguments of effective
medium theory, the trapping of the target can approxi-
mately be captured by means of this boundary with some
effective reactivity κ. A similar approach, often referred
to as the lump parameter approximation, has been ap-
plied in many areas of physics and engineering (effective
acoustic impedance of perforated screens [47], effective
electric conductance of lattices and grids [48], effective
boundary condition for porous materials [49–51]). To re-
late the effective trapping rate of the membrane with the
geometrical setting, we assume that the effective trap-
ping rate of the membrane is equal to the trapping flux
of the particles induced by the presence of the target:

κ =
K(rT )

S(zT )
, (2)

where S(z) = πr2(z) is the cross-sectional area at
“height” z. We stress that K and thus κ depend on the
radial position rT =

√

x2
T + y2T of the target (an equiv-

alent disk) in the cross-section of the domain. In other
words, the trapping coefficient K(rT ) of the target inside
the confining domain is different from its value K0 in the
open space (when Ω = R

3). Moreover, it is the latter
dependence that determines the MFPT properties. Cal-
culation of the position-dependent trapping coefficient K

is one of the main ingredients of the proposed method.
In Appendix, we proposed the following approximation

K = K0Ψ
(

a/r(zT ), rT /r(zT )
)

, (3)

where the function Ψ(ν, η), defined by Eq. (A5), was
deduced by interpolating two analytical results for rT = 0
(at the symmetry axis of the domain), and for rT = R−a
(near the domain wall). This function accounts for the
relative target size ν = a/r(zT ) and the relative traversal
deviation η = rT /r(zT ) of the target from the center of
the domain cross-section.
Third, after its release at some point in the elongated

domain, a Brownian particle frequently bounces from the
reflecting walls while gradually diffusing along the do-
main towards the target. The shape of the walls (defined
by r(z)) can additionally create the so-called entropic
drift, which can either speed up or slow down the ar-
rival to the target [4, 11, 12]. In any case, the informa-
tion about the particle initial lateral location (e.g., across
the domain) becomes rapidly irrelevant, and the original
MFPT problem, governed by the Poisson equation, is es-
sentially reduced to the one-dimensional problem. While
the classical Fick-Jacobs equation determines the con-
centration of particles averaged over the cross-section of
the tube (see [4, 11, 12] and references therein), the sur-
vival probability is determined by the backward diffusion
equation with the adjoint diffusion operator [52]. In par-
ticular, the MFPT T (z) in an elongated domain satisfies
[4, 11–13]

d

dz

[

S(z)
dT

dz

]

= −S(z)

D
. (4)

As the results of these approximations, the original prob-
lem of finding the MFPT to a small target of arbitrary
shape in a general elongated domain is reduced to the
one-dimensional problem, which can be solved analyti-
cally.
We sketch only the main steps of the solution, while the

details in a similar case of planar domains can be found in
[37]. We search for the solution of Eq. (4) in the intervals
(0, zT ) and (zT , ℓ). Integrating this equation over z and
imposing Neumann (reflecting) boundary conditions at
z = 0 and z = l, we get

T (z) =















C− −
∫ z

0

dz′
V (z′)

DS(z′)
(0 < z < zT ),

C+ −
∫ ℓ

z

dz′
V (l)− V (z′)

DS(z′)
(zT < z < ℓ),

(5)
where V (z) =

∫ z

0
dz′ S(z′) is the volume of (sub)domain

restricted between 0 and z. The integration constants C±

are determined by imposing the effective semi-permeable
semi-absorbing boundary condition at the target location
z = zT :

T (zT − 0) = T (zT + 0), (6)

D

[

dT

dz
(zT + 0)− dT

dz
(zT − 0)

]

= κT (zT ), (7)
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where κ is given by Eq. (2). The first relation ensures
the continuity of the MFPT, whereas the second condi-
tion states that the difference of the diffusion fluxes at
two sides of the semi-permeable boundary at zT is equal
to the reaction flux on the target (an equivalent disk).
The latter flux is proportional to T , with an effective
reactivity κ equal to the effective trapping rate of the
target, Eq. (2). Finally, substituting Eq. (5) into Eqs.
(6, 7), we get the solution of the problem:

T (z) =
l2

D

[

Uσ(zT /ℓ)− Uσ(z/ℓ)

]

+
l

κ

v(1)

s(zT /ℓ)
, (8)

where we introduced the following dimensionless quanti-
ties

U−(ζ) =

ζ
∫

0

dζ′
v(ζ′)

s(ζ′)
, U+(ζ) =

1
∫

ζ

dζ′
v(1)− v(ζ′)

s(ζ′)
,

(9)
with

ζ = z/ℓ, S(z) = πr20 s(z/ℓ), (10)

V (z) = πr20ℓ v(z/ℓ), v(ζ) =

ζ
∫

0

dζ′ s(ζ′). (11)

The index σ in Eq. (8) is the sign of z − zT , i.e., σ = +
for z > zT , and σ = − for z < zT . For a given profile
r(z), all these functions can be easily computed either
analytically (see examples in Table I), or numerically. In
the simplest case of the cylindrical domain, r(z) = r0,
one simply gets

T (z) =











z2T − z2

2D
+

ℓ

κ
(0 ≤ z ≤ zT ),

(z − zT )(2ℓ− zT − z)

2D
+

ℓ

κ
(zT ≤ z ≤ ℓ).

(12)
Equation (8) is the main result of the paper. As for the

case of planar domains [37], this equation consists of two
terms. The first (diffusion) term is independent of the
size of the target and is related to the time required for a
Brownian particle to arrive at the proximity of the target
from its initial position. For this reason, the contribution
of this term is small when z ≈ zT , i.e. when the particle
initial position is near the target. The second (reaction)
term in Eq. (8) describes the particle absorption by the
target when the particle starts in its vicinity. As it is
inversely proportional to the target size, this term dom-
inates in the limit of very small targets. We note that
the dependence on the lateral width of the domain comes
only through the parameter κ.
In many applications, the starting point is not fixed

but uniformly distributed inside the domain. In this case,
one often uses to the volume-averaged MFPT

T =
1

V (l)

ℓ
∫

0

πr2(z)T (z)dz. (13)

Domain ρ(ζ) v(ζ) U−(ζ) U+(ζ) c0 c(ζ)

cylinder 1 ζ 1

2
ζ2 1

2
(1− ζ)2 1

3
1− ζ

cone ζ 1

3
ζ3 1

6
ζ2 2−3ζ+ζ3

6ζ
1

15

1−ζ

3ζ

paraboloid ζ2 1

5
ζ5 1

10
ζ2 3ζ5−5ζ3+2

30ζ3
1

35

1−ζ3

15ζ3

TABLE I: Three examples of symmetric elongated domains
defined by setting r(z) = r0ρ(z/ℓ), where ρ(ζ) is the rescaled
radial profile, ζ = z/ℓ, ℓ is the length of the domain, r0 =
max{r(z)}; v(ζ) is the rescaled volume in Eq. (11), func-
tions U±(ζ) are given in Eq.(9). Constant c0 and function
c(ζ) are given by Eq. (15). Other examples can be deduced
from similar expressions for the planar case [37] due to the
identity ρ2(ζ) = h(ζ) between the rescaled profile ρ(ζ) of a
three-dimensional domain and the rescaled profile h(ζ) of the
analogous two-dimensional domain.

By substituting Eq. (8) into this expression we arrive at

T =
ℓ2

D

(

c0 + c(zT /ℓ)
)

+
ℓ

κ

v(1)

s(zT /ℓ)
, (14)

with

c0 =

1
∫

0

dζ
v2(ζ)

v(1)s(ζ)
, c(ζ) =

1
∫

ζ

dζ′
v(1)

s(ζ′)
. (15)

Note also that

U+(ζ) = c(ζ)− (U−(1)− U−(ζ)). (16)

III. DISCUSSION

We use Monte Carlo simulations to check the accu-
racy of the analytical predictions given by Eq. (8) in
three geometrical settings illustrated in Fig. 1: (i) a disk
of radius ρ in a truncated cylinder; (ii) a cube of edge
2ρ in a truncated cone; and (iii) a sphere of radius ρ
in an oscillating profile. The capacitances of these tar-
gets are respectively (2/π)ρ, (4/3)ρ [39, 45], and ρ, from
which the radius a of an effective disk takes the values ρ,
(2π/3)ρ and (π/2)ρ, respectively. The target is located
at (rT , 0, ℓ/2), where ℓ = 5 is the length of the confining
domains. In each simulation run, a particle was released
from a random point uniformly distributed in the cross-
section at z0 = 2. It undertakes independent Gaussian
jumps with the standard deviation σ =

√
2Dδ along each

coordinate, where D = 1 and δ = 10−6 is the time step.
The particle is reflected normally on the boundary of the
confining domain. The simulation run is stopped when
the particle crossed the target. The first-passage time
is estimated as nδ, where n is the number of steps until
stopping. The MFPT is obtained by averaging over 1000
runs.
The approximate solution for a truncated cylinder is

given in Eq. (12), while the general expression (8) is used
for two other domains. In the case of a truncated cone
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r(z) = a + bz, the functions U±(ζ) can also be found
explicitly:

U−(ζ) =
ζ2(3 + αζ)

6(1 + αζ)
, U+(ζ) =

(1− ζ)2(3 + 2α− αζ)

6(1 + αζ)
,

with α = bℓ/a. In turn, for an oscillating profile, it is
easier to calculate U±(ζ) directly from their definition
(9) via numerical integration.
Figure 2 presents the MFPT as a function of the ra-

dial position rT of the target in the domain. First of
all, one can note the overall agreement between our the-
oretical predictions and Monte Carlo simulations. Both
theory and simulations indicate that the MFPT increases
when the target is shifted from the center (rT = 0) to-
wards the boundary of the confining domain (rT = 0.8),
even though this effect is weak. For a larger spherical
target (panel (a), ρ = 0.2), our approximation slightly
underestimates the MFPT in the case (iii) of an oscillat-
ing domain; the agreement is better for a smaller target
(panel (b), ρ = 0.1). There are also minor deviations
for the case (i) when the disk is close to the boundary.
Despite these deviations, we conclude that our three-
step approximation accurately captures the properties of
the MFPT in elongated domains. Given the simplistic
character of this approximation, its accuracy is striking.
It is worth stressing that the targets are not too small
(e.g., ρ = 0.2 is comparable to the minimal radius of
r(0.75ℓ) = 0.5 of the oscillating domain); the domains
are not too elongated (e.g., r0/ℓ = 0.4 for the truncated
cone); and the particles are released not too far from the
target (here, zT − z0 = 0.5 is comparable to the target
diameter 2ρ = 0.4). In other words, even though the
assumptions of our approximation are not fully satisfied,
its predictions remain in a quantitative agreement with
Monte Carlo simulations.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we obtained a simple formula (8) for the
MFPT to a small absorbing target of an arbitrary shape
in an elongated axisymmetric domain with slowly chang-
ing boundary profile. This formula expresses the MFPT
in terms of dimensions of the domain, the form and te
size of the absorbing target and its relative position in-
side the domain. We validated our analytical predictions
by numerical simulations and found excellent agreement.
Similar to the planar domains [37] the validity of the
proposed framework grounded on the condition of slowly
changing profile dr(z)/dz ≪ 1.
A conventional way of improving the proposed ap-

proximation is to account for the next order in the per-
turbation expansion, which entails introduction of the
position-dependent diffusion coefficient [4]

D → D
√

1 + [dr(z)/dz]2
. (17)
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FIG. 2: MFPT as a function of rT for diffusion towards
a target centered at xT = (rT , 0, ℓ/2), with ρ = 0.2 (a) or
ρ = 0.1 (b), D = 1, ℓ = 5, the starting point x0 is uniform at
the cross-section at z0 = 2, in three settings shown in Fig. 1:
(i) a disk of radius ρ inside a truncated cylinder of radius 1;
(ii) a cube of edge 2ρ inside a truncated cone r(z) = 1 + z/ℓ;
and (iii) a sphere of radius ρ inside an oscillating domain
r(z) = 1 + 1

2
sin(2πz/ℓ). Lines show theoretical predictions

(8); symbols present the mean values from 1000 realizations
obtained via Monte Carlo simulations with the time step δ =
10−6.

We note that under this approximation the results for the
cylindrical domain remain uncharged while an extension
of the main formula (8) is getting more challenging.

Future work may involve an extension of the proposed
framework to more complex geometries (an elongated do-
main with a compound piecewise profile) or an extension
to the slightly bended domain (but still with a circular
cross-section). These extensions are straightforward; the
latter case reduces to a simple change of the coordinate
z in the main equation (8) to the longitudinal curvilinear
coordinate along the bended domain. The generalization
of Eq. (8) to domains with non-circular cross-section is
also possible, but is more involved and would require a
substantial refinement of relation (3), while the main Eq.
(8) remains valid.

We believe that the proposed expression for the MFPT
is a useful tool for some rapid practical estimations as well
as for validation of complex numerical models of particle
diffusion in geometrically constrained settings.
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Appendix A: Effective trapping coefficient for an
absorbing disk inside a tube

We derive an approximate expression for the trapping
coefficient K of a small disk of radius a in a reflecting
tube with the cross-sectional area S(z) = πr2(z). For
planar domains, the expression for K can be deduced
analytically [37]. Unfortunately, there is no closed-form
analytical solution for K in the case of a general posi-
tion of the absorbing disk in a three-dimensional tube
with reflecting walls (we note that the classical results
for the capacitance of a small conductor in a tube [53–55]
correspond to the Dirichlet boundary condition bound-
ary condition on the tube wall). Nevertheless, there are
some analytical results that can be used to conjecture an
accurate interpolating solution.
The expression for K is indeed position dependent:

K = K(rT , zT ). The dependence on zT is “adiabatic”
and comes with the slowly changing profile of the do-
main, r(z). As a function of rT , K has a weak maximum
at the center of the domain (the most symmetrical config-
uration) that follows from the symmetry of the problem
and general bounds on the capacitance. To capture these
properties we can begin with a simple ansatz

K(ν, η)

K0

= A(ν)[1 −B(ν)ηp], (A1)

where K0 = 8aD is the trapping coefficient of a disk
of radius a, η = rT /r(zT ) ≤ 1, ν = a/r(zT ) ≪ 1 and
parameters A(ν), B(ν) and p to be determined.

For η = 0 (the centered disk) the solution has been
derived by Fock [56], from which

A(ν) =
1 + 1.37ν − 0.37ν4

(1− ν2)2
≥ 1. (A2)

The second parameter, B(ν), can be found from the
situation when the disk touches the wall of the tube. In
this case η = 1−ν and we can write this condition in the
form

K

K0

= qA, (A3)

with some constant factor q. The value of factor q can
be deduced from a general scaling argument. It is well
known that the capacitance (and hence the trapping rate)
scales with the square root of the surface area of con-
ductor (absorber) [39, 44]. So the capacitance of any
conductor touching the reflecting wall is approximately√
2/2 ≈ 0.71 of its value at the center of the tube (at

η = 0), which leads to Eq. (A3). This conjecture can also
be validated with the analytical results for two touching
disks, q = 3/4 [57] or q = 0.74 [58], and two touching
spheres when q = ln 2 ≈ 0.69 [39, 59], which are reason-
ably close. From here we arrive at

B(ν) =
1− q

(1− ν)p
> 0. (A4)

The value of exponent p = 2 can be deduced from
comparison with the analytical results for the flux of a
monopole source in the tube [51] near the tube center
(η = 0). One can also estimate it directly from numerical
simulations.
Combining Eqs. (A1, A2, A4), we get our analytical

model (3) for the trapping coefficient, with

Ψ(ν, η) = A(ν)[1 −B(ν)η2]. (A5)
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