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A previous study has been devoted to the case of optical forces exerted on Rayleigh particles in the framework of generalized Lorenz-Mie theory (GLMT). This study is here extended to the case of small magnetodielectric particles which are characterized by their electric and magnetic Mie coefficients a1 and b1 respectively. A partition of optical forces between incident-scattered mixed terms and recoil terms has been established in GLMT since more than three decades. This partition is here complemented by another partition between gradient, scattering and nonstandard forces. The relationship between these non-standard forces and curl forces exhibited in the framework of a dipole theory is emphasized. The case of Rayleigh particles (more generally of electric dipolar particles) previously published in the GLMT-framework is recovered as a special case of the case of small magnetodielectric particles discussed in the present paper. The case of illumination by plane waves furthermore provides complementary insights on the behavior of non-standard forces.

1 Introduction.

The generalized Lorenz-Mie theory (GLMT) is a rigorous analytical theory to describe the interaction between an illuminating structured electromagnetic beam and a homogeneous spherical particle characterized by its diameter and its complex refractive index, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF] and references therein dating back to 1982 [START_REF] Gouesbet | Sur la gnralisation de la thorie de Lorenz-Mie[END_REF]. One of the issues to be considered in this framework is the study of optical forces and torques, expressed in terms of the beam shape coefficients (BSCs), usually denoted by g m n,T M and g m n,T E (T M standing for "Transverse Magnetic", T E for "Transverse Electric", with n ranging from 1 to infinity, and -n ≤ m ≤ +n) which encode the structure of the beam. Expressions of optical forces in the GLMT framework are originally available from [START_REF] Gouesbet | Scattering of a Gaussian beam by a Mie scatter center, using a Bromwich formalism[END_REF], complemented by [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Maheu | A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile[END_REF], and [START_REF] Gouesbet | Combustion measurements[END_REF] (they will serve as basic expressions in the framework of the present paper). Numerical evaluations of optical forces in the GLMT framework, using these expressions, possibly in relationship with experimental results, have afterward been provided in [START_REF] Ren | Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects[END_REF], [START_REF] Ren | Prediction of reverse radiation pressure by generalized Lorenz-Mie theory[END_REF], [START_REF] Polaert | Improved standard beams with applications to reverse radiation pressure[END_REF], [START_REF] Martinot-Lagarde | Trapping and levitation of a dielectric sphere with off-centred Gaussian beams. II. GLMT-analysis[END_REF]. Optical torques in spherical coordinates have also been discussed by Polaert et al. [START_REF] Polaert | Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam[END_REF]. Concerning complementary studies in spheroidal coordinates, for both optical forces and torques, the reader may refer to [START_REF] Xu | Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam[END_REF] and to [START_REF] Xu | Radiation torque exerted on a spheroid: analytical solution[END_REF]. These quotations are from authors having had a direct connection with Normandie University and Coria, institutions where the GLMT has originally been derived. Many other works from various worldwide authors contributed as well to the issue and have been recently quoted in a review paper with 284 references [START_REF] Gouesbet | Generalized Lorenz-Mie theories and mechanical effects of laser light, on the occasion of Arthur Ashkin's receipt ot the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review[END_REF].

The previous review paper has been written on the occasion of Arthur Ashkin's receipt of the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation. After Arthur Ashkin's work, it has been traditional to think of the optical forces in terms of a partition between gradient and scattering forces, see [START_REF] Ashkin | Optical trapping and manipulations of neutral particles using lasers: A reprint volume with commentaries[END_REF] for a collection of reprints. However, strange as it may be, GLMT studies aiming to a categorization of optical forces in terms of gradient and scattering forces had to wait for a long term before a first occurrence. As far as we know, such a first occurrence would be due to Lock [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF], in the course of a study devoted to the calculation of radiation trapping forces in optical tweezers using GLMT with illuminating Gaussian beams. It was then found that indeed GLMT was perfectly able to categorize optical forces in terms of gradient and scattering forces. However, the Gaussian beam in this work has been described within the weak confinement limit. As has been demonstrated later, this weak confinement limit assumption prevented the author to observe a third kind of optical forces, that we call non-standard forces and that will be discussed in the sequel, see [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the first kind, with the example of Gaussian beams[END_REF] for details concerning the story of the weak confinement limit and of its implications.

A systematic study of the categorization of the optical forces in the GLMT recently started in 2020 in the case of lossless particles in the Rayleigh regime [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by off-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and ended with an application to non-dark axisymmetric on-axis beams of the second kind and to dark axisymmetric on-axis beams [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the first kind, with the example of Gaussian beams[END_REF]. The understanding of the situation required several papers which were briefly reviewed in Section 10 of [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the first kind, with the example of Gaussian beams[END_REF]. One of the results of this effort is the categorization of optical forces in terms of gradient, scattering and non-standard forces and their relationship with optical forces exhibited in the dipole theory of forces.

Relying on the understanding so gained, the present paper considers the more general situation of small magnetodielectric particles when we must retain both the first electric and magnetic Mie coefficients a 1 and b 1 respectively. This is equivalent to saying that we are working in a GLMT framework which, in another context, defines the dipolar approximation since these first electric and magnetic Mie coefficients are directly related to the induced dipole polarizabilities of the particle, e.g. [START_REF] Wheeler | Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies[END_REF].

Although developed in the framework of GLMT stricto sensu devoted to the case of homogeneous spherical particles, our approach applies as well to the cases of multilayered particles when the expressions of the BSCs are unchanged, requiring only to modify the expressions of the Mie coefficients [START_REF] Onofri | Electromagnetic scattering from a multilayered sphere located in an arbitrary beam[END_REF], [START_REF] Wu | Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres[END_REF], and to other kinds of particles leading to expressions which are formally identical to the ones of the GLMT stricto sensu, namely assemblies of spheres and aggregates [START_REF] Gouesbet | Generalized Lorenz-Mie theory for assemblies of spheres and aggregates[END_REF], and spheres with an eccentrically located spherical inclusion [START_REF] Gouesbet | Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion[END_REF], [START_REF] Wang | Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: Internal and external field distributions[END_REF], [START_REF] Wang | Morphologydependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam[END_REF]. Other papers relevant to the issue discussed in the present paper will be quoted later when appropriate.

The paper is organized as follows. Section 2 recalls expressions of optical forces in the GLMT framework with a partition between incident-scattered terms (IS-terms) and recoil terms. Section 3 specifies the optical forces in the GLMT framework, in terms of BSCs, in the case when only the first Mie coefficients a 1 and b 1 are retained in the analysis. Section 4 provides an interpretation of the optical terms obtained in Section 2 in terms of gradient, scattering and non-standard forces. Section 5 discusses the case of electric dipolar particles as a special case of the magnetodielectric particles considered in the present paper, refines the interpretation of the non-standard forces with respect to another partition introduced in the dipole theory of forces, and discusses the special case of plane wave illumination which provides a few more insights on the behavior of non-standard forces. Section 6 deals with a conclusion together with a brief prospectus for future work.

2 Optical forces in the GLMT framework.

We consider a Cartesian coordinate system O P xyz with a scatterer located at the origin O P of the coordinates. The scatterer is illuminated by a structured beam encoded by the double set of BSCs g m n,T M and g m n,T E . The axis O P z is traditionally chosen to define the direction of propagation of the beam. The time dependence of the beam is assumed to read as exp(iωt). The optical forces may be expressed by using cross-sections denoted as C pr,i . In the present paper, it may be convenient, by metonymy, to use the name "force" to denote the cross-sections. Although expressions for optical forces have been presented in a paper whose most part is restricted to Gaussian beams [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], they are valid as well for arbitrary shaped beams [START_REF] Maheu | A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile[END_REF], [START_REF] Gouesbet | Combustion measurements[END_REF]. They are presented as well in textbooks devoted to the GLMT, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. For convenience to the reader, we shall refer to such a textbook which provides a comprehensive unified presentation of the theory (although a few misprints will have to be corrected, for which the reader may refer to [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], as will be mentioned below). The reader wanting to check the details would better begin from Section 3.11, p.66 of [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. Furthermore, we use the normalization condition E 0 H * 0 /2 = 1. The validity of such a normalization is ensured by the fact that beams considered in GLMT propagate in vacuum (so that the electric E 0 and magnetic H 0 strengths are proportional with a coefficient of proportionality which is an intrinsic impedance pertaining to the set of real numbers).

In the longitudinal direction O p z, the radiation pressure cross-section component C pr,z is then expressed by the relation (e.g. Eq.3.146 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]):

C pr,z = π 0 2π 0 1 2 Re(E i ϕ H s * θ + E s ϕ H i * θ -E i θ H s * ϕ (1) 
-E s θ H i * ϕ )r 2 cos θ sin θ dθdϕ - π 0 2π 0 (I s θ + I s ϕ )r 2 cos θ sin θ dθdϕ
in which the integrations are performed on the surface of a sphere S, centered at O P , and of radius r >> λ, E and H denote the electric and magnetic fields respectively, the superscripts i and s denote incident and scattered fields respectively, and (r, θ, ϕ) are usual spherical coordinates attached to the Cartesian coordinates (x, y, z).

The first term in the r.h.s. represents the forward momentum removed from the beam and the second term represents minus the forward momentum given by the scatterer to the scattered wave. Because the first term results from mixed contributions between incident and scattered fields, we shall call it the incident-scattered mixed term (or IS-mixed term in short). A more traditional denomination is the one of "extinction" term in agreement with the notations cos θ C ext , sin θ cos ϕ C ext and sin θ sin ϕ C ext borrowed below from Van de Hulst [START_REF] Van De Hulst | Light scattering by small particles[END_REF], but we have a preference for the more explicit IS-denomination.

Concerning the second term, it only involves scattered field components, expressed in terms of scattered intensities I s θ and I s ϕ expressed by Eq.(3.107) in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. Because the momentum given by the scatterer to the scattered wave is lost by the scatterer, this term has been called the recoil term in the literature. Eq.( 1) therefore expresses a first partition of optical forces in terms of IS-mixed forces and recoil forces, a partition already introduced in 1985 in [START_REF] Gouesbet | Scattering of a Gaussian beam by a Mie scatter center, using a Bromwich formalism[END_REF], although we here use a different language to express it. Such a partition will later occur as well for transverse optical forces discussed below. It must be noted that such a dichotomy between IS-mixed forces and recoil forces does occur as well for torques as discussed in the framework of the dipole theory of forces by Nieto-Vesperinas in [START_REF] Nieto-Vesperinas | Optical torque on small bi-isotropic particles[END_REF] and [START_REF] Nieto-Vesperinas | Optical torque: Electromagnetic spin and orbitalangular-momentum conservation laws and their significance[END_REF], and as evidenced in the framework of GLMT by Eq.( 2) of [START_REF] Polaert | Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam[END_REF].

Eq.( 1) may be rewritten as (Eq.3.147 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]):

C pr,z = cos θ C ext -cos θ C sca (2) 
in which cos θ indicates integrations weighted by cosθ, C ext is the extinction cross-section (Eq.3.142 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]), and C sca is the scattering cross-section (Eq.3.137 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]). Eq.2 uses a symbolic notation borrowed to and generalized, from a plane wave notation to an arbitrary wave notation, from [START_REF] Van De Hulst | Light scattering by small particles[END_REF]. The first term still represents an IS-mixed term in agreement with the fact that it is related to both absorption (of the Incident light) and scattering (through the Scattered wave), while the recoil term is only related to scattering.

These terms may be evaluated in terms of BSCs according to (Eqs.3.158 and 3.155 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]):

cos θC ext = λ 2 π ∞ n=1 +n p=-n 1 (n + 1) 2 (n + 1 + |p|)! (n -|p|)! (3) 
Re

[(a n + a * n+1 )g p n,T M g p * n+1,T M + (b n + b * n+1 )g p n,T E g p * n+1,T E ] -p 2n + 1 n 2 (n + 1) 2 (n + |p|)! (n -|p|)! Re[i(a n + b * n )g p n,T M g p * n,T E ] cos θC sca = - 2λ 2 π ∞ n=1 +n p=-n p 2n + 1 n 2 (n + 1) 2 (n + |p|)! (n -|p|)! (4) 
Re(i a n b * n g p n,T M g p * n,T E ) -

1 (n + 1) 2 (n + 1 + |p|)! (n -|p|)! Re(a n a * n+1 g p n,T M g p * n+1,T M + b n b * n+1 g p n,T E g p * n+1,T E )
As a whole, from Eqs.2, 3 and 4, we obtain (Eq.3.159 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]):

C pr,z = λ 2 π ∞ n=1 +n p=-n 1 (n + 1) 2 (n + 1 + |p|)! (n -|p|)! (5) Re[(a n + a * n+1 -2a n a * n+1 )g p n,T M g p * n+1,T M + (b n + b * n+1 -2b n b * n+1 )g p n,T E g p * n+1,T E ] +p 2n + 1 n 2 (n + 1) 2 (n + |p|)! (n -|p|)! Re[i(2a n b * n -a n -b * n )g p n,T M g p * n,T E ]
Similarly, the transverse cross-section components along x and y may be decomposed into IS-mixed and recoil terms according to (Eqs.3.162 and 3.163 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]):

C pr,x = sin θ cos ϕ C ext -sin θ cos ϕ C sca (6) 
C pr,y = sin θ sin ϕC extsin θ sin ϕC sca [START_REF] Ren | Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects[END_REF] The quantities of Eq.6 may be expressed in terms of BSCs as follows (respectively: Eq.3.180 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF] with the subscript in the rightmost summation corrected from m = p -1 to m = p -1 = 0 as in Eq.158 of [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], Eq.3.174 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]):

sin θ cos ϕC ext = λ 2 2π ∞ p=1 ∞ n=p ∞ m=p-1 =0 (n + p]! (n -p)! (8) 
Re(S p-1 mn + S -p nm )

1 m 2 δ m,n+1 - 1 n 2 δ n,m+1 + 2n + 1 n 2 (n + 1) 2 δ nm Re(T p-1 mn -T -p nm ) sin θ cos ϕC sca = λ 2 π ∞ p=1 ∞ n=p ∞ m=p-1 =0 (n + p)! (n -p)! (9) 
{[Re(U p-1 mn + U -p nm )][ 1 m 2 δ m,n+1 - 1 n 2 δ n,m+1 ] + 2n + 1 n 2 (n + 1) 2 δ nm [Re(V p-1 mn -V -p nm )]}
in which (respectively: Eqs.3.177 and 3.178 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], with the rightmost subscript of Eq.3.178 corrected from T E to T M , as in Eq.156 of [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF]):

S p nm = (a n + a * m )g p n,T M g p+1 * m,T M + (b n + b * m )g p n,T E g p+1 * m,T E (10) 
T p nm = -i(a n + b * m )g p n,T M g p+1 * m,T E + i(b n + a * m )g p n,T E g p+1 * m,T M (11) 
and (e.g. Eqs.3.167 and 3.168 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]):

U p nm = a n a * m g p n,T M g p+1 * m,T M + b n b * m g p n,T E g p+1 * m,T E (12) 
V p nm = ib n a * m g p n,T E g p+1 * m,T M -ia n b * m g p n,T M g p+1 * m,T E (13) 
Then, from Eqs.6, 8 and 9, we obtain as a whole (see Eqs.3.181 and 3.182 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]):

C pr,x = λ 2 2π ∞ p=1 ∞ n=p ∞ m=p-1 =0 (n + p)! (n -p)! (14) 
Re

S p-1 mn + S -p nm -2U p-1 mn -2U -p nm 1 m 2 δ m,n+1 - 1 n 2 δ n,m+1 + 2n + 1 n 2 (n + 1) 2 δ nm Re T p-1 mn -T -p nm -2V p-1 mn + 2V -p nm
Establishing the expression for C pr,y is fully similar. It is found that sin θ sin ϕ C sca and sin θ sin ϕ C ext are deduced from sin θ cos ϕ C sca and sin θ cos ϕ C ext respectively, by changing Re to Im. The final expression for C pr,y is therefore identical to [START_REF] Gouesbet | Generalized Lorenz-Mie theories and mechanical effects of laser light, on the occasion of Arthur Ashkin's receipt ot the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review[END_REF] but with Re replaced by Im as well.

These expressions have been obtained by using a radiative balance of momentum. Such an approach would have been qualified as being heuristic by Bohren and Huffman ( [START_REF] Bohren | Absorption and scattering of light by small particles[END_REF], p.120). From Wikipedia, "a heuristic technique is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, short-term goal or approximation". In view of this definition, the qualification of "heuristic" by Bohren and Huffmann might look pejorative. Actually, the radiative balance approach has the advantage of emphasizing in a direct way the physics supporting the calculations. Another, more abstract approach, is by using the Maxwell stress tensor. After checking, it has been established that both approaches lead exactly to the same results (possibly within irrelevant normalization prefactors), as stated for example in [START_REF] Gouesbet | Generalized Lorenz-Mie theories[END_REF], p.66.

In view of these remarks, some statements found in the literature might be misleading. An example is a paper by Chen et al. [START_REF] Chen | Optical pulling force[END_REF] devoted to a study of pulling forces. In the last section named "Methods", the authors wrote: "We calculated the time-averaged optical force that acts on a spherical particle via a surface integral of the time-averaged Maxwell stress tensor over the surface of the sphere. The electromagnetic fields needed in the Maxwell stress tensor were computed by the rigorous and accurate generalized Lorenz-Mie theory", with no reference to GLMT associated with this sentence. The exposition provided in the present section shows that actually expressions to calculate optical forces were already displayed in the framework of the GLMT in 1985, 25 years before. As an easy formal clue for the identification between the radiative balance approach and the Maxwellian stress tensor, the reader may compare the decomposition of the present section in terms of IS-mixed terms and recoil forces, and Eq.( 16) in the Supplementary Information of [START_REF] Chen | Optical pulling force[END_REF]. An acknowledgment of the existence of two complementary approaches to the evaluation of optical forces is however provided by a paper from Zheng et al. [START_REF] Zheng | GCforce: Decomposition of optical force into gradient and scattering parts[END_REF] to which we shall return later.

3 Optical forces exerted on small magnetodielectric particles.

We now specify the expressions from the previous section to the case of small magnetodielectric particles when we retain only the first Mie coefficients a 1 and b 1 . From Eq.3, we then obtain, after a bit of straightforward computations in which we used Re(z) = Re(z * ):

cos θC ext = 3λ 2 2π Re(a 1 G E + b 1 G H ) (15) 
in which:

G E = g -1 1,T M (g -1 * 2,T M + ig -1 * 1,T E ) + g 1 1,T M (g 1 * 2,T M -ig 1 * 1,T E ) + 1 3 g 0 1,T M g 0 * 2,T M (16) = -i(g 1 1,T M g 1 * 1,T E -g -1 1,T M g -1 * 1,T E ) + g -1 1,T M g -1 * 2,T M + g 1 1,T M g 1 * 2,T M + 1 3 g 0 1,T M g 0 * 2,T M G H = g -1 1,T E (g -1 * 2,T E -ig -1 * 1,T M ) + g 1 1,T E (g 1 * 2,T E + ig 1 * 1,T M ) + 1 3 g 0 1,T E g 0 * 2,T E (17) 
in which the subscript E stands for "Electric" because G E is multiplicatively associated with the electric Mie coefficient a 1 , while H stands for "Magnetic" because G H is multiplicatively associated with the magnetic Mie coefficient b 1 . For further use, we may decompose cos θC ext as the summation of four terms reading as:

[cos θC ext ] I E = -3λ 2 2π Im(a 1 ) Im(G E ) (18) 
[cos

θC ext ] R E = 3λ 2 2π Re(a 1 ) Re(G E ) (19) 
[cos

θC ext ] I H = -3λ 2 2π Im(b 1 ) Im(G H ) (20) 
[cos

θC ext ] R H = 3λ 2 2π Re(b 1 ) Re(G H ) (21) 
in which the subscripts E and H correspond to electric and magnetic contributions respectively, associated with the electric and magnetic Mie coefficients a 1 and b 1 respectively, while the superscripts R and I are associated with real and imaginary parts of G E and G H . It is worth noting that G E above identifies with the G of Eq.( 24) in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by off-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and of Eq.( 4) in [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. I. The longitudinal case[END_REF].

Similarly, from Eq.4, we obtain:

cos θC sca = -3λ 2 π Re[ia 1 b * 1 (g 1 1,T M g 1 * 1,T E -g -1 1,T M g -1 * 1,T E )] (22) 
whose decomposition will be considered in subsection 4.4.

For the transverse force along the x-direction, we use Eq.6 and after easy although somewhat tedious computations, we obtain: C pr,x = sin θ cos ϕC extsin θ cos ϕC sca [START_REF] Gouesbet | Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion[END_REF] in which the first term in the r.h.s. is found to read as:

sin θ cos ϕC ext = λ 2 4π Re(a 1 H 1 + b 1 H 2 ) ( 24 
)
in which:

H 1 = g 0 * 2,T M (g 1 1,T M + g -1 1,T M ) ( 25 
)
-3g 0 1,T M (g 1 * 2,T M + g -1 * 2,T M ) -12(g 1 1,T M g 2 * 2,T M + g -1 1,T M g -2 * 2,T M ) +3i[g 0 1,T M (g -1 * 1,T E -g 1 * 1,T E ) + g 0 * 1,T E (g -1 1,T M -g 1 1,T M )] H 2 = g 0 * 2,T E (g 1 1,T E + g -1 1,T E ) (26) -3g 0 1,T E (g 1 * 2,T E + g -1 * 2,T E ) -12(g 1 1,T E g 2 * 2,T E + g -1 1,T E g -2 * 2,T E ) +3i[g 0 1,T E (g 1 * 1,T M -g -1 * 1,T M ) + g 0 * 1,T M (g 1 1,T E -g -1 1,T E )]
Let us note that H 1 identifies with H given in Eq.( 38) of [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by off-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. Similarly, from Eq.3.174 in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], the second term occurring in Eq.23 is found to read as:

sin θ cos ϕC sca = 3λ 2 2π Re{ia 1 b * 1 [g 0 * 1,T E (g -1 1,T M -g 1 1,T M ) + g 0 1,T M (g -1 * 1,T E -g 1 * 1,T E )]} (27) 
We decompose Eq.24 as follows:

sin θ cos ϕC ext = [sin θ cos ϕC ext ] Ex + [sin θ cos ϕC ext ] Hx (28) 
in which:

[sin θ cos ϕC ext ] Ex = λ 2 4π Re(a 1 H 1 ) (29) 
[sin θ cos

ϕC ext ] Hx = λ 2 4π Re(b 1 H 2 ) (30) 
The electric term [sin θ cos ϕC ext ] Ex may then be decomposed according to:

[sin θ cos ϕC ext ] Ex = [sin θ cos ϕC ext ] R Ex + [sin θ cos ϕC ext ] I Ex ( 31 
)
in which:

[sin θ cos ϕC ext ] I Ex = -λ 2 4π Im(a 1 ) Im(H 1 ) (32) 
[sin

θ cos ϕC ext ] R Ex = λ 2 4π Re(a 1 ) Re(H 1 ) (33) 
The magnetic term [sin θ cos ϕC ext ] Hx of Eq.30 may as well be decomposed according to:

[sin θ cos ϕC ext ] Hx = [sin θ cos ϕC ext ] R Hx + [sin θ cos ϕC ext ] I Hx ( 34 
)
in which:

[sin θ cos ϕC ext ] I Hx = -λ 2 4π Im(b 1 ) Im(H 2 ) (35) [sin θ cos ϕC ext ] R Hx = λ 2 4π Re(b 1 ) Re(H 2 ) (36) 
Similarly, we have:

C pr,y = sin θ sin ϕC extsin θ sin ϕC sca [START_REF] Kong | Electromagnetic Wave Theory[END_REF] For sin θ sin ϕC ext and sin θ sin ϕC sca , we start from sin θ cos ϕC ext and sin θ cos ϕC sca respectively, and replace Re by Im [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. We then proceed similarly as above and obtain:

sin θ sin ϕC ext = λ 2 4π Im(a 1 H 1 + b 1 H 2 ) ( 38 
)
in which:

H 1 = g 0 * 2,T M (g -1 1,T M -g 1 1,T M ) ( 39 
)
-3g 0 1,T M (g 1 * 2,T M -g -1 * 2,T M ) -12(g 1 1,T M g 2 * 2,T M -g -1 1,T M g -2 * 2,T M ) +3i[g 0 * 1,T E (g 1 1,T M + g -1 1,T M ) -g 0 1,T M (g 1 * 1,T E + g -1 * 1,T E )] H 2 = g 0 * 2,T E (g -1 1,T E -g 1 1,T E ) (40) -3g 0 1,T E (g 1 * 2,T E -g -1 * 2,T E ) -12(g 1 1,T E g 2 * 2,T E -g -1 1,T E g -2 * 2,T E ) +3i[g 0 1,T E (g 1 * 1,T M + g -1 * 1,T M ) -g 0 * 1,T M (g 1 1,T E + g -1 1,T E )]
Let us note that the H 1 of Eq.39 exactly identifies with the H found in [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF]. Furthermore, it is found that:

sin θ sin ϕC sca = 3λ 2 2π Im{ia 1 b * 1 [g 0 * 1,T E (g -1 1,T M + g 1 1,T M ) -g 0 1,T M (g -1 * 1,T E + g 1 * 1,T E )]} (41) 
This is completed by the following similar decomposition:

sin θ sin ϕC ext = [sin θ sin ϕC ext ] Ey + [sin θ sin ϕC ext ] Hy (42) 
in which:

[sin θ sin ϕC ext ] Ey = λ 2 4π Im(a 1 H 1 ) (43) 
[sin θ sin

ϕC ext ] Hy = λ 2 4π Im(b 1 H 2 ) (44) 
(in which H 1 is H , for instance in [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. II. The transverse case[END_REF]). The electric term is furthermore decomposed in two terms according to:

[sin θ sin ϕC ext ] Ey = [sin θ sin ϕC ext ] R Ey + [sin θ sin ϕC ext ] I Ey ( 45 
)
in which:

[sin θ sin ϕC ext ] R Ey = λ 2 4π Im(a 1 ) Re(H 1 ) (46) 
[sin θ sin ϕC ext ] I Ey =

λ 2 4π Re(a 1 ) Im(H 1 ) (47) 
Similarly, for the magnetic term [sin θ sin ϕC ext ] Hy , we have:

[sin θ sin ϕC ext ] Hy = [sin θ sin ϕC ext ] R Hy + [sin θ sin ϕC ext ] I Hy [START_REF] Gao | Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects[END_REF] in which:

[sin θ sin ϕC ext ] R Hy = λ 2 4π Im(b 1 ) Re(H 2 ) (49) 
[sin θ sin ϕC ext ] I Hy =

λ 2 4π Re(b 1 ) Im(H 2 ) ( 50 
)
4 Interpretation of optical forces in terms of gradient, scattering and non-standard forces.

4.1

The T -transformation.

From the expressions for the electric E and magnetic H fields, e.g. Eqs.( 85)-(90) in [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF] or (3.39)-(3.50) in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], it is found that:

H = T (E) (51) 
in which the transformation T changes E 0 to H 0 , g m n,T M to + g m n,T E and g m n,T E to -g m n,T M , in which however E 0 and H 0 are forced to satisfy the normalization condition E 0 H * 0 /2 = 1. We shall soon return to this issue when appropriate. We also have:

G H = T (G E ) (52) 
H 2 = T (H 1 ) (53) Re(H 2 ) = T Re(H 1 ) (54) 
This T -transformation is actually a well-known dual transformation between E and H, e.g. [START_REF] Kong | Electromagnetic Wave Theory[END_REF], pp. 367-376, which is however here expressed in the framework of GLMT. According to this duality transformation, changing g m n,T M to + g m n,T E and g m n,T E to -g m n,T M , and forgetting the electric E 0 and magnetic H 0 strengths, we obtain H → -E.

4.2

Preliminaries.

The interpretation of the optical forces exhibited in the previous section requires the evaluation of gradients and Poynting vector components at the location of the particle (denoted by the subscript P ). We begin with the evaluation of gradients. It is demonstrated that, e.g. Eq.( 61) in [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF]:

[∂ z |E| 2 ] P = -2k |E 0 | 2 Im(G E ) ( 55 
)
which does satisfy the normalization convention E 0 H * 0 /2 = 1 of the present paper, e.g. Eq.(3.106) of [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. Specifically, for a nonabsorbing medium in which µ and ε are real numbers, we have E 0 = H 0 µ/ε in which µ and ε are the permeability and the permittivity of the vacuum (more generally of the surrounding nonabsorbing medium) respectively. This leads to |E 0 | 2 = 2 µ/ε, so that Eq.55 becomes:

[∂ z |E| 2 ] P = -4kη Im(G E ) (56) 
in which η = µ/ε is the impedance of the surrounding medium. From Eqs.51 and 52, we then have:

[∂ z |H| 2 ] P = -2k |H 0 | 2 Im(G H ) (57) 
while the normalization condition leading to |E 0 | 2 = 2η as above leads as

well to |H 0 | 2 = 2/η, implying: [∂ z |H| 2 ] P = -4k 1 η Im(G H ) (58) 
in which the change η → 1/η from Eq.56 to Eq.58 ensures a coherence of units, in accordance with the relation

|H 0 | 2 = |E 0 | 2 /η 2
which implies to change η in Eq.56 to 1/η in Eq.58.

Similarly, from Eq.( 56) in [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. II. The transverse case[END_REF] and Eq.53 above, we obtain:

[∂ x |E| 2 ] P = -2 3 kη Im(H 1 ) (59) [∂ x |H| 2 ] P = -2 3 k η Im(H 2 ) ( 60 
)
Concerning the derivatives with respect to y, we use Eq.( 57) in [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. II. The transverse case[END_REF] (with the misprint Im in the rightmost term changed to Re) and Eq.54 of the present paper to obtain:

[∂ y |E| 2 ] P = 2 3 kη Re(H 1 ) (61) [∂ y |H| 2 ] P = 2 3 k η Re(H 2 ) ( 62 
)
We now consider the components of the Poynting vector at P . We start from the fairly complicated expressions of the Poynting vector demonstrated in [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coefficients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF] and the values of the components at P are thereafter evaluated. For the z-component, we obtain (see Eq.(66) in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by off-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and ( 37), (93) in [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. I. The longitudinal case[END_REF]):

[S z ] P = 2 Re[i(g -1 1,T M g -1 * 1,T E -g 1 1,T M g 1 * 1,T E )] (63) = 2 Re[i(g 1 1,T E g 1 * 1,T M -g -1 1,T E g -1 * 1,T M )]
The components along x and y are given by Eq.( 61) and (68) in [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by off-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] according to:

[S x ] P = Re{i[g 0 1,T M (g -1 * 1,T E -g 1 * 1,T E ) + g 0 1,T E (g 1 * 1,T M -g -1 * 1,T M )]} (64) = Re{i[g 0 1,T E (g 1 * 1,T M -g -1 * 1,T M ) + g 0 * 1,T M (g 1 1,T E -g -1 1,T E )]} = Re{i[g 0 * 1,T E (g -1 1,T M -g 1 1,T M ) + g 0 1,T M (g -1 * 1,T E -g 1 * 1,T E )]} [S y ] P = Re[g 0 * 1T E (g 1 1,T M + g -1 1,T M ) -g 0 1,T M (g 1 * 1,T E + g -1 * 1,T E )] (65) = Re[g 0 1,T E (g -1 * 1,T M + g 1 * 1,T M ) -g 0 1,T M (g -1 * 1,T E + g 1 * 1,T E )] = Re[g 0 1,T E (g -1 * 1,T M + g 1 * 1,T M ) -g 0 * 1,T M (g -1 1,T E + g 1 1,T E )]

4.3

Interpretations of electric and magnetic optical forces.

Using Eq.56, we see that [cos θC ext ] I E of Eq.18 is a gradient electric force which may be denoted C EG pr,z , in which the superscript G stands for "Gradient". Conversely, [cos θC ext ] R E of Eq.19 is expressed in terms of G E which is expressed by Eq.16 to be compared with Eq.63 from which we may conclude that it is the summation of a scattering term, defined as being here proportional to [S z ] P , and of a non-standard force according to:

C ES pr,z = 3λ 2 2π Re(a 1 ) Re[i(g -1 1,T M g -1 * 1,T E -g 1 1,T M g 1 * 1,T E )] (66) 
C EN S pr,z = 3λ 2 2π Re(a 1 ) Re[g -1 1,T M g -1 * 2,T M + g 1 1,T M g 1 * 2,T M + 1 3 g 0 1,T M g 0 * 2,T M ] ( 67 
)
in which the superscript S stands for "Scattering" and the superscript N S for "Non-Standard". In the present paper, scattering forces gather all forces which are proportional to components of the Poynting vector, while non-standard forces are forces which are neither gradient nor scattering forces. This defines a point of view which will be opposed to a different complementary point of view when we later discuss the interpretation of non-standard forces. For the N S-term, see as well the summation of the terms G 12 and G 0 of Eqs.( 45)- (46) in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by off-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF].

Similarly, using Eq.58, we see that [cos θC ext ] I H of Eq.20 is a gradient magnetic force which may be denoted C HG pr,z , while [cos θC ext ] R H of Eq.21 is expressed in terms of G H which is expressed by Eq.17 to be compared again with Eq.63, so that it may be again decomposed as a summation of scattering and non-standard forces according to:

C HS pr,z = 3λ 2 2π Re(b 1 ) Re[i(g 1 1,T E g 1 * 1,T M -g -1 1,T E g -1 * 1,T M )] (68) 
C HN S pr,z = 3λ 2 2π Re(b 1 ) Re[g -1 1,T E g -1 * 2,T E + g 1 1,T E g 1 * 2,T E + 1 3 g 0 1,T E g 0 * 2,T E ] (69) 
From Eq.59, we see that [sin θ cos ϕC ext ] I Ex of Eq.32 is a gradient term, while, using Eqs.25 and 64, it is found that [sin θ cos ϕC ext ] R Ex of Eq.33 is a summation of scattering and non-standard forces according to: 

C ES pr,x = 3λ 2 4π Re(a 1 ) Re{i[g 0 1,T M (g -1 * 1,T E -g 1 * 1,T E ) + g 0 * 1,T E (g -1 1,T M -g -1 1,T M )]} (70) C EN S pr,x = λ 2 4π Re(a 1 ) Re[g 0 * 2,T M (g 1 1,T M + g -1 1,T M ) (71) -3g 0 1,T M (g 1 * 2,T M + g -1 * 2,T M ) -12(g 1 1,T M g 2 * 2,T M + g -1 1,T M g -2 * 2,T M )] Next,
C HS pr,x = 3λ 2 4π Re(b 1 ) Re{i[g 0 1,T E (g 1 * 1,T M -g -1 * 1,T M ) + g 0 * 1,T M (g 1 1,T E -g -1 1,T E )]} (72) C HN S pr,x = λ 2 4π Re(b 1 ) Re[g 0 * 2,T E (g 1 1,T E + g -1 1,T E ) (73) -3g 0 1,T E (g 1 * 2,T E + g -1 * 2,T E ) -12(g 1 1,T E g 2 * 2,T E + g -1 1,T E g -2 * 2,T E )]
Next, we consider [sin θ sin ϕC ext ] R Ey of Eq.46 which, by virtue of Eq.61, is found to a be a gradient term. Conversely, [sin θ sin ϕC ext ] I Ey of Eq.47, by virtue of Eq.65, may be again expressed as the summation of a scattering and of a non-standard term according to:

C ES pr,y = 3λ 2 4π Re(a 1 ) Re[g 0 * 1T E (g 1 1,T M + g -1 1,T M ) -g 0 1,T M (g 1 * 1,T E + g -1 * 1,T E )] (74) C EN S pr,y = λ 2 4π Re(a 1 ) Im[g 0 * 2,T M (g -1 1,T M -g 1 1,T M ) (75) -3g 0 1,T M (g 1 * 2,T M -g -1 * 2,T M ) -12(g 1 1,T M g 2 * 2,T M -g -1 1,T M g -2 * 2,T M )]
Similarly, [sin θ sin ϕC ext ] R Hy of Eq.49 is a gradient term as may be seen from Eq.62, while [sin θ sin ϕC ext ] I Hy of Eq.50, using Eq.65, is once more the summation of a scattering and of a non-standard term according to : 76)

C HS pr,y = 3λ 2 4π Re(b 1 ) Re[g 0 1,T E (g 1 * 1,T M + g -1 * 1,T M ) -g 0 * 1,T M (g 1 1,T E + g -1 1,T E )] (
C HN S pr,y = λ 2 4π Re(b 1 ) Im[g 0 * 2,T E (g -1 1,T E -g 1 1,T E ) (77) -3g 0 1,T E (g 1 * 2,T E -g -1 * 2,T E ) -12(g 1 1,T E g 2 * 2,T E -g -1 1,T E g -2 * 2,T E )]
4.4 Interpretation of magneto-electric optical forces.

Decompositions of magneto-electric optical forces (i.e. forces related to a multiplicative contribution of both magnetic and electric Mie coefficients) are found to be better discussed here in the same section as the interpretations for a better (more aesthetic) balance of the display of the material. We then begin with cos θC sca of Eq.22 which may be decomposed as:

cos θC sca = [cos θC sca ] EHR z + [cos θC sca ] EHI z (78) in which: [cos θC sca ] EHR z = -3λ 2 π Re(a 1 b * 1 ) Re[i(g 1 1,T M g 1 * 1,T E -g -1 1,T M g -1 * 1,T E )] (79) [cos θC sca ] EHI z = +3λ 2 π Im(a 1 b * 1 ) Im[i(g 1 1,T M g 1 * 1,T E -g -1 1,T M g -1 * 1,T E )] ( 80 
)
in which the superscripts EH recall us that we deal with a Magneto-Electric coupling term, while the superscripts R and I recall that we deal with the real and imaginary parts of the BSC-terms.

From Eq.63, we conclude that [cos θC sca ] EHR z is a scattering term. Since [cos θC sca ] EHR z is a scattering term, the comparison between Eqs.79 and 80 demonstrates that [cos θC sca ] EHI z is not a scattering term. Furthermore, since G E , G H , H 1 , H 2 , H 1 , H 2 , which define gradient terms through Eqs.56, 58, 59, 60, 61, 62, do contain BSCs with m = 0 which do not occur in Eq.80, it follows that [cos θC sca ] EHI z is not a gradient term neither. This term therefore displays a new kind of non-standard forces. Up to now, non-standard forces where associated with IS-mixed forces and encompassed couplings between n = 1 and n = 2 partial waves. From now on, they may be denoted as IS nonstandard forces. Conversely, the non-standard forces of [cos θC sca ] EHI z only contain BSCs associated with n = 1, without any coupling. They may be denoted as recoil non-standard forces.

Next, we consider sin θ cos ϕC sca of Eq.27 which may be decomposed according to:

sin θ cos ϕC sca = [sin θ cos ϕC sca ] EHR x + [sin θ cos ϕC sca ] EHI x (81) in which: [sin θ cos ϕC sca ] EHR x = 3λ 2 2π Re(a 1 b * 1 ) Re{i[g 0 * 1,T E (g -1 1,T M -g 1 1,T M )+g 0 1,T M (g -1 * 1,T E -g 1 * 1,T E )]} (82) [sin θ cos ϕC sca ] EHI x = -3λ 2 2π Im(a 1 b * 1 ) Im{i[g 0 * 1,T E (g -1 1,T M -g 1 1,T M )+g 0 1,T M (g -1 * 1,T E -g 1 * 1,T E )]} (83)
But, recalling Eq.64, we see that [sin θ cos ϕC sca ] EHR x is a scattering term, while, similarly as above, [sin θ cos ϕC sca ] EHI x denotes recoil non-standard forces. Finally, we deal with sin θ sin ϕC sca from Eq.41 and, proceeding as above, we have:

sin θ sin ϕC sca = [sin θ sin ϕC sca ] EHR y + [sin θ sin ϕC sca ] EHI y (84) in which: [sin θ sin ϕC sca ] EHR y = 3λ 2 2π Im(ia 1 b * 1 ) Re[g 0 * 1,T E (g -1 1,T M +g 1 1,T M )-g 0 1,T M (g -1 * 1,T E +g 1 * 1,T E )] (85) [sin θ sin ϕC sca ] EHI y = 3λ 2 2π Re(ia 1 b * 1 ) Im[g 0 * 1,T E (g -1 1,T M +g 1 1,T M )-g 0 1,T M (g -1 * 1,T E +g 1 * 1,T E )] (86)
in which, by virtue of Eq.65, [sin θ sin ϕC sca ] EHR y denotes scattering forces, while [sin θ sin ϕC sca ] EHI y of Eq.86 denotes recoil non-standard forces.

5 Electric dipolar particles, dipole theory and interpretation of non-standard terms.

Electric dipolar particles.

The interest of considering electric dipolar particles (in the usual sense, i.e. retaining only the electric Mie coefficient a 1 ) is twofold. First, it will allow one to recover results already published in the literature and therefore will provide a confirmation (although only partial) of our results concerning magnetodielectric particles. Second, it will allow one, referring to the dipole theory of forces, to obtain some clue about the interpretation of non-standard forces and therefore will prepare us to a more elaborate understanding of them. Let us furthermore note that the Rayleigh limit of GLMT has been proven to be equivalent to the Rayleigh limit of the dipole theory of forces [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. I. The longitudinal case[END_REF], [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. II. The transverse case[END_REF]. In the same way, the GLMT limit of magnetodielectric particles studied in the present paper must be equivalent to the corresponding dipole theory approach published by Nieto-Vesperinas et al. [START_REF] Nieto-Vesperinas | Optical forces on small magnetodielectric particles[END_REF]. Both theories however use different languages and establishing a complete dictionary between these languages would require an extra-work which is outside of the scope of the present paper. There is however at least one dramatic difference between both approaches, namely the GLMT expresses the optical forces in terms of BSCs pertaining to small order partial waves (namely for n = 1 and 2) while the dipole theory of forces expresses the forces in terms of illuminating total fields (encompassing all partial wave orders).

For the first issue, namely retrieving expressions for the electric dipolar case from expressions for the magnetodielectric case, it is sufficient to set b 1 = 0 in the expressions for the magnetodielectric case. We then observe that the recoil forces which are all magneto-dielectric forces are equal to 0 as well as all the magnetic terms of the IS-mixed forces. This implies in particular that all recoil non-standard forces are zero. We are then left with: 

C pr,z = cos θC ext = 3λ 2 2π Re(a 1 G E ) = [cos θC ext ] I E + [cos θC ext ] R E (87) 
C pr;x = sin θ cos ϕC ext = λ 2 4π Re(a 1 H 1 ) = [sin θ cos ϕC ext ] I Ex +[sin θ cos ϕC ext ] R Ex ( 88 
)
C pr;y = sin θ sin ϕC ext = λ 2 4π Im(a 1 H 1 ) = [sin θ sin ϕC ext ] R Ey + [
] R E , [sin θ cos ϕC ext ] R
Ex and [sin θ sin ϕC ext ] I Ey (Eqs.19, 33, 47 respectively) have been found to be a summation of scattering and IS non-standard terms. The interpretation of these non-standard terms require us to make a detour through the dipole theory of forces.

5.2

Dipole theory of forces and interpretations.

In this framework, the optical forces exerted on electric dipolar particles (in particular Rayleigh particles) read as [START_REF] Chaumet | Time-averaged total force on a dipolar sphere in an electromagnetic field[END_REF]:

F k = 2π η Re[αE i ∂ k E * i ] (90) 
in which the F k 's are expressed in m 2 so that they can be more easily compared with the C pr,k of the GLMT when dealing with numerical comparisons, e.g. [START_REF] Ambrosio | On longitudinal radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationship with the dipole theory of forces[END_REF], [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF]. The conversion from Gaussian units used in [START_REF] Chaumet | Time-averaged total force on a dipolar sphere in an electromagnetic field[END_REF] to S.I. units used in Eq.90 is originally explained in [START_REF] Ambrosio | On longitudinal radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationship with the dipole theory of forces[END_REF], [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF], see as well [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. I. The longitudinal case[END_REF], [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. II. The transverse case[END_REF] to complete the discussion of the dipole theory which is reproduced below. For Rayleigh particles (when the electric Mie coefficient a 1 is expanded in a power series in terms of the size parameter and we retain only the terms with the smallest orders), the quantity α is related to the electric Mie coefficient a 1 by the relation:

α = -3i 2k 3 a 1 (91) 
in which [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF], and [START_REF] Van De Hulst | Light scattering by small particles[END_REF], pp.143-144:

a 1 = 2i 3 n 2 p -1 n 2 p + 2 s 3 + O(is 5 ) + 4 9 ( n 2 p -1 n 2 p + 2 ) 2 s 6 (92) 
in which s is the size parameter πd/λ, so that we retain:

Im(a 1 ) = 2 3 n 2 p -1 n 2 p + 2 s 3 (93) Re(a 1 ) = 4 9 ( n 2 p -1 n 2 p + 2 ) 2 s 6
Furthermore, α is usually written as:

α = α R -iα I (94)
in which α R is the real part of α and α I is minus its imaginary part. From Eq.90, we may then demonstrate, through somewhat standard manipulations, that F k may be rewritten as:

F k = 2π η Re[α(∂ k |E| 2 -E * i ∂ i E k + iωµε ijk E * i H j )] (95) 
in which ε ijk is the Cartesian Levi-Civita tensor. Also, using Eq.94, we may then show that F k may be decomposed as:

F k = F g k + F ng k (96)
in which F g k denotes gradient forces (see Eq.100 below) and F ng k denotes non-gradient forces, according to:

F g k = 2π η α R ∂ k |E| 2 - 2π η α R Re[(E * .∇)E k ] + 4π η ωµα R Im S c k (97)
in which S c k is the kth-component of the complex Poynting vector S c = (E × H * )/2 reading as:

S c k = 1 2 ε ijk E * i H j (98) 
and:

F ng k = - 2π η α I Im(E * .∇)E k + 4π η ωµα I Re S c k (99) 
It may afterward be established, with further manipulations, that F g k may actually be reduced to:

F g k = π η α R ∂ k |E| 2 (100) 
showing that it indeed denotes gradient forces which have been shown to be equal to the gradient forces of the Rayleigh limit of GLMT.

Concerning F ng k of Eq.99, it had sometimes been called a scattering term, the definition of scattering term being that it is proportional (in the Rayleigh regime) to the sixth power s 6 of the size parameter. In the terminology used in the present paper, only the second term of Eq.99 is a scattering term, the definition of scattering term being now that it is proportional to the (time averaged) Poynting vector. It is however important to remark that the first term contains as well a scattering term. It is actually the summation of a scattering term and of the non-standard contribution. In other words, the scattering term in the Rayleigh limit of the GLMT, using the terminology used in the present paper, is the summation of the second term of Eq.99 and of a (hidden) contribution pertaining to the first term.

This hidden contribution may be revealed by using the results presented in [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. I. The longitudinal case[END_REF], [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. II. The transverse case[END_REF]. For instance, let us consider Eq.(81) of [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. I. The longitudinal case[END_REF]:

(E * .∇)E z = -ik 3 |E 0 | 2 g 0 2,T M g 0 * 1,T M (101) 
-ik |E 0 | 2 [(g 1 2,T M g 1 * 1,T M + g -1 2,T M g -1 * 1,T M ) -i(g 1 1,T E g 1 * 1,T M -g -1 1,T E g -1 * 1,T M )]
Taking the imaginary parts of both sides of Eq.101 and using Im(z) = -Re(iz), we see that the last term of it is proportional to [S z ] P as given by Eq.63. This shows that Im[(E * .∇)E z ] does indeed contain a scattering term. Similar considerations hold for the transverse components along x and y when we compare Eqs.64 and 65 wit the last terms of Eqs.( 89) and (90) of [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. II. The transverse case[END_REF]. Anticipating on the proof of the aforementioned conjecture concerning the identification between GLMT and dipole theory for magnetodielectric particles, we may more or less safely guess that magnetic non-standard forces may be generated by Re [ 

i ∂ k E * i ].
The two-term splitting of Eq.99 was first presented in 2003 by Arias-Gonzalez and Nieto-Vesperinas [START_REF] Arias-Gonzalez | Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions[END_REF] when studying gradient, scattering and absorption force contributions for light fields expressed by their paraxial form. It is important however to mention again that scattering forces in [START_REF] Arias-Gonzalez | Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions[END_REF] are defined as being proportional to the sixth power s 6 of the size parameter, which is different from the more precise point of view taken in this paper where scattering forces are defined as being proportional to the (time-averaged) Poynting vector. Furthermore, the authors of [START_REF] Arias-Gonzalez | Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions[END_REF] did not attempt to provide a physical explanation for the first term of Eq.99. In 2009, Albaladejo et al. [START_REF] Albaladejo | Scattering forces from the curl of the spin angular momentum of a light field[END_REF] showed, by using a simple vector identity, that Im[

(E * .∇)E] is proportional to ∇ × (E × E * )
or, equivalently, to the time average spin density, and concluded that the total scattering force contained a contribution "associated to the nonuniform distribution of the spin density of the light field" (see also [START_REF] Ruffner | Comment on "scattering forces from the curl of the spin angular momentum of a light field[END_REF] for a comment on the aforementioned reference, with a reply in [46]). Because of its physical origins, the first term of Eq.99 has then been named spin-curl forces or, alternatively, "polarization gradient forces" by Marago et al. in a review paper in 2013 [START_REF] Marago | Optical trapping and manipulation of nanostructures[END_REF]. Curl forces, i.e. "curl forces due to spin", are discussed as well in Gao et al. [START_REF] Gao | Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects[END_REF] in the context of magnetodielectric particles, particularly in their Eqs.( 7)-( 9), while Berry discussed the decomposition of the Poynting "current" in terms of orbital and spin parts [START_REF] Berry | Optical currents[END_REF]. The categorization using the terminology "spin-curl" forces is however not compatible with the terminology used in the present paper since it is actually, in the terminology used in the present paper, a summation between a term which is a scattering term and a non-standard term.

From this subsection, it should be clear, to insist on the issue, that the decomposition in terms of gradient, scattering and spin-curl forces does not identify with our decomposition in terms of gradient, scattering and nonstandard forces for two reasons (i) the meaning of the expression "scattering forces" in the two decompositions is different (if only due to the scattering hidden term in the spin-curl forces) and (ii) spin-curl forces do not identify with non-standard forces. While spin-curl forces are known since one decade, non-standard forces have been introduced (under the name of axicon forces) in 2020 in a paper devoted to the study of optical forces exerted on small particles by Bessel beams [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by off-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. The fact that spin-curl forces do not identify with nonstandard forces has been pointed out in [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identification with the dipole theory of forces. II. The transverse case[END_REF], bottom of the first column of page 10, and has been more generally discussed in section 5 of the same paper. It must furthermore be noted that, as a by-product of the present work, spin-curl forces may be expressed in terms of BSCs in the GLMT framework, revealing that they depend only on n = 1 and n = 2 partial waves. They depend on n = 1 partial waves via their hidden scattering contribution (which therefore is a non-coupling contribution), and they depend as well on n = 1 and n = 2 partial waves due to the fact that they contain non-standard contributions (which therefore are coupling contributions).

Plane waves.

A complementary insight concerning non-standard forces is obtained if we consider the special case of illuminating plane waves. This insight is going to be related with an interesting property of non-standard forces, namely that they are non-gradient forces involving a coupling between (n = 1)-and (n = 2)partial waves, see Eqs.67, 69, 71, 73, 75, 77. For plane waves, however, such couplings are annihilated for a reason to be soon specified, with the question to know what would be the consequences for non-standard forces.

Indeed, plane waves are axisymmetric beams of the first kind whose BSCs satisfy the following relations [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coefficients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF], [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the first kind, with the example of Gaussian beams[END_REF], [START_REF] Gouesbet | Rayleigh limit of generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part II: Non-dark axisymmetric beams of the second kind and dark axisymmetric beams, including a review[END_REF]:

g m n,T M = g m n,T E = 0 for m = ±1 (102) g 1 n,T M = g -1 n,T M K = -iεg 1 n,T E = iεg -1 n,T E K = g n 2 (103) 
which defines a set of uni-index BSCs denoted g n , with K denoting the polarization state of the beam and ε = ±1 defining the propagation direction. More specifically, for plane waves propagating in the positive z-direction, we may take K = 1, ε = -1 while the uni-index BSCs g n reduce to a phase factor e(iφ 0 ) which does not depend on the subscript n [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. Then, inserting these results in the various optical forces investigated above, we find that: C pr,x = C pr,y = 0 (104) so that transverse forces are zero, as we should have expected. The longitudinal force is however different from 0 and reads as:

C pr,z = 3λ 2 2π Re( a 1 + b 1 4 -a 1 b * 1 ) (105) 
resulting from an IS-mixed force reading as:

cos θC ext = 3λ 2 8π Re(a 1 + b 1 ) (106) 
and from a recoil force reading as:

cos θC sca = 3λ 2 2π Re(a 1 b * 1 ) (107) 
Returning to Eqs.19-20 and to their interpretations, it is found that cos θC ext may be decomposed into electric and magnetic gradient forces [ Therefore, the IS non-standard forces are not equal to 0 but, due to the special expressions of the uni-index BSCs g n in the case of plane waves, they became exactly equal to the scattering forces so that, if we prefer, we may state that, in the present case, the IS-mixed forces are only constituted from scattering forces. A similar collapse of non-standard forces (named axicon forces at this time) to scattering forces has also been observed in the case of Bessel beams when the axicon angle is equal to 0, see Eq.(68) and associated comments in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by off-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. This makes sense because, under such circumstances, the angular spectrum decomposition of the beams is made of plane waves propagating perpendicularly to the direction of propagation.

Concerning , it is found to be 0 so that there is no recoil non-standard force. As a whole, non-standard force vanish in the case of plane wave or collapse to scattering forces.

Conclusion.

In the framework of GLMT, we have discussed the optical forces exerted by arbitrary shaped beams on magnetodielectric particles (in which only the electric a 1 and magnetic b 1 Mie coefficients are different from 0). Two categorizations of the optical forces have been introduced. The first one is a decomposition of the optical forces in terms of IS-mixed forces (more traditionally named extinction forces) and of recoil forces which have been introduced in the GLMT-framework in an approximate way in 1985 [START_REF] Gouesbet | Scattering of a Gaussian beam by a Mie scatter center, using a Bromwich formalism[END_REF], and in a completely rigorous way in 1988 [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF]. The second categorization is new. It has been introduced in a study of optical forces exerted on small particles (retaining only the electric Mie coefficient a 1 ), e.g. [START_REF] Gouesbet | Rayleigh limit of generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part II: Non-dark axisymmetric beams of the second kind and dark axisymmetric beams, including a review[END_REF] and references therein, and is confirmed in the present paper. It distinguishes between gradient (conservative) forces, and non-gradient forces (non-conservative forces) which are constituted of scattering forces and of nonstandard forces. It is remarkable to this categorization in terms of gradient, scattering, and non-standard forces does occur both for IS and for recoil forces. In the case of electric dipolar particles (more specifically Rayleigh particles), non-standard forces are related (but not identical) to spin-curl forces, a denomination originally attributed to Albaladejo et al [START_REF] Albaladejo | Scattering forces from the curl of the spin angular momentum of a light field[END_REF]. Furthermore, in the GLMT framework, all kinds of forces (gradient, scattering, spin-curl and non-standard forces) may be expressed in terms of low order partial waves of order n = 1 and n = 2, a fact which is not explicitly revealed in the dipole theory of forces. Since both GLMT (for dipolar particles) and dipole theory of forces are rigorous theories, they must be equivalent. However, because these two theories use different languages, the proof of equivalence has still to be produced, in order to reveal the connection between both languages. The present work is viewed as a step toward the categorization of optical forces in a GLMT framework, for arbitrary sized particles. Such a study for arbitrary sized particles has been recently been published by Zheng et al. [START_REF] Zheng | GCforce: Decomposition of optical force into gradient and scattering parts[END_REF] but using a less refined categorization which does not explicitly evidence the existence of non-standard forces. Our current effort is then expected to produce a complementary point of view on the issue.

  from Eq.60, we see that [sin θ cos ϕC ext ] I Hx of Eq.35 is a gradient term although, as a magnetic term, it is better expressed in terms of [∂ x |H| 2 ] P rather than in terms of [∂ x |E| 2 ] P . Conversely, [sin θ cos ϕC ext ] R Hx of Eq.36 may be decomposed again in two terms (scattering and non-standard) according to:

  sin θ sin ϕC ext ] I cos θC ext ] I E , [sin θ cos ϕC ext ] I Ex and [sin θ sin ϕC ext ] R Ey (Eqs.18, 32 and 46 respectively) have been found to be gradient terms, while [cos θC ext

	Ey
	(89)
	in which [

  αH i ∂ k H * i ] and magneto-electric non-standard forces by Re[αE i ∂ k H * i ] and/or Re[αH

  cos θC ext ] I E and [cos θC ext ] IH respectively, which are zero as we should have expected, and non-gradient forces which may be decomposed into scattering and IS nonstandard forces which, using Eqs.66, 67, 68, 69, are found to read as:

	C ES pr,z = C EN S pr,z =	3λ 2 4π	Re(a 1 )	(108)
	C HS pr,z = C HN S pr,z =	3λ 2 4π	Re(b 1 )	(109)

  the recoil force, it has been decomposed into [cos θC sca ] EHR

	and [cos θC sca ] EHI z	, see Eq.78, reading as, from Eqs.79 and 80:	z
		[cos θC sca ] EHR z	=	3λ 2 2π	Re(a 1 b * 1 )	(110)
			[cos θC sca ] EHI z	= 0	(111)
	in which [cos θC sca ] EHR z [cos θC sca ] EHI z	has been identified as a scattering force. Concerning
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