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A NOTE ON POLARIZED VARIETIES WITH HIGH NEF VALUE

ZHINING LIU

Abstract. We study the classification problem for polarized varieties with high ne-

fvalue. We give a complete list of isomorphism classes for normal polarized varieties

with high nefvalue. This generalizes classical work on the smooth case by Fujita, Bel-

trametti and Sommese. As a consequence we obtain that polarized varieties with slc

singularities and high nefvalue, are birationally equivalent to projective bundles over

nodal curves.
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1. Introduction

A projective variety X together with an ample line bundle L on X is called a po-
larized variety and is denoted by (X,L). A classical result on polarized varieties is the
Kobayashi-Ochiai theorem:

Theorem 1.1 (Generalized Kobayashi-Ochiai Theorem, cf. [BS95, Theorem 3.1.6]).
Let X be an n-dimensional connected normal projective scheme and L an ample line
bundle on X. Then we have

• (X,L) ∼= (Pn,OPn(1)) if and only if KX + (n+ 1)L≡num OX ;
• (X,L) ∼= (Q,OQ(1)) where Q ⊂ Pn+1 is a hyperquadric in Pn+1 if and only if
KX + nL≡numOX .

To study polarized varieties, Fujita introduced the ∆-genus ∆(X,L) := n + Ln −
h0(X,L) of polarized varieties, which encodes the dimension of the variety X and Ln,
and develops classification theories for polarized varieties with small ∆-genus under
certain assumptions on the singularities of X and positivity on L. For Fujita’s work, we
refer to [Fuj90, Chapter 1].

Date: 7th October 2022.
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2 ZHINING LIU

When a foliation F is algebraically integrable, one can define naturally general log
leaves of F (cf. [AD14, Definition 3.11]). A general log leaf (F̃ , ∆̃) comprises a nor-

malization of the closure of a general leaf F of F and an effective Weil Q-divisor ∆̃.
Let e : F̃ → F be the normalization map. Then ∆̃ is given by KF̃ + ∆≡num e

∗KF .
By studying the geometry of general log leaves in [AD14], Araujo and Druel obtained a
version of Kobayashi-Ochiai theorem for Q-Fano foliations ([AD14, Theorem 1.2]). We
also refer to [Hör14, Corollary 1.2] for a more general statement. This motivates us to
consider classification problem for (X,∆), where X is a variety and ∆ a Weil Q-divisor.

When an algebraically integrable foliation F is Q-Fano, we have the equality

KF̃ +∆≡num iF (e
∗H).

Hence one may very well try to establish a pair version of Theorem 1.1. In fact, Fujino
and Miyamoto proved the following:

Proposition 1.2 ([FM21, Corollary 1.3]). Let (X,∆) be a projective semi-log canonical
pair such that X is connected.. Assume that (KX + ∆) is not nef and that (KX +
∆)≡num rD for some Cartier divisor D on X with r > n = dim(X). Then X is
isomorphic to Pn with OX(D) = OPn(−1) and (X,∆) is Kawamata log terminal.

The result of Fujino and Miyamoto assumes mild singularites on the pair (X,∆) and
a divisibility condition of the log canonical bundle KX + ∆. However, with a foliation
F , its log general leaf (F̃ , ∆̃) is a priori just normal. On the other hand, the classical
results of classification theory in [BS95, Chapter 7.2] do not need divisibility assumption.
However we do need −KX is very positive. Thus one may try to weaken the conditions
and consider the classification problems:

(1) Classify the triple (X,∆, L) where (X,∆) is log canonical, L is ample and KX +
(dim(X)− 1)L /∈ Pseff(X);

(2) Classify the pair (X,L) where X is a projective variety with singularities wilder
than normal, L is ample and KX + (dim(X) − 1)L /∈ Pseff(X).

In order to achieve these goals, we study the more general class of quasi-polarized
varieties and follow an approach of Andreatta in [And13]. For a quasi-polarized variety
(X,L) where X is Q-factorial and has canonical singularities, we may run a MMP which
contracts all L-trivial extremal rays and get a polarized variety (X ′, L′) (see Lemma 3.2).
By using Andreatta’s result Theorem 3.3 which describes the general fibers of extremal
contractions, we can reduce the problem of classifying (X ′, L′) with high nefvalue to
the problem of classifying polarized variety with ∆-genus zero. We have the following
classification:

Theorem 1.3. Let X be a variety with canonical Q-factorial singularities and L a nef
and big line bundle on X. Suppose KX +(n− 1)L /∈ Pseff(X). Then we have one of the
following cases:

(1) (X,L) ∼bir (Pn,OPn(1));
(2) (X,L) is birational equivalent to a (Pn−1,OPn−1(1))-bundle over a smooth curve

C;
(3) (X,L) ∼bir (Q,OPn+1(1)), where Q ⊂ Qn+1 is a hyperquadric;
(4) (X,L) ∼bir (P2,OP2(2));
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(5) (X,L) ∼bir Cn(P2,OP2(2)), where Cn(P2,OP2(2)) is a generalized cone over
(P2,OP2(2))

This generalizes the results of Beltrametti and Sommese [BS95, Proposition 7.2.2 and
Theorem 7.2.4]. The drawback of letting L be nef and big is that after running MMP
we don’t have isomorphism and even have indeterminacies.

For a normal variety X, we have modifications µ : X ′ → X for X such that X ′ has
mild singularities andKX′ is µ-ample. A good reference for these modifications is [Kol13,
Chapter 1]. For a polarized variety (X,L), with X normal, we may take a canonical
modifications µ : X ′ → X for X and consider the quasi-polarized variety (X ′, µ∗L). By
applying the previous result, we have the following classification.

Theorem 1.4. Let (X,L) be a polarized normal variety of dimension n. Suppose that
KX is Q-Cartier and KX + (n − 1)L /∈ Pseff(X). Then we have one of the following
cases:

(1) (X,L) ∼= (Pn,OPn(1));
(2.i) (X,L) ∼= (P(V),OP(V)(1)), where E is a rank n ample vector bundle over a smooth

curve C;
(2.ii) (X,L) ∼= Cn(P1,OP1(a)) be a generalized cone with a ≥ 3;
(3) (X,L) ∼= (Q,OPn+1(1)), where Q ⊂ Qn+1 is a hyperquadric;
(4) (X,L) ∼= (P2,OP2(2));
(5) (X,L) ∼= Cn(P2,OP2(2)), a generalized cone over (P2,OP2(2)).

In Theorem 1.4, we note that even if in the proof we have taken a modification, in
the resulting list we have isomorphism. The reason is that L is ample and birational
equivalences between normal polarized varieties are always isomorphisms.

For a log canonical pair (X,∆) with (KX + ∆) + (dim(X) − 1)L /∈ Pseff(X), a first
observation is that if ∆ is Q-Cartier, we will have KX + (dim(X) − 1)L /∈ Pseff(X).
Hence we will have a list for (X,L) similar to Theorem 1.4. However in this list the
Picard number ρ(X) ≤ 2. Hence for ∆ to be an irreducible divisor or more generally
reduced divisor, we don’t have to many choice. We may thus give a list for (X,∆, L).

Proposition 1.5. Let (X,∆) be a log canonical pair, with ∆ 6= 0 a reduced divisor.
Suppose that L is an ample line bundle on X and (KX + ∆) + (n − 1)L /∈ Pseff(X),
where n = dim(X). Then (X,∆, L) is one of the following:

(1) (X,L) ∼= (Pn,OPn(1)), ∆ ≡num H is a prime divisor where H is a hyperplane of
Pn;

(2.i) There is a (Pn−1,OPn−1(1))-bundle (P(E),OP(E)(1)) over a smooth curve C, and
a birational morphism µ : P(E) → X such that µ∗(L) ∼= OP(E)(1) and ∆ =

∑

Fi
is a finite sum where Fi ∼= µ(Pn−1) are images of distinct general fibers of π by
µ;

(2.ii) (X,L) = (P(OP1(a) ⊕ OP1(1)),OP(O
P1 (a)⊕O

P1 (1))
(1)) with a > 1 and ∆ = D is

irreducible, where D is the unique section of P(OP1(a)⊕OP1(1)) → P1 such that
D ≡num OP(O

P1 (a)⊕O
P1 (1))

(1)) − af , where f is a general fiber;
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(3.i) (X,L) ∼= (Q,OPn+1(1)), where Q ⊂ Pn+1 is a rk(Q) = 3 hyperquadric, the

boundary divisor ∆ is a hyperplane in Q and [∆] =
1

2
[H ∩ Q] where H is a

hyperplane in Pn+1;
(3.ii) (X,L) ∼= (Q,OPn+1(1)), where Q ⊂ Pn+1 is a rk(Q) = 4 hyperquadirc. If we

write Q = Proj

(

C[x0, . . . , xn+1]

(x0x1 − x2x3)

)

, then ∆ = D is prime and D is the cone with

vertex Pn−3 over P1 × pt or pt× P1. In particular, D ∼= Pn−1.

Finally we turn to non-normal varieties with semi-log canonical singularities. We have
the following classification.

Theorem 1.6. Let X be a non-normal slc projective variety of dimension n and L an
ample line bundle over X. Suppose that KX + (n− 1)L /∈ Pseff(X). Let π : X̄ → X be
the normalization of X and D ⊂ X, D̄ ⊂ X̄ the conductors. Then we have:

There is a nodal curve C ′,a rank n-vector bundle E′, distinct fibers F1, F2, . . . , Fm
of P(E′) and a birational morphism µ : P(E′) → X such that µ∗(L) = OP(E′)(1) and
D =

∑

1≤i≤m µ(Fi)

We see that Theorem 1.6 shortens the list in Proposition 1.5 rather than increasing it.
In fact there is a degree 2 morphism D̄ν → Dν , where D̄ν and Dν are the normalizations
of D̄ and D respectively. Hence we need (L′|D̄ν )n−1 to be divisible by 2 which gives more
restrictions on (X̄, D̄) than the assumption in Proposition 1.5.

Remark 1.7. The classification in Theorem 1.3 is already known for even when X ′ is klt
(cf. [And13, Proposition 3.5]). My personal contribution in the classification is to use
modifications to get Theorem 1.4 and Theorem 1.6.

1.1. Plan of the article. The article is organized as following. In Section 2, we recall
some basic notions and facts that we need. In Section 3, we prove Theorem 1.4 by
running an MMP (Lemma 3.2) to reduce the problem to check which member in the list
of classification results of Fujita, Beltrametti-Sommese satisfies our non pseudo-effective
hypothesis. In Section 4, we prove Theorem 1.4 thanks to canonical modifications and
use similar methods to prove Proposition 1.5. In Section 5, for a polarized slc variety
(X,L), we use Proposition 1.5 on the triple (X̄, D̄, L′), where (X̄, D̄) is the normalization
of X and the conductor divisor on X̄ and L′ is the pullback of L, to get Theorem 1.6.

Acknowledgement. The article is part of the my PhD thesis. I would like to express
my sincere gratitude to my advisor Andreas Höring for his support and guidance, and for
proposing this project to me. I also thank Enrica Floris for reading my rather awkward
draft and making many suggestions to make the article more readable. I also thank my
co-advisor Benôıt Claudon for pointing out some errors and typos. The essential part of
this article was written when I was in Laboratoire J.A. Dieudonné. I thank the LJAD
for its accommodation and its nice research environment.

2. Notations and general setup

We work over C. For general definitions we refer to [Har77].
A scheme in the article will always be projective over C. A variety is a reduced and

irreducible scheme over C. The name point does not necessarily refer to closed point.
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For two Cartier divisor D1 and D2, we denote by D1 ∼ D2 the linear equivalence
and by D1 ≡numD2 the numerical equivalence. We have similar notations for Q-Cartier
Weil-divisors.

A vector bundle V of rank r over X is a locally free sheaf of rank r. We set

P(V) := Proj(⊕n≥0Sym
n(V))

to be its projectivisation.
We follow the positivity notions of divisors and vector bundles in [Laz04a][Laz04b].

We will use a generalized version of pseudo-effectivenss for reflexive sheaves by Höring-
Peternell:

Definition 2.1 ([HP19, Definition 2.1.]). Let X be a normal projective variety and E a
reflexive sheaf on X. We say that E is pseudo-effective if there exists an ample divisor
H on X satisfying the following: For any c > 0 there exists integers j > 0 and i > jc
such that

H0(X,S[i](E)⊗OX(jH)) 6= 0

where S[i](E) is the double dual of Symi(E).

When E itself is a line bundle, we have that E is pseudo-effective in the above sense
is equivalent to E is pseudo-effective in the usual sense of [Laz04a, Definition 2.2.25].

We recall the definition of polarized and quasi-polarized varieties.

Definition 2.2. Let (X,L) be a pair consisting of a projective variety X and a line
bundle L over X. We call it

(1) a quasi-polarized variety if L is nef and big;
(2) a polarized variety if L is ample.

For a quasi-polarised variety (X,L) of dimension n, its ∆-genus is defined to be

∆(X,L) := n+ Ln − h0(X,L)

Let (X,L) be a quasi-polarized variety, we define the nefvalue τ(L) of L to be

τ(L) := inf{t ∈ R : KX + tL is nef}.

By Kawamata’s rationality theorem, we know that τ(L) is a rational number or ∞.
We now give our notions for birational equivalence and isomorphisms between quasi-

polarized varieties.

Definition 2.3. Let (X1, L1) and (X2, L2) be two pairs consisting of a variety Xi and
a line bundle Li on Xi. We say that

(1) (X1, L1) is isomorphic to (X2, L2), if there exists an isomorphism φ : X1 → X2

such that φ∗(L2) is isomorphic to L1. We denote this by (X1, L1) ∼= (X2, L2).
(2) (X1, L1) and (X2, L2) are birationally equivalent, if there exists a variety X and

two birational morphism φi : X → Xi such that φ∗1(L1) is isomorphic to φ∗2(L2).
We denote this by (X1, L1) ∼bir (X2, L2).

In the article we will repeatedly encounter generalized cones. We thus recall the notion
of generalized cone here.
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Definition 2.4 (Generalized cone). We follow the construction in [BS95, 1.1.8.] Let
V be a projective scheme of dimension n and L a very ample line bundle over V . Fix
N ≥ n an integer. Set E := ⊕N−nOV and p : P(E ⊕ L) → V . We denote P(E ⊕ L)
by X. Note that E ⊕ L is globally generated and we have for the tautological bundle
ξ := OP(E⊕L)(1) of P(E ⊕ L) a surjective morphism p∗(E ⊕ L) → ξ. Hence we have a
surjective morphism

H0(V,E ⊕ L)⊗C OX ։ ξ.

The above morphism corresponds to a unique morphism

φ|ξ| : X → P(H0(V,E ⊕ L)).

We take the Stein factorization of φ:

X //

ψ|ξ|

��

P(H0(V,E ⊕ L))

CN (V,L)

66♥♥♥♥♥♥♥♥♥♥♥♥

and call CN (V,L) the generalized cone of dimension N on (V,L). As ξ is big, the scheme
CN (V,L) has dimension N . Set ξL := OP(H0(V,E⊕L))(1)|CN (V,L), then ξL is ample.

For the notions and results in birational geometry and the minimal model program,
we refer to the standard [KM98] and [Kol13].

3. Canonical polarized varieties

In this section, we consider quasi-polarized varieties (X,L) with canonical singular-
ities. First we give a lemma to show how the condition KX + (n − 1)L /∈ Pseff(X) is
related to the nefvalue of L.

Lemma 3.1. Let (X,L) be quasi-polarized variety of dimension n with canonical sin-
gularities. Suppose that τ(L) is finite. If KX + (n − 1)L /∈ Pseff(X), we have that
τ(L) > n− 1.

Proof. We know that Pseff(X ′) = Big(X) is a closed cone. Hence there exists an ample
Q-divisor A, such that KX + (n − 1)L + A is not pseudo-effective. If τ(L) ≤ n − 1, we
have

KX + (n− 1)L+A = (KX + τ(L)L) + (n− 1− τ(L))L+A.

That is, KX + (n − 1)L + A is a sum of a nef and an ample divisor, which is ample, a
contradiction. �

When L is ample, its nefvalue τ(L) is finite. However, when L is just nef and big, we
have some subtleties. By the cone theorem (cf. [Fuj11, Theorem 1.1.]), we know that

NE(X) = NE(X)KX≥0 +
∑

R≥0[Cj ]

where Cj are KX-negative rational curves and the sum is over countably many j.

(1) For every KX -negative extremal ray R = R≥0[C], we have that L ·C > 0. By the
rationality theorem (cf. [KM98, Complement 3.6]), there exists a KX -negative

extremal C0 such that τ(L) = −
KX · C0

L · C0
< ∞. Hence τ(L) = ∞ only if there

exists an L-trivial KX-negative extremal ray.
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(2) There exists a KX -negative extremal ray R such that L ·R = 0. By the contrac-
tion theorem (cf. [Fuj11, Theorem 1.1.(4)]), we consider the contraction with
respect to R, contR : X → Z. Note that there exists a line bundle LZ on Z such
that L ∼= cont∗R(LZ).

Hence we may consider to run a KX -MMP to contract every L-trivial extremal rays
to get a (X ′, L′) satisfying the case (1). We now precise how to do this.

Lemma 3.2. Let X be a variety with canonical Q-factorial singularities and L a big and
nef line bundle on X. Suppose that KX+(n−1)L /∈ Pseff(X). Then (X,L) is birationally
equivalent to a quasi-polarized variety (X ′, L′), where X ′ is a normal projective variety
with canonical Q-factorial singularities, KX′ + (n− 1)L′ /∈ Pseff(X ′) and

(1) Either τ(L′) is finite;
(2) or there is a Mori fiber space structure φ : X ′ → W and a rational number

τ > (n− 1) such that L′ is φ-ample and KX′ + τL′ ∼Q,φ 0.

Proof. We apply the terminal modification then a smallQ-factorialization toX (cf.[Kol13,
Theorem 1.33, Corollary 1.37]). We get a modification f : Y → X such that Y has Q-
factorial terminal singularities. Set LY = f∗L. We have that LY is nef and big and
KY +(n− 1)LY /∈ Pseff(Y ). By [And13, Lemma 4.1.], we can find an effective Q-divisor
∆ on Y such that

∆ ∼Q (n− 1)LY and (Y,∆) is klt.

Now consider the pair (Y,∆). We have that KY +∆ /∈ Pseff(Y ). By [BCHM10, Corol-
lary 1.3.3], we can run a (KY +∆)-MMP to get

(Y,∆) = (Y0,∆0) 99K (Y1,∆1) 99K · · · 99K (Ys,∆s),

with Ys a Mori fiber space.
Suppose that the map φi : Yi 99K Yi+1 is associated with a (KYi + ∆i)-negative

extremal ray Ri. By [And13, Proposition 4.2.], for every i = 0, 1, . . . , s, we have that

(1) Yi is Q-factorial terminal;
(2) ∆i ·Ri = 0;
(3) There exists nef and big line bundles Li on Yi and ∆i ∼Q (n− 1)Li.

It is then obvious KYi + (n− 1)Li /∈ Pseff(Yi).
We then set (X ′, L′) := (Ys, Ls).

(1) If (Ys,∆s) has noKYs-negative extremal ray R such that Ls·R = 0, by Kawamata
rationality theorem there exists a KX′-negative extremal curve C0 such that

τ(L′) = −
KX′ · C0

L′ · C0
. Hence the nefvalue of L′ is finite.

(2) Otherwise, we consider the Mori fiber space φs : Ys → W obtained in the above
(KY + ∆)-MMP. Let Rs := NE(φs) be the extremal ray of φs. We claim that
Ls ·Rs > 0. Suppose by contradiction that Ls ·Rs = 0. Then by the contraction
theorem, there exists LW such that φ∗s(LW ) = Ls. As dim(W ) < dim(Ys), we
have that Lns = φ∗s(L

n
W ) = 0 contradicting Ls to be nef and big. As Rs is a

(KYs + ∆s)-negative extremal ray, we have that (KYs + (n − 1)Ls) · Rs < 0.
Hence the τ > 0 such that KYs + τLs ∼Q,φ 0 satisfies that τ > (n− 1).

�
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The following relative Kobayashi-Ochiai criterion by Andreatta is the major tool to
give further classification for the second situation in the above lemma.

Theorem 3.3 ([And95, Theorem 2.1.]). Let X be a projective variety with klt singular-
ities and let L be a line bundle on X. Let φ : X → Z be a surjective morphism with
connected fibers between normal varieties. Suppose that L is φ-ample and KX+τL ∼Q,φ 0
for some τ ∈ Q+. Let F1 = φ−1(z) be a non-trivial fiber, F ⊂ F1 be one of its irreducible
components, F ′ be the normalization of F and let L′ be the pullback of L on F ′. Let ⌊τ⌋
be the integral part of τ and τ ′ = ⌈τ⌉ = −⌊−τ⌋.

(I,1) dim(F ) ≥ τ − 1;

(I,2) If dim(F ) < τ , then F ∼= Pτ
′−1 and L|F = OPτ ′−1(1);

(I,3) If dim(F ) < τ + 1, then ∆(F ′, L′) = 0,

If moreover dim(F ) > dim(X) − dim(Z), then

(II,1) dim(F ) ≥ τ ;
(II,2) If dim(F ) = τ , then F ∼= Pτ and L|F = OPτ (1);
(II,3) If dim(F ) < τ + 1, then ∆(F ′, L′) = 0,

If all components of the fiber F1 satisfy that dim(F ) < τ , in case (I.2) or dim(F ) ≤ τ
in case (II.3), then the fiber is actually irreducible.

A direct result of the above Theorem is the following lemma which classifies the
(X ′, L′) in the case (2) of Lemma 3.2.

Lemma 3.4. Let (X,L) be a quasi-polarized variety of dimension n. Suppose X has
canonical Q-factorial singularities and KX + (n − 1)L /∈ Pseff(X). Suppose that there
exists a KX-negative extremal ray R = R≥0[C0] such that L ·C0 > 0. Then (X,L) is the
one of the following

(1) (X,L) ∼= (Pn,OPn(1)), and τ = n+ 1;
(2) (X,L) is isomorphic to a (Pn−1,OPn−1(1))-bundle over a smooth curve C and

τ = n;
(3) ∆(X,L) = 0, KX + τL ∼Q OX and n− 1 < τ ≤ n.

Proof. Let φ : X → Z be the Mori contraction of the extremal ray R. Set t > 0 to be
the rational number such that (KX + tL) · C0 = 0. Let F be a general fiber of φ, then
(KX+(n−1)L)|F /∈ Pseff(F ). As NE(F ) = R≥0[C0], we have that (KX+(n−1)L)·C0 <
0. Thus t > (n− 1).

Let m be a divisible enough integer such that mKX is a Cartier divisor and mt is
an integer. The line bundle mKX + mtL is φ-numerically trivial. By the contraction
theorem, we know that KX + tL ∼Q,φ 0. As NE(X/Z) = R, we have that L is φ-ample.
Thus we are in the situation of Theorem 3.3.

We first show that φ is not birational. Suppose by contradiction that φ : X → Z is
birational. Let F be a component of a non trivial fiber F1 = φ−1(z). By Theorem 3.3
(II,1), we have that dim(F ) ≥ t > n− 1. Thus φ(X) is a singleton, a contradiction.

By Theorem 3.3, we know that dim(F ) ≥ t − 1 > n − 2. Thus we have that either
dim(F ) = n or dim(F ) = n− 1.

(1) If dim(F ) = n, we have that F = X and Z = {z}. Then KX + tL ∼Q OX

and τ = t. If t > n, Theorem 3.3 (I.2) implies that (X,L) = (Pn,OPn(1)) and
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τ = n+ 1. If n− 1 < t ≤ n, we have that dim(F ) = n < t+ 1. By Theorem 3.3
(I.3), we know that ∆(X,L) = 0.

(2) dim(F ) = n − 1. Let F ′ ⊂ F1 be another component of F1. Then Theorem 3.3
implies dim(F ′) ≥ n − 1. On the other hand we can not have dim(F ′) = n,
for this would imply that F = F ′ = X which has dimension n, a contradiction.
Hence by Theorem 3.3 again, we know that F1 is irreducible and F = F1. As
φ is not birational, by semi-continuity of dimensions of fibers (cf. for example
[Sta22, Tag 02FZ]), for any point z′, the fiber φ−1(z′) has positive dimension. By
Theorem 3.3 and repeating the argument for F and F1, we know that φ−1(z′) is
irreducible with dimension n− 1. Then Theorem 3.3 (I,2) implies that for every
fiber φ−1(z′), we have that (φ−1(z′), Lφ−1(z′)) ∼= (Pn−1,OPn−1(1)). Thus we know

that (X,L) is isomorphic to a (Pn−1,OPn−1(1))-bundle over a smooth curve C
and τ = n.

�

We are now left in the case (3) of Lemma 3.4. In this case, we have the following:

Lemma 3.5. Let (X,L) be a quasi-polarized variety of dimension n with ∆(X,L) = 0.
Suppose that X has canonical Q-factorial singularities, and that the nefvalue τ = τ(L)
of L satisfies n − 1 < τ(L) ≤ n. If KX + τL ∼Q OX , then there exists a birational
morphism µ : X → Y such that

(1) Y has canonical singularities, µ∗(KY ) = KX ;
(2) there exists an ample line bundle A on Y such that µ∗(A) = L;
(3) ∆(Y,A) = 0 and KY + τA ≡num OY .

Proof. We have that L − KX ∼Q 2τL which is nef and big. Hence we may apply the
basepoint-free theorem for L ([KM98, Theorem 3.3.]), to get that for all sufficient large
integer b, the linear system |bL| has no basepoints. We fix a such integer b0. Now
consider the graded algebra

R(X,L) =:
⊕

n≥0

H0(X,nL).

We have a canonical rational map µ : X → Proj(R(X,L)) =: Y . As Bs(|b0L|) = ∅,
we know that µ has no indeterminacy and R(X,L) is finite generated (cf. [Deb01,
Proposition 7.6.]). Hence the ring R(X, b0L) is integral and normal. As L is big, the
morphism µ is birational and b0L = µ∗(A1)(cf. [Deb01, Lemma 7.10.]) for some ample
Cartier divisor A1. With the same argument for the integer b0+1, we get another ample
Cartier divisor A2 such that (b0 + 1)L = µ∗(A2). By setting A := A2 −A1, we get (2).

We now take a divisible enough m such that mKX is Cartier, the number mτ is
an integer and mKX + mτL ∼Z 0. Denote by E the exceptional locus of µ and by
ν : Y \ µ(E) → X \ E the inverse of µ. We have that

OY (mKY )|Y \µ(E) ∼ ν∗(OX |X\E) ∼ ν∗(−mτL|X\E) ∼ −mτA|Y \µ(E)

We have that the rank one reflexive sheaf OY (mKY ) and the line bundle −mτA agree
outside a subset whose codimension is at least 2. Hence OY (mKY ) is a line bundle and
KY is Q-Cartier. We thus have the equalities KY = −τA and µ∗(KY ) = KX . Hence

https://stacks.math.columbia.edu/tag/02FZ
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µ is crepant and Y has canonical singularities. We get (1). By projection formula, we
have that

KY + τA = µ∗(KX + τL) = OY .

Thus ∆(Y,A) = n+An − h0(Y,A) = n+ Ln − h0(X,L) = 0. �

Hence it rest for us to classify the polarized variety (X,L) with L ample, n − 1 <
τ(L) ≤ n, ∆(X,L) = 0 and KX + τ(L)L ∼= OX . We have the following

Lemma 3.6. Let (X,L) be a polarized variety with L ample, n − 1 < τ(L) ≤ n,
∆(X,L) = 0 and KX + τ(L)L ≡num OX . Suppose that X has canonical singularities.
Then one of the following occurs:

(1) (X,L) ∼= (Q,OPn+1(1)), where Q ⊂ Qn+1 is a hyperquadric;
(2) (X,L) is a Pn−1-bundle over P1 and the restriction of L to each fiber is OPn−1(1);
(3) (X,L) ∼= (P2,O2

P(2));
(4) (X,L) ∼= Cn(P2,OP2(2)) is a generalized cone over (P2,OP2(2))

Proof. If τ(L) = n, we have that KX + nL ≡num OX . Then Theorem 1.1 implies that
(X,L) ∼= (Q,OPn+1(1)), where Q ⊂ Pn+1 is a hyperquadric. Hence we are in case (1).

From now on we may assume that τ(L) < n. As L is ample, we have that

KX + nL≡num(n− τ(L))L

is ample.
By Fujita’s classification theorem for polarized varieties with ∆-genus zero (cf. [Fuj90,

Theorem 5.10 and Theorem 5.15] [BS95, Proposition 3.1.2.]), we know that besides the
four cases given above in Lemma 3.6, there are two more possibilities for (X,L):

(i) Either (X,L) ∼= (Pn,OPn(1)),
(ii) or (X,L) is a generalized cone over (V,LV ), where V ⊂ X is a smooth subman-

ifold, L|V = LV is very ample and ∆(V,LV ) = 0.

Case (i) is impossible, since τ(OPn(1)) = n + 1. Hence we need to investigate case (ii).
Set r := n− dim(V ). From Definition 2.4 we have the following diagram

P(O⊕r
V ) = V × Pr−1

pr2 //
� _

i
��

Pr−1
� _

��
P(LV ) //

∼=
((◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
P(O⊕r

V ⊕ LV )

π

��

ψ|ξ|
// Cn(V,LV ) = X

V

where ξ = OP(O⊕r
V

⊕LV )(1) is the tautological bundle. The identification of V ∼= P(LV ) is

given by the quotient morphism O⊕r
V ⊕ LV ։ LV .

We claim that outside P(O⊕r
V ) the morphism ψ|ξ| induces an isomorphism onto its

image. Take z ∈ Cn(V,L) such that ψ−1
|ξ| (z) has positive dimension. In particular, there

exists a curve C1 such that ψ|ξ|(C1) = {z}. Since O⊕r
V ⊕ LV is globally generated,

we know that ψ|ξ| restricted to each fiber of π is an embedding. Hence π maps C1
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bijectively to its image C. By generic smoothness, we have an open subset U ⊂ C such
that π : C0 := π−1(U) → U is an isomorphism. We may regard C0 as a section of π
defined over U . That is

P((O⊕r
V ⊕ LV )|U ) //

��

P(O⊕r
V ⊕ LV )

��
U

σ

EE

// V

The section σ is defined by a quotient ρ = (ρ1, ρ2) : (O⊕r
V ⊕ LV )|U ։ M , with M

a line bundle on U . The morphism ρ has a decomposition into ρ1 : O⊕r
V → M and

ρ2 : LV → M . As ψ|ξ| ◦ σ(U) = {z}, we know that M ∼= σ∗(ξ|P((O⊕r
V

⊕LV )|U )) is trivial.

As h0(HomOU
(LV |U ,OU )) = h0(U,L∨

V |U ) = 0, we have that ρ2 = 0. Hence the quotient

is given by ρ1 : O
⊕n−1
U → OU . Hence C0 = U ⊂ P(O⊕r

V ) and C = C0 ⊂ P(O⊕r
V ).

As V = P(LV ) is smooth, we have the short exact sequence

0 → TP(LV ) → TP(O⊕r
V

⊕LV )|P(LV ) → NP(LV )/P(O⊕r
V

⊕LV ) → 0.

We have thus

(1) ω∨
P(O⊕r

V
⊕LV )

|P(LV ) = ω∨
P(LV ) ⊗ ∧rNP(LV )/P(O⊕r

V
⊕LV ).

The canonical bundle formula gives us

ωP(O⊕r
V

⊕LV ) = π∗(ωV ⊗ LV )⊗ ξ⊗−(r+1).

With ξ|V = LV , we know that ωP(O⊕r
V

⊕LV )|V = ωV ⊗ L⊗−r
V . Thus Equation (1) gives

∧rNP(LV )/P(O⊕r
V

⊕LV ) = L⊗r
V .

As P(LV ) is disjoint from the singular locus Pr−1 ⊂ X, we also have the exact sequence

0 → TP(LV ) → TX |P(LV ) → NP(LV )/X → 0.

Hence

ω∨
X |P(LV ) = ω∨

P(LV ) ⊗ ∧rNP(LV )/X .

Note NP(LV )/X = NP(LV )/P(O⊕r
V

⊕LV ). Hence ωX |V = ωV ⊗ L⊗−r. Then we have

ωX ⊗ L⊗n|V = ωV ⊗ L⊗(n−r).

Hence the divisor KV + dim(V)LV is ample.
If dim(V) ≥ 2, apply [Fuj90, Theorem 5.10] again for (V,LV ). We know that (V,LV )

is one of the following:

• (Pdim(V ),OPdim(V )(1)); or

• (Q,OQ(1)), where Q ⊂ Pdim(V )+1 is a hyperquadric; or
• (P(E),OP(E)(1)) where E is an ample vector bundle of rank dim(V ) over P1; or

• (P2,O2
P(2))
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Suppose first that dim(V ) = 2. If (V,L) is (P1,OP1(1)) or (Q,OP3(1)), the divisor
KV + 2LV will not be ample. If (V,L) is a P1-bundle over P1, then KV + 2LV is
trivial on each fiber, contradicting to the fact that KV + 2LV is ample. Hence we have
(V,L) ∼= (P2,O2

P(2)).
If dim(V ) = 1, we have that (V,LV ) ∼= (P1,OP1(a)) with a ≥ 3. By the following

Example 3.7 we know that for n ≥ 2, a generalized cone Cn(P1,OP1(a)) has singularities
worse than canonical.

Hence when (X,L) is a generalized cone, we have that (X,L) ∼= Cn(P2,O2
P(2)). �

We give some characterizations of generalized cones over P1.

Example 3.7. Let (X,L) = Cn(P1,OP1(a)) be a generalized cone with a ≥ 3 and n ≥ 2.
We have

(1) X has klt singularities and X is not canonical;
(2) the nefvalue of L is n− a−2

a ;
(3) KX + (n− 1)L is not pseudo-effective.

Example 3.8. Let (X,L) = Cn(P1,OP1(a)) be a generalized cone with a ≤ 2 and n ≥ 2.
Then KX + (n− 1)L ∈ Pseff(X).

For the proof of the above two examples, see [Liu22, Lemma 3.11 and 3.12].

Proof of Theorem 1.3. The proof is by combining all the precedent results.

Proof. By Lemma 3.2, we have that (X,L) ∼bir (X
′, L′), where X ′ is a normal projective

variety with canonical Q-factorial singularity, KX′ + (n− 1)L′ /∈ Pseff(X ′) and

(0-i) Either τ(L′) is finite;
(0-ii) or there is a Mori fiber space structure φ : X ′ → W and a rational number

τ > (n− 1) such that L′ is φ-ample and KX′ + τL′ ∼Q,φ 0.

In the first case, we have that r(L′) = 1
τ(L′) > 0, hence by Kawamata rationality theorem

there exists an K ′
X-negative extremal ray R0 = R≥0[C0] such that (r(L′)KX′ +L′) ·C0 =

0. Hence L′ · C0 > 0. In the second case, take R0 = R≥0[C0] be the extremal ray
associated to φ. Then L′ · C0 > 0.

Applying Lemma 3.4 on (X ′, L′), we get that (X ′, L′) is the one of the following

(1) (X ′, L′) ∼= (Pn,OPn(1)), and τ = n+ 1;
(2-i) (X ′, L′) is isomorphic to a (Pn−1,OPn−1(1))-bundle over a smooth curve C and

τ = n;
(∗) ∆(X ′, L′) = 0, KX′ + τL′ ≡num OX and n− 1 < τ ≤ n.

If we are in case (∗), apply Lemma 3.5. We have a birational morphism µ : X ′ → X ′′

such that

(a) X ′′ has canonical singularities, µ∗(KX′′) = KX′′ ;
(b) There exists an ample line bundle L′′ on X ′′ such that µ∗(L′′) = L′;
(c) ∆(X ′′, L′′) = 0 and KX′′ + τL′′ ≡num OX′′ .

In particular we have that (X ′, L′) ∼bir (X
′′, L′′). Now apply Lemma 3.6 to (X ′′, L′′).

We have that (X ′′, L′′) is isomorphic to the following pair:

(3) (X ′′, L′′) ∼= (Q,OPn+1(1)), where Q ⊂ Qn+1 is a hyperquadric;
(2-ii) (X ′′, L′′) is a Pn−1-bundle over P1 and L restricted to each fiber is OPn−1(1);



POLARIZED VARIETIES WITH HIGH NEF VALUE 13

(4) (X ′′, L′′) ∼= (P2,O2
P(2));

(5) (X ′′, L′′) ∼= Cn(P2,O2
P(2)) is a generalized cone over (P2,O2

P(2))

Thus we get the list stated in Theorem 1.3 �

4. Normal polarized varieties

With the help of canonical modification [Kol13, Theorem 1.31], we can give a classi-
fication theorem for normal polarized varieties with Q-Gorenstein singularities.

Proof of Theorem 1.4.

Proof. Apply [Kol13, Theorem 1.31] to the pair (X, 0). We get the canonical modification
f : X ′ → X with KX′ being f -ample. We take a further step, taking a small Q-
factorial modification g : Y → X ′ of X ′ (cf. [Kol13, Corollary 1.37]). We denote the
composition g ◦ f by µ. As g is small, we have that KY = g∗(KX′) is µ-nef. Note that
µ|µ−1(Xreg) : µ

−1(Xreg) → Xreg is an isomorphism.

We have that µ∗(ωY )|Xreg
∼= ωX |Xreg for the canonical sheaves ωY = OY (KY ) and

ωX = OX(KX). Note that µ∗(ωY ) is torsion-free, so we have an injection µ∗(KY ) ֌ KX .
By the projection formula we have an injection

OX(µ∗(KY + (n− 1)µ∗L)) ֌ OX(KX + (n − 1)L).

As KX + (n − 1)L is not pseudo-effective, we know that neither is KY + (n − 1)µ∗(L).
We set µ∗(L) = M . As M is nef and big, we know that M ∈ Pseff(Y ). Note that KY

is not pseudo-effective, hence it is not nef.
Let R = R≥0[C] be a KY -negative extremal ray, with C ⊂ Y a rational curve. We

have that KY · C < 0. As KY is µ-nef, we know that C is not contracted by µ. Hence
µ(C) ⊂ X has dimension 1. The intersection number M · C = deg(C/µ(C))L · µ(C) is
positive, since L is ample. Thus for any KY -negative extremal ray R, one has M ·R > 0.
By Lemma 3.2, we obtain that r(M) > 0 and τ(M) > n− 1. By Lemma 3.4 applied to
(Y,M), we have one of the following cases:

(i) (Y,M) ∼= (Pn,OPn(1)), and τ = n+ 1, or
(ii) (Y,M) is isomorphic to a (Pn−1,OPn−1(1))-bundle over a smooth curve C and

τ = n, or
(iii) ∆(Y,M) = 0, KY + τM ∼Q OY and n− 1 < τ ≤ n.

In case (i), we have a birational morphism µ : Pn → X with µ∗(L) = OPn(1). We have
that NE(Pn/X) = 0 since both L and OPn(1) are ample. By [Deb01, Proposition 1.14],
the morphism µ is an isomorphism. We have case (1) in Theorem 1.4.

In case (ii), we have a birational morphism µ : P(V) → X, such that KP(V) is µ-nef.
We denote by ξ the pull-back OP(V)(1) = µ∗(L). We know that ξ is nef and big.

We first note that ξ is ample if and only if µ is an isomorphism. In fact, if µ is an
isomorphism, then we have ξ is ample. Conversely, if ξ is ample, we have NE(P(V)/X) =
0 and hence µ is an isomorphism. In this case, we have that

KP(V) + (n− 1)ξ = π∗(KC + detV)− ξ

is not pseudo-effective. In fact, the general fiber f is from a covering family and we
have that KP(V) + (n − 1)ξ|f = Of (−1). Hence by the BDPP theorem (cf. [Laz04b,
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Theorem 11.4.19]), we know that KP(V) + (n − 1)ξ is not pseudo-effective. Thus we get
(2,i).

Now suppose that ξ is not ample. Then µ is not an ismorphism. We have the following
diagram:

(P(V), ξ)

π

��

µ
// (X,L)

C

.

We know that ρ(P(V)) = 2. As µ 6= π, we have that

NE(P(V)) = NE(π) + NE(µ).

We denote a general fiber of π by f . By [Ful11, Page 450], we know that NE(P(V)) has
as extremal rays R≥0ξ

n−2f and R≥0(ξ
n−1 + ν(n−1)ξn−2f) for some ν(n−1) ∈ Q. Note

that P1 = ξn−2f is contracted by π. Hence NE(π) = R≥0ξ
n−2f . We have KP(V) =

π∗(KC + det(V)) − nξ. Hence KP(V) · ξ
n−2f = −n. Thus π is the Mori contraction

associated to the extremal ray R≥0ξ
n−2f . As NE(µ) is an extremal ray, we know that µ

is an extremal contraction. By [KM98, Proposition 2.5.], we know that µ is either small
or divisorial.

If µ is small, we have that KP(V) = µ∗(KX). As ρ(X) = 1, we have that KX ≡num mL
for some m ∈ Q. Hence KP(V) ≡num mξ. We have that

m = mξ · ξn−2f = KP(V) · ξ
n−2f = −n.

Thus we get thatKX+nL≡numOX . By Theorem 1.1, we have that (X,L) ∼= (Q,OQ(1))
where Q ⊂ Pn+1 is a hyperquadric. Hence we are in case (3) of Theorem 1.4.

If µ is divisorial, we denote the exceptional divisor by E = exc(µ). Note that V is nef,
since µ∗(L) = ξ = OV(1) is nef. We have a unique exact sequence of locally free sheaves:

0 → A → V → Q → 0.

with A being an ample vector bundle and Q being numerically flat. If l ⊂ P(V) is a curve
such that ξ · l = 0, we have that l ⊂ P(Q). Thus we have that E ⊂ P(Q). In particular,
rk(Q) = n− 1 and E = P(Q). We denote the bundle morphism by π′ : P(Q) → C. Now
we compute E|E :

E|E = (KP(Q) −KP(V))|E

= π′∗(KC + detQ)− (n− 1)ξ|E − (π∗(KC + detV)− nξ)|E

= π′∗(detQ− detV) + ξ|E

= π′∗(−A) + ξ|E .

Take a rational curve l that is in the fiber of π′. We have that E · l = E|E · l = 1. Now
write KP(V) = µ∗(KX)+λE. As ρ(X) = 1, we have that KX ≡num mL for some m ∈ Q.
As KX + (n− 1)L ≡num (m+n− 1)L /∈ Pseff(X), we have that m+n < 1. Intersecting
with l, we get that

−n = KP(V) · l = (µ∗(KX) + λE) · l = (mξ + λE) · l = m+ λ.
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Hence λ = −m − n > −1 and X has klt singularities. A π′-fiber is isomorphic to
Pn−2 and is mapped isomorphically onto its image by µ. Hence each non-trivial µ-
fiber has dimension 1. As X has klt singularities, a fortiori (X, 0) is dlt. Applying
[HM07, Corollary 1.5-(1)] to the birational morphism µ, each µ-fiber is rationally chain
connected. Hence a non trivial fiber has P1 as its normalization. We have thus a finite
map π′|P1 : P1 → C. Thus C = P1 and V = OP1(a)⊕O

⊕(n−1)
P1 .

Consider the morphism ψ : P(OP1(a) ⊕ O
⊕(n−1)
P1 ) → Cn(P1,OP1(a)). We know that

ψ does not contract the extremal ray NE(π). Hence NE(ψ) = NE(µ) and by [Deb01,
Proposition 1.14] X = Cn(P1,OP1(a)). As L and the restriction of OP(H0(P1,O

P1 (a)))

to Cn(P1,OP1(a)) agree outside a subscheme of codimension at least 2, we have that
(X,L) = Cn(P1,OP1(a)). As KX + (n − 1)L /∈ Pseff(X), Example 3.8 implies a ≥ 3.
Now Example 3.7 shows that for all a ≥ 3, the divisor KX + (n − 1)L is not pseudo-
effective and X is klt. Thus we get (2,ii).

If we are in case (iii), apply Lemma 3.5 to (Y,M). We have a crepant resolution
ν : Y → Ycan with an ample divisor A on Ycan such that ν∗(A) =M , the ∆-genus satisfies
∆(Ycan, A) = 0 and KYcan + τA ≡num OYcan . By Lemma 3.6, (Ycan, A) is isomorphic to
one of the following:

(a) (Q,OPn+1(1)), where Q ⊂ Qn+1 is a hyperquadric;
(b) a Pn−1-bundle over P1 and L restricted to each fiber is OPn−1(1);
(c) (P2,OP2(2));
(d) a generalized cone Cn(P2,OP2(2)) over (P2,OP2(2)).

Case (b) is a special case of (ii) treated above. In case (a),(c) and (d), we have the
following diagram

(Y,M)
µ

//

ν

��

(X,L)

(Ycan, A)

h

99
s

s
s

s
s

,

where h is a birational map a priori not necessarily defined on all Ycan. We now show
h is indeed an isomorphism and h∗(L) = A. Let C ⊂ Y be a curve. We have

ν∗(A) · C =M · C = µ∗(L) · C.

As A and L are both ample, we have that NE(µ) = NE(ν). [Deb01, Proposition 1.14]
implies that h is an isomorphism. As h∗(L) agrees with A outside a subscheme of
codimension at least 2, we have that h∗(L) = A. Hence we get case (3), (4), (5) in
Theorem 1.4. �

Using similar methods, we can classify log pairs (X,∆) with ∆ a reduced Weil divisor.

Proof of Proposition 1.5.

Proof. We take a canonical modification of X then take a small Q-factorialization. We
get a birational morphism µ : Y → X such that Y has Q-factorial canonical singularities,
KY is µ-nef and µ is isomorphic over regular points of X. Set ∆′ := µ−1

∗ (∆). Then ∆′



16 ZHINING LIU

is a reduced divisor. Let ωY = OY (KY ) and ωX = OX(KX) be the canonical sheaves.
We know that

µ∗(ωY ⊗OY (∆
′))|Xreg

∼= (ωX ⊗OX(∆))|Xreg .

The sheaf µ∗(ωY ⊗OY (∆
′)) is torsion-free, so we have an injection

µ∗(ωY ⊗OY (∆
′)) ֌ ωX ⊗OX(∆).

Tensoring with µ∗(L⊗n−1), we have an injection

µ∗(ωY ⊗OY (∆
′)⊗ µ∗(L⊗n−1)) ֌ ωX ⊗OX(∆)⊗ L⊗n−1.

As (KX +∆)+(n−1)L is not pseudo-effective, neither is (KY +∆′)+ (n−1)µ∗(L). We
set µ∗(L) =:M . As ∆′ is effective, the divisor KY + (n− 1)M is not pseudo-effective.

As KY is µ-nef and M = µ∗(L), for any KY -negative extremal ray R, we have that
M · R > 0. Hence we can apply Lemma 3.4 to (Y,M) and get:

(a) (Y,M) ∼= (Pn,OPn(1)), and τ = n+ 1;
(b) (Y,M) is isomorphic to a (Pn−1,OPn−1(1))-bundle over a smooth curve C and

τ = n;
(c) ∆(Y,M) = 0, KY + τM ∼Q OY and n− 1 < τ(M) ≤ n.

If we are in case (a), the morphism µ is an isomorphism. The divisor ∆ is given by
OPn(a) for some a ≥ 1. We have that KX + (n − 1)L + D = OPn(a − 2). Hence the
only possible choice is a = 1 and ∆ = D is a hyperplane. We are thus in case (1) of
Proposition 1.5.

If we are in case (b), we have a diagram

(P(V), ξ)

π

��

µ
// (X,L)

C

,

where ξ = OP(V)(1) and KP(V) is µ-nef.
First we assume that µ is an isomorphism. In this case the vector bundle V is ample

and X = P(V) is Q-factorial. Let F = Pn−1 be a general fiber of π . Suppose that
∆|F = OF (d) for some natural number d ≥ 0. We have the following equality:

(KP(V) +∆+ (n− 1)ξ)|F = (π∗(KC + det(V)) + ∆− ξ)|F = OF (d− 1).

If d = 0, let D be a component of ∆, then D|F = OF (0). We claim that D is one of the
general fiber. In fact, suppose by contradiction that there exists a general fiber F such
that D ∩ F 6= ∅ and D * F . Then there will be a curve l ⊂ F \D such that l ∩D 6= ∅.
Then we have that D · l > 0, a contradiction. Thus we have that ∆ =

∑

Fi is a finite
sum of distinct general fibers. Let l be a rational curve in F . We have that

(KP(V) +∆+ (n− 1)ξ) · l = −1.

Since F is a member of a covering family, BDPP theorem (cf. [Laz04b, Theorem 11.4.19])
implies that KP(V) + (n − 1)ξ + ∆ is not pseudo-effective. We are thus in case (2.i) of
Proposition 1.5.

If d > 0, let D be a component of ∆ such that D|F = OF (d
′) for some d′ > 0.

By Lemma 4.1 after the proof, we have that n = dim(P(V)) = 2. We first show that
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C = P1. The non pseudo-effective divisor in question KX +D+ (n− 1)L thus becomes
KP(V)+D+ξ. We have that (KP(V)+D+ξ)|F = OF (d

′−1) which is nef. AsKP(V)+D+ξ

is not nef, we note that there will be an extremal ray R′ which is not generated by the
fiber of π, such that (KP(V)+D+ξ)·R′ < 0. In particular, we have that R′ is (KP(V)+D)-
negative. By the cone theorem, we know that R′ = R≥0[l] for a rational curve l. Note
that l maps finitely onto C. Hence we have C ∼= P1.

Thus (X,L) is a P1-bundle over P1 and Lemma 4.2 implies that (X,∆, L) is either in
cases (2.i), (2.ii) of Proposition 1.5 or (X,L) is a hyperquadric of rank 4, which will be
dealt in the following case (c1).

Assume, from now on, that µ is not an isomorphism. We know that

NE(P(V)) = NE(µ) + NE(π).

and π contracts the extremal ray R≥0ξ
n−2f . The birational morphism µ is either small

or divisorial.
If µ is small, by construction, we have that KP(V) + ∆′ = µ∗(KX + ∆). Let F

be a general fiber of π. We have that ∆′|F = OF (d) for some integer d ≥ 0. As
KX + ∆ is Q-Cartier and ρ(X) = 1, we have that KX + ∆≡nummL for some m ∈ Q.
Hence KP(V) +∆′ ≡num µ

∗mL. Intersect with ξn−2f . We get that −n + d = m. Hence
KX + ∆ + (n − 1)L ≡num (d − 1)L. Thus d = 0.Hence d = 0. If we write ∆′ =

∑

D′
i

with D′
i distinct prime divisors. We have that D′

i|F = OF (0). Thus the D
′
i’s are distinct

general fibers. As D′
i = µ−1

∗ (Di) by definition, we get that D′
i → Di = µ(D′

i) has degree
1. Thus we are in case (2.i) of Proposition 1.5.

If µ is divisorial, we denote the exceptional divisor by E = exc(µ). [KM98, Propo-
sition 3.36.] implies that X is Q-factorial. In particular KX is Q-Cartier. We have a
unique exact sequence of locally free sheaves:

0 → A → V → Q → 0

with A is an ample vector bundle and Q is numerically flat. And we know that E = P(Q)
and E · ξn−2f = 1. Let F be a general fiber of π. There exists a d ≥ 0 such that
∆′|F = OF (d) . As KX +∆ is Q-Cartier and ρ(X) = 1, there exists an m ∈ Q such that
KX + ∆ ≡num mL. Then KX + ∆ + (n − 1)L ≡num (m + n − 1)L /∈ Pseff(X). Hence
m+ n < 1. We now have

KP(V) +∆′ = µ∗(KX +∆) + λE.

Intersect both sides with ξn−2f . We get that −n + d = m+ λ. Since −(m + n) > −1,
we have that λ ≥ −1 + d.

Now we claim that d = 0. Suppose by contradiction that d ≥ 1. Then we have that
(KP(V)+∆′+(n−1)ξ)|F = OF (d−1). As KP(V)+∆′+(n−1)ξ is not nef, we know that
NE(µ) is an (KP(V)+∆′)-negative extremal ray. Note that (P(V),∆′) is log canonical. By

the cone theorem, there is a rational curve l whose class [l] is in NE(µ). As l maps finitely
onto C, we know that C ∼= P1. Hence (X,L) = Cn(P1,OP1(a)). As KX +(n−1)L is not
pseudo-effective, Example 3.8 implies that a ≥ 3. Example 3.7 implies that KX ≡num

(−n +
a− 2

a
)L. Suppose that ∆ ≡num m2L for some m2 ∈ Q+. For P1 ⊂ F mapped

isomorphic to its image, we have that m2 = m2ξ · P1 = µ∗(∆) · P1 = ∆ · µ(P1) ∈ N.
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Hence m2 ≥ 1 and KX + ∆ + (n − 1)L =
a− 2

a
L ∈ Pseff(X), a contradiction. This

proves the claim.
Write ∆ =

∑

Di and ∆′ =
∑

D′
i. Then each D′

i is a general fiber. As D′
i = µ−1

∗ (Di)
by definition, we get that D′

i → Di has degree 1. Thus we have that Di
∼= µ(Pn−1) are

the images of distinct general fibers of π and we are in case (2.i) of Proposition 1.5.
If we are in case (c), apply Lemma 3.5 to (Y,M). We have a crepant resolution

ν : Y → Ycan with an ample divisor A on Ycan such that ν∗(A) = M , the ∆-genus
∆(Ycan, A) = 0 and KYcan+τA ≡num OYcan . By Lemma 3.6, we have one of the following
cases:

(c1) (Ycan, A) ∼= (Q,OPn+1(1)), where Q ⊂ Qn+1 is a hyperquadric;
(c2) (Ycan, A) is a Pn−1-bundle over P1 and the restriction of L to each fiber is

OPn−1(1);
(c3) (Ycan, A) ∼= (P2,OP2(2));
(c4) (Ycan, A) ∼= Cn(P2,OP2(2)) is a generalized cone over (P2,OP2(2)).

We have the following diagram

(Y,M)
µ

//

ν

��

(X,L)

(Ycan, A)

h

99
ssssssssss

,

such that h is an isomorphism and µ∗(L) = M = ν∗(A) with (Ycan, A) being one of the
above four pairs.

In case (c1), after an automorphism of Pn+1 = Proj(C[x0, ...xn+1]), the hyperquadric
Q is given by the homogeneous ideal Ir = (

∑

0≤i≤r x
2
i ) ⊂ C[x0, ...xn+1] for some r ≥ 2.

By [Har77, Exercise II.6.5], the class group Cl(Q) of Q is the following:

• When r = 2, 1
2 [OQ(1)] is an integral divisor and Cl(Q) = Z · 1

2 [OQ(1)]. Suppose

that ∆ = k · 1
2 [OQ(1)]. Write ∆ =

∑

Di. Then each . Then

KX + (n− 1)L+∆ = (k2 − 1)OQ(1).

It is not pseudo-effective if and only if k = 1. Thus ∆ = D is irreducible and is
numerically equivalent to a hyperplane Pn−1 in Q. We are thus in case (3.i) of
Proposition 1.5.

• When r = 3, Cl(Q) ∼= Z⊕ Z. Note that here we can write

Q = Proj

(

C[x0, . . . , xn+1]

(x0x1 − x2x3)

)

,

which is a cone of vertex Pn−3 = {x1 = x2 = x3 = 0} ⊂ Pn+1 with base P1×P1 ⊂
P3 = {x4 = · · · = xn+1 = 0} ⊂ Pn+1 (cf. [Har77, Exercise I.5.12.(d)]). If we
consider the inclusions P3 ⊂ P4 ⊂ · · · ⊂ Pn ⊂ Pn+1, then Q is also obtained by
taking projective cone in the sense of [Har77, Exercise I.2.10] of P1 × P1 ⊂ P3

successively. By [Har77, Exercise II.6.3.(a)], we know Cl(P1 × P1) ∼= Cl(Q). For
a hyperplane H ⊂ Pn+1, H ∩Q has type (1, 1). The cone over P1 × pt has type
(1, 0) and the cone over pt× P1 has type (0, 1). Thus ∆ has type (1, 0) or type
(0, 1) and is irreducible. We are thus in case (3.ii) of Proposition 1.5.
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• When r ≥ 4, Cl(Q) = Z · [OQ(1)]. Hence ∆ = d[OQ(1)], and

KX + (n− 1)L+∆ ≡num OQ(d− 1)

is pseudo-effective. Thus this situation is excluded.

The case (c2) is treated in case (b). The case (c3) does not happen.
In case (c4), we consider the following diagram

E = P2 × Pn−3
pr2 //

� _

i
��

Pn−3
� _

��
T = P(O⊕n−2 ⊕O(2))

ψ|ξ|
//

π
��

Cn(P2,O(2)) = X

P2

.

Since T is a projective bundle, by [Ful98, Theorem 3.3.(b)] we have that

Cl(T ) = Z[π∗(OP2(1))] ⊕ Z[ξ].

On the other hand, since E = exc(ψ|ξ|) is contracted, we know that the homomorphism
(ψ|ξ|)∗ : Cl(T ) → Cl(X) is surjective and rk(Cl(X)) = 1. We have that ψ∗

|ξ|(L) = ξ.

Thus (ψ|ξ|)∗([ξ]) = [L] 6= 0. To determine Cl(X), one just need to know the image
(ψ|ξ|)∗π

∗([OP2(1)]). Let H be a Weil divisor on T such that OT (H) = π∗(OP2(1)). For

example, we can take H to be π−1(l) where l ⊂ P2 is a linear subspace. Then it’s easy
to see that H 6= E. Set G := (ψ|ξ|)∗H. As L is ample, the class [L] is non-zero in
Cl(X)⊗Q. Take m ∈ Q such that [G] = m[L] in Cl(X)⊗Q. We have that

(2) ψ∗
|ξ|(G) ∼Q (ψ|ξ|)

−1
∗ (G) + aE,

with (ψ|ξ|)
−1
∗ (G) = H. By the canonical bundle formula, we have that

KT = π∗(OP2(−1))− (n− 1)ξ and

KE = pr∗1(OP2(−2))− (n− 2)ξ|E .

Hence we have that

OE(E) = pr∗1(OP2(−2)) ⊗ pr∗2(OPn−3(1)).

Let C1 = P1 × {pt} ⊂ E. Then E · C1 = −2. We intersect both sides of Equation (2)
with C1. As (ψ|ξ|)∗(C1) = 0, by the projection we get that (ψ|ξ|)

∗(G) · C1 = 0. By

applying the projection formula to the morphism π|H : H → P2, we get that H ·C1 = 1.
Hence a = 1

2 . Thus we have that

(3) m[ξ] = π∗[OP2(1)] +
1

2
E.

Let F = Pn−2 be a fiber of π such that F ∩ E 6= ∅. Then E ∩ F = Pn−3 ⊂ Pn−2 = F .
Take C2 = P1 ⊂ F and intersect both side of Equation (3) with C2. We have that
ξ · C2 = 1 and π∗[OP2(1)] · C2 = 0 and E · C2 = 1. Thus we get that m = 1

2 . Hence we

know that Cl(X) ⊗Q = Q · 1
2 [L]. Let D be a component of ∆. Suppose that

(ψ|ξ|)
−1
∗ [D] = m1π

∗[(OP2(1))] +m2[ξ]
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for some natural numbers m1, m2. We have that D = (ψ|ξ|)∗(ψ|ξ|)
−1
∗ D ∼Q (

m1

2
+m2)L.

Hence m1
2 + m2 ≥ 1

2 . Being a generalized cone, X is Q-factorial. For the Q-Cartier
divisor KX we have

KX = (ψ|ξ|)∗(KT ) = (ψ|ξ|)∗(π
∗(O(−1))− (n− 1)ξ) = −(n−

1

2
)[L].

Now KX + D + (n − 1)L ≡num (
m1 − 1

2
+ m2)L is pseudo-effective. We thus exclude

case (c4).
�

Lemma 4.1. Let (X,D) = (P(V),D) be a log canonical pair, where π : P(V) → C is
a projective bundle over a smooth curve C and V is an ample vector bundle of rank n.
If for a general fiber F , we have that D|F = OF (d) for some d > 0. Then dim(X) =
dim(P(V)) = 2.

Proof. We have that

(KP(V) +D + (n− 1)ξ)|F = (π∗(KC + det(V)) +D − ξ)|F = OF (d− 1).

We take a thrifty dlt modification for (P(V),D) as in [Kol13, Corollary 1.36.], i.e., a
proper birational morphism f : P(V)dlt → P(V) with a boundary divisor ∆dlt such that:

(1) (P(V)dlt,∆dlt) has dlt singularities;
(2) f∗(KP(V) +D) ∼Q KP(V)dlt +∆dlt;

(3) KP(V)dlt +∆dlt is f -nef;

(4) P(V)dlt is Q-factorial.

Thus we have that

P(V)dlt
f

// P(V) π // C .

We set that g = π ◦ f and ξ′ = f∗ξ. Then we have that

f∗(KP(V) +D + (n− 1)ξ) ≡num KP(V)dlt +∆dlt + (n− 1)ξ′

As f is surjective, we have that f∗ preserves numerical equivalence. By the projection
formula we have that

f∗(KP(V)dlt +∆dlt+(n− 1)ξ′) ≡num f∗f
∗(KP(V)+D+(n− 1)ξ) = KP(V)+D+(n− 1)ξ.

Hence KP(V)dlt +∆dlt+(n− 1)ξ′ cannot be pseudo-effective. So there exists an extremal

ray R of NE(P(V)dlt) such that

(KP(V)dlt +∆dlt + (n− 1)ξ′) ·R < 0.

For 0 < ǫ≪ 1, we have that

(4) (KP(V)dlt + (1− ǫ)∆dlt + (n− 1)ξ′) ·R < 0.

We note that ξ′ · R = f∗(L) · R > 0, for otherwise any curve l such that [l] ∈ R is
contracted by f , which means (KP(V)dlt +∆dlt) · R ≥ 0, a contradiction. Hence R is in

fact a (KP(V)dlt +∆dlt)-negative extremal ray.
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By the contraction theorem (cf. [Fuj11, Theorem 1.1.(4)], we get the contraction
morphism contR : P(V)dlt → Y which contracts the ray R. Let S ⊂ P(V)dlt be a fiber of
contR. If dim(S) ≥ 2, there exists a curve l ⊂ S that is contracted to a point by g. As
KP(V)dlt +∆dlt is f -nef, the KP(V)dlt +∆dlt-negative curve l can not be contracted to a

point by f . Hence l maps finitely onto a curve l′ ⊂ F . Now we have that

(KP(V)dlt +∆dlt + (n− 1)ξ′) · l = (f∗(KP(V) +D + (n− 1)ξ)) · l

= deg(l/l′)(KP(V) +D + (n− 1)ξ) · l

= deg(l/l′)OF (d− 1) · l′

≥ 0,

a contradiction. Hence any fiber of contR has dimension at most 1.
Let E ⊂ exc(contR) be an irreducible component of the exceptional locus of contR.

We thus have that

dim(E)− dim(contR(E)) ≤ 1.

For 0 < ǫ ≪ 1, the pair (P(V)dlt, (1 − ǫ)∆dlt) has klt singularities (cf. [KM98,
Proposition 2.41.]). For small ǫ, the divisor −(KP(V)dlt +(1−ǫ)∆dlt) is still contR-ample.

The estimate of the length of extremal ray by Kawamata (cf. [Deb01, Theorem 7.46.])
for klt pairs shows that the rational curves l ∈ R cover E and there exists a rational
curve lǫ ∈ R such that

0 < −(KP(V)dlt + (1− ǫ)∆dlt) · lǫ ≤ 2.

For any curve l whose class [l] is in R, we have that ξ′ · l ≥ 1. Combining these two
inequalities with Equation (4), we have that

0 > (KP(V)dlt + (1− ǫ)∆dlt + (n − 1)ξ′) · lǫ ≥ −2 + (n− 1).

Hence n = 2. �

Lemma 4.2. Set (X,L) := (P(V),OP(V)(1)), where V is a rank 2 ample vector bundle

over P1. Suppose that ∆ is a reduced divisor on X and KX+∆+L is not pseudo-effective.
Then we have one of the following:

(1) Either ∆ =
∑

Di where Di
∼= P1 are distinct fibers of the structure map π :

P(V) → P1; or
(2) (X,L) = (P(OP1(a) ⊕ OP1(1)),OP(O

P1 (a)⊕O
P1 (1))

(1)) with a > 1 and D is the

unique section of P(OP1(a)⊕OP1(1)) → P1 such that

D ≡num OP(O
P1 (a)⊕O

P1 (1))
(1)) − af ,

where f is a general fiber; or
(3) V = OP(1) ⊕OP1(1).

Proof. As V is ample, we know that V ∼= OP1(a) ⊕ OP1(b) with a, b > 0. We may
suppose that a ≥ b > 0. If a = b = 1, then (X,L) ∼= (P1 × P1, (1, 1)) which is a rank 4
hyperquadric in P3. Thus we are in case (3) of Lemma 4.2.

Hence in the rest we only consider a > b. We follow the convention in [Har77,
Notation V.2.8.1] in this proof. Set e := a − b ≥ 0. Set W := V ⊗ OP1(−a). We have
that Xe := P(W) ∼= P(V). We denote by p : P(W) → P1 the projection. By [Har77,
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Lemma II.7.9], we know that (X,L) ∼= (Xe,OXe(1)⊗p
∗(OP1(a))). We denote the general

fiber of p by f ′. Note that W satisfies the assumption in [Har77, Proposition 2.8.]. Hence
there exists a section C0 of p such that OXe(1)

∼= OXe(C0). [Har77, Proposition 2.9.]
implies C2

0 = −e. Hence if a 6= b, we have that C0 is unique. We know that L ≡num

C0 + af ′ and [Har77, Lemma 2.10.] implies that KXe ∼ −2C0 + (−2− e)f ′. Let D be a
component of ∆. Then KX+D+L is not pseudo-effective. Assume that D ∼ xC0+d

′f ′,
with x, d′ being integers. We have that

KX + L+D≡num(x− 1)C0 + (d′ + b− 2)f ′.

As D is a prime divisor, [Har77, Corollary V.2.18-(b)] implies one of the following:

(i) x = 0, d′ = 1, and KX + L+D ≡num −C0 + (b− 1)f ′ /∈ Pseff(X);
(ii) x = 1, d′ = 0 and KX + L +D ≡num (b − 2)f ′, which is not pseudo-effective if

and only if b = 1;
(iii) x > 0, d′ > xe. Note that d′ + b− 2 ≥ 0. So we have that KX + L+D, being a

positive combination of effective divisors, is pseudo-effective;
(iv) e > 0, x > 0, and d′ = xe. Again we have that d′ + b− 2 ≥ 0. So KX + L+D,

being a positive combination of effective divisors, is pseudo-effective.

In case (i), the divisor D is a fiber of p, which maps isomorphically to a fiber of π
under the canonical isomorphism P(W) ∼= P(V).

In case (ii), asD is irreducible, [Har77, Proposition V.2.20-(a)] impliesD = C0. Hence
D is the unique section of π : P(OP1(a)⊕OP1(1)) → P1 such that D ≡num ξ−π∗(OP1(a)).
If we have another component D′ of ∆, we know that D′≡num f . Then

KX + L+D +D′≡num 0

is pseudo-effective, a contradiction. Thus ∆ = D is irreducible and we are in case (2) of
Lemma 4.2.

Write ∆ =
∑

Di. If we don’t have any component D of ∆ such that D ∼ C0, each
Di will be a fiber. Then

KX + L+∆≡num−C0 + (b− 2 + k)f ′

is not pseudo-effective, where k is the number of components of ∆. Hence we are in case
(1) of Lemma 4.2. �

5. Semi-log canonical polarized varieties

The hypothesis for the pair (X,∆) in Proposition 1.5 alludes to the normalization of
a slc variety together with its conductor divisors. In this section, we will show how to
use Proposition 1.5 to classifying polarized slc varieties.

For the basic definition and statements of slc varieties we refer to [Kol13, Chapter 5].
See also [Liu22, Chapter 2.5] for an account in our setup.

We recall the definition of conductor.

Definition 5.1 (conductor). Let X be a reduced scheme and π : X̄ → X its normaliza-
tion. The conductor ideal

condX := HomOX
(π∗OX̄ ,OX)
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is the largest ideal sheaf of OX such that it is also an ideal sheaf of π∗OX̄ . As π is finite,
we have a unique ideal sheaf condX̄ of X̄ that corresponds to condX .

We define the conductor schemes to be

D := Spec(OX/ condX) and D̄ := Spec(OX̄/ condX̄)

They fit into the Cartesian square

D̄

��

// X̄

��
D // X

.

Note that when X is demi-normal, the conductors D and D̄ are reduced divisors. We
now give our definition of slc singularities.

Definition 5.2 ([Kol13, Definition-Lemma 5.10]). Let (X,∆) be a pair with X demi-
normal. Let π : X̄ → X be its normalization, the conductors D̄ andD as in Definition 5.1.
The pair (X,∆) is called semi-log canonical or slc if (X̄, D̄ + ∆̄) is log canonical.

Proof of Theorem 1.6.

Proof. We know by definition that (X̄, D̄) is log canonical. Note that the absolute
normalization π : X̄ → X is finite (cf. [Sta22, Tag 0BXR]). Hence π∗(L) is ample. We
have that

π∗(KX + (n− 1)L) = KX̄ + D̄ + (n − 1)π∗(L).

Let C ⊂ X be a movable curve in X such that (KX + (n− 1)L) ·C < 0. Let C ′ ⊂ X̄
be a movable curve that dominates C. Then by the projection formula we have that

KX̄ + D̄ + (n− 1)π∗(L)) · C ′ = deg(C ′/C)(KX + (n− 1)) · C < 0.

Hence by the BDPP theorem, the divisor KX̄ + D̄+(n−1)π∗(L) is not pseudo-effective.
Note that D and D̄ are reduced. We denote by D̄ν , Dν respectively their normaliza-

tions. Then π induces a degree 2 map ν : D̄ν → Dν and there is a Galois involution
τ : D̄ν → D̄ν which is generically fixed point free (cf. [Kol13, 5.2]). Thus we have the
following diagram

D̄ντ 77

ν
��

// D̄

��

// X̄

π
��

Dν // D // X

.

Since ν : D̄ν → Dν has degree 2, we have by the projection formula that

π∗(L)|n−1
D̄ν = deg(ν) · (L|n−1

Dν ) ∈ 2Z.

We now apply Proposition 1.5 to (X̄, D̄, π∗(L)). We have one of the following:

(1) (X̄, π∗L) ∼= (Pn,OPn(1)),. The conductor D̄ = H is a prime divisor where H is
a hyperplane of Pn;

https://stacks.math.columbia.edu/tag/0BXR
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(2.i) There is a (Pn−1,OPn−1(1))-bundle (P(E),OP(E)(1)) over a smooth curve C, and

a birational morphism µ : P(E) → X̄ such that µ∗(π∗L) ∼= OP(E)(1) and D̄ =
∑

Fi is a finite sum where Fi ∼= µ(Pn−1) are images of distinct general fibers by
µ and deg(Pn−1/Fi) = 1 ;

(2.ii) (X̄, π∗L) = (P(OP1(a) ⊕ OP1(1)),OP(O
P1 (a)⊕O

P1 (1))
(1)) with a > 1 and D̄ = C,

where C is the unique section of P(OP1(a)⊕OP1(1)) → P1 such that

C ≡num OP(O
P1 (a)⊕O

P1 (1))
(1)) − af ,

where f is a general fiber;
(3.i) (X̄, π∗L) ∼= (Q,OPn+1(1)), where Q ⊂ Pn+1 is a rk(Q) = 3 hyperquadric, the

divisor D̄ is a hyperplane in Q and [D̄] =
1

2
[H ∩Q] where H is a hyperplane in

Pn+1;
(3.ii) (X̄, π∗L) ∼= (Q,OPn+1(1)), where Q ⊂ Pn+1 is a rk(Q) = 4 hyperquadirc. If

we write Q = Proj

(

C[x0, . . . , xn+1]

(x0x1 − x2x3)

)

, then D̄ is prime and D̄ is the cone with

vertex Pn−3 over P1 × pt or pt× P1. In particular, D̄ ∼= Pn−1.

In case (1), we have that D̄ν = D̄ ∼= Pn−1 is smooth and π∗(L)|D̄ν = OPn−1(1). As
π∗(L)|n−1

D̄ν = 1 is odd. We exclude case (1).

In case (2.i), we have that D̄ =
∑

1≤i≤k Fi for a natural number k and the morphism

µ :
∐

1≤i≤k P
n−1 → D̄ factors through D̄ν → D̄ (cf. [Sta22, Tag 035Q]-(4)). Hence

π∗(L)|n−1
D̄ν = k and k is even. As deg(Pn−1/Fi) = 1, we have that

π∗(L)|n−1
Fi

= deg(Pn−1/Fi)(OP(E)(1)|Pn−1)n−1 = 1.

Thus each irreducible component of D has pre-image consisting of two of the Fi’s. We
have thus the diagram

P(E)
µ

//

p

��

X̄
π // X

C

.

Set k = 2m. We write D =
∑

1≤i≤mDi. We denote the two components of D̄ that

are mapped onto Di by Fi,1 and Fi2 . Let xi,1 (resp. xi,2) be the point of C such that
µ(p−1(xi,1)) = Fi,1 (resp. µ(p−1(xi,2)) = Fi,2). As C is smooth, we may glue xi,1 and
xi,2. We thus get a nodal curve C ′ together with a quotient morphism q : C → C ′ such
that there exists a rank n vector bundle E′ on C ′ satisfying q∗(E′) = E. The morphism
π ◦ µ thus factors through P(E), i.e. we have the following commutative diagram:

P(E)
µ

//

��

X̄

π

��
P(E′)

µ′
// X

.

The morphism µ′ is birational. If we denote xi = p(xi,1) and Fi the fiber of xi in P(E′),
we have that Di = µ′(Fi). Thus we have the result of Theorem 1.6.

https://stacks.math.columbia.edu/tag/035Q
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In case (2.ii), we have that π∗(L) · C = a− e = 1. Hence we exclude this case.
In case (3.i), the conductor D̄ is irreducible and π∗(L)|n−1

D̄n = 1. Hence we also exclude
this case.

In case (3.ii), the conductor D̄ ∼= Pn−1 and π∗(L)|D̄ = OPn−1(1) which is not divisible
by 2. Hence we exclude this case, too. �
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