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Abstract

We consider wave propagation across an infinite waveguide of an arbitrary bounded cross-section, whose
interior is blocked by two identical thick barriers with holes. When the holes are small, the waves over
a broad range of frequencies are almost fully reflected. However, we show the existence of a resonance
frequency at which the wave is almost fully transmitted, even for very small holes. This resonance scattering,
which is known as tunneling effect in quantum mechanics, is demonstrated in a constructive way by rather
elementary tools, in contrast to commonly used abstract methods such as searching for complex-valued poles
of the scattering matrix or non-stationary scattering theory. In particular, we derived an explicit equation
that determines the resonance frequency. The employed elementary tools make the paper accessible to
non-experts and educationally appealing.
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1. Introduction

Since classic works by Rayleigh [1], scattering in waveguides is known to exhibit resonance features. The
resonance character can be curvature-induced, be related to scattering near the waveguide cut-off frequency
or to a resonance in the waveguide cross-section, or originate from obstacles forming a resonator that is
weakly coupled to the waveguide [2, 3, 4, 5, 6, 7, 8, 9, 10]. In the latter case, the resonator can be either
joint to the waveguide from outside, or made inside. The former setting is used in mufflers: incoming waves
at frequencies far from the resonance one are almost fully transmitted; in contrast, the waves near the
resonance frequency are almost fully reflected. In the second setting, when barriers with small holes are
inserted inside the waveguide, the situation is different. If there is a single barrier with Dirichlet boundary
condition, the incoming wave cannot “squeeze” through a small hole and is thus almost fully reflected.
Intuitively, putting more barriers might seem to help further blocking the wave transmission. However, if
there are two barriers, they can form a resonator, which is coupled to the waveguide, so that an incoming
wave at the resonance frequency can be almost fully transmitted. This somewhat counter-intuitive effect in
acoustics is known as tunneling effect in quantum mechanics [11].

In spite of a large amount of works on resonance scattering in physics literature, most of them were
focused on approximate computations of the wave transmission coefficients (see, e.g., [12]). In turn, math-
ematical aspects of resonance scattering of the last type have been less studied (see [3, 6, 7] and references
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therein). One can also mention several works by Arsen’ev [13, 14, 15] who applied non-stationary scattering
theory. While the geometric structure of the problem can be rather general, the derived results are typically
formulated in the form of an alternative: either scattering is resonant at a given frequency, or this frequency
corresponds to a trapping mode. Another technique of asymptotic expansions was applied by Sarafanov and
co-workers [16, 17] in order to analyze the limiting behavior in planar waveguides when the size of a hole in
two barriers goes to zero. It is worth emphasizing that the mathematical proofs in these works are rather
complicated.

In this paper, we provide a much simpler analysis of the resonance scattering problem for the case of a
waveguide of arbitrary constant bounded cross-section with two identical barriers that are perpendicular to
the waveguide axis. This problem has two small parameters: the size of the hole and the difference between
the wave frequency and the resonance frequency. Our goal is to reveal how these two parameters should
be related to ensure wave transmission. In particular, we show that the width of barriers can be arbitrary
large that may have interesting applications. Former studies of resonance transmission commonly relied on
the notion of resonances, i.e., complex-valued poles of the scattering matrix. We do not use this notion
that facilitates all the proofs. In fact, our proofs are constructive and conceptually simple, even though
some formulas are cumbersome. Showing a possibility of such mathematically simple proofs in resonance
scattering problems is one of the educational goals of this paper.

2. Formulation and main result

Let us consider scattering in a waveguide Q0 of a bounded cross-section Ω ⊂ Rd, which contains two
identical barriers of thickness w separated by distance L− w: D × (0, w) and D × (L,L+ w), with D ⊂ Ω
(Fig. 1):

Q0 = (Ω× R)\
(

(D × (0, w)) ∪ (D × (L,L+ w))

)
⊂ Rd+1. (1)

We study wave propagation through the waveguide Q0 when the barriers are closing, i.e., the opening part
of the barriers, Γ = Ω\D, is vanishing. As a similar problem for infinitely thin barriers was studied in [18],
the main focus and novelty of the present paper is a finite thickness w of barriers.

We consider the stationary wave equation

∆u+ k2u = 0 in Q0, (2)

with Dirichlet boundary condition on the waveguide walls and on the barriers,

u|∂Q0
= 0, (3)

and standard radiation conditions

u(x, z) = eiγ1zψ1(x) + r1e
−iγ1zψ1(x) +

∞∑
n=2

rne
γnzψn(x) (z < 0), (4a)

u(x, z) = t1e
iγ1zψ1(x) +

∞∑
n=2

tne
−γnzψn(x) (z > L+ w), (4b)

where rn and tn are unknown reflection and transmission coefficients, points in Q0 are written as (x, z)
(with x ∈ Ω being the transverse coordinate and z ∈ R the longitudinal coordinate along the waveguide
axis), ψn(x) and λn are the L2(Ω)-normalized eigenfunctions and eigenvalues of the Laplace operator in the
cross-section Ω:

−∆ψn = λnψn, ψn|∂Ω = 0 (n = 1, 2, 3, . . .), (5)

and
γ1 =

√
k2 − λ1, γn =

√
λn − k2 (n ≥ 2). (6)
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The reflection coefficients can be expressed by using the orthogonality of eigenfunctions {ψn}:

1 + r1 =
(
u|z=0, ψ1

)
L2(Ω)

, rn =
(
u|z=0, ψn

)
L2(Ω)

. (7)

In this paper, we prove the following result.

Theorem 2.1. Let δ = diam{Γ} be the diameter of the opening part Γ of the barriers. For any fixed
wavelength k between

√
λ1 and

√
λ2, we show that

lim
δ→0

r1 = −1, (8)

i.e., the wave is fully reflecting in the limit of closed barriers. In turn, for any non-empty Γ with δ > 0 small
enough, there exists a resonance wavelength kD at which

r1 ≈ 0, (9)

i.e., the wave is almost fully propagating across two almost closed barriers. In other words, for any ε > 0
there exists δ′ > 0 such that for any Γ with diam{Γ} < δ′, there exists kD such that |r1| < ε.

Moreover, as our proof is constructive, we will derive an equation, from which the resonance wavelength kD
can be found.

3. Derivation

We consider weak solutions of Eq. (2) from H1,loc(Q0), i.e., the restriction of the solution to any finite
subdomain Q′ of Q0 should belong to H1(Q′). Moreover, the series determining the solution should converge
in L2(Ω). Under standard conditions on the boundary ∂Q, these solutions are smooth up to regular parts
of the boundary.

3.1. Reduction to two single-barrier problems

First, we show that the original problem can be reduced to two problems in a half cylinder with a single
barrier:

Q = (Ω× (−∞, z0))\(D × (0, w)), (10)

where z0 = (w + L)/2.
(i) The first problem involves Dirichlet boundary condition on the cross-section at z = z0:

∆uD + k2uD = 0 in Q, (11a)

uD
∣∣
∂Q

= 0, (11b)

uD(x, z) = eiγ1zψ1(x) + rD1 e
−iγ1zψ1(x) +

∞∑
n=2

rDn e
γnzψn(x) (z < 0), (11c)

uD
∣∣
z=z0

= 0. (11d)

(ii) The second problem involves Neumann boundary condition on the cross-section at z = z0:

∆uN + k2uN = 0 in Q, (12a)

uN
∣∣
∂Q

= 0, (12b)

uN (x, z) = eiγ1zψ1(x) + rN1 e
−iγ1zψ1(x) +

∞∑
n=2

rNn e
γnzψn(x) (z < 0), (12c)

∂uN

∂z

∣∣∣∣
z=z0

= 0. (12d)
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Figure 1: Infinite cylinder Q = Ω× R of a bounded cross-section Ω ⊂ R2, with two identical thick barriers of cross-section D
and thickness w, separated by distance L− w. Each barrier has a hole of cross-section Γ = Ω\D.

From the solutions of these problems, we can construct the solution of the original scattering problem
in Q0. Indeed, let us extend the solution of uD antisymmetrically and the solution uN symmetrically onto
Q0:

uD(x, z) = −uD(x, 2z0 − z) (z > z0), (13a)

uN (x, z) = uN (x, 2z0 − z) (z > z0). (13b)

These extensions are the solutions of the Helmholtz equation (2) in Q0, subject to Dirichlet conditions on
∂Q0 (i.e., on the cylinder walls and on the barriers) and the following radiation conditions for z > L+ w

uD(x, z) = −ei2γ1z0e−iγ1zψ1(x)− rD1 e−i2γ1z0eiγ1zψ1(x)−
∑
n=2

rDn e
2γnz0e−γnzψn(x), (14a)

uN (x, z) = ei2γ1z0e−iγ1zψ1 + rN1 e
−i2γ1z0eiγ1zψ1(x) +

∑
n=2

rNn e
2γnz0e−γnzψn(x). (14b)

The half sum of uD and uN gives the solution of the original scattering problem, with

rn =
rNn + rDn

2
(n ≥ 1), (15)

t1 =
rN1 − rD1

2
e−2iγ1z0 , tn =

rNn − rDn
2

e2γnz0 (n ≥ 2). (16)

3.2. Dirichlet problem solution uD

To find the solution uD of the first problem inQ, let us also introduce the L2(Γ)-normalized eigenfunctions
and eigenvalues of the Laplace operator in the cross-section of the hole, Γ = Ω\D:

−∆χn = µnχn, χn|∂Γ = 0 (n = 1, 2, 3, . . .) (17)

and set
βn =

√
µn − k2 (n ≥ 1). (18)

The eigenfunctions χn form an orthonormal basis in L2(Γ). In the following, we consider that

λ1 < k2 < min{µ1, λ2} (19)

so that the coefficients γn and βn are real for all n ≥ 1. Moreover, if the hole Γ is small, µ1 is large so that
k lies between

√
λ1 and

√
λ2.

We can consider a general solution of the Helmholtz equation in the domain Γ× (0, w)

uD(x, z) =

∞∑
n=1

(
e1n sinh(βn(z − w)) + e2n sinh(βnz)

)
χn(x), (20)

4



where the cofficients A1n and A2n can be expressed as

e1n = −
(u0, χn)L2(Γ)

sinh(βnw)
, e2n =

(u1, χn)L2(Γ)

sinh(βnw)
, (21)

where
u0 = uD|z=0, u1 = uD|z=w. (22)

Similarly, in the domain Ω× (w, z0), we have

uD(x, z) = e1 sin(γ1(z − z0))ψ1(x) +

∞∑
n=2

en sinh(γn(z − z0))ψn(x), (23)

where the coefficients en can be expressed as

e1 = −
(u1, ψ1)L2(Γ)

sin(γ1`)
, en = −

(u1, ψn)L2(Γ)

sinh(γn`)
, (24)

where

` = z0 − w =
L− w

2
. (25)

Remark. At this moment, we do not discuss the convergence of the series. Moreover, we will differentiate
formally the series without studying the validity of this operation up to the introduction of Eqs. (27). These
formal steps are just needed as a background to establish these equations. The solution of these equations
will solve the problem (3). In fact, if Eqs. (27) have a solution in the functional space W (introduced below
in Eq. (30)), it can be extended to the whole waveguide Q with the aid of Eqs. (11c, 20, 23). Indeed, these
series determine uD in the whole domain Q as an element of H1,loc(Q) that satisfies the Helmholtz equation,
boundary and radiation conditions. The series determining the radiation condition converges in L2 at any
cross-section because u ∈ H1,loc(Q).

Using formal representations

∂uD

∂z

∣∣∣∣
z=0−0

= −iγ1(u0, ψ1)ψ1 +

∞∑
n=2

γn(u0, ψn)ψn + 2iγ1ψ1, (26a)

∂uD

∂z

∣∣∣∣
z=0+0

= −
∞∑
n=1

βn

(
ctanh(βnw)(u0, χn)− 1

sinh(βnw)
(u1, χn)

)
χn, (26b)

∂uD

∂z

∣∣∣∣
z=w−0

= −
∞∑
n=1

βn

(
1

sinh(βnw)
(u0, χn)− ctanh(βnw)(u1, χn)

)
χn, (26c)

∂uD

∂z

∣∣∣∣
z=w+0

= −γ1ctan(γ1`)(u1, ψ1)ψ1 −
∞∑
n=2

γnctanh(γn`)(u1, ψn)ψn, (26d)

and imposing the continuity of ∂u
∂z at z = 0 and z = w, we obtain two functional equations on u0 and u1:

−iγ1(u0, ψ1)ψ1 +A0u0 + Cu1 = −2iγ1ψ1, (27a)

Bu0 + γ1ctan(γ1`)(u1, ψ1)ψ1 +A1u1 = 0, (27b)
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where the operators A0, A1, B and C are defined as

A0f =

∞∑
n=2

γn
(
f, ψn

)
L2(Γ)

ψn +

∞∑
n=1

β̂n
(
f, χn

)
L2(Γ)

χn, (28a)

A1f =

∞∑
n=2

γnctanh(γn`)
(
f, ψn

)
L2(Γ)

ψn +

∞∑
n=1

β̂n
(
f, χn

)
L2(Γ)

χn, (28b)

Bf = −
∞∑
n=1

βn
sinh(βnw)

(
f, χn

)
L2(Γ)

χn, (28c)

Cf = −
∞∑
n=1

βn
sinh(βnw)

(
f, χn

)
L2(Γ)

χn, (28d)

and
β̂n = βnctanh(βnw). (29)

We understand Eqs. (27) and the operators A0, A1, B, C as follows. Let us consider two Hilbert spaces

Wi =

{
v ∈ L2(Γ) :

∞∑
n=2

γ(i)
n

(
v, ψn

)2
L2(Γ)

+

∞∑
n=1

β̂n
(
v, χn

)2
L2(Γ)

<∞

}
, i = 0, 1, (30)

with the inner products

(f, g)Wi
=

∞∑
n=2

γ(i)
n

(
f, ψn

)
L2(Γ)

(
g, ψn

)
L2(Γ)

+

∞∑
n=1

β̂n
(
f, χn

)
L2(Γ)

(
g, ψn

)
L2(Γ)

, (31)

where γ
(0)
n = γn and γ

(1)
n = γnctanh(γn`). Since ctanh(γn`) rapidly tend to 1 as n → ∞, these functional

spaces are equivalent, i.e., any function belonging to W0, also belongs to W1, and vice-versa. For this reason,
we do not distinguish W0 and W1 and denote either of them as W . It is easy to see that these functional
spaces are also equivalent to H

1
2 (Γ) but this equivalence is not needed in the following. Note also that for

any v ∈W ,
||v||W ≥ C ||v||L2(Γ), (32)

with a strictly positive constant C.
The operators B and C are bounded in L2(Γ) and their norms are small if the diameter of the opening

Γ is small, see Sec. 4. The operators A0 and A1 in Eqs. (28a, 28b) can also be rigorously defined; however,
for our purposes, it is sufficient to understand these operators in terms of the associated quadratic forms,
i.e. by setting (

Aif, g
)
L2(Γ)

=
(
f, g
)
W
, i = 0, 1. (33)

As the operators A0 and A1 are positive definite (in the sense of positive definite quadratic forms determined
by A0 and A1), their inverses A−1

0 and A−1
1 are well defined (see discussion in Sec. 4).

Applying A−1
0 and A−1

1 to Eq. (27a) and Eq. (27b) respectively, we rewrite them in a matrix operator
form (

I A−1
0 C

A−1
1 B I

)
︸ ︷︷ ︸

=M

(
u0

u1

)
+

(
−iγ1(u0, ψ1)A−1

0 ψ1

γ1ctan(γ1`)(u1, ψ1)A−1
1 ψ1

)
=

(
−2iγ1A

−1
0 ψ1

0

)
, (34)

where I is the identity operator. We multiply Eq. (34) by the operator inverse to the operator M ,

M−1 =

(
R1 0
0 R2

)(
I −A−1

0 C
−A−1

1 B I

)
,

6



where
R1 = (I −A−1

0 CA−1
1 B)−1, R2 = (I −A−1

1 BA−1
0 C)−1. (35)

We obtain the functional equations

u0 − iγ1(u0, ψ1)R1A
−1
0 ψ1 − γ1ctan(γ1`)(u1, ψ1)R1A

−1
0 CA−1

1 ψ1 = −2iγ1R1A
−1
0 ψ1, (36a)

u1 + iγ1(u0, ψ1)R2A
−1
1 BA−1

0 ψ1 + γ1ctan(γ1`)(u1, ψ1)R2A
−1
1 ψ1 = 2iγ1R2A

−1
1 BA−1

0 ψ1. (36b)

Multiplying each of these equations by ψ1 and integrating over the hole Γ, we obtain two linear equations
which can be written in a matrix form as(

1 + a b ctan(γ1`)
c 1 + d ctan(γ1`)

)(
(u0, ψ1)
(u1, ψ1)

)
= 2

(
a
c

)
, (37)

where

a = −iγ1(R1A
−1
0 ψ1, ψ1)L2(Γ), (38a)

b = −γ1(R1A
−1
0 CA−1

1 ψ1, ψ1)L2(Γ), (38b)

c = iγ1(R2A
−1
1 BA−1

0 ψ1, ψ1)L2(Γ), (38c)

d = γ1(R2A
−1
1 ψ1, ψ1)L2(Γ), (38d)

Since (ui, ψ1)L2(Ω) = (ui, ψ1)L2(Γ) for both i = 0, 1 given that (u0)|D = (u1)|D = 0 according the boundary
condition (3), we did not specify the functional space for these two scalar products. Inverting the 2 × 2
matrix in Eq. (37), one finds (u0, ψ1) and (u1, ψ1).

Taking the limit z → 0 in the radiation condition (11c), multiplying it by ψ1 and integrating over Ω, the
reflection coefficient rD1 can be expressed as

rD1 = (u0, ψ1)L2(Ω) − 1 =
a− 1 + (ad− bc− d)ctan(γ1`)

a+ 1 + (ad− bc+ d)ctan(γ1`)
. (39)

This is the main technical result of this paper that determines resonance scattering properties.

3.3. Resonance transmission

It is important to emphasize that the reflection coefficient rD1 in Eq. (39) depends on ctan(γ1`) and on
the coefficients a, b, c, d. Here, ctan(γ1`) is determined by the wavelength k, the resonator half-length `, and
the shape of the cross-section Ω, but does not depend on the hole Γ. In turn, the coefficients a, b, c, d depend
on the hole diameter δ. As shown in Sec. 4 below, the coefficients a, b, c, d vanish as the diameter δ of the
hole Γ goes to 0. As a consequence, for a fixed wavelength k, we obtain in the limit of the vanishing hole:

rD1 → −1 (δ → 0). (40)

Repeating the same analysis for the Neumann problem (12) (which is fairly similar and thus not provided
here), one can show that (uN |z=0ψ1)L2(Ω) is close to zero and thus

rN1 =
(
uN |z=0, ψ1

)
L2(Ω)

− 1→ −1 (δ → 0). (41)

Substituting these expressions into Eq. (15), we get

r1 → −1 (δ → 0), (42)

i.e., the wave is fully reflected in the limit of two closed barriers, as intuitively expected.
Let us now consider the case of two almost closed barriers, i.e., δ is small but strictly positive. By

continuity arguments, one can argue that r1 remains close to −1 for most wavelengths, except for the
resonance one. Indeed, for a fixed hole Γ, Eq. (39) implies

rD1 = 1 (43)
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under the condition on the wavelength k:

1 + d ctan(γ1`) = 0. (44)

The wavelength kD determined by this equation, is the resonance wavelength of the resonator with Dirichlet
condition (11d), and it cannot be the resonance frequency of the same resonator with Neumann condition
(12d). As a consequence, Eq. (41) is still applicable at kD, and Eqs. (41, 43) imply

r1 ≈ 0, (45)

i.e., the wave almost fully propagates across two almost closed barriers. In other words, we have shown that
for the hole diameter δ small enough, the waveguide is almost totally reflecting for most wavelengths, except
for the resonance wavelength kD, at which it is almost fully propagating.

4. Estimates for operators

4.1. Estimates for operators A−1
0 and A−1

1

As the operators A0 and A1 are positive definite (in the sense of positive definite quadratic forms
determined by A0 and A1), their inverses A−1

0 and A−1
1 are well defined and for all f ∈ L2(Γ):

||A−1
i f ||L2(Γ) ≤ C||f ||L2(Γ) (i = 0, 1), (46)

for some C > 0, and
||A−1

i f ||W ≤ C ′||f ||L2(Γ) (i = 0, 1), (47)

for some C ′ > 0.
Indeed, the inverse A−1

0 f is defined in a weak sense as the solution of the equation

∞∑
n=2

γn
(
A−1

0 f, ψn
)
L2(Γ)

(
v, ψn

)
L2(Γ)

+

∞∑
n=1

β̂n
(
A−1

0 f, χn
)
L2(Γ)

(
v, χn

)
L2(Γ)

= (f, v)L2(Γ)

for any v ∈W0. Substituting v = A−1
0 f into this equation, we obtain

||A−1
0 f ||2W =

∞∑
n=2

γn
(
A−1

0 f, ψn
)
L2(Γ)

(
A−1

0 f, ψn
)
L2(Γ)

+
∞∑
n=1

β̂n
(
A−1

0 f, χn
)
L2(Γ)

(
A−1

0 f, χn
)
L2(Γ)

=
(
f,A−1

0 f
)
L2(Γ)

,

from which
||A−1

0 f ||2W ≤ ||f ||L2(Γ) ||A−1
0 f ||L2(Γ) ≤ C ′0 ||f ||L2(Γ) ||A−1

0 f ||W ,

where we used (32). We conclude that

||A−1
0 f ||W ≤ C ′0 ||f ||L2(Γ).

A similar bound can be obtained for A−1
1 .

4.2. Estimates for operators B and C

The estimates for operators B and C are much stronger. Indeed,

||Bf ||2L2(Γ) =

∥∥∥∥∥
∞∑
n=1

βn
sinhβn

(
f, χn

)
L2(Γ)

χn

∥∥∥∥∥
2

L2(Γ)

≤ 2

∞∑
n=1

β2
n

sinh2 βn

(
f, χn

)2
L2(Γ)

||χn||2L2(Γ)︸ ︷︷ ︸
=1

≤ 2β2
1

sinh2 β1

||f ||2L2(Γ),
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given that βn monotonously grow with n, whereas the function z/ sinh(z) is monotonously decreasing. We
get thus

||B||L2 ≤ C
β1

sinhβ1
−→ 0 as δ → 0.

In fact, as the diameter δ = diam{Γ} of the hole Γ vanishes, the eigenvalue µ1 goes to infinity, implying
very fast decay of ||B||L2 . The same analysis holds for ||C||L2 .

From the above estimates we deduce that

||A−1
0 CA−1

1 Bf ||W → 0 as δ → 0

so that the operator R1 defined in Eq. (35), is bounded in W . The same is true for R2.
From these estimates we finally obtain that(

R1A
−1
0 ψ1, ψ1

)
L2(Γ)

≤ C||ψ1||2L2(Γ) → 0 as δ → 0, (48)

implying that a given by Eq. (38a), also vanishes as δ → 0. Similar estimates take place for b, c, and d.
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