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Abstract

The theories describing the interactions between arbitrary electromag-
netic shaped beams and infinite cylinders, both in cylindrical and ellip-
tical coordinates, are reviewed. Two main approaches are considered (i)
an approach in terms of usual functions named the plane-wave spectrum
approach and (ii) an approach in terms of Schwartz distributions, the
latter leading to a formalism more general than the former. The relation-
ship between both approaches, in cases when the plane-wave spectrum
approach is feasible, is discussed. The attention is strongly focused on the
description of the illuminating beams, in particular when using localized
approximations in circular and elliptical coordinates, similar to the ones
already developed in the case of spherical coordinates.

Keywords: generalized Lorenz-Mie theories; structured electromagnetic beams;
electromagnetic arbitrary shaped beams; circular infinite cylinders; elliptical in-
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1

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022407322001182
Manuscript_7f9088210d12c76f9f5887c6ba91f142

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022407322001182
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0022407322001182


1 Introduction.

The generalized Lorenz-Mie theory (GLMT) describes the interaction be-
tween electromagnetic arbitrary shaped beams and homogeneous spheres, rely-
ing on two ingredients (i) the decomposition of incident waves, scattered waves
and waves internal to the sphere in terms of partial waves and (ii) the fact that
spherical coordinates allow one to use a method of separation of variables to deal
with Maxwell’s equations [1], [2], [3]. This GLMT has been called GLMT in
the strict sense (stricto sensu) and the name GLMT has been used generically
to designate other theories of interactions between electromagnetic arbitrary
shaped beams and a family of particles when waves are decomposed into partial
waves, and when the particles are regular enough to allow one to use a method
of separation of variables, e.g. GLMT for multilayered spheres [4], assemblies
of spheres and aggregates [5], and spheres with eccentrically located spherical
inclusions [6].

Two other GLMTs have been developed, namely for infinite cylinders,
either (i) with a circular or (ii) with an elliptical cross-section. The development
of these theories ranged from 1994 to 2000, which is a fairly long span, partic-
ularly when it is noted that the authors were already trained with the GLMT
stricto sensu. The explanation lies in the fact that, when trying to build these
theories in the case of illuminating beams described by the Maxwellian contri-
butions to Gaussian Davis beam descriptions, it has been found that the use of
usual functions was relentlessly leading to a failure. It has then been recognized
that the most general compulsory framework to be used was the one of Schwartz
distributions. This fact renders the access of the newcomer to GLMTs for infi-
nite cylinders fairly diffi cult. A current revival of the interest for such theories,
for instance in the framework of studies devoted to photophoretic forces, e.g.
[7], [8], [9], and other issues, e.g. [10], [11], [12], [13], then provided a motivation
to review the GLMTs for infinite cylinders, expounding the published material
under a single roof, with an effort of pedagogic skill allowing the newcomer to
use an effi cient inroad to explore the issue.

The paper is organized as follows. Section 2 describes the GLMT for
circular cylinders in terms of usual functions. It is to be noted that the material
presented in this section has never been explicitly published in the literature,
although numerical results were published, but these numerical results have been
preceded by a discussion in terms of distributions which made the access to the
newcomer fairly opaque. Section 2 describes the GLMT for circular cylinders
in terms of distributions. It explains why the use of distributions has been
necessary, how to use them and how we can pass from a formulation to the other
(when this passage is possible). Section 3 deals with the case of elliptical infinite
cylinders, both in terms of usual functions and in terms of distributions. Section
4 describes localized approximations which may be used to speed up numerical
computations associated with the description of the illuminating beams. Section
5 complements the paper by discussing other worldwide contributions devoted
to the interactions between arbitrary shaped beams and cylinders. Section 6 is
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a conclusion.

2 Formalism in terms of usual functions.

The configuration to be studied is described from Fig.1 adapted from [14].
The scatterer is an infinite cylinder with a circular cross-section of radius a.
The axis of the cylinder is chosen to coincide with the axis (Ocz) of a Carte-
sian coordinate system (x, y, z). The material of the cylinder is assumed to
be non-magnetic, linear, isotropic and homogeneous with respect to both space
and time. A cylindrical coordinate system (x1, x2,x3) = (z, ρ, ϕ) is attached to
the Cartesian system (x, y, z).The cylinder is illuminated by an arbitrary in-
cident shaped beam having an exp(iωt)-time harmonic dependence which will
be omitted in the sequel, according to an usual practice. The incident wave is
defined by its electric field components (Eiz, E

i
ρ, E

i
ϕ) and by its magnetic field

components (Hi
z, H

i
ρ, H

i
ϕ). It propagates in the surrounding medium, assumed

to be non-absorbing. The complex refractive indexM of the cylinder material is
taken relatively to the surrounding medium. The problem is to solve Maxwell’s
equations in order to determine the scattered wave and the cylinder (or internal)
wave.

2.1 The Bromwich method and generating functions.

In spherical coordinates, the GLMT stricto sensu has been originally built
using scalar potentials, more particularly Bromwich Scalar Potentials (BSPs).
It has later been converted to the use of Vector Spherical Wave Functions
(VSWFs), see. [15], useful to use translational theorems in the case of assem-
blies of spheres and aggregates [5] or in the case of spherical particles with an
eccentric spherical inclusion [6]. VSWFs are furthermore useful in EBCM (Ex-
tended Boundary Condition Method, e.g. [16], [17],[18]) devoted to the study
of scattering by irregularly shaped particles, e.g. review in Section 8.1 of [19].
The use of scalar potentials may be preferred because it leads to more explicit
and more readable formulae, although, historically, it has been a matter of con-
tingency [20]. Therefore the GLMT for circular infinite cylinders, to which this
section is devoted, has been developed as well using BSPs. The use of BSPs is
exhaustively reviewed in [3], Sections 2.2 and 2.3, see as well [21], [22]. For the
sake of completeness, the theory of BSPs in circular cylindrical coordinates is
reviewed below, following [14].

At point P of the cylindrical coordinate system (x1, x2,x3) = (z, ρ, ϕ),
Pythagora’s theorem reads as:
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ds2 = (e1)
2dz2 + (e2)

2dρ2 + (e3)
2dϕ2 (1)

in which ds is the infinitesimal distance between two points P and P + dP ,
with:

e1 = e2 = 1, e3 = ρ (2)

leading to:

e1 = 1
∂
∂x1

( e2e3 ) = ∂
∂z ( 1ρ ) = 0

}
(3)

For the considered non-magnetic, linear, local, isotropic and homoge-
neous media, the general Maxwell’s equations reduce to a simpler form that
we shall call the Special Maxwell’s Equations (SMEs). When Eq.3 is satisfied,
SMEs can be solved by using the Bromwich method relying on BSPs. A counter-
example is the case of spheroidal coordinates, e.g. [23], [24]. When using BSPs,
any solution to the SMEs is the summation of two special solutions, the TM
wave (Transverse Magnetic Wave) and the TE wave (Transverse Electric Wave).
The special solutions may be found by first solving a partial differential equation
for BSPs UTM and UTE . In the system (z, ρ, ϕ), this equation, valid for both
UTM and UTE , reads as:

∂2U

∂z2
+ k2U +

1

ρ

∂

∂ρ
(ρ
∂U

∂ρ
) +

1

ρ2
∂2U

∂ϕ2
= 0 (4)

in which k is the wavenumber in the considered material (i.e. it must be
replaced by kc in the cylinder) and U stands either for UTM and UTE . Once UTM
and UTE are determined, all TM and TE field components may be evaluated
by using the following set of equations:

Ez,TM =
∂2UTM
(∂z)2

+ k2UTM (5)

Eρ,TM =
∂2UTM
∂z∂ρ

(6)

Eϕ,TM =
1

ρ

∂2UTM
∂z∂ϕ

(7)
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Hz,TM = 0 (8)

Hρ,TM =
iωε

ρ

∂UTM
∂ϕ

(9)

Hϕ,TM = −iωε∂UTM
∂ρ

(10)

Ez,TE = 0 (11)

Eρ,TE = − iωµ
ρ

∂UTE
∂ϕ

(12)

Eϕ,TE = iωµ
∂UTE
∂ρ

(13)

Hz,TE =
∂2UTE
(∂z)2

+ k2UTE (14)

Hρ,TE =
∂2UTE
∂z∂ρ

(15)

Hϕ,TE =
1

ρ

∂2UTE
∂z∂ϕ

(16)

in which µ and ε denote the permeability and the permittivity of the medium
respectively (ε must be replaced by εc inside the cylinder).

As usual, solutions of Eq.4 are searched by using coordinate separability
according to:

U(z, ρ, ϕ) = Z(z)R(ρ)φ(ϕ) (17)

For use in the sequel, this equation must be commented. A coordi-
nate system in which solutions of the form of Eq.17 exist is called a separable
coordinate system. There exist only eleven separable coordinate systems [25],
[26], including the spherical coordinate system and the cylindrical coordinate
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systems, for both circular and elliptical cylinder coordinates. Following [26],
all solutions of the partial differential equation 17 can be built up from linear
combinations of the members of the family of separable solutions. We shall later
however find that this is true, in general, only if we extend the formalism from
usual functions to Schwartz distributions. For the time being, let us be satisfied
when working with usual functions.

Inserting the separability equation 17 in the BSP equation 4, it is found
that the (usual) functions Z(z), R(ρ), φ(ϕ) satisfy:

d2φ

dϕ2
+ bφ = 0 (18)

d2Z

dz2
+ aZ = 0 (19)

ρ
d

dρ
ρ
dR

dρ
+ (k2ρ2 − aρ2 − b)R = 0 (20)

The solutions of the harmonic Eq.18 must satisfy a continuity equation
φ(0) = φ(2nπ), n integer, and therefore take the form exp(imϕ), m ∈ Z, in
which we have set b = m2. Writing down the general solution of Eq.19 and
requiring that solutions must remain finite when z → ±∞, it is found that
a must be a real number. Solutions may then be given the form exp(ikγz),
(kγ) ∈ R, in which we have set a = k2γ2. Let us introduce:

r = kρ
√

1− γ2 (21)

Then, using R(ρ) = R(r), it is found that Eq.20 becomes the Bessel
equation:

r
d

dr
r
dR
dr

+ (r2 −m2)R =0 (22)

Two independent solutions of this equation are a Bessel function of the
first kind denoted Jm(r) and a Bessel function of the second kind denoted Ym(r),
also called a Neumann function Nm(r), e.g. [27]. From these functions, a set of
two other linearly independent solutions is formed by two Hankel functions:

H(1)
m (r) = Jm(r) + iYm(r) (23)
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H(2)
m (r) = Jm(r)− iYm(r) (24)

According to the separability theorem expressed in terms of usual func-
tions, the general BSPs may then be obtained as a linear combination of gener-
ating functions G(z, ρ, ϕ) reading as:

G(z, ρ, ϕ) =


Jm(r)
Ym(r)

H
(1)
m (r)

H
(2)
m (r)

 exp(imϕ) exp(ikγz), m ∈ Z (25)

2.2 Incident wave expansion and Beam Shape Coef-
ficients.

Among the set
{
Jm(r), Ym(r), H

(1)
m (r), H

(2)
m (r)

}
, only the functions Jm(r)

do not diverge at r = 0. Therefore, these functions must be chosen among
the generating functions G(z, ρ, ϕ) to express the incident wave expansion. The
BSPs for the incident wave, denoted U iTM and U iTE , then read as:

U iTM =
E0
k2

+∞∑
m=−∞

(−i)meimϕ
∫
Im,TM (γ)Jm(kρ

√
1− γ2)eikγzdγ (26)

U iTE =
H0

k2

+∞∑
m=−∞

(−i)meimϕ
∫
Im,TE(γ)Jm(kρ

√
1− γ2)eikγzdγ (27)

Eqs.26 and 27 generalize Eqs.(26) and (27) of [14] by introducing an
integral over the continuous separation constant γ which, in a preliminary step,
was omitted in [14] (we shall return to this issue later). Furthermore, prefactors
in Eqs.26 and 27 have been introduced for later convenience. Also, using the
same terminology than in spherical coordinates, e.g. for the GLMT stricto
sensu, Im,TM (γ) and Im,TM (γ) are called Beam Shape Coeffi cients (BSCs),
independently of the fact that, depending on the context, they can be genuine
coeffi cients as in [14], Beam Shape Functions (BSFs) as above, or Beam Shape
Distributions (BSDs) as in Section 3.

From Eqs.5 and 26, we then obtain:
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Eiz = Eiz,TM = E0

+∞∑
m=−∞

(−i)meimϕ
∫

(1− γ2)Im,TM (γ)Jm(kρ
√

1− γ2)eikγzdγ

(28)

The limits of the integral are not specified. They depend on whether we
intend to preserve or not the evanescent waves. In the absence of evanescent
waves, these limits are (−1,+1), e.g. [28], [29] in which γ is to be replaced
by C = cos Γ with Γ being a tilt angle ranging from 0 to π. Otherwise, the
limits may be extended to (−∞,+∞). To isolate the BSF Im,TM (γ), we may
successively use a representation of the so-called Dirac function (better called
a Dirac distribution, see again Section 3), and an orthogonality relation for
exp(imϕ), according to:

1

2π

∫ +∞

−∞
ei(γ−γ

′)ZdZ = δ(γ − γ′) (29)

∫ +∞

−∞
ei(m−m

′)ϕdϕ = 2πδmm′ (30)

in which Z = kz, and δmm′ is the Kronecker symbol. We then obtain:

Im,TM (γ) =
im

4π2(1− γ2)Jm(kρ
√

1− γ2)

∫ 2π

0

e−imϕ
∫ +∞

−∞

Eiz
E0

e−iγZdZdϕ

(31)

Working with Hi
z instead of E

i
z, we similarly establish:

Im,TE(γ) =
im

4π2(1− γ2)Jm(kρ
√

1− γ2)

∫ 2π

0

e−imϕ
∫ +∞

−∞

Hi
z

H0
e−iγZdZdϕ (32)

A few comments are now useful as follows:
(i) In spherical coordinates, we have two discrete separation

constants so that BSPs and fields are expressed in terms of two discrete sum-
mations, a fact which is reflected in the notations gmn,TM and gmn,TE (n from 1
to ∞, −n ≤ m ≤ +n) for the BSCs in the GLMT stricto sensu. In the present
case, we have one discrete separation constant and one continuous separation
constant, so that BSPs and fields are expressed in terms of a discrete summa-
tion and of an integral, a fact which is reflected in the notations Im,TM (γ) and
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Im,TE(γ) for the BSCs. As a result, the extraction of the expressions of BSFs
in terms of incident fields required the use of a distribution in Eq.29, although
that, from a physicist point of view, it can be viewed as a "function" without
any damage. This anticipates the fact that a more rigorous (and more general)
formulation, in terms of distributions, will have to be developed.

(ii) We see that the BSFs Im,TM (γ) and Im,TE(γ) are deter-
mined only in terms of z-components Eiz and Hi

z respectively. In spherical
coordinates, BSCs are similarly deduced only from radial components Eir and
Hi
r (in a spherical coordinate system).

(iii) The BSFs are seemingly dependent on the coordinate ρ
in contrast with the fact that they should be coordinate-independent complex
functions. If the beam perfectly satisfies Maxwell’s equations, this dependence
over ρ must therefore be exactly cancelled out by the quadrature process. An
analogous feature has been observed in spherical coordinates, e.g. [30], [31], [32]
for plane waves and [33], [34] for arbitrary shaped Maxwellian beams.

From Eq.5, we have derived the expansion of Eiz = Eiz,TM versus the
BSF Im,TM (γ). Similarly, the other incident field components may be derived
by using Eqs.6-16, leading to:

Eiρ,TM = E0

+∞∑
m=−∞

i(−i)meimϕ
∫
γ
√

1− γ2Im,TM (γ)J
′

m(kρ
√

1− γ2)eikγzdγ

(33)

Eiρ,TE =
E0
kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
Im,TE(γ)Jm(kρ

√
1− γ2)eikγzdγ (34)

Eiϕ,TM =
−E0
kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
γIm,TM (γ)Jm(kρ

√
1− γ2)eikγzdγ (35)

Eiϕ,TE = E0

+∞∑
m=−∞

i(−i)meimϕ
∫ √

1− γ2Im,TE(γ)J
′

m(kρ
√

1− γ2)eikγzdγ

(36)

Hi
z = Hi

z,TE = H0

+∞∑
m=−∞

(−i)meimϕ
∫

(1− γ2)Im,TE(γ)Jm(kρ
√

1− γ2)eikγzdγ

(37)

10



Hi
ρ,TM =

−H0

kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
Im,TM (γ)Jm(kρ

√
1− γ2)eikγzdγ (38)

Hi
ρ,TE = H0

+∞∑
m=−∞

i(−i)meimϕ
∫
γ
√

1− γ2Im,TE(γ)J
′

m(kρ
√

1− γ2)eikγzdγ

(39)

Hi
ϕ,TM = −H0

+∞∑
m=−∞

i(−i)meimϕ
∫ √

1− γ2Im,TM (γ)J
′

m(kρ
√

1− γ2)eikγzdγ

(40)

Hi
ϕ,TE =

−H0

kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
γIm,TE(γ)Jm(kρ

√
1− γ2)eikγzdγ (41)

in which we have used:

H0

E0
=
ωε

k
=

k

ωµ
(42)

2.3 Scattered wave expansion, including the far-field
case.

In the generating functions G(z, ρ, ϕ), we must now choose H(2)
m (r) to rep-

resent an outgoing wave (see asymptotic expression later). If the harmonic time
dependence were exp(−iωt) instead of exp(+iωt), we would have conversely
chosen to use H(1)

m (r). For convenience in the sequel, we shall simply note
H
(2)
m (r) = Hm(r). Then, we may write the BSPs of the scattered wave as:

UsTM =
−E0
k2

+∞∑
m=−∞

(−i)meimϕ
∫
Sm,TM (γ)Hm(kρ

√
1− γ2)eikγzdγ (43)
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UsTE =
H0

k2

+∞∑
m=−∞

(−i)meimϕ
∫
Sm,TE(γ)Hm(kρ

√
1− γ2)eikγzdγ (44)

in which prefactors are again chosen for later convenience. The scattered
field components are then given by:

Esz = Esz,TM = −E0
+∞∑

m=−∞
(−i)meimϕ

∫
(1−γ2)Sm,TM (γ)Hm(kρ

√
1− γ2)eikγzdγ

(45)

Esρ,TM = −E0
+∞∑

m=−∞
i(−i)meimϕ

∫
γ
√

1− γ2Sm,TM (γ)H
′

m(kρ
√

1− γ2)eikγzdγ

(46)

Esρ,TE =
E0
kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
Sm,TE(γ)Hm(kρ

√
1− γ2)eikγzdγ (47)

Esϕ,TM =
E0
kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
γSm,TM (γ)Hm(kρ

√
1− γ2)eikγzdγ (48)

Esϕ,TE = E0

+∞∑
m=−∞

i(−i)meimϕ
∫ √

1− γ2Sm,TE(γ)H
′

m(kρ
√

1− γ2)eikγzdγ

(49)

Hs
z = Hs

z,TE = H0

+∞∑
m=−∞

(−i)meimϕ
∫

(1−γ2)Sm,TE(γ)Hm(kρ
√

1− γ2)eikγzdγ

(50)

Hs
ρ,TM =

H0

kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
Sm,TM (γ)Hm(kρ

√
1− γ2)eikγzdγ (51)
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Hs
ρ,TE = H0

+∞∑
m=−∞

i(−i)meimϕ
∫
γ
√

1− γ2Sm,TE(γ)H
′

m(kρ
√

1− γ2)eikγzdγ

(52)

Hs
ϕ,TM = H0

+∞∑
m=−∞

i(−i)meimϕ
∫ √

1− γ2Sm,TM (γ)H
′

m(kρ
√

1− γ2)eikγzdγ

(53)

Hs
ϕ,TE =

−H0

kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
γSm,TE(γ)Hm(kρ

√
1− γ2)eikγzdγ (54)

When the far-field condition is satisfied, e.g. Section 8 in [14], we may
simplify the expressions of the scattered fields by using the following asymptotic
expressions for the Hankel function Hm(r) and its derivative, according to:

Hm(r)→ H∞m (r) =

√
2

πr
e−irimeiπ/4 (55)

H
′

m(r)→ −(1 + 2ir)

2r
H∞m (r) (56)

The resulting simplified expressions for the scattered fields are left to
the reader.

2.4 Internal wave expansion.

As for the incident wave, the generating function must again use Jm to
avoid divergence at ρ = 0. The wavenumber k must furthermore be replaced
by the wavenumber kc in the cylinder material, and ε by εc. Therefore, instead
of depending on r given by Eq.21, Jm must depend on rc = kMρ

√
1− γ2 in

which we used M = kc/k.
We then introduce BSPs for the cylinder wave according to:

U cTM =
E0
k2M

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TM (γ)Jm(kcρ

√
1− γ2)eikcγzdγ (57)

13



U cTE =
iH0

k2

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TE(γ)Jm(kcρ

√
1− γ2)eikcγzdγ (58)

in which prefactors are taken to be the same than in [14]. With kc = Mk,
these BSPs may be rewritten as:

U cTM =
E0
k2M

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TM (γ)Jm(Mkρ

√
1− γ2)eiMkγzdγ (59)

U cTE =
iH0

k2

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TE(γ)Jm(Mkρ

√
1− γ2)eiMkγzdγ (60)

However, in [14], exp(ikγz) instead of exp(iMkγz), and Jm(kρ
√
M2 − γ2)

instead of Jm(Mkρ
√

1− γ2), have been used. Indeed, let us set Mγ = γ′ in
Eqs.59-60, we obtain:

U cTM =
E0
k2M

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TM (γ′/M)Jm(kρ

√
M2 − γ′2)eikγ

′zd(γ
′
/M)

(61)

U cTE =
iH0

k2

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TE(γ′/M)Jm(kρ

√
M2 − γ′2)eikγ

′zd(γ′/M)

(62)

We may then relabel γ′ to γ, and afterward relabel the BSFs by making
the changes Cm,TM (γ/M)/M → Cm,TM (γ) and Cm,TE(γ/M)/M → Cm,TE(γ),
leading to:

U cTM =
E0
k2M

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TM (γ)Jm(kρ

√
M2 − γ2)eikγzdγ (63)
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U cTE =
iH0

k2

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TE(γ)Jm(kρ

√
M2 − γ2)eikγzdγ (64)

This was the option taken in [14]. To let the two options open (to be
discussed later), let us complement Eqs.63 and 64 with two constants α and β
later to be discussed, according to:

U cTM =
E0
k2M

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TM (γ)Jm(Mkρ

√
1− αγ2)eiMkβγzdγ

(65)

U cTE =
iH0

k2

+∞∑
m=−∞

(−i)meimϕ
∫
Cm,TE(γ)Jm(Mkρ

√
1− αγ2)eiMkβγzdγ (66)

Option 1 of Eqs.59-60 correspond to α = β = 1 while option 2 of Eqs.63-
64, i.e. the option taken in [14], correspond to α = 1/M2 and β = 1/M . Also,
in the set of Eqs.5-16, we must use the material permittivity εc instead of ε,
according to e.g. Eq.(1.100) in [3]:

εc = M2ε (67)

We must also take care of changing k to kc in Eqs.5 and 14. The internal
field components then read as:

Ecz = Ecz,TM = E0M

+∞∑
m=−∞

(−i)meimϕ (68)

×
∫

(1− β2γ2)Cm,TM (γ)Jm(Mkρ
√

1− αγ2)eikMβγzdγ

Ecρ,TM = E0M

+∞∑
m=−∞

i(−i)meimϕ (69)∫
βγ
√

1− αγ2Cm,TM (γ)J
′

m(Mkρ
√

1− αγ2)eikMβγzdγ
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Ecρ,TE =
iE0
kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
Cm,TE(γ)Jm(Mkρ

√
1− αγ2)eikMβγzdγ

(70)

Ecϕ,TM =
−E0
kρ

+∞∑
m=−∞

(−i)mmeimϕ
∫
βγCm,TM (γ)Jm(Mkρ

√
1− αγ2)eikMβγzdγ

(71)

Ecϕ,TE = −E0M
+∞∑

m=−∞
(−i)meimϕ (72)∫ √

1− αγ2Cm,TE(γ)J
′

m(Mkρ
√

1− αγ2)eikMβγzdγ

Hc
z = Hc

z,TE = iH0M
2

+∞∑
m=−∞

(−i)meimϕ (73)∫
(1− β2γ2)Cm,TE(γ)Jm(Mkρ

√
1− αγ2)eikMβγzdγ

Hc
ρ,TM =

−H0M

kρ

+∞∑
m=−∞

(−i)mmeimϕ (74)∫
Cm,TM (γ)Jm(Mkρ

√
1− αγ2)eikMβγzdγ

Hc
ρ,TE = −H0M

2
+∞∑

m=−∞
(−i)meimϕ (75)∫

βγ
√

1− αγ2Cm,TE(γ)J
′

m(Mkρ
√

1− αγ2)eikMβγzdγ

Hc
ϕ,TM = −H0M

2
+∞∑

m=−∞
i(−i)meimϕ

∫ √
1− αγ2Cm,TM (γ)J

′

m(Mkρ
√

1− αγ2)eikMβγzdγ

(76)

16



Hc
ϕ,TE =

−H0M

kρ

+∞∑
m=−∞

i(−i)mmeimϕ
∫
βγCm,TE(γ)Jm(Mkρ

√
1− αγ2)eikMβγzdγ

(77)

in which we have again used Eq.42.

2.5 Use of boundary conditions.

The boundary conditions for ρ = a read as:

Eiz + Esz = Ecz (78)

Eiϕ + Esϕ = Ecϕ (79)

Hi
z +Hs

z = Hc
z (80)

Hi
ϕ +Hs

ϕ = Hc
ϕ (81)

in which each component is the sum of the corresponding TM - and TE-
components. We also introduce the following notations:

Hm(ka
√

1− γ2) = Hm (82)

[H
′

m(kρ
√

1− γ2)]ρ=a = H̃m (83)

Jm(ka
√

1− γ2) = J im (84)

[J
′

m(kρ
√

1− γ2)]ρ=a = J̃ im (85)

Jm(Mka
√

1− αγ2) = Jcm (86)
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[J
′

m(Mkρ
√

1− αγ2)]ρ=a = J̃cm (87)

The boundary conditions then read as:

(1− γ2)[Im,TM (γ)J im − Sm,TM (γ)Hm]eikγz (88)

= M(1− β2γ2)Cm,TM (γ)Jcme
ikMβγz

{mγ
ka

[Sm,TM (γ)Hm − Im,TM (γ)J im] + i
√

1− γ2[Sm,TE(γ)H̃m + Im,TE(γ)J̃ im]}eikγz

= [
−m
ka

βγCm,TM (γ)Jcm −M
√

1− αγ2Cm,TE(γ)J̃cm]eikMβγz (89)

(1− γ2)[Im,TE(γ)J im + Sm,TE(γ)Hm]eikγz (90)

= iM2(1− β2γ2)Cm,TE(γ)Jcme
ikMβγz

{mγ
ka

[Sm,TE(γ)Hm + Im,TE(γ)J im]− i
√

1− γ2[Sm,TM (γ)H̃m − Im,TM (γ)J̃ im]}eikγz

= [
imM

ka
βγCm,TE(γ)Jcm + iM2

√
1− αγ2Cm,TM (γ)J̃cm]eikMβγz (91)

From Eqs.88 and 90, we respectively obtain:

Cm,TM (γ) =
(1− γ2)[Im,TM (γ)J im − Sm,TM (γ)Hm]eikγz

M(1− β2γ2)JcmeikMβγz
(92)

Cm,TE(γ) =
(1− γ2)[Im,TE(γ)J im + Sm,TE(γ)Hm]eikγz

iM2(1− β2γ2)JcmeikMβγz
(93)

Inserting Eqs.92-93 into Eq.89, we obtain:

Am,TMSm,TM (γ) +Am,TESm,TE(γ) = Bm,TMIm,TM (γ) +Bm,TEIm,TE(γ)
(94)
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in which:

Am,TM =
mHmγ

ka
[1− β(1− γ2)

M(1− β2γ2)
] (95)

Am,TE = i
√

1− γ2H̃m −
i
√

1− αγ2(1− γ2)
M(1− β2γ2)

J̃cmHm

Jcm
(96)

Bm,TM =
mJ imγ

ka
[1− β(1− γ2)

M(1− β2γ2)
] (97)

Bm,TE =
i
√

1− αγ2(1− γ2)
M(1− β2γ2)

J̃cmJ
i
m

Jcm
− i
√

1− γ2J̃ im (98)

Similarly, inserting Eqs.92-93 into Eq.91, we obtain:

Em,TMSm,TM (γ)+Em,TESm,TE(γ) = Fm,TMIm,TM (γ)+Fm,TEIm,TE(γ) (99)

in which:

Em,TM =
iM
√

1− αγ2(1− γ2)
(1− β2γ2)

J̃cmHm

Jcm
− i
√

1− γ2H̃m (100)

Em,TE =
mHmγ

ka
[1− β(1− γ2)

M(1− β2γ2)
] (101)

Fm,TM =
iM
√

1− αγ2(1− γ2)
(1− β2γ2)

J̃cmJ
i
m

Jcm
− i
√

1− γ2J̃ im (102)

Fm,TE =
mJ imγ

ka
[
β(1− γ2)

M(1− β2γ2)
− 1] (103)

We know enough to discuss the values of the constants α and β. It
is then clear that the constants occurring in Eqs.95-98 and 100-103 simplify if
we take the option in which α = β = 1, i.e. option 1. Unfortunately, in this
option, the z-dependent term exp(iMkγz) does not remain finite at z → ±∞
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if M is complex (justifying that option 2 has been chosen in [14]). As a by-
product issue, it would then be interesting to check whether options 1 and 2 are
numerically equivalent (as expected) when M is real. In this last case, option 1
is however appealing because Eqs.92-93, 95-98 and 100-103 simplify to:

Cm,TM (γ) =
[Im,TM (γ)J im − Sm,TM (γ)Hm]eikγz

MJcme
ikMβγz

(104)

Cm,TE(γ) =
[Im,TE(γ)J im + Sm,TE(γ)Hm]eikγz

iM2Jcme
ikMβγz

(105)

Am,TM =
mHmγ

ka
[1− 1

M
] (106)

Am,TE = i
√

1− γ2[H̃m −
1

M

J̃cmHm

Jcm
] (107)

Bm,TM =
mJ imγ

ka
[1− 1

M
] (108)

Bm,TE = i
√

1− γ2[ 1

M

J̃cmJ
i
m

Jcm
− J̃ im (109)

Em,TM = i
√

1− γ2[M J̃cmHm

Jcm
− H̃m] (110)

Em,TE =
mHmγ

ka
[1− 1

M
] (111)

Fm,TM = i
√

1− γ2[M J̃cmJ
i
m

Jcm
− J̃ im] (112)

Fm,TE =
mJ imγ

ka
[

1

M
− 1] (113)

We now solve the set of Eqs.94-99, as follows. We express Sm,TE(γ)
from Eq.94 and insert the result in Eq.99 to obtain Sm,TM (γ) reading as:
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Sm,TM (γ) =
1

S1m,TM
[S2m,TMIm,TM (γ) + S3m,TMIm,TE(γ)] (114)

in which:

S1m,TM = 1− Am,TMEm,TE
Am,TEEm,TM

(115)

S2m,TM =
Fm,TM
Em,TM

− Bm,TMEm,TE
Am,TEEm,TM

(116)

S3m,TM =
Fm,TE
Em,TM

− Bm,TEEm,TE
Am,TEEm,TM

(117)

Similarly, we express Sm,TM (γ) from Eq.99 and insert the result in
Eq.94 to obtain Sm,TE(γ) reading as:

Sm,TE(γ) =
1

S1m,TE
[S2m,TEIm,TM (γ) + S3m,TEIm,TE(γ)] (118)

in which:

S1m,TE = 1− Am,TMEm,TE
Am,TEEm,TM

= S1m,TM (119)

S2m,TE =
Bm,TM
Am,TE

− Am,TMFm,TM
Am,TEEm,TM

(120)

S3m,TE =
Bm,TE
Am,TE

− Am,TMFm,TE
Am,TEEm,TM

(121)

This completes the formulation. Such a formulation has been used by
Ren et al. [35] and by Méès et al. [36] (to which we shall return later) in the case
of Gaussian beams described by using a localized approximation (see Section
5). However, the paper by Ren et al. introduced a dictionary to translate a
formulation in terms of distributions (see Section 3) to a formulation in terms
of usual functions and therefore, to save room, did not explicitly repeat the
formulation in terms of usual functions. It then happens that the formulation
above is not explicitly available, in this form, in the archival literature, although
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it could be deduced from the dictionary in Ren et al. [35] and although it
is discussed in the thesis dissertation by Méès [37]. Hence, the formulation
presented above may be viewed as new. At least it is certainly useful for the
reader to have it available under a single roof.

Let us add that the formulation above has been given the name of plane-
wave spectrum approach. e.g. [35], a denomination (i) which is convenient
to oppose it to the approach in terms of distributions soon discussed and (ii)
which is motivated by the plane wave term of the form exp(ikz) occurring
in the formulation. This should not be confused with the Angular Spectrum
Representation (ASR) or Decomposition (ASD) used to evaluate BSCs in the
framework of the GLMT stricto sensu (i.e. when the scatterer is a homogeneous
sphere, or more generally in spherical coordinates), e.g. review in Sections 3 and
4 of [38] and a recent paper by Shen et al. [39]. In the GLMT for cylinders, the
term exp(ikz) is essential to the formulation because it is a consequence of the
structure of the separability equation in the spatial domain while, conversely, the
ASD in spherical coordinates is the result of the description of the illuminating
beam in terms of a plane-wave spectrum in the spectral domain.

2.6 A simplified formulation and a trivial example.

The formulation in [14] is a simplified formulation in which the integrals
over the separability constant is omitted. Then the BSCs (BSFs) of Eqs.26-27
simplify to:

U iTM =
E0
k2

+∞∑
m=−∞

Im,TM (−i)meimϕJm(kρ
√

1− γ2)eikγz (122)

U iTE =
H0

k2

+∞∑
m=−∞

Im,TE(−i)meimϕJm(kρ
√

1− γ2)eikγz (123)

in which the BSFs Im,TM (γ) and Im,TE(γ) do not depend explicitly on γ any
more, in the form of functions, and become genuine BSCs. To extract them,
Eq.29 which involves the Dirac function, more properly said the distribution
δ(γ − γ′), is not required any more and the use of Eq.30 is suffi cient to obtain:

Im,TM =
exp(−ikγz)

2π(1− γ2)(−i)mJm(kρ
√

1− γ2)

∫ 2π

0

Eiz
E0

e−imϕdϕ (124)
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Im,TE =
exp(−ikγz)

2π(1− γ2)(−i)mJm(kρ
√

1− γ2)

∫ 2π

0

Hi
z

H0
e−imϕdϕ (125)

in which the γ-spectrum has reduced to a single value to be determined.
As a trivial example, focusing only on the description of the illuminat-

ing beam and letting the rest of the formulation in the hands of the reader, let
us assume that the cylinder is illuminated by a plane wave propagating perpen-
dicularly to the cylinder axis, from negative to positive x, with the electric field
vibrating in parallel to the cylinder axis, a simple case well documented in the
literature, e.g. [25], [40]. We then have:

Eiz = E0 exp(−ikx) = E0 exp(−ikρ cosϕ) (126)

Hi
z = 0 (127)

From Eq.124, the TM−BSCs then read as:

Im,TM =
exp(−ikγz)

2π(1− γ2)(−i)mJm(kρ
√

1− γ2)

∫ 2π

0

exp(−ikρ cosϕ)e−imϕdϕ

(128)

Since the BSCs are constant numbers which should not depend on z,
we immediately require γ = 0, so that Eq.128 becomes:

Im,TM =
1

2π(−i)mJm(kρ)

∫ 2π

0

exp[−i(mϕ+ kρ cosϕ)]dϕ (129)

But the integral in Eq.129 is a classical integral equal to 2π(−i)mJm(kρ)
so that:

Im,TM = 1, ∀m (130)

We also readily find that Im,TE = 0, ∀m so that the incident wave is
a pure TM -wave. It is interesting to note, as previously announced, that the
ρ-dependent prefactor was only apparent. Indeed, in this plane case, we can see
how it is cancelled by the integral term. This is an example of a completely
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general result already mentioned, according to which the BSCs (or BSFs) are
complex numbers which do not depend on the coordinates.

The reader is referred to [14] for a complete analysis of this case. What
is important here is to note that the result γ = 0 is mathematically completely
incompatible with the plane-wave spectrum approach in which we would inte-
grate over γ. This fact, which would hold as well if the illumination was not
perpendicular (but for a different value of γ), together with the use of a "Dirac
function" in Eq.29, indicates that something is not completely satisfactory in
the plane-wave spectrum approach as well as in its simplified formulation.

3 Formalism in terms of distributions: why and
how.

Let us consider a Gaussian beam described by using the Davis scheme
of approximation [41], [42], [43]. In this framework, a potential vector A =
(Ax, 0, 0) is introduced in which the non-zero component Ax reads as:

Ax = ψ(x, y, z) exp(−ikz) (131)

in which ψ is expanded as:

ψ = ψ0 + s2ψ2 + s4ψ4 + ... (132)

in which s is the beam confinement parameter equal to (1/kw0) in which w0
is the beam waist radius.

The lowest order term ψ0 represents the fundamental mode of the
Gaussian beam. It is called the first-order Davis beam. The second and third
terms are called the third-order and the fifth-order modes of the Davis beam
[42]. Explicit expressions are known only for these three first modes, with the
fifth mode available from [43]. The electromagnetic fields are afterward deduced
from the potential vector.

None of these modes exactly satisfy Maxwell’s equations but they can
be shown to be the summation of a first term perfectly satisfying Maxwell’s
equations, called the Maxwellian term, complemented by a supplementary non-
Maxwellian contribution [44], [45].

We now consider a Cartesian coordinate system OGuvw attached to
a Gaussian beam, according to the configuration displayed in Fig.2 (adapted
from [46], see as well [14]). The beam waist center is located at the origin OG.
The beam propagates along the w-axis, from negative to positive w’s. In the
first-order Davis approximation, the field components read as [1], [41]:
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Eu = E0ψ0 exp(−ikw) (133)

Ev = 0 (134)

Ew =
−2Qu

kw20
Eu (135)

Hu = 0 (136)

Hv = H0ψ0 exp(−ikw) (137)

Hw =
−2Qv

kw20
Hv (138)

in which:

ψ0 = iQ exp(−iQu
2 + v2

w20
) (139)

Q =
1

i+ 2 w
kw20

(140)

We now assume that the Gaussian beam illuminates the infinite
cylinder perpendicularly to its axis with the beam waist center located on the
axis. The leading electric field polarization (i.e. electric field polarization at
the waist location) is perpendicular to the plane defined by the cylinder axis z
and by the incident unit vector ei, i.e. the cylinder axis z coincides with the
OGv axis. In cylindrical coordinates defined in Fig.1, limiting ourselves to the
z-components of the field required to evaluate the BSCs, we have:

Eiz = 0 (141)

Hi
z = −H0ψ0 exp(ikρ cosϕ) (142)
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with:

ψ0 = iQ exp[−iQρ
2 sin2 ϕ+ z2

w20
] (143)

Q =
1

i− 2ρ cosϕ
kw20

(144)

Focusing on Hi
z, the Maxwellian contribution to this field reads as

[14], [44]:

Hi
z = H0[−1 + s2(R2 sin2 ϕ+ 2iR cosϕ+ Z2)] exp(iR cosϕ) (145)

in which we have used R = kρ and Z = kz. This configuration is extensively
analyzed in Section 10 of [14]. We here provide a more expedient argument.
The O(s0) term of Eq.145 is a plane wave component, i.e. it corresponds to the
case when s = 0, i.e. w0 is infinite. Indeed, from Eq.125, we have γ = 0 and,
evaluating trivially the integral, we obtain I0m,TE = (−1)m+1 for the O(s0)-
term. Therefore, in utmost rigor, the extended plane-wave spectrum approach
is not valid since the separation constant has one precise value, forbidding the
use of an integral with a differential element dγ. For consistency, the O(s2)-
term must therefore be studied as well in the restricted plane-wave spectrum
approach, with γ = 0. From Eq.125, we then obtain that the corresponding
BSP U2m,TE (in which the superscript "2" refers to the fact that we are dealing
with an O(s2)-term) simplifies to:

U2m,TE =
H0

k2

+∞∑
m=−∞

(−i)mI2m,TMJm(R)eimϕ (146)

leading to:

I2m,TM =
1

2π(−i)mJm(R)

∫ 2π

0

[s2(R2 sin2 ϕ+2iR cosϕ+Z2)] exp(iR cosϕ)e−imϕdϕ

(147)

A dramatic consequence of Eq.147 is that I2m,TM depends on Z
and that there is no satisfactory way to get rid of this dependence which is in
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contrast with the fact that BSCs should not depend on coordinates. However,
let us consider the quantity:

U2 =
H0s

2

k2

+∞∑
m=−∞

im(Z2 +m2 − 2 + iR cosϕ)Jm(R)eimϕ (148)

which is proposed as an Ansatz from which we shall draw a few conclusions
(the reader does not need to know how the expression for U2 in Eq.148 has
been obtained; it is suffi cient to examine thereafter its properties). It may then
be shown that applying Eqs.5-16 to U2, we correctly recover the Maxwellian
contributions of the first-order Davis beam in cylindrical coordinates, see [14]
for details. Therefore U2 behaves as a proper BSP. However, it is the summation
of US and UNS according to:

US =
H0s

2

k2

+∞∑
m=−∞

im(m2 − 2)Jm(R)eimϕ (149)

UNS =
H0s

2

k2
(Z2 + iR cosϕ)

+∞∑
m=−∞

imJm(R)eimϕ (150)

The term US is a sum of generating functions as displayed in Eq.25
(with γ = 0), therefore satisfying the separability theorem expressed by Eq.17,
and is then called a

∑
-separable potential. Conversely, UNS is not a sum of

generating functions as displayed in Eq.25. Therefore, it does not satisfy the
separability theorem expressed by Eq.17 and is then called a non-

∑
-separable

potential. In order to solve the problems raised by the above discussed diffi cul-
ties, a first attempt tried, without any success, to build a theory for Gaussian
beams (in the case of a first-order Davis approximation) in terms of non-

∑
-

separable potentials [47].
It has soon later been found that the source of all these diffi culties lied in

the fact that the framework in terms of usual functions was not general enough
to correctly handle the Maxwellian contributions of the Davis beam and that
a correct framework is the one of distributions, allowing one to deal simulta-
neously with the plane-wave spectrum approach, its simplified version, and the
Maxwellian contributions of Davis beam approximations. In [48], a constructive
procedure has been established allowing one to systematically generate non-

∑
-

separable potentials, showing that these potentials provide a specific class of
functions which are problematic if we want to use separable functions to solve
a problem, and which then would require further investigation if it is wanted
to include them, in particular, in light scattering theories. One year later, it
was understood that the separability theorem could be established in terms of
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distributions, allowing one to convert the non-
∑
-separable potentials in terms

of functions to
∑
-separable potentials in terms of distributions [49]. In other

words, the separability approach must be expressed, in a more general frame-
work, in terms of distributions, rather than in terms of functions.

An easy-to-read introduction to the theory of distributions for physi-
cists is available from Roddier [50]. A still more easy-to-read tutorial devoted
specifically to the issue of beam parametrization in light scattering is available
from [51], in which the reader is kindly requested to correct a missprint, namely
changing δ(a) to ϕ(a) in the r.h.s. of Eq.(73). In the present paper, we shall
be content to provide a flavour on the use of the theory of distributions in light
scattering, with the attention being paid only to the description of the illu-
minating beams. Before proceeding, let us state that the distributions form a
generalization of functions (therefore they are sometimes viewed as generalized
functions), i.e. any usual function is a distribution but some distributions are
not usual functions. The essential fact is that distributions solve the problem of
differentiation, namely (in contrast with functions) any distribution is infinitely
differentiable, and each derivative is a distribution, a property that we shall
soon use. Furthermore, when a problem is solved in terms of distributions, it
is often interesting, in particular for computer programming and computations,
to check whether the solution in terms of distributions can be converted to a so-
lution in terms of usual functions. For an history of the theory of distributions,
the reader may refer to [52]. The emblematic example is the "Dirac function"
δ(x) satisfying, in an usual language:

∫
δ(x)f(x)dx = f(0) (151)

Unfortunately, this equation is a mathematical non-sense since δ(x) is
everywhere equal to 0 but for x = 0, so that the differential element dx has no
meaning. At best, it is a symbolic notation which should better be written as:

< δ0, f >= f(0) (152)

in which the subscript 0 in δ0 means that it is 0 everywhere but for 0. From
Eq.152, we see that δ(x) now receives the status of an operator. More generally,
the notation < T,ϕ > is the standard notation to use a distribution T which is
defined when we know how it acts on f , this latter function being called a test
function. Let us then return to Eq.150 which, omitting the prefactor H0s

2/k2,
is from now on simply denoted by U . Writing the cosine function in terms of
exponentials, the cosϕ-term may be rewritten as:
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Ucos =
R

2

+∞∑
m=−∞

imeimϕ[Jm−1(R)− Jm+1(R)] (153)

= R

+∞∑
m=−∞

imeimϕJ
′

m(R)

in which we have used [53]:

J
′

m(R) =
1

2
[Jm−1(R)− Jm+1(R)] (154)

leading to:

U =

+∞∑
m=−∞

imeimϕ[Z2Jm(R) +RJ
′

m(R)] (155)

Returning to Eq.27 of the plane-wave spectrum approach, we may then
search for a beam shape "coeffi cient" Am(γ) satisfying:

U =

+∞∑
m=−∞

eimϕ
∫
Am(γ)Jm(R

√
1− γ2)eiγZdγ (156)

which is an equation which actually has no meaning, as Eq.151, since the
separation constant must have the same value γ = 0 than in Eq.149. Similarly
as for the passage from Eq.151 to Eq.152, Eq.156 must then be rewritten in
terms of distributions as:

U =

+∞∑
m=−∞

eimϕ < Am(γ), Jm(R
√

1− γ2)eiγZ > (157)

in which Am(γ) is now a Beam Shape Distribution (BSD), and which must
be solved in a rigorous way in the framework of the theory of distributions,
using its theorems. Now, the fact that γ = 0 in terms of functions means that
the support of the distribution Am(γ) is zero as well. However, we possess a
theorem telling us that a distribution of support {0} is a linear combination of
the Dirac distribution and of its derivatives of the form:
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T =

∞∑
k=0

akδ
(k) (158)

in which ak ∈ C and δ(k) is the kth derivative of the Dirac distribution. We
then rely on the definition of the jth derivative of a distribution according to
[50]:

< T (m), ϕ >= (−1)m < T,ϕ(m) > (159)

to establish:

Am(γ) = −imδ′′(γ) (160)

Indeed, we then have:

< Am(γ), Jm(R
√

1− γ2)eiγZ >= −im < δ′′(γ), Jm(R
√

1− γ2)eiγZ >(161)
= −im(Jm(R

√
1− γ2)eiγZ)′′γ=0

= im[Z2Jm(R) +RJ
′

m(R)]

from which we recover Eq.155. Hence, the most general framework relies on
Beam Shape Distributions which, from Eqs.26-27, intervene in equations which
must be rewritten as:

U iTM =
E0
k2

+∞∑
m=−∞

(−i)meimϕ < Im,TM (γ), Jm(kρ
√

1− γ2)eikγz > (162)

U iTE =
H0

k2

+∞∑
m=−∞

(−i)meimϕ < Im,TE(γ)Jm(kρ
√

1− γ2)eikγz > (163)

A fortunate fact is that all the knowledge required to deal with distribu-
tions in the framework of GLMTs is essentially contained above in this section.
It is another fortunate fact that the passage from distributions in which the
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symbolic notation < . > must be used to usual functions (when this is possi-
ble) amounts to the replacement of the symbolic notation by an integral. And
it is still another fortunate fact that, "for all practical purposes", the original
plane-wave spectrum approach (or its simplified version) is suffi cient to deal
with scattering problems in the framework of GLMTs, if we dismiss "exotic"
cases such as the Maxwellian contributions to Davis beams.

The GLMT for infinite cylinders in terms of distributions up to O(s2),
i.e. for the Maxwellian contribution to a first-order Davis beam is discussed in
[46], for the case when the cylinder is perpendicularly illuminated by the beam.
The case of arbitrary location and arbitrary orientation for a first-order Davis
beam is discussed in [28]. Such a GLMT for cylinders up to O(s2) has been used
for cylindrical particle characterization by phase-Doppler anemometry [54]. A
theory up to O(s10) is discussed in [55], still in terms of distributions, but
with results eventually expressed in terms of usual functions, allowing classical
implementation in computer programs. An approach for the case of arbitrary
shaped beams, still in terms of distributions, is provided in [29].

Numerical results for the case of Gaussian beams at normal incidence,
with the beam waist center of the beam located upon the cylinder axis, have been
displayed in [35]. This paper summarized the passage from a theory in terms of
distributions to a theory in terms of usual functions (when it is possible). Three
different kinds of beam descriptions were considered (i) Maxwellian beams at
limited order relying on the Davis scheme of approximation, (ii) a plane-wave
spectrum approach as discussed in Section 1 for quasi-Gaussian beams, and (iii)
a plane-wave spectrum approach using a cylindrical localized approximation.
Concerning (i), the description used the Maxwellian contributions to the first-
and third-Davis beam approximations, and numerical results are accordingly
provided up to O(s6). Concerning (ii), a quasi-Gaussian beam is defined from
a complete first order Davis beam which is non-Mawellian whose BSFs then
depend on R, and by remodeling them by fixing the variable R to a prescribed
value Rp, then producing a remodeled Maxwellian beam which, based on a first
order approximation, cannot be defined exactly as being a Gaussian beam, but
provides a fairly satisfactory approximation of it. Concerning (iii), the reader
should refer to Section 4 below in which localized approximations are discussed.
Numerical results for the case of arbitrary location and of arbitrary orientation
of a Gaussian beam, still using a localized approximation, is discussed in [36].
This paper also contains some considerations devoted to the use of geometrical
optics, comparisons with plane wave scattering, mode separation in the case of
tilted Gaussian beams (exhibiting a wave guiding effect in which the incident
beam propagates along the cylinder), and properties of the rainbow.

At this point, the reader would like to know what should be the angle
of attack he/she should choose when dealing with a problem of scattering of
arbitrary shaped beams by infinite cylinders. Our recommendation is then as
follows. First, if he/she is not familiar with the theory of distributions, the
expedient choice is to use the plane-wave spectrum approach of Section 1, or its
simplified version, assuming that one of these frameworks is suffi cient for the
problem at hand. It must however here be recalled that this plane-wave spec-
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trum approach is not always feasible, and that the most general framework, valid
for all cases is the one of distributions, as illustrated and demonstrated above
in this section. Therefore the approach in terms of distributions is analytically
superior to the plane-wave spectrum approach.

Conversely, if he/she is familiar with the theory of distributions, the
approach in terms of distributions might be preferred because (i) it is more
general and could deal with any case (such as Maxwellian contributions to non-
Maxwellian beams) (ii) the final conversion from distributions to usual functions
for implementation in computer programs is very easy, or even trivial (when it
is allowed), as extensively discussed in [35] and (iii) although this may be a
subjective statement, this more general approach is more aesthetic. Following
these recommendations, we are now going to deal with the case of elliptical
infinite cylinders using the theory of distributions.

4 Elliptical infinite cylinders.

As for the case of circular infinite cylinders discussed in Sections 1 and 2, the
GLMT for elliptical infinite cylinders relies on the use of BSPs. The description
of the illuminating beam in terms of distributions is extensively discussed in
[56]. The BSPs for the incident wave are found to read as:

U iTM =
E0
k2

∞∑
n=0

[< An,TM (γ), cehn(µ, q2)cen(θ, q2)eikγz > (164)

+ < Bn,TM (γ), sehn(µ, q2)sen(θ, q2)eikγz >]

U iTE =
H0

k2

∞∑
n=0

[< An,TE(γ), cehn(µ, q2)cen(θ, q2)eikγz > (165)

+ < Bn,TE(γ), sehn(µ, q2)sen(θ, q2)eikγz >]

in which the prefactors E0/k2 and H0/k
2 have been chosen for convenience,

and An,TM (γ), Bn,TM (γ), An,TE(γ) and Bn,TE(γ) are the incident BSDs (let
us remark that, in contrast with the case of circular cylinders, the BSPs here
depend on two BSDs). The quantities z, µ and θ are elliptical cylinder co-
ordinates, while cen(θ, q2) and sen(θ, q2) are even and odd Mathieu functions
of the first kind respectively, assuming for convenience in the notation that
se0(θ, q

2) = 0 although, in utmost rigor, it is not defined. Similarly, cehn(θ, q2)
and sehn(θ, q2) are modified Mathieu functions of the first kind which are as well
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even and odd respectively. As for the circular cylinder case, rules of derivation
allow one afterward to obtain the various components of the incident wave. The
BSDs are found to be obtained from the electric Ez and magnetic Hz compo-
nents, although using a formulation more complicated than in the circular case,
in any case too complicated to be summarized here. Let us only mention that
the BSDs are linear combinations of the Dirac distribution and of its derivatives
with test functions based on the Mathieu functions. To illustrate the formal-
ism, the case of the Maxwellian contribution to a first-order Gaussian beam is
discussed as well in [56].
Maxwellian contributions to higher-order Gaussian beams in the Davis for-

mulation, up to O(s6), are studied in [57]. After being established, the BSPs
are converted from distributions to usual functions, and checked by showing
that they allow one to recover the original expressions of the field components.
Furthermore, it is shown that the plane wave description may be recovered from
the O(s0)-contribution. Next, in [58], the emphasis relies on the description of
arbitrary shaped beams in elliptical cylinder coordinates by using a plane-wave
spectrum approach, similar to the one used in Section 1 for circular infinite
cylinders. This plane-wave spectrum description is presented as the result of
a conversion from the description in terms of distributions. The distributions
An,TM (γ), Bn,TM (γ), An,TE(γ) and Bn,TE(γ) are obtained in terms of usual
functions expressed by double or triple quadratures, a situation completely simi-
lar to the one encountered in the GLMT stricto sensu (for homogeneous spheres)
when the BSCs may be expressed as well by using double or triple quadratures
[59]. A summary of the structure of the GLMT for elliptical infinite cylinders
is available from [60]. An erratum to correct a few expressions in [56], [57], [58],
[60] is available from [61].
A complete exposition of the GLMT for elliptical infinite cylinders is finally

available from [62]. The theory is presented using the plane-wave spectrum ap-
proach in which Eqs.164-165 are translated to:

U iTM =
E0
k2

∞∑
n=0

∫
[An,TM (γ), cehn(µ, q2)cen(θ, q2) + (166)

Bn,TM (γ), sehn(µ, q2)sen(θ, q2)]eikγzdγ

U iTE =
H0

k2

∞∑
n=0

∫
[An,TE(γ), cehn(µ, q2)cen(θ, q2) + (167)

Bn,TE(γ), sehn(µ, q2)sen(θ, q2)]eikγzdγ

and partial wave expansions for both the scattered and the internal waves
are displayed. Eq.(51) in [62] indicates that an option similar to option 2 in
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Section 1, e.g. Eqs.63-64 has been chosen, with the question, similar to the one
for circular infinite cylinders, to study the newly introduced option 1 when M
pertains to R. Numerical results have been published in a thesis dissertation
[37] but have not been released in the archival literature because, in the case of
plane wave incidence, they do not perfectly reproduce the results published by
Yeh [63]. Before publishing these numerical results, an independent computer
code would be welcome to check the results of [62] and the equivalence between
options 1 and 2 when M is real should be examined. Let us furthermore note
that the case of circular cylinders may be recovered from the case of elliptical
cylinders, e.g. Section 3.6 in [57].

5 Localized approximations.

5.1 Reminder in spherical coordinates.

In spherical coordinates, in particular to deal with the GLMT stricto sensu,
several methods have been designed to evaluate BSCs. When applying the
GLMT to the case of Gaussian beams, it has originally been found that the
numerical evaluation of quadratures was very time-consuming. This diffi culty
has been solved by introducing localized approximations (with several variants)
allowing one to describe the incident wave by using a localized beam model.
History and features of localized approximations are reviewed in [64], to be
complemented by [65] and [66]. A localized approximation essentially takes the
form of a localization operator (or localization procedure). Let us exemplify
the localization procedure in the case of TM -BSCs gmn,TM , with an exp(iωt)
convention, where it reads as follows, e.g. [67] and references therein.

(i) Expand the radial component of the electric field in terms of m-
waves, proportional to exp(imϕ), according to:

Er =

m=+∞∑
m=−∞

Emr (168)

(ii) Extract the non-plane-wave contribution Emr (R = kr, θ) of Emr .
(iii) Then, the localized approximation gmn,TM of the BSC gmn,TM reads

as:

gmn,TM = (
−i
L1/2

)|m|−1Emr (L1/2, π/2) (169)

In the original localized approximation, R = L1/2, called the radial
evaluation point, was taken to be equal to R = (n + 1/2). In an improved
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procedure [42], the radial evaluation point was better taken to be R = [(n −
1)(n + 2)]1/2. In a still improved modified localization procedure, we rather
have:

L = (n− |m|)(n+ |m|+ 1) = (n+ 1/2)2 − (|m|+ 1/2)2 (170)

a variant whose precise implementation requires a specific care when n =
|m| to avoid divergence of the term 1/L1/2 in Eq.169, see discussion in [66].
There also exist another variant named the integral localized approximation
[68] originally relying on R = (n + 1/2) but which could take advantage of
the improvements mentioned above, such as exhibited in Eq.170. We shall
below refer to these localized approximations under the name of SLAs (spherical
localized approximations).

5.2 Localized approximation in circular cylindrical co-
ordinates.

The localized approximation for the GLMT for circular infinite cylinders
(CLA: Cylindrical Localized Approximation) was proposed in [35], in analogy
with SLAs, but without any firm mathematical basis. A rigorous justification
of the CLA, for perpendicular illumination by a Gaussian beam, has been af-
terward published in [69]. This paper rigorously justifies the CLA in the plane-
wave spectrum approach and demonstrates that, although based on a first-order
description of the Gaussian beam, the CLA anticipates well the rigorous formu-
lation arising from the use of higher-order beams (a property already shared by
SLAs), and introduces as well the CLA in the approach in terms of distributions.
The CLA is then justified by many satisfactory numerical checks. The case of
arbitrary location and orientation of the scatterer, still for Gaussian beams, has
been published in [70]. Again, many satisfactory numerical checks have been
displayed. These numerical checks compare original profiles concerning incident
fields expressed in terms of coordinates with those obtained by reconstructing
the same quantities from the BSPs. Finally, the CLA has been validated, not
only for Gaussian beams, but for "arbitrary shaped beams" as well [71], fol-
lowing the same strategy than the one used to validate SLAs in the case of
"arbitrary shaped beams" [67].

The CLA procedure is as follows. Let us set:

(Ez, Hz) = (Ez0, Hz0) exp(iR sin Γ cosϕ) (171)

in which Γ is a tilt angle specifying the orientation of the cylinder axis with
respect to the axis of propagation of the illuminating beam, and R = kρ. We
afterward introduce:
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(Ez0, Hz0) = Ĝ(Ez0, Hz0) (172)

in which Ĝ is a localization operator which changes R to (−m)/ sin Γ and ϕ
to π/2. Then, the BSCs (or BSFs) in the CLA-framework read as, again with
Z = kz:

Im,TM (γ) =
(−1)m

2π(1− γ2)

∫ +∞

−∞

Ez0
E0

exp(−iγZ)dZ (173)

Im,TE(γ) =
(−1)m

2π(1− γ2)

∫ +∞

−∞

Hz0

H0
exp(−iγZ)dZ (174)

5.3 Localized approximation in elliptical cylindrical
coordinates.

An Elliptical Cylinder Localized Approximation (ECLA) has afterward
been proposed in the case of Gaussian beams in [72] relying on the use of third-
order Davis beams, in the case when the cylinder is perpendicularly illuminated
by a Gaussian beam, whose beam waist center is identified with a point on
the axis of the elliptical infinite cylinder. The case of "arbitrary shaped beams"
has been treated in [73]. The procedure to obtain the localized approximation
An,TM (γ) to An,TM (γ) is then as follows.

(i) Define:

Ez0(z, iµ, θ) = Ez(z, iµ, θ)/E1 (175)

in which:

E1 = exp(−iLη sin Γ) (176)

in which L is a rescaled semifocal length defined for the elliptical coordinates
used, Γ is still a tilt angle specifying the orientation of the illuminating beam,
and:

η = cosµ cos θ cosβ + i sinµ sin θ sinβ (177)
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in which µ, θ are angular elliptical coordinates, and β is an angle defining
an arbitrary polarization of the beam.

(ii) Define:

E1 =
(−i)p
πpn

cen(β, q2) (178)

in which p is 0 (1) for n even (odd), and pn designates quantities sometimes
called joining factors [63], [74].

(iii) Then:

An,TM (γ) =
E1

1− γ2
∫ +∞

−∞

Ez0(z, iµ0, θ0)

E0
exp(−iγZ)dZ (179)

in which θ0 = (β − π/2) and µ0 is defined by a validity condition discussed
in [73], second column of Page 2952.

A similar procedure is valid for Bn,TM (γ) and the TE-BSCs are after-
ward obtained from the TM -BSCs by changing electric fields to magnetic fields.
Numerical validations for Gaussian beams are available from [72] and also from
[37]. The reader wanting to deal with the ECLA for "arbitrary shaped beams"
is recommended to begin with the case of Gaussian beams as a training.

5.4 Additional remarks.

The "arbitrary shaped beams" discussed in [67], [71], [73] excluded the
case of beams whose description involves an axicon angle and/or a topological
charge, so that a few warnings are required as listed in this subsection. It has
then been shown that SLAs are less accurate in the case of beams exhibiting
axicon angles, e.g. [75], [76], [77], [78], [79], and/or topological charges [80],
[81], [82]. Finite series, pertaining to the arsenal of methods to evaluate BSCs
in spherical coordinates could then been used to speed up numerical compu-
tations [83], [84][85][86]. Otherwise, we may be content with the use of SLAs
leading to localized beam models, even if they depart from the intended beams.
It is likely that such limitations occur as well for CLA and ECLA, opening
new roads for research beyond the use of numerical quadratures and localized
approximations, including the analytical evaluation of quadratures, the design
(if possible) of finite series methods, or the use of ASD, all methods successful
in spherical coordinates which would be worth to investigate as well in circular
and/or elliptical cylindrical coordinates.
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6 Worldwide contributions.

6.1 The main stream.

This section reports on worldwide contributions concerning the interaction
between arbitrary electromagnetic shaped beams and infinite cylinders, exclud-
ing plane wave illumination, geometrical optics, "semi-analytical" (e.g. EBCM
or the use of surface integrals, e.g. the projection method, e.g. [87]) and numer-
ical methods, according essentially to a chronological order (most of the time).
It may then certainly be stated that we all have precursors. Two of them,
relevant to the framework of the present review paper, are Alexopoulons and
Park [88]. In their work, published in 1972, they consider a perfectly conduct-
ing and radially inhomogeneous dielectric cylinder. The incident wave exhibits
a Gaussian amplitude distribution of the form exp(−R2/w20) which results in
a non-Maxwellian beam, corresponding to a fairly crude representation of the
beam, still simpler than the one of the first-order Davis beam. This beam il-
luminates the cylinder perpendicularly. The plane wave case is recovered as a
special case by making the radius of the scatterer much smaller than the size
of the beam. Partial wave expansions similar to the ones used in the simplified
plane-wave spectrum of Section 1, e.g. Eqs.28 and 37 and others, i.e. without
the γ-integral, are used. Numerical results are displayed for size parameters ka
(with k the wave-number and a the cylinder radius) equal to 1 and 5. It is
interesting to compare these values with the ones which could be reached about
three decades after, namely more than 500 in [36], and much likely more nowa-
days. Also, as far as we understand, the results are not considered as accurate
when w0 ≤ a, i.e. in the case of strongly focused beams. Furthermore, only far
fields are considered.

In 1979, Kojima and Yanagiuchi [89] used a more sophisticated descrip-
tion of a two-dimensional Gaussian beam (whose fields depend on the propa-
gation location), with perpendicular incidence, and offset location (off both the
beam axis and the beam waist), and partial wave expansions allowed them to
describe the various fields relevant to the problem at hand. BSCs are obtained
under the form of 1D-definite integrals. Numerical results are displayed and the
numerical scheme is validated by reference to the simpler plane wave scattering
problem.

In 1980, still relying on the use of partial wave expansions, Iannarella
dealt with the case of an inhomogeneous fiber (built from a concentric division
into layers, allowing one to approximate the index of refraction dependency to
an arbitrary degree of accuracy) perpendicularly illuminated by a "transverse"
Gaussian beam in an off-axis configuration. The beam description is still non-
Maxwellian but more accurate than in [88], exhibiting a waist radius depending
on the propagation coordinate [90].

In 1982, we afterward have a series of three papers by Kozaki. In [91],
the scattering of a Gaussian beam by a homogeneous dielectric cylinder (instead
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of a conducting cylinder) is discussed (the author also quoted papers which, how-
ever, are not related to cylinders but to spherical objects). The Gaussian beam
still illuminates the cylinder perpendicularly and the beam description is still
cruder than the one of the first-order Davis beam. The formalism relies on the
use of an ASD, on a far field expression, and on an integral representation of
the incident beam which is diffi cult to evaluate exactly and which, as a con-
sequence, is evaluated approximately. Eventually, the incident, scattered and
cylinder fields are expressed as partial wave expansions to deal afterward with
the boundary conditions. Results are applicable to the microwave, millimeter
range. Numerical results are compared with a laboratory experiment carried out
at a frequency equal to 9.6 GHz, leading to a "good" agreement. This study
is extended, with a quite similar formulation, to the case of an inhomogeneous
dielectric cylinder (i.e. in which the permittivity ε of the cylinder material de-
pends on the coordinate ρ) in [92]. The homogeneous cylinder case is recovered
as a special case. Numerical results using the wave theory are compared with
results obtained from geometrical optics. Finally, Kozaki returned to the case of
a conducting cylinder and, with a formulation similar to the one he previously
used, he obtained new simple expressions for the scattering of a Gaussian beam
by the cylinder [93]. The expression for the Poynting vector is described as well.
Many numerical calculations and experiments in the microwave range have been
performed, still at 9.6 Ghz, leading again to a "good" agreement.

In 1989, adapting a simplification proposed by Kozaki and more gener-
ally relying on a similar framework [91], [92], [93], Rao studied the scattering of a
Gaussian beam by a radially inhomogeneous cylinder, more specifically exhibit-
ing a cylindrical dielectric shell between an internal radius a and an external
radius b, with the permittivity ε depending on ρ in the region inside the shell
[94]. The beam illuminates the cylinder perpendicularly. Numerical results are
displayed and discussed.

In 1995, Zimmermann et al. [95] dealt with the scattering of an off-axis
Gaussian beam by a dielectric cylinder, still with a perpendicular illumination,
and with a partial wave expansion method similar to the one used by previous
authors. Comparisons are displayed between geometrical optics and the wave
model, and as well between wave model calculations and experiments. Discrep-
ancies between geometrical optics and wave model are exhibited and discussed.

The works quoted above all dealt with Gaussian beams and circular
cylinders, and none of them reached the degree of generality of the approaches
discussed in Sections 1 and 2 devoted to general approaches usable in the case
of arbitrary shaped beams. In parallel with such works of general scope, in the
framework of exchanges and effi cient collaborations between Normandie Univer-
sity, France, and Cleveland University, USA, a thorough study of the scattering
of a diagonally incident focused Gaussian beam by an infinitely long homoge-
neous circular cylinder has been published by Lock in 1997 [96]. The approach
used relies on an ASD, i.e. let us recall, on the modeling of the incident beam by
an angular spectrum of plane waves, such as the one already used in spherical
coordinates. Beside the methods usable to compute BSCs, e.g. Section 5.4,
the ASD (as in spherical coordinates) provides an alternative way of computing
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the BSCs in order, afterward, to deal with a general GLMT formulation. The
formulation presented in Section 2 of [96] is valid for arbitrary shaped beams (in
cases when the use of distributions is not compulsory) and is specified in Section
3 for the case of a diagonally incident plane wave, while Section 4 is devoted to
the evaluation of BSCs for a diagonally incident Gaussian beam using (i) a Davis
model, (ii) an ASD and (iii) a localized approximation. It is recognized that
problems associated with the use of a Davis model may be circumvented by us-
ing the theory of distributions, as anticipated in Section 3 when dealing with an
incident plane wave. Finally, Section 5 discussed far-field scattering properties.
As a complementary work, another paper by Lock [97] focused the attention on
morphology-dependent resonances (MDRs) for an infinitely long circular cylin-
der illuminated either by a plane wave or a focused Gaussian beam, using again
an ASD approach to evaluate the BSCs, but expressing the scattering processes
in terms of a S-matrix analogous to the one used in quantum-mechanical scat-
tering problems. One of the results obtained insists on the difference between
MDRs in spheres and MDRs in cylinders. For light scattering by a sphere,
the size parameters of the MDRs do not depend on the beam shape profile, in
contrast with the case of cylinders in which there is an influence of the shape
of the beam on MDRs depending on its angle of incidence. More specifically,
the resonant size parameters of the cylinder increase as the angle of incidence
of an illuminating plane wave increases, an effect which is conveyed to the case
of Gaussian beam insofar as its ASD depends on the angle of incidence. This
work is completed by another paper, still in 1997, deriving and discussing the
Debye-series expansion of the partial-wave scattering and interior amplitudes
for the interaction between a diagonally incident beam of arbitrary profile with
an infinitely long homogeneous dielectric circular cylinder, and examining the
first-order rainbow extinction transition. Theoretical results are compared with
experimental ones [98].

In 2000, plane-wave and Gaussian beam scattering on an infinite non ab-
sorbing cylinder are compared by Mroczka and Wysoczanski [99] in the GLMT
framework of Section 1, in the case of perpendicular illumination. Numerous
numerical results allow the discussion of the effects of wavelength, cylinder di-
ameter, refractive index, polarization, and off-axis location. Next, in 2000 again,
Guo and Wu [100] dealt with the problem of an off-axis Gaussian beam perpen-
dicularly incident on an infinitely long multilayered cylinder, using a recursive
scheme in terms of three logarithmic derivatives of Bessel functions (fairly simi-
lar to a recursive scheme used for multilayered spheres [4], [101]), and applied to
a discussion of rainbow scattering for homogeneous and inhomogeneous fibers.

In 2006, measurement and analysis of angle-resolved scatter from small
particles in a cylindrical microchannel were carried out by Venkatapathi et al.
[102]. The scattering theory is used following Lock, i.e. with the BSCs evalu-
ated with an ASD approach. Numerical results for scattered and internal fields
are provided in the case of perpendicular incidence, and comparisons with ex-
periments are carried out.

In 2007, a complementary paper, by Venkatapathi and Hirleman, still
with an ASD approach to the evaluation of BSCs, in the case of an elliptical
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Gaussian beam with a perpendicular incidence, has been published [103]. It
focused on the examination of the effect of beam size parameters on the in-
ternal fields properties, in particular displaying resonance-dominated internal
fields when the parameters defining the interaction are well adjusted. Zhang
et al. [104] stated that the theory of distributions leads to "excessive diffi cul-
ties" (it is hoped that the present review paper will demystify the use of the
theory of distributions in light scattering). Then, they introduced an original
and interesting approach to the problem, by using a bridge between a GLMT in
spherical coordinates and a GLMT in cylindrical coordinates. For this, they ex-
pressed VSWFs in terms of Vector Cylindrical Wave Functions (VCSWFs) and
consequently expressed the BSCs (or BSFs) Im,TM and Im,TE in cylindrical co-
ordinates in terms of BSCs in spherical coordinates. This is an extrinsic method
according to the following definition: "Intrinsic methods evaluate beam shape
coeffi cients of a GLMT posed in a certain coordinate system in terms of quan-
tities pertaining to the same coordinate system. Conversely, extrinsic methods
evaluate the beam shape coeffi cients of a GLMT posed in a certain coordinate
system in terms of beam shape coeffi cients in a different coordinate system"
[105]. As examples of the extrinsic method, BSCs in cylindrical coordinates are
evaluated in the cases of plane wave and Gaussian beam illuminations. Let us
insist of the fact that the authors used VCWFs instead of BSPs in cylindrical
coordinates. If necessary, it might be interesting to establish the relationship
between these VCWFs and BSPs, as already done and used in spherical coordi-
nates [5], [6], [15]. Also, still in 2007, Novitsky dealt with the light scattering by
multilayer bianisotropic cylindrical particles using a matrix approach in a vari-
ant of the plane-wave spectrum approach, and applied it to case of a polarized
Gaussian beam interacting with a two-layer bianisotropic core cylinder [106].

In 2008, a complementary paper by Zhang and Han [107], using a similar
approach than in [104], with an extrinsic evaluation of BSCs, dealt with the
scattering of an arbitrarily oriented shaped beam by an infinite cylinder. In the
same year, Wu and Li presented a theory of interaction between an off-axis 2D
Gaussian beam in which the electric field is of the form E0 exp(−ρ2/w20) and a
multilayered cylinder, by using an ASD to evaluate the BSCs, and performed a
Debye series analysis [108].

In 2009, Wang et al. [109] dealt with the scattering of shaped beam
by a conducting infinite cylinder with dielectric coating relying on a GLMT
framework for cylinders. They however used an extrinsic approach in which
cylindrical BSCs are expressed in terms of spherical BSCs, the latter being
evaluated by using a SLA (this is an indirect way of implementing localized
approximations in a GLMT for cylinders, rather than using a CLA in cylindrical
coordinates). Wei et al. [110] investigated the scattering of a shaped beam by
an arbitrarily oriented conducting infinite cylinder within a GLMT framework,
and the cases of conducting and dielectric cylinders were compared. Li et al.
[111] derived Debye Series Expansion (DSE) for infinitely long multilayered
cylinders perpendicularly illuminated by an arbitrary shaped beam. The case
of Gaussian beam illumination is detailed, with BSCs calculated by using the
CLA. Afterward DSE is used to discuss the rainbow scattering by a graded-
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index polymer optical fiber (GI-POF). DSE approach and GLMT are compared,
leading to an excellent agreement. To complete the year 2009, we mention as
well a review paper by Han et al. [112] who dealt with a review devoted to the
scattering of typical particles obliquely illuminated by arbitrary shaped beams,
with BSCs determined by using an extrinsic method for the cases of spheroidal
and cylindrical particles.

In 2010, Normatov et al. [113] focused on resonance scattering in the
case of cylindrical nanowire illuminated by beams exhibiting a line phase irreg-
ularity, i.e. a wavefront dislocation. The theoretical approach is presented as
being a "rigorous modeling" which "employs a 2D version of the Richard-Wolf
focusing method and the source model technique". An interesting issue would
be to revisit such singular beams in a GLMT framework. Li et al. [114] studied
the relation between DSE and GLMT for laser beam scattering by a multilayer
cylinder, using recursive relations for Bessel functions already mentioned above.
The consistency between DSE and GLMT is proved in detail. As an example,
rainbow phenomenon on the scattering of a two-layer cylinder is discussed by
using the DSE. We end the year with Sun and Wang [115] who dealt with the
scattering of an infinite cylinder illuminated by a couple of Gaussian beams,
using an expansion of the beam in terms of VCWFs for arbitrary orientation,
in a GLMT framework. Cylindrical BSCs are evaluated using an extrinsic ap-
proach in terms of spherical BSCs, the latter being evaluated using a SLA (still
an indirect way of dealing with a "CLA").

In 2011, Pawliuk and Yedlin [116] dealt with the case of scattering
between parallel cylinders, accounting for the multiple scattering between the
individual scatterers, using a two-dimensional plane wave spectrum to describe
the beam.

In 2012, Zhai et al. [117] dealt with the on-axis Gaussian beam scat-
tering by an eccentrically coated conducting cylinder, in a GLMT framework
expressed in terms of VCWFs, for oblique incidence. The BSCs are evaluated
with an extrinsic approach in which the spherical BSCs are evaluated by using
a SLA. An addition theorem for the Bessel functions is invoked to implement
the fact that there is an eccentrically located cylinder inside a host cylinder.
Numerical results are provided in the case of perpendicular illumination by a
tightly focused Gaussian beam, in the far-zone. A similar approach is used
the in same year to deal with the scattering by a chiral cylinder [118], still for
on-axis oblique incidence and using an extrinsic method with spherical BSCs
evaluated by using a SLA. Numerical results are again provided in the far-zone
for a tightly focused Gaussian beam under perpendicular illumination.

In 2013, Zhang et al. [119] dealt with the study of internal and near-
surface electromagnetic fields for a uniaxial anisotropic cylinder obliquely illumi-
nated by an on-axis Gaussian beam, in a GLMT framework, using an extrinsic
approach as previously described in Zhai et al. papers [117], [118]. Yang et al.
[120] studied the far-field scattering of single walled nanotubes illuminated by
a Gaussian beam, in a GLMT framework, in which the nanotubes are assimi-
lated to infinitely long circular cylinders. Hyde IV et al. [121] dealt with the
interaction between a circular cylinder and a partially-coherent wave, using a
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plane-wave spectrum of electromagnetic fields.
In 2014, Chen et al. [122] used a GLMT to study the transmission of a

Gaussian beam through a gyrotropic cylinder. The theory is formulated in terms
of VCWFs, and relies on an extrinsic method in which the spherical BSCs are
evaluated by using a SLA. Gagnon et al. [123] theoretically investigated laser
thresholds in a photonic molecule composed of two coupled active cylinders of
slightly different radii. The theory relies on two ingredients (i) steady-state ab
initio laser theory used to study the effect of the underlying gain transition on
lasing frequencies and thresholds and (ii) a GLMT approach which may be used
for the computation of the scattering by a complex arrangement of dielectric
cylinders.

In 2015, Gagnon and Dubé [124] published a tutorial devoted to a
GLMT to compute the interaction of light with arrays of cylindrical scatter-
ers, using a GLMT framework together with an addition theorem for cylindrical
functions. Emphasis is placed on the derivation of BSCs and on the computation
of resonant modes. Let us note that cylinders embedded in other cylinders are
also within the reach of the method. Yan et al. [125] studied the transmission
of a Gaussian beam through a coated chiral cylinder in a GLMT framework,
using VCWFs and an extrinsic method in which spherical BSCs are evaluated
using a SLA.

In 2016, Mitri [126] studied cylindrical particle manipulation and nega-
tive spinning under nonparaxial Hermite-Gaussian light-sheet beams, using an
ASD. The BSCs are expressed under the form of quadratures evaluated by a
standard Simpson’s rule for numerical integration. Furthermore, the analysis
is extended to the evaluation of longitudinal and transverse radiation forces as
well as the spin torque on an absorptive dielectric cylindrical particle, and the
dynamics of the particle are examined relying on Newton’s second law of motion.
Laguerre-Gauss light-sheet beams are considered as well.

In 2017, Mitri [127] presented a generalized nonparaxial analytical so-
lution for a transverse Airy light-sheet, using an ASD, with BSCs expressed by
an integral which is evaluated by using a standard trapezoidal rule. The for-
mulation obtained allows applications to the computations of optical scattering,
radiation force and torque, in cylindrical coordinates. This is followed by Mitri
[128] to be complemented by an addendum [129], dealing with radiation forces
and torques of light-sheets, in a GLMT framework, where BSCs are evaluated
using an ASD. Numerical examples are displayed concerning dielectric absorp-
tive circular cylinders illuminated by different wavefronts, ranging from plane
waves to non-paraxial scalar Airy and Gaussian light-sheet beams. In the same
year, Swirniak and Mroczkra [130] proceeded to a theoretical analysis of primary
rainbows produced by infinite homogeneous circular cylinders for different types
of optical fibers (with step- and graded-index profiles) under low-coherent light
illumination. In particular, it is explored how the scattering varies when the
incident light is changed from a monochromatic source to a broader spectrum
source. A broad source is treated as a superposition of elementary monochro-
matic waves, each of them being processed in a GLMT framework and using as
well DSEs. A complementary study is devoted to (p = 2)- scattering (in the
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DSE-terminology) when the scatterer is illuminated by an ultrashort light pulse
(the characteristic time duration of the pulse in free space is taken to be shorter
than the propagation time within a fiber, allowing one to isolate various p=2
orders in time when incident on a detector). Next, Han et al. [131] published
a review devoted to light wave propagation and scattering through particles.
GLMT approaches to deal with the scattering by typical particles with regular
shapes (spheres, spheroids, cylinders) are reviewed as well as numerical methods
for scattering by complex particles with arbitrary shapes and structures.

In 2018, Shiloah [132] dealt with an algorithmic issue, namely the study
of canonical scattering coeffi cients upward recursion process for long cylinders
(and multilayered spheres) with large size parameters.

In 2019, Mitri [133] dealt with a study of optical radiation force exerted
on a cylinder material of circular cross section exhibiting circular dichroism (i.e.
rotary polarization), illuminated by an electric line source, using a simplified
plane-wave spectrum approach.

In 2020, the previous work on dichroism is complemented by studying
the radiation force on a cylinder exhibiting dichroism illuminated by a circularly
polarized light [134]. Chen et al. [135] studied the Gaussian beam propagation
through a biaxial anisotropic circular cylinder, using electromagnetic expansions
in terms of appropriate VCWFs, following an extrinsic GLMT scheme where
the cylindrical BSCs are evaluated in terms of spherical BSCs, the latter being
obtained from a SLA. Zhang et al. [136] dealt with the Gaussian beam scattering
by an infinite cylinder with a spherical inclusion. This problem possesses the
originality that both VCWFs and VSWFs are used, depending on the region
considered in the scatterer. The beam is described by a localized beam model
in order to numerically investigate the scattering properties.

In 2021, Mitri [137] used a GLMT-like approach (i.e. using partial wave
expansions in cylindrical coordinates, with introduction of BSCs) to discuss lon-
gitudinal and transverse optical scattering asymmetry parameters for a dielectric
cylinder illuminated by light-sheets of arbitrary wavefronts and polarization.

None of the papers cited in this subsection dealt with the theory of
distributions, although this theory provides the most general framework to deal
with the interaction between arbitrary shaped beams and cylinders. It must
however be recognized or stated that, in most cases (when the theory in terms
of distributions may as well be expressed rigorously in terms of usual functions),
the choice of a distribution approach or of an usual function approach may be
viewed as a "matter of notation". Also, none of these papers dealt with a
GLMT for elliptical cylinders whatever its variant, meaning that this issue is
under-developed. We may nevertheless quote a paper by Mitri [138] who dealt
with optical radiation force exerted on an elliptical conducting elliptical cylinder
having a smooth or ribbed surface. In deep contrast with the GLMT for ellip-
tical cylinders, which relies on the use of Mathieu functions, this paper relies
on expansions in terms of cylindrical Bessel functions which, as stated by the
author, are "entirely appropriate to treat elliptical objects. However, the con-
vergence of the solutions requires an extra-check because it is expectedly slower
than in the more classical approach of GLMT, in particular due to the fact that
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the cylindrical wave functions used are not orthogonal to elliptical surfaces, in
contrast with elliptical wave functions. Afterward, the same author, using a sim-
ilar non conventional approach, studied the radiation force and torque exerted
on a perfect electrically conducting elliptical cylinder illuminated by a focused
Gaussian light sheet with arbitrary incidence [139]. As stated by the author,
such an approach however may be viewed as "a semi-analytical" method, which
requires a single numerical integration procedure. Complementary studies con-
cern the case of cylinders with arbitrary geometrical cross-section, dealing with
dichroism and, in particular, with the evaluation of scattering, extinction and
absorption cross sections [140] or of radiation forces and torques [141] in the case
of light-sheet illumination. From these examples, we may then conclude that
studies devoted to the conventional GLMT for elliptical cylinders are severely
under-developed.

6.2 Complementary side-issues.

This subsection deals with two side-issues (i) the case of acoustical
beams and (ii) the use of VCFWs for particles other than cylindrical particles.

For issue (i), let us first mention that electromagnetic GLMTs deal
with vectorial scatterings, i.e. scatterings of electric and magnetic vector fields.
GLMT-like approaches may also be developed for scalar fields. An example is
quantum mechanics, e.g. [142] and references therein. Another very important
scalar case is the one of acoustical waves. Indeed, electromagnetic and acoustical
wave scatterings share many common features, in any case a suffi cient number of
them, such as the use of acoustical BSCs, to allow one to use the denomination
of acoustical GLMTs to denote the scattering of acoustical waves by various
regular acoustical scatterers possessing enough symmetries to allow one to use
the method of separation of variables. These statements are well illustrated by
Baresch et al. [143] who dealt with the modeling of acoustic radiation force
exerted on an arbitrarily located elastic sphere placed in an inviscid fluid, by
Thomas et al. [144] who reviewed analogies between electromagnetic and scalar
scatterings, and comprehensively discussed acoustical and optical radiation force
pressures in relation with the development of single beam acoustical tweezers,
with a strong emphasis on the mutual enrichment which arose from a long
common history, Thomas et al. again [145] who reviewed the similarities and
differences between optical and acoustical radiation pressure , with a focus on
single-beam acoustical tweezers, and Baudoin and Thomas [146] dealing with
an extended review on the issue of acoustic scattering and trapping.

Returning to cylinders, we then have Mitri [147] who studied the inter-
action between an acoustical beam with an elastic cylinder arbitrarily located
in non-viscous fluid, using a partial wave series expansion method in cylindrical
coordinates, with a particular attention paid to resonance effects, Zhang et al.
[148] who investigated acoustical radiation force exerted on cylindrical particles
in water, using a finite series expansion (similar to the ones used in spherical
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coordinates, e.g. [149], [150]) to model an incident acoustical Gaussian beam,
and obtaining the BSCs of the beam expanded as VCWFs, and Zhang et al.
[151] who dealt with the computation of the acoustic radiation force exerted on
a rigid cylinder in an off-axial Gaussian beam, with the expressions for the BSCs
given in a closed, analytical form. Wang et al. [152] discussed long-range and
robust acoustic pulling which provides a new mechanism for acoustic manipu-
lation apart from levitation, trapping and binding, all phenomena which have
their electromagnetic counterpart, a fact which is somehow pointed in an Ap-
pendix entitled "Lorenz-Mie for acoustic force". The pulling effect is achieved by
using a pair of one-way chiral surface waves supported on the interface between
two phononic crystals composed of spinning cylinders with equal but opposite
spinning velocities embedded in water.

For issue (ii), let us note that VCWFs which are natural to the study
of cylinders may be used as well for studying the interactions between arbitrary
electromagnetic beams and slabs just as exemplified by Wang et al. [153] who
expressed the cylindrical BSCs of an incident Gaussian beam by using an ex-
trinsic method with the spherical BSCs evaluated with a SLA, Li et al. [154]
who studied the deformations of circularly polarized Bessel vortex beams re-
flected and transmitted by a uniaxial anisotropic slab, Zhang et al. [155] who
dealt with the propagation characteristics of a focused electromagnetic beam
in a uniaxial anisotropic slab, Lu et al. [156] who compared differently polar-
ized Bessel vortex beams propagating through a uniaxial anisotropic slab, Liu
et al. [157] who investigated the reflection and transmission of a Bessel vortex
beam by a stratified uniaxial anisotropic slab, taking a three-layered slab as
an example, and Yan et al. [158] dealing with the electromagnetic wave beam
propagation through a chiral slab. VCWFs are used as well by Zhang et al.
[159] to study the Gaussian beam scattering by a particle above a plane surface,
using again an extrinsic method to evaluate the cylindrical BSCs in terms of
spherical BSCs evaluated by a SLA, not only for cylinders however, but also for
spheres and spheroids. Theoretical results obtained from this formulation in the
case of a polystyrene sphere illuminated by a plane wave were compared with
EBCM simulations. See as well Yuan et al. [160] for a similar study devoted to
the case of Gaussian beam scattering by a particle on or near a plane surface.

7 Conclusion.

Since a few decades, there has been a vigorous effort to study the interac-
tion between arbitrary electromagnetic shaped beams and scattering particles,
either possessing a suffi cient degree of symmetry to allow one to use the method
of separation of variables (generically named GLMTs) or irregular particles (e.g.
EBCM). The most developed theory of this kind has been the GLMT stricto
sensu when the scatterer is a homogeneous sphere defined by its diameter and its
complex refractive of refraction, which is now about four decades old. Another
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more recent GLMT has been developed for the case when the scatterer is an in-
finite cylinder with a cross section which is either circular or elliptical. Original
works related to the case of infinite cylinders soon demonstrated that the most
general framework to handle these cases requires the use of the theory of distrib-
utions which has afterward been found discouraging in the mind of newcomers.
Motivated by the revival of applications to the scattering by cylinders (both
from electromagnetic or acoustic waves), this paper presents a review, expected
to be fairly exhaustive, concerning the theories of interactions between waves
and cylinders. More specifically, this review deals with the GLMT for circular
and elliptical infinite cylinders, both using usual functions and distributions,
with a particular attention paid to the relationship between both approaches.
A section is devoted to worldwide contributions to this field of research, in-
cluding the case of acoustical wave interactions with infinite cylinders. It must
furthermore be noted that, although devoted to the case of infinite cylinders,
the approaches discussed in the present paper may be used as well to finite
cylinders when the transversal size of the illuminating beam is suffi ciently small
with respect to the length of the cylinder, at least when the angle of incidence
is suffi ciently close to perpendicular illumination to neglect wave guiding effect
inside the cylinder.
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