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A systematic study of optical forces in the Rayleigh limit of the gen-
eralized Lorenz-Mie theory, GLMT in short, has been recently investigated [1].
Although performed in the case of circularly symmetric Bessel beams, a general
formulation for arbitrary shaped beams has been simultaneously obtained, both
for longitudinal in the z-direction [2] and for transverse forces in the x- and y-
directions, see [3], with corrections for the y-component of forces provided in [4].
In this framework, optical forces are expressed in terms of beam shape coeffi -
cients gmn,TM and gmn,TE (n from 1 to∞, m from (−n) to (+n), TM standing for
"Transverse Magnetic" and TE standing for "Transverse Electric"). A remark-
able result is that optical forces are then expressed in terms of BSCs associated
with only (n = 1)- and (n = 2)-partial waves. This is deep contrast with the di-
pole theory of forces, e.g. [5], [6] in which optical forces are explicitly expressed
in terms of the total electric field of the illuminating beam E, i.e. encompassing
all partial waves from n = 1 to ∞ of this beam, and asks the question to know
what is the relationship between the Rayleigh limit of the GLMT and the dipole
theory of forces (let us note what we here comply with the definition of total
field in the dipole theory of forces denoting the illumination beam, in contrast
with the point of view in the GLMT framework where total field instead denotes
the summation of the incident and scattered fields). Relying on numerical [4],
[7] and on formal analyses [8], [9], it has however been demonstrated that the
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Rayleigh limit of GLMT perfectly identifies with the dipole theory of forces.
This implies that the dipole theory of forces actually contains mainly super-
fluous contributions, specifically all contributions from partial waves of order
n > 2. These results furthermore imply that it is necessary to revisit a pa-
per devoted to the existence of axicon terms in the framework of the Rayleigh
limit of GLMT [10]. To this purpose, it will be suffi cient to limit ourselves to a
discussion of longitudinal optical forces.
We start with scattering forces that we define as forces proportional to the

Poynting vector at the position of the scattering particle, denoted by the sub-
script P (this is here the most convenient definition although alternative points
of view may be taken). In the Rayleigh limit of GLMT, the longitudinal com-
ponent of the Poynting vector taken at P is found to read as, e.g. Eq.(66) in
[2]:

(S̃z)P = 2Re[i(g
−1
1,TMg

−1∗
1,TE − g

1
1,TMg

1∗
1,TE)] (1)

in which the normalization condition E0H∗
0/2 = 1 has been used and which

shows that scattering forces only depend on (n = 1)-partial waves. This implies
that, when expressing the corresponding scattering forces in the dipole theory
of forces, all partial waves of order n > 1 are superfluous and produce a null
contribution as formally checked (after lengthy formal computations) in [8].
Let us now consider gradient forces that we define as being proportional to

the derivative of |E|2 taken at P . In the case of circularly symmetric Bessel
beams, this gradient is 0 in agreement with the fact that longitudinal gradient
forces are found to be 0 as well in the Rayleigh limit of GLMT [2]. However, it
has been recognized soon after that this result was unsatisfactory and somehow
inconsistent insofar as, according to the understanding gained by working in the
Rayleigh limit of GLMT, it was clear that most of the partial waves involved
in E were irrelevant to the computation of the gradient of |E|2. Inspired by
Eq.1 above, it was then decided to evaluate this gradient by working with a

restricted electric field
∣∣∣Ẽ∣∣∣ in which only (n = 1)-partial wave contributions

would be retained rather than working with the total field E. In the case of
on-axis circularly symmetric Bessel beams, it has been found that the gradient

of
∣∣∣Ẽ∣∣∣2 was indeed zero as expected [11]. However, when applied to off-axis

beams, the gradient of
∣∣∣Ẽ∣∣∣2 generated axicon terms which were not zero, as it

was expected at this time [10]. The solution to this issue is that, in contrast
with the case of scattering forces which are correctly predicted by using only
(n = 1)-contributions, the evaluation of gradient forces and of the corresponding
gradient of |E|2 taken at P require to account both for (n = 1)- and for (n = 2)-
contributions. This may be demonstrated as follows. When establishing the
identification between the Rayleigh limit of GLMT and the dipole theory of
forces, it was established that the longitudinal gradient of |E|2 taken at P reads
as [8]:
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(∂z |E|2)P = −2k |E0|2 Im(G) (2)

in which, see Eq.(24) in [2]:

G =
1

3
g01,TMg

0∗
2,TM + g11,TM (g

1∗
2,TM − ig1∗1,TE) + g−11,TM (g

−1∗
2,TM + ig−1∗1,TE) (3)

But, it has been demonstrated that, in the case of circularly symmetric
Bessel beams, see Eqs.(28), (37) and (41) in [2]:

Im(G) = 0 (4)

which is to be compared with the fact that the gradient forces are found
to be proportional to Im(G), e.g. Eq.(27) in [2]. Therefore, taking into account
both (n = 1)- and for (n = 2)-contributions when evaluating (∂z |E|2)P does
not produce any axicon term, but a perfectly coherent formulation.
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