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Stress propagation in nonlinear media is crucial in cell biology, where molecular motors exert
anisotropic force dipoles on the fibrous cytoskeleton. While the force dipoles can be either contractile
or expansile, a medium made of fibers which buckle under compression rectifies these stresses towards
a biologically crucial contraction. A general understanding of this rectification phenomenon as a
function of the medium’s elasticity is however lacking. Here we use theoretical continuum elasticity to
show that rectification is actually a very general effect in nonlinear materials subjected to anisotropic
internal stresses. We analytically show that both bucklable and constitutively linear materials
subjected to geometrical nonlinearities rectify small forces towards contraction, while granular-like
materials rectify towards expansion. Using simulations, we moreover show that these results extend
to larger forces. Beyond fiber networks, these results could shed light on the propagation of stresses
in brittle or granular materials following a local plastic rearrangement.

PACS numbers: 46.35.+z, 87.16.Ln, 45.70.-n, 46.15.Ff

The active, stress-generating role of many biological
materials stems from their ability to transmit internally
generated forces. In cells, the action of molecular motors
and the growth of protein fibers over a few nanometers
generates anisotropic forces that are further transmitted
by a fibrous network, the cytoskeleton, to the scale of
the whole cell [1, 2]. At larger length scales, polarized
cells in connective tissues exert anisotropic stresses on
another fibrous network, the extracellular matrix, which
again propagates these stresses far from their application
point [3, 4].

The well-characterized nonlinear stress response of these
networks [5–7] plays a crucial role in force transmission,
allowing for the enhancement of contractile stresses [8–11]
and promoting long-range mechano-sensitivity [12–16].
Beyond this quantitative stress amplification, the nonlin-
ear response of fiber networks also leads to qualitative
changes in the propagated stresses, as previously shown in
numerical simulations [9]. In these simulations, a localized
active unit exerts anisotropic forces in the center of a large
network of discrete fibers, each of which can buckle under
a sufficiently large compressive force. For localized forces
much larger than this buckling threshold, the far-field
stresses transmitted by the network become contractile.
This is valid even in cases where the local forces are pre-
dominantly expansile, because the network resists and
therefore propagates tension more than compression. This
stress “rectification” has strong implications for biological
force propagation, and could be one of the reasons why the
actomyosin cytoskeleton is overwhelmingly observed to
contract irrespective of its detailed internal architecture.

Here, we generalize these results beyond bucklable fiber
networks, and demonstrate that stress rectification is
a generic corollary of stress propagation in a nonlinear
elastic medium. Our approach is based on a continuum
formalism that allows a general discussion of arbitrary

nonlinearities. We consider both geometrical nonlineari-
ties and generic material-dependent nonlinearities describ-
ing the response of the material to compression or ten-
sion. Nonlinearities whereby the material stiffens under
tension and soften under compression are characteristic
of bucklable fiber networks [6]. Conversely, materials
that soften under tension and stiffen under compression,
or “anti-buckle”, may offer a description of granular me-
dia, where contacts between grains are disrupted as the
confining pressure is decreased [17]. Under shear, these
materials experience localized plastic events known as
shear transformations which generate anisotropic internal
stresses similar to those induced by molecular motors in
the cytoskeleton [18]. We show that the elastic constants
describing the weakly nonlinear response of these materi-
als are a reliable predictor of the sign and magnitude of
rectification.

We consider a piece of homogeneous, isotropic elastic
medium of dimension d comprised in a domain Ω. A set
of anisotropic “active units” (e.g., molecular motors or
shear transformation zones) exerts forces and/or imposes
local displacements on the medium. This induces a force
density f , resulting in a Cauchy stress tensor σ given
by the force balance equation fi = −∂σij/∂Xj . Here
X = x+u is the final location (in the “target space”) of a
material point initially located in x (in the “initial space”),
u denotes the displacement vector and the summation
over repeated indices is implied. The boundary ∂Ω of
the medium is held fixed, such that the forces exerted by
the active units are transmitted through the medium and
cause it to exert a coarse-grained stress

σ̄a
ij =

1

V

∮

∂Ω

σikXj dAk (1)

onto the boundary [19], where V is the volume of the
medium and dA the outward-directed area element in
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the target space. In the context of active matter, σ̄a is
known as the active stress generated by the overall system
comprised by the medium and the active units [20]. We
define as contraction (expansion) a situation where the
active pressure Pa = −σ̄a

ii/d is negative (positive). To
investigate the relationship between the local forces f and
the active stress σ̄a, we define the coarse-grained local
stress

σ̄l
ij = − 1

V

∫

Ω

fiXj dV, (2)

where dV is the volume element in the target space. In
the special case where the force transmission is entirely
linear, this relation simply reads σ̄a = σ̄l, implying in
particular an equality of the active and local pressures
Pa = Pl = −σ̄l

ii/d. In that case, contractile (expan-
sile) local forces always imply a contractile (expansile)
active stress. These equalities are however violated in
nonlinear media [19, 21], and the local and active pres-
sures Pl and Pa can have opposite signs. We show here
that this stress rectification may arise from geometrical
and/or constitutive nonlinearities in the material’s elastic
response, and that geometrical nonlinearities always bias
the system towards contraction. We then investigate the
effect of generic, lowest-order constitutive nonlinearities,
and characterize the regimes conducive to rectification
towards contraction and expansion. Finally, we use finite-
element simulations to show that our conclusions remain
qualitatively valid at higher orders.

We describe the elastic deformation of our medium
using the displacement gradient ηij = ∂ui/∂xj and in-
troduce the Green-Lagrange strain tensor ε = (η +
ηT + ηTη)/2 [22]. The last, nonlinear term of ε is
purely geometrical and accounts for, e.g., material ro-
tations. We express the Cauchy stress as a function of
the elastic energy density E in the initial space by σ =
(1 + η)∂E∂ε (1 + ηT)/det(1 + η), where 1 denotes the unit
tensor. We first consider a constitutively linear material
with a quadratic energy density E = κε2

ii/2+µ(ε2
ij−ε2ii/d),

where κ and µ are the bulk and shear moduli. We use the
divergence theorem to turn the right-hand side of Eq. (1)
into a volume integral, and combine the expression of the
Cauchy stress, the force balance equation and Eq. (2) to
find

Pa = Pl −
∫

Ω

dv

V d

[
κ

2

(
dη2

ij + 4ε2
ii

)
+ 4µ

(
ε2
ij − ε2

ii/d
)]
≤ Pl,

(3)

where the integral runs over the initial space. The in-
equality in Eq. (3) is proven in the SI and means that
the system as a whole is always more contractile than
the local forces, implying that geometrical nonlinearities
always induce a rectification towards contraction.

To describe nonlinearities resulting from the medium’s
constitutive properties, we consider a two-dimensional

isotropic, achiral elastic medium with a non-harmonic
energy density:

E =
κ+ κ′εii/3

2
ε2
ii +

µ+ µ′εii
d

(
dε2

ij − ε2
ii

)
+O

(
η4
)
, (4)

where the coefficients κ′, µ′ can be of either sign and
characterize the most general, lowest-order nonlinearity.
According to Eq. (4), when the material is isotropically
dilated by a relative amount εii ∼ δV/V0 its bulk (shear)
modulus exceeds that of a purely harmonic material by
κ′δV/V0 (µ′δV/V0). More generally, we may consider a
combination of bulk expansion and simple shear

η =

(
ηii/2 ηxy

0 ηii/2

)
, (5)

compute the Cauchy stress tensor, and derive the differ-
ential bulk and shear moduli as

K =
∂σxx
∂ηii

= κ (1 + κ1ηii) +O
(
η2
)
,

G =
∂σxy
∂ηxy

= µ (1 + µ1ηii) +O
(
η2
)
,

(6a)

(6b)

where the first order nonlinear corrections to the moduli
κ1 = 1/2 + κ′/κ and µ1 = κ/µ + 1/2 + µ′/µ include
contributions from geometrical as well as constitutive
nonlinearities. Based on rheology measurements, we esti-
mate κ1 ≈ 100 and µ1 ≈ 30 for gels of the extracellular
matrix filaments fibrin and collagen [23]. These positive
values are consistent with the notion that biological fiber
networks buckle, and therefore soften, under compression
(ηii < 0). Conversely, granular materials tend to increase
their cohesion under compression. Experiments and sim-
ulations on polydisperse soft spheres near jamming thus
suggest κ1 ≈ 0 and µ1 ∈ [−400,−4] (see Refs. [24, 25]
and SI). An intermediate behavior is observed in fiber net-
works with stiff grain-like inclusions mimicking connective
tissues. This gives rise to a more complicated sign com-
bination which depends on the inclusion density [26, 27].
Finally, a standard (“neo-Hookean”) model of rubber dis-
plays κ1 > 0 and µ1 < 0 with small values [28, 29], see
SI.

To explicitly predict the active pressure resulting from
rectification, we consider a simple circular piece of elastic
medium with radius rout and a single active unit at its
center. The active unit is a circle with radius rin at rest,
and undergoes a radial displacement [Fig. 1(a)]

u(rin) = rin [e0 + e2 cos(2θ)] r̂. (7)

This induces a mixture of compression, tension and shear
on the medium. Symmetry imposes that the local and
active stress tensors take the form

σ̄x = −
(
Px + Sx 0

0 Px − Sx

)
, (8)
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(a)

(b)

y

e0−e2
e0+e2

x

rin rout

(b) Pa−Sa

Pl−Sl
Pl+Sl

Pa+Sa

FIG. 1. Sketches of the imposed anisotropic displacement
and the resulting coarse-grained stresses. (a) In the target
configuration, the inner light-gray circle with radius rin is
moved to the orange ring. (b) Stress components in a particular
situation where the local pressure Pl is positive and the active
pressure Pa at the boundary is negative.

in Cartesian coordinates, for x ∈ {l, a} [Fig. 1(b)]. As
shown in Eq. (2), the local coarse-grained stress σ̄l is
the ratio of a force dipole by the volume V . Assuming a
constant local dipole, σ̄l thus decreases with increasing
system size V due to dilution. A similar statement holds
for σ̄a. It is thus useful for our discussion to define the
quantities Px = Px(rout/rin)2 and Sx = Sx(rout/rin)2

which are not subject to this dilution. In this sense,
they behave as force dipole components. In the following,
we consider the lowest order in the weakly nonlinear
regime e0, e2 � 1 (see SI). We perturbatively solve the
force balance equation using Eq. (7) as well as the fixed
boundary condition in rout to compute the pressure and
shear components Px, Sx as

Px = Axe0 +Bxe
2
2 +O

(
e2

0, e0e
2
2, e

4
2

)
,

Sx = Cxe2 +O
(
e2e0, e

3
2

)
,

(9a)

(9b)

where the cumbersome dependence of Ax, Bx and Cx on
the properties of the medium is detailed in the SI. The
active stresses can then be computed from the local ones
through

Pa ∼ Pl + αS2
l , Sa ∼ Sl. (10)

Here αµ is a dimensionless function of rout/rin, κ/µ, κ1

and µ1 that is obtained by combining Ax, Bx and Cx.
At this order in nonlinearity, stress propagation in a
medium with α = 0 resembles that in a linear medium
(namely Pa = Pl, Sa = Sl). Conversely, a medium with
a negative (positive) α harnesses the anisotropy of the
active unit to produce an additional medium-wide con-
traction (expansion). Equation (10) is formally valid for
local stresses much smaller than the elastic moduli of the
medium (Pl,Sl � κ, where “κ” stands for the typical
magnitude of the linear moduli). It implies that when√
κPl � Sl, the sign of the active pressure induced by a

highly anisotropic active unit is determined not by the
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FIG. 2. Bucklable materials (κ1, µ1 > 0) rectify towards con-
traction (yellow), while very anti-bucklable materials (κ1, µ1 <
−3/2) rectify towards expansion (blue). (a) Contour plot of
α, indicating the overall sign of rectification as a function of
the relative system size rout/rin, the Poisson ratio ν (ν = 1 de-
notes incompressibility in 2D) and the nonlinear corrections to
the moduli κ1, µ1. The contour lines denote |α|µ = 2 (thick),
1 (thin), 0.5 (dashed). Crosses indicate constitutively linear
materials where only geometrical nonlinearities are present
(for ν = 1 they are far to the right). Circles and squares point
out specific media discussed in Fig. 3. (b) Dependence of the
signs of the components of the active stress (dark arrows in the
insets) as functions of the local stress components. Regions
without shading correspond to situations where the signs are
the same as in the absence of rectification. In regions with
intermediate shading (|Pl| . |α|S2

l ), the sign of Pa is reversed.
In the dark regions, |Pl| and |Sl| are so large that all compo-
nents of σ̄a (dark regions) are reversed [SI]. These changes of
signs are illustrated by arrows in the small pictures. Some
arrows are replaced by circles in the intermediate shading
regime to indicate that they are smaller than the other arrows
and can point either way.

values (Pl,Sl) characterizing the active unit, but by the
properties of the medium through the sign of α.
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We illustrate the influence of the material’s properties
on the sign of α in Fig. 2(a), which indicates a clear ten-
dency of fiber-like (granular-like) materials towards con-
tractile (expansile) rectification. Indeed, when κ1 and µ1

are both larger (smaller) than a critical value of −3/2, the
system always rectifies towards contraction (expansion).
As a result, a material with κ1 = µ1 = 0 is contractile
because of the contractile character of geometrical non-
linearities described by Eq. (3). Media with κ1 > −3/2
but µ1 < −3/2 or the reverse can be either contractile or
expansile depending on the system size rout/rin and Pois-
son’s ratio ν = (κ−µ)/(κ+µ). Finally, |α| increases with
increasing rout such that |α(∞) − α(rout)| ∝ (rin/rout)

2

for large rout (see SI), implying that larger systems rectify
more. For example, larger fiber networks allow for more
extensive buckling, resulting in stronger rectification and
the coming together of the contour lines of Fig. 2(a) as rout

increases. Finally, Fig. 2(b) shows that for large enough
local stresses, rectification can cause a sign-switching not
only in the active pressure but in all components of the
active stress tensor σ̄a.

While these calculations are strictly valid only for small
local stresses, one may hope that Eq. (10) remains quali-
tatively correct for strong active units with Pl ≈ Sl & κ.
We test this expectation through finite element simula-
tions [SI] of a fully (i.e., not weakly) nonlinear model
with an elastic energy density

E =
κ

2

(J − 1)
2

1 + a(J − 1)
+
µ

2

I/J − 2

1 + b(J − 1)
, (11)

where J = det(1 + η), I = Tr(1 + 2ε) and the constants
a, b are defined through κ1 = 1/2−3a, µ1 = −3/2−b. The
case a = b = 0 corresponds to a compressible neo-Hookean
model for rubber elasticity. We illustrate a bucklable
and an anti-bucklable material in Fig. 3 by choosing two
media with κ1 = µ1 = −4 and κ1 = µ1 = 1 (equidistant
from −3/2, as denoted by symbols in Fig. 2(a)). As
expected, the former induces contraction while the latter
causes expansion. The quantitative predictions of Eq. (10)
moreover remain largely valid up to local stress values
comparable with the bulk modulus of the network, which
implies deformations of the medium of order one. These
conclusions also hold in other parameter regimes and for a
model specifically designed to mimic the shear-stiffening
behavior of fiber networks (Fig. S4) [5]. In addition,
simulations of isotropic active units with large local stress
values suggest that rectification effects also manifest in
that case (Fig. S5) [9].

Our intuition of the mechanics of nonlinear materials
is largely based on deforming their outer boundary. We
thus expect a uniformly compressed material to respond
with an expansile stress, while applying shear will elicit an
opposing shear stress. In this study, we show that if the
forces are exerted from the inside of the material, these
expectations can be upset. In the most extreme cases,
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FIG. 3. The small-stress asymptotic prediction of Eq. (10)
(lines) accurately capture the finite-element simulation results
(symbols) even for intermediate stress values. Here ν = 0.1
and rout/rin = 2 in the geometry of Fig. 1. (a,b) A fiber-like
bucklable model, (c,d) a very anti-bucklable model mimicking
a granular medium. The values of Pl, Sl pictured in (b,c)
are marked by dashed arrows in Fig. 2(b), and background
shading follows the same convention. The error bars denote
the estimated magnitude of the error induced by the finiteness
of the simulation mesh size.

an embedded active unit that expands (contracts) in all
directions can elicit contractile (expansile) stresses in all
directions. The system thus “forgets” the shape of the ac-
tive units, and its large-scale behavior is controlled by the
characteristics of the elastic material instead. Expansion-
and shear-stiffening (softening) materials thus always rec-
tify towards contraction (expansion). This rectification
tends to be stronger in more compressible materials and
in larger systems. These behaviors arise in a continuum
model with or without constitutive nonlinearities, and are
thus generic in elastic media beyond previously studied
discrete fiber networks.

While most of our calculations are conducted in a cir-
cular 2D system with a single active unit, they are likely
to remain valid in more complex settings provided the
elastic medium is homogeneous. Indeed, Refs. [9, 19]
show that if an active unit is far enough away from the
boundary of the medium and from other active units, its
contribution to the total active stress is independent of
the characteristics of either. This remains true as long
as the distance between active units is larger than the
distance over which each of them induces significant non-
linear deformations. In our small-strain formalism (which
also describes intermediate strains well), this distance is
of the order of r∗ ∼ 10 rin [SI].

In the strongly nonlinear regime, rectification in fiber
networks is strikingly similar to the results of our weakly
nonlinear formalism [9], which may explain why acto-
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myosin networks are always contractile despite the pres-
ence of mixed force dipoles [30, 31]. Its application to
discrete granular media and other amorphous solids re-
mains to be investigated. Experiments do however suggest
that the elastic response of a foam to a shear transfor-
mation zone becomes more isotropic in the vicinity of
the jamming transition [32], where nonlinear effects are
expected to play a large role. We speculate that such
effects could be explained by the type of rectification
described here. They could then significantly affect the
characteristics of the yielding transition in nearly-jammed
systems [33, 34].
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ANR-21-CE11-0004-02, as well as ERC Starting Grant
677532. ML’s group belongs to the CNRS consortium
AQV.
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Supporting information for “Generic stress rectification in nonlinear
elastic media”

I. CONSTITUTIVELY LINEAR MEDIA RECTIFY TOWARDS CONTRACTION

In this section, we consider only geometrical nonlinearities and set out to prove the inequality in Eq. (3). Firstly,
the elastic energy density E is written with the Green-Lagrange strain tensor ε = (η + ηT + ηTη)/2, which depends
quadratically on the displacement gradient ηij = ∂ui/∂xj . We further define the symmetric part of the displacement
gradient Uij = (ηij + ηji)/2 which corresponds to the linearized strain. The stress tensor which naturally derives from
E describes the surface force measured in the initial space with respect to the initial area: dF0/da = ∂E/∂ε, it is
known as the second Piola-Kirchhoff stress. Then in order to find the Cauchy stress measured fully in the target space:
σ = dF/dA, we need to transform the surface force and the area as

dF = (1 + η) dF0 and da =
1 + ηT

det(1 + η)
dA, (S1)

which ultimately gives the formula for the Cauchy stress in the main text [1]. Then, given the quadratic energy density
E = κε2

ii/2 + µ(ε2
ij − ε2ii/d), the stress-strain relation displays a linear stress term σL proportional to U, and a term

which includes the geometrical nonlinearities σG:

σL =
(
κ− 2µ/d

)
Uii 1 + 2µU,

σG =
(
κ− 2µ/d

)(
η2
ij/2− U2

ii

)
1 + µ

(
4U2 + ηηT

)
+ 2
(
κ− 2µ/d− µ

)
UiiU +O

(
η3
)
.

(S2a)

(S2b)

Secondly, given the force balance equation fi = −∂σij/∂Xj , the difference between the local and active coarse-grained
stresses can be integrated by part to read

σ̄a − σ̄l =
1

V

∫

Ω

σ dV =
1

V

∫

Ω

σ det(1 + η) dv, (S3)

where dv is the volume element in the initial space. Equation (S3) is known as the mean stress theorem [2, 3]. Due to
this relation, writing S = σ det(1 + η) and decomposing S = SL + SG as we did σ in Eq. (S2), the pressure difference
reads Pa − Pl = −

∫
Sii/(V d). Due to our fixed boundary condition, the integral of the trace of the linear term

SL = σL vanishes and the trace of the nonlinear term is expressed in a closed form as

SGii =
κ

2

(
dη2
ij + 4ε2

ii

)
+ 4µ

(
ε2
ij − ε2

ii/d
)
. (S4)

Here, κ and µ are both positive for mechanical stability. Thus, for d ≥ 2, the geometrical term SGii always gives a
positive (contractile) contribution to the active stress. Indeed, using the eigenvalues λi ∈ R of the symmetric matrix ε,
we can rewrite ε2

ij − ε2
ii/d =

∑
i<j(λi − λj)2/d, which is always non-negative. As a result SGii is a sum of squares that

is also non-negative, implying the inequality of Eq. (3): Pa − Pl 6 0.
Finally, we present an alternative derivation of this relation that highlights its frame indifference. The integrand of

Eq. (3) can be rewritten using the deformation gradient Λ = 1 + η and the right Cauchy-Green deformation tensor
C = ΛTΛ = 1 + 2ε. Indeed, since

S = Λ
∂E

∂ε
ΛT, where

∂E

∂ε
=
κ

2
(Cii − d)1 + µ

(
C− Cii1/d

)
, (S5)

we can write

Sii =
κ

2

[
(Cii − d)2 + dCii

]
+ µ

[
C2
ij − C2

ii/d
]
. (S6)

We see that the right-hand side Eq. (S6) is a sum of squares plus a term ∝ Cii = d+ 4ηii + 4η2
ij . Since ηii is integrated

to zero due to the fixed boundary condition, the term in Eq. (S6) also gives a contractile contribution to Pa − Pl.
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FIG. S1. Overlap between two interacting beads in a granular simulation.

II. ELASTIC MODULI IN GRANULAR MEDIA NEAR JAMMING

Here, we derive typical values of κ1 and µ1 for granular media near the jamming transition. Let us consider a large
equilibrium packing of bidisperse frictionless spherical grains in a 2D box with volume fraction φ. The grains interact
through a harmonic potential V ∼ k δ2, where k is a spring constant, and δ the overlap divided by the sum of the two
bead diameters, see Fig. S1. For volume fractions slightly above the jamming transition φc ≈ 0.84, granular media
display a strongly nonlinear elastic behavior. Indeed, multiple simulations and experiments [4, 5] have shown that
while the bulk modulus goes to a finite limit in φ+

c and can thus be approximated by a constant, the shear modulus
scales with φ− φc and vanishes at the transition. This can be expressed as

K/k ∼ A and G/k ∼ B(φ− φc)b, for 0 < φ− φc � 1, (S7)

where A,B ≈ 0.2 and b ≈ 0.5. Based on this model, we impose an isotropic compression characterized by a displacement
gradient tensor ηij = −η0δij/d on our granular material initially at φc, where 0 < η0 � 1. This results in a new
volume fraction φ0 such that

φ0 − φc = φ0η0 = φc
η0

1− η0
> 0. (S8)

We then compute the elastic moduli κ and µ, and their nonlinear corrections κ1 and µ1 around this value of φ0.
Let the bulk strain ηii = −η0 + δη, where |δη| � η0, corresponding to a volume fraction φ ∼ φ0 − φcδη. Then

similarly to Eq. (6), the moduli are expressed as K ∼ κ(1 + κ1δη) and G ∼ µ(1 + µ1δη), where the parameters are
derived from Eq. (S7):

κ/k = A, κ1 = 0,

µ/k = B

(
φcη0

1− η0

)b
, µ1 = − b

η0(1− η0)
.

(S9)

Therefore, while κ1 vanishes, µ1 diverges at the transition and scales as (φ0 − φc)−1. And close to the transition,
around e.g. φ0 − φc = 0.001, 0.01 or 0.1, we find respectively µ1 ≈ −400, −40 or −4 as in the main text.

III. COARSE-GRAINED STRESSES IN THE CIRCULAR GEOMETRY

In this section, we present the analytical calculations leading to the expressions of the coarse-grained stresses σ̄ in
Eq. (9) and of the rectification coefficient α of Eq. (10) of the main text. We first rewrite the coarse-grained stresses in
the initial space where the calculations will be easier to handle in Sec. III A. Then in Sec. III B we present the Ansatz
for the displacement field that allows us to solve the force balance condition. In Sec. III C, we show the expressions of
the coarse-grained pressures and shear stresses with the stress and displacement fields. We finally display the detailed
expressions of the coarse-grained stresses σ̄ in the circular geometry as well as the expression of α in Sec. III D.

A. Rewriting the coarse-grained stresses in the initial space

In order to calculate the coarse-grained stresses, we need to express them in the initial configuration, where the
force density φ = f/ det(1 + η) is related to the first Piola-Kirchhoff stress tensor τ = (1 + η)∂E∂ε . The force balance
equation thus reads φi = −∂jτij and the coarse-grained stresses can be rewritten as

σ̄aij =
1

V

∮

∂Ω

τikXj dak and σ̄lij = − 1

V

∫

Ω

φiXj dv, (S10)
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where da is the outward-directed area element in the initial space. As before in Sec. I, we distinguish the linear term
τL (which is the same in the initial and target spaces τL = σL), from the nonlinear term τNL = τG + τC . This
last equality distinguishes the geometrical and constitutive nonlinearities. Given the non-harmonic energy density of
Eq. (4), up to second order, the terms read

τL =
(
κ− 2µ/d

)
Uii 1 + 2µU,

τG =
(
κ− 2µ/d

)
η2
ij 1/2 + µηTη +

(
κ− 2µ/d

)
Uii η + 2µηU +O

(
η3
)
.

τC = 3
(
κ′ − 2µ′/d

)
U2
ii 1/2 + µ′U2

ij 1 + 2µ′Uii U +O
(
η3
)
.

(S11a)

(S11b)

(S11c)

B. Ansatz for the displacement field

In the initial space, the material is subjected to zero body force except at rin, where the stress is discontinuous. The
fixed boundary at rout and the imposed displacement at rin additionally impose boundary conditions on the stress and
displacement fields, resulting in the following system of equations:





∇ · τT = 0, for r ∈ [0, rin) ∪ (rin, rout)

u = 0, at r = 0 and r = rout

u = rin [e0 + e2 cos(2θ)] r̂, at r = rin

. (S12)

We solve this system perturbatively by expanding u,η, τ in the small scalar quantity

η ∼ |e0|+ |e2|. (S13)

The displacement gradient is hence written η = ηL + ηNL +O
(
η3
)

where the L and NL superscript refer to linear and
quadratic (nonlinear) terms in η. This allows us to write the stress tensor as

τ = τL
(
ηL
)

+ τL
(
ηNL

)
+ τNL

(
ηL
)

+O
(
η3
)
, (S14)

where τL
(
ηL
)

is of order 1, while the next two are of order 2. The linear displacement field uL is the solution of

∂iτ
L
ji(η

L) = 0. This is solved by decomposing uL in the following Fourier modes due to the form of the imposed
displacement:

uLr /rin = e0α0(r) + e2α2(r) cos 2θ,

uLθ /rin = e2β2(r) sin 2θ.

(S15a)

(S15b)

Here α0(r), α2(r), β2(r) are sums of rk, with k ∈ {−3,−1, 1, 3} and coefficients depending on the boundary conditions.
Then, at the first nonlinear order, uNL is the solution of the linear equation ∂iτ

L
ji(η

NL) = −∂iτNL
ji (ηL) which is solved

by expanding uNL as

uNL
r /rin = e2

2γ0(r) + e0e2γ2(r) cos 2θ + e2
2γ4(r) cos 4θ,

uNL
θ /rin = e0e2δ2(r) sin 2θ + e2

2δ4(r) sin 4θ,

(S16a)

(S16b)

where the γi(r), δi(r) are again sums of rk with k odd between −7 and +5. As a consequence, we obtain in Sec. III D
the strain and stress fields up to second order in η.

C. Calculations of the coarse-grained stresses

We compute the coarse-grained active stress σ̄a and local stress σ̄l in the circular geometry by integrating the
stresses in the material as in Eq. (S10). The coarse-grained stresses are expressed in Cartesian coordinates, while the
stress field is more easily expressed in polar coordinates. In the following (and in this subsection only), we denote
Cartesian indices x, y with Greek letters (µ, ν) and polar indices r, θ with Latin letters (i, j, k). The change-of-basis
matrix between these two systems reads R =

(
cos θ − sin θ
sin θ cos θ

)
. In the circular geometry of Fig. 1 where the active unit
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produces a discontinuity in the stress at rin in the initial configuration, the coarse-grained stresses are expressed as
follows:

σ̄aµν =
1

πr2
out

∮

∂Ω

Rµi τik Rνj Xj dak =
1

π

∫ 2π

0

dθ Rµi τir(rout, θ)Rνr,

σ̄lµν =
1

πr2
out

∫

Ω

Rµi ∂kτik Rνj Xj dV =
1

π

r2
in

r2
out

∫ 2π

0

dθ Rµi

[
τir(r

+
in, θ)− τir(r−in, θ)

]
Rνr

[
1 +

ur(rin, θ)

rin

]
,

(S17a)

(S17b)

where ∂kτik denotes the stress divergence expressed in polar coordinates. Then, introducing β = (rout/rin)2, the active
pressure and shear stress rescaled so as to compensate for dilution read

β(σ̄axx + σ̄ayy) = −2Pa =
β

π

∫
τrr(rout, θ),

β(σ̄axx − σ̄ayy) = −2Sa =
β

π

∫ [
τrr(rout, θ) cos 2θ − τθr(rout, θ) sin 2θ

]
,

(S18a)

(S18b)

with similar expressions for the local pressure and shear stress:

−2Pl =
1

π

∫ [
τrr(r

+
in, θ)− τrr(r−in, θ)

] [
1 +

ur(rin, θ)

rin

]
,

−2Sl =
1

π

∫ {[
τrr(r

+
in, θ)− τrr(r−in, θ)

]
cos 2θ −

[
τθr(r

+
in, θ)− τθr(r−in, θ)

]
sin 2θ

}[
1 +

ur(rin, θ)

rin

]
.

(S19a)

(S19b)

D. Full expressions of the coarse-grained stresses

In Eqs. (9-10), we consider small displacements with two independent parameters e0, e2 � 1. In the weakly nonlinear
formalism, the simplest possible rectification requires that the term in e0 be similar (and of opposite sign) to the term

in e2
2. In this regime, given ε� 1, the displacement parameters read e0 = ε ẽ0 and e2 =

√
ε ẽ2. As a result Px = εP̃x

and Sx =
√
εS̃x for x ∈ {l, a}, where the tildes denote quantities of order one. Then to lowest order in ε, Eq. (9) can

be rewritten as

P̃x = Axẽ0 +Bxẽ
2
2 +O(ε),

S̃x = Cxẽ2 +O(ε),

(S20a)

(S20b)

implying that the “∼” symbols of Eq. (10) denote equalities to lowest order in ε. The rectification behavior thus

depends on the ratio P̃l/(αS̃2
l ), i.e. on ẽ0/ẽ

2
2. We further display the complete expressions of the coefficients in Eq. (9)

obtained after finding the strain field through force balance (see Sec. III B) and integrating the resulting stress via
Eq. (S11), as in (S18) and (S19). In order to make sense of the cumbersome expressions of the Ax, Bx and Cx, we
introduce several quantities: X = (3− ν)2(1 + β2) + 2(3− 6ν − ν2)β,

a0 = 1215− 1863ν + 756ν2 − 126ν3 + 87ν4 − 43ν5 + 6ν6

+ (81− 2457ν + 2412ν2 − 594ν3 + 265ν4 + 155ν5 − 22ν6)β

+ (1782− 3798ν + 6216ν2 − 3948ν3 + 326ν4 − 286ν5 + 28ν6)β2

− (918 + 1170ν − 2616ν2 + 1044ν3 + 54ν4 − 262ν5 + 12ν6)β3

+ (459 + 45ν + 132ν2 − 918ν3 + 515ν4 − 71ν5 − 2ν6)β4

− (891− 1755ν + 1188ν2 − 294ν3 − 13ν4 + 17ν5 − 2ν6)β5,

a1 = 1863− 756ν − 54ν2 + 12ν3 + 7ν4 + (1377− 1260ν + 102ν2 − 108ν3 − 31ν4)β

+ (1782− 1368ν + 804ν2 + 168ν3 + 54ν4)β2 + (162− 504ν − 132ν2 − 24ν3 − 46ν4)β3

+ (243 + 108ν + 18ν2 − 84ν3 + 19ν4)β4 − (243− 324ν + 162ν2 − 36ν3 + 3ν4)β5,
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a2 = 2511− 4104ν + 4023ν2 − 1416ν3 + 173ν4 − 48ν5 + 13ν6

+ (1377− 8352ν + 6369ν2 − 2568ν3 − 77ν4 + 104ν5 − 53ν6)β

+ (6966− 16128ν + 17430ν2 − 6480ν3 + 1890ν4 − 176ν5 + 82ν6)β2

+ (2754− 9216ν + 6162ν2 − 1392ν3 − 794ν4 + 240ν5 − 58ν6)β3

+ (2187− 3672ν + 3843ν2 − 1896ν3 + 545ν4 − 128ν5 + 17ν6)β4

− (243− 189ν2 + 72ν3 + 9ν4 − 8ν5 + ν6)β5,

and

b0 = 81− 270ν + 234ν2 − 36ν3 + 13ν4 − 6ν5 + (135− 378ν + 366ν2 − 196ν3 − 29ν4 + 22ν5)β

+ (162− 708ν + 1116ν2 − 464ν3 + 82ν4 − 28ν5)β2 + (126− 564ν + 540ν2 − 168ν3 − 106ν4 + 12ν5)β3

+ (45− 222ν + 426ν2 − 188ν3 + 17ν4 + 2ν5)β4 + (27− 162ν + 198ν2 − 100ν3 + 23ν4 − 2ν5)β5,

b1 = 27− 18ν + 3ν2 + (189 + 18ν − 11ν2)β + (174 + 12ν + 14ν2)β2

+ (138− 12ν − 6ν2)β3 + (39 + 6ν − ν2)β4 + (9− 6ν + ν2)β5,

b2 = 243− 270ν + 84ν2 − 34ν3 + 9ν4 + (189− 522ν + 404ν2 + 58ν3 − 33ν4)β

+ (510− 1356ν + 568ν2 − 84ν3 + 42ν4)β2 + (474− 612ν + 312ν2 + 100ν3 − 18ν4)β3

+ (159− 486ν + 244ν2 − 10ν3 − 3ν4)β4 + (153− 210ν + 116ν2 − 30ν3 + 3ν4)β5.

In the end, we find

Al = Aa =
4κβ

(1 + ν)(β − 1)
,

Bl = −κβ (3− ν)a0 + (1− ν)2(1 + ν)a1 κ1 + (1− ν)a2 µ1

(3− ν)2(1 + ν)(β − 1)2X2
,

Ba = −κβ b0 + (1− ν)2(1 + ν)b1 κ1 + (1− ν)b2 µ1

(1 + ν)(β − 1)2X2
,

Cl = Ca = 4µβ
2(3 + ν) + (3− ν)(β + β2)

(β − 1)X
.

(S21a)

(S21b)

(S21c)

(S21d)

As expected from the linear elasticity analysis of Sec. I, the coefficients in front of the linear e0 and e2 terms are
identical for the local and boundary stresses, but discrepancies appear in the e2

2 terms. This leads us to define
α = (Ba −Bl)/C2

l .

IV. BEHAVIOR OF α AND RECTIFICATION SATURATION RADIUS r∗

To help better understand the lengthy expression of the rectification coefficient α = (Ba − Bl)/C2
l in subsection

III.D, we hereby discuss its dependence on the system size rout. As is apparent from Fig. 2(a), α increases with
increasing rout for relatively small systems, then saturates as the size of the system goes to infinity. Indeed, away from
the high-stress region close to the active unit, the stress decrease causes the nonlinearities to become negligible in
front of the linear terms. Therefore, we examine the radius r∗ at which stress propagation switches from nonlinear
to linear. To this end we define the system size parameter β = (rout/rin)2. In the limit β →∞, Eq. (S21) leads to
α(β) = α∞ + α1/β +O(β−2), where

µα∞ = −
(
κ1 + 3

2

)
(1− ν2) +

(
µ1 + 3

2

)
(5− 2ν + ν2)

4
,

µα1 =

(
κ1 + 3

2

)
(15− 6ν − 8ν2 + 6ν3 − 7ν4) +

(
µ1 + 3

2

)
(111− 36ν + 50ν2 − 20ν3 + 7ν4)

4(3− ν)2
.

(S22)

We introduce the value of the parameter β such that α is within 10% of its large-size limit through
∣∣∣α(β10)−α∞

α∞

∣∣∣ = 0.1.

The square-root of β10, corresponding to the ratio of the radii, lies between 4 and 9, except for insignificant values
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FIG. S2. The rectification saturation radius r∗ is generally of the order of rin. Contour plot of
√
β10 = r∗/rin when κ1 and µ1

are varied for several values of Poisson’s ratio ν. Except in the small white regions,
√
β10 < 9. In these white regions, |α| tends

to take negligible values.

rout
rin

2 4 6 8 10

5

0

-5

κ1

-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5
µ1

FIG. S3. Rectification happens mostly near the active unit. Additional plots to Fig. 2(a) showing the stabilization of the graphs
as the system size increases for a Poisson’s ratio ν = 1. The blue and yellow lines at constant |α|µ stay quite still between
rout/rin = 8 and 10. The behavior is similar for ν = 0.

of α, see Fig. S2. Fig. S3 also illustrates this behavior by showing the stabilization of the lines at constant α as the
system size increase. Therefore, defining the rectification saturation radius r∗ such that β10 = (r∗/rin)2, increasing
rout past r∗ ∼ 10rin has little influence on the value of Pa −Pl, i.e. on the rectification effect. This indicates that the
propagation is nonlinear only up to r∗. In the study of stress propagation from multiple active units, one thus needs to
compare this r∗ to the typical spacing between two active units.

V. THE RECTIFICATION DIAGRAM

Let us give further explanation to the shadings of the rectification diagram of Fig. 2(b), corresponding to different
rectification regimes. In the circular geometry of Fig. 1, provided that α and Pl have different signs, a change of sign
of Pa due to rectification can appear for all values of the local pressure Pl as long as the local shear stress |Sl| is large
enough. Indeed, in Eq. (10) the sign switching of the active pressure Pa (e.g. Pa < 0 while Pl > 0) requires

|α|S2
l & |Pl|. (S23)

This sets the boundary between the regions with light shading and the regions with intermediate shading. Then, the
extreme case where all active stress components switch sign (e.g. Pa ± Sa < 0 while Pl ± Sl > 0) happens for

|Sl| . |Pl| . |α|S2
l − |Sl|, (S24)

i.e. for |Pl| and |Sl| both larger than 2/|α|. This extreme case corresponds to the dark regions of Fig. 2(b).
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VI. FINITE-ELEMENT SIMULATIONS

This section provides further details on the finite element simulations used to produce Fig. 3 of the main text.
Sec. VI A describes our simulation methods. In Sec. VI B, we discuss rectification in two additional fully nonlinear
models.

A. Methods

We solve the set of equations (S12) via simulations with the finite element software Fenics [6] version 2019.2.0.dev0.
We use a mesh with maximal size l = 0.01 for rin = 1 and rout = 2, and another one with l = 0.1 for rout = 10. They
were both created with Gmsh version 4.4.1. In all figures, the error bars correspond to the differences between two
meshes at l and l/10, which gives roughly 5% of Sl or Pl for all points. The meshes are created without enforcing
rotational symmetry, which results in small non-zero values for the non-diagonal coefficients that should be zero in a
continuum system (e.g., σ̄lxy), as shown in Eq. (8). However, we find that these values are smaller than 5% of the
diagonal coefficients in all simulations. In the geometry of Fig. 1, if we apply too large a deformation at rin, we come
into contact with the fixed boundary at rout, which poses some numerical issues. Therefore, we can only perform
accurate simulations up to about η = |e0|+ |e2| ∼ 0.6.

B. Additional data

In the main text, we studied two models with clear buckling and anti-buckling behaviors, which lead to a readily
observable reversal of the active pressure sign, due to rectification. Here, we study two other models where these
behaviors are less pronounced: a standard neo-Hookean model of rubber, and another one which can mimic the
shear-stiffening behavior of fiber networks. Consistent with analytical predictions, these systems display a smaller
propensity for rectification, and we show that the predictions of Eq. (10) remain valid up to intermediate stress values.

In the fully nonlinear model with the elastic energy density of Eq. (11), we introduced the parameters a, b such
that κ1 = 1/2 − 3a and µ1 = −3/2 − b. In Fig. 3, we showed the good agreement between the weakly nonlinear
predictions of Eq. (10) and finite-element simulations for the bucklable and anti-bucklable models obtained by setting
(a, b) = (−1/6,−5/2) and (3/2, 5/2) to obtain (κ1, µ1) = (1, 1) and (−4,−4) respectively. We now consider the
neo-Hookean model, obtained by setting a = b = 0 in Eq. (11). It has κ1 = 1/2, µ1 = −3/2 and we recover the
predicted small tendency to rectify towards contraction, see Fig. S4(a,b).
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FIG. S4. Additional plots of the coarse-grained stresses are in agreement with Eq. (10) up to intermediate stresses and in a large
scale of parameters. (a-b) Rubber-like neo-Hookean model [a = b = 0 in Eq. (11)]. (c-d) Fiber-like shear-stiffening model of
Eq. (S25) with c = 10, following the predictions up to the point where stresses diverge (when η ∼ 1/

√
c). For all plots, ν = 0.1

and rout/rin = 2. (e) For Pl = 0.1κ, the predictions at ν = 0.8 and rout/rin = 10 remain quantitatively accurate.
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|Sl|, |Sa| < 0.01κ) remain reasonably accurate up to a few Pl/κ. (a-d) In the neo-Hookean case, the nonlinear terms are such
that Pa < Pl and become increasingly significant as ν and rout/rin increase. Specifically, the agreement deteriorates from panel
(a) to panels (b) and (c), to panel (d). (e) In the shear-stiffening case these nonlinear terms are first decreased up to c ∼ 2-5 [see
Eq. (S25)] and then increased in the opposite direction (such that Pa > Pl).

We then investigate a variant of the neo-Hookean model which has the shear-stiffening behaviorG ∝ σ3/2
xy characteristic

of fiber networks under large strains. Its elastic energy density reads [7, 8]

E =
κ

2
(J − 1)

2
+
µ

2c

[
1− c

(
I/J − 2

)]−1

, (S25)

where J = det(1 + η) and I = Tr(1 + 2ε). Here, the shear strain threshold for the stiffening behavior corresponds to
a fraction of 1/

√
c, the strain at which the shear stress diverges. This is such that the neo-Hookean model is recovered

for c = 0. This model still has κ1 = 1/2, µ1 = −3/2, which corresponds to the same tendency to rectify towards
contraction as in the neo-Hookean case. Indeed, c only affects higher order nonlinearities. As shown in Fig. S4(c,d)
where c = 10, we recover Eq. (10) at small stress. But due to the shear stress divergence at finite shear strain in
Eq. (S25), our predictions fail when Sl/κ & 1/

√
c. Furthermore, the agreement between the simulations with the

neo-Hookean model and Eq. (10) remains quantitative in the small stress regime for all considered values of the
Poisson’s ratio ν and the ratio of the boundary radius to the active unit radius rout/rin, see Fig. S4(e).

We finally compare the dependence of Pa with Pl at zero shear stress with the weakly nonlinear prediction Pa ∼ Pl.
As displayed in Fig. S5, we recover the prediction for small stresses, but higher order nonlinearities induce significant
deviations for Pl/κ outside of [−0.3, 1]. In the end, we see that the predictions of Eq. (10) relating the active and local
stress components fail when either the local pressure or the local shear stress become comparable to the bulk modulus
κ. Our weakly nonlinear predictions additionally fail close to stress divergences, i.e. when the nonlinearities become
too significant compared to the linear terms.
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