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ABSTRACT
Urban transport networks, yet essential, are frequently impacted by recurrent disruptions such
as public transport failures, adverse weather or strikes. Flexible transit systems can be used to
limit the impacts of recurrent disruptions on urban mobility. In this study, we examine the poten-
tial of on-demand park-and-ride systems to complement an existing transport infrastructure and
improve network resilience. We formulate a stochastic park-and-ride facility location problem
which captures the entire user trip chain from the origin to the destination via pick up and drop
off nodes in a mobility network. We use a Logit model to capture users’ mode choice between
paths in the park-and-ride system and a reserve travel option. Stochastic scenarios are used to
represent varying traffic conditions to recurrent disruptions. The goal is to maximize the ex-
pected ridership in the park-and-ride system by identifying the optimal location of pick up and
drop off facilities and accounting for users’ mode choice. We develop a customized Lagrangian
relaxation algorithm to solve the resulting mixed-integer programming problem on large scale
instances and quantify its performance through a sensitivity analysis by comparing it against a
direct mixed-integer linear programming approach. Numerical results are presented on realis-
tic instances generated based on the city of Lyon, France. Our findings show that the proposed
methodology can provide key insights to support the deployment of park-and-ride systems and
improve network resilience by capturing a significant proportion of users under disrupted traffic
conditions.

1. Introduction
Transportation networks are subject to many disruptions which may affect their performances, typically already

sensitive to varying mobility demands. The concept of park-and-ride (P&R) appeared in the 1930s in the United States
(Noel, 1988) and quickly emerged globally as a means to improve traffic conditions in urban areas. P&R systems
have the potential to attract car users by providing benefits such as congestion relief, environmental preservation,
transportation cost reduction, as discussed for instance by Parkhurst (1995). By incentivizing modal shift from private
cars to higher occupancy vehicles, P&Rmay help inmitigating urban congestion and reducing pollution effects. Annisa
et al. (2019) discuss in the benefits of such a P&R system in Bandung City, Indonesia, for air emissions and congestion
but highlight the importance of having an adequate public transportation management system. Furthermore, mobility
networks face recurrent disruptions that affect network performance and ridership. For example, significant adverse
weather, e.g., heavy rain/snow, pollution peaks, road network maintenance operations and special events, e.g., sports
and entertainment, may reduce network capacity and/or affect travel demand patterns (Gauthier et al., 2018; Zhu et al.,
2016; Donovan and Work, 2017; Lu et al., 2016; Bíl et al., 2015). By reducing the number of private vehicles, shared-
mobility systems, such as P&R, aim at improving the traffic conditions. According to Sun (2017), shared mobility
increases traffic efficiency and reduces unnecessary external costs such as greenhouse gas emission, mainly caused by
low average occupancy.

In this study, we consider a P&R facility location problem which captures users’ entire trip chains – including
access, transit and egress trips – in an urban mobility network. More specifically, we aim to identify the optimal
locations for pick up and drop off services in the P&R system to maximize the expected ridership under both normal
network traffic conditions and recurrent disruptions which regularly negatively affect traffic conditions. In this context,
a low computation time appears as an additional requirement towards rapidly proposing a fitted solution for localized
recurrent disturbances, which might unequally and unpredictably impact the accessibility of the mobility network and
its performance. In this study, we attempt to quantify the attractiveness of the P&R system by modeling users’ mode
choice model and seek to maximize the expected ridership within the P&R system at the expense of users’ reserve
travel option. The proposed solution builds on and significantly extends the approach of Aros-Vera et al. (2013) where
the authors only focused on the pick up and transit part of users’ trip, thus ignoring the impact of drop off location with
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respect to to the final destination. We address this gap by modeling both pick up and drop off locations, thus capturing
the entire trip chain of a P&R user in the mobility network.

In our study, the proposed P&R system consists of a shuttle service that complements the existingmobility network.
We capture the mobility of user’s outside of our P&R system through the reserve mode representing the private travels.
Through our methodology, we aim at providing the optimal locations for the pick ups and the drop offs and the optimal
pick up/drop off combination in terms of travel time for a given origin/destination, helpful to deploy an on-demand
shuttle service. Both decisions are adapted to recurrent disruptions such as public transport failures or snowfall, with
the aim of increasing the ridership of the proposed P&R system. To that purpose, we aim at determining the optimal
locations for: i) the pick ups, i.e., the car parks where commuters can transfer from their personal vehicle to shared
mobility solutions (e.g., shuttle buses); and ii) the drop offs, i.e., the transit stops where users exit the P&R system and
continue to their destination by other means, such as walking, micro-mobility (e.g., bike-sharing, e-scooters) solutions
or the regular public transportation. We assume a given budget constraint for the constructions of the car parks and
transit stops. We use a multinomial logit choice model to determine the proportion of people using the P&R system
and aim to maximize the expected P&R ridership.

The main contributions of our study are: i) the mathematical formulation of an integrated P&R system which
captures the entire user trip chain from the origin to the destination via pick up and drop off nodes in a mobility net-
work and accounting for mode choice; ii) the incorporation of a stochastic programming approach to take into account
recurrent disruptions in an urban mobility network; iii) the development of a customized Lagrangian Relaxation Al-
gorithm (LRA) able to provide competitive solutions, by out-performing commercial MILP solver CPLEX based on
a branch-and-cut search, for large-scale mobility networks in a restricted computational time; iv) the implementation
of the proposed P&R system on a realistic instance representing the city of Lyon, France, which provides key insights
for mobility service providers in urban areas.

The rest of the paper is organized as follows. Section 2 discusses the literature review. Section 3 describes the
problem (Sec. 3.1), presents the mathematical notations (Sec. 3.2) and the mode-choice (Sec. 3.3) model, sets the
constraints (Sec. 3.4) as well as the objective function (Sec. 5a) and formulates the problem (Sec. 3.6). Section 4
presents the LRA used to solve large-scale instances. In Section 5, we present the data we used to experiment our
problem. The presentation of the results obtained through our model is provided in Section 6. We first discuss about
the performance of our model solved with the MILP approach and with our developed algorithm through a sensitivity
analysis depending on the graph size and on a set of different parameters (Sec. 6.1), and then present the results on a
real case study (Sec. 6.2). Conclusions and future works are discussed in Section 7.

2. Literature review
Several studies explore the implementation of shared mobility services in cities with the aim to improve urban

transportation systems. Such approaches typically fall within the broad field of transit network design. Our focus is
on the design of on-demand mobility services, in opposition to traditional transit systems, e.g., fixed-schedule, fixed
routes, to improve the resilience of the urban transport system with respect to recurrent disruptions. Accordingly, in
our review of the literature, we first examine studies which proposed on-demand transit systems (Sec. 2.1). We then
review studies which addressed the resilience of mobility networks (Sec. 2.2) before outlining our contributions.
2.1. On-demand transit systems

According to Machado et al. (2018), “shared mobility can be defined as trip alternatives that aim to maximize the
utilization of the mobility resources that a society can pragmatically afford, disconnecting their usage from ownership”.
Farahani et al. (2010) notice that “facility location can be considered a one-hundred year old science”. Such issues
are part of P&R problems which aims at optimally locating the car parks by taking several kinds of constraints into
account. Danach et al. (2019) developed an algorithm based on the Lagrangian Relaxation to solve a variant of the hub
location routing problems where each cluster of spoke nodes allocated to a hub constitutes a directed route that starts
from the hub, visits all the spokes in the same cluster, and terminates to the same hub. The minimization of the travel
cost such as travel time should be one of them. Song et al. (2017) aim at minimizing the travel time and the expected
waiting time experienced by transit users by modeling transit service frequency and accounting for user equilibrium
in the optimization of the location and capacity of park-and-ride facilities. Lee and Nair (2021) tend to improve the
journey times by determining a set of fixed routes both based on the demand, estimated with mobile phone data under
normal conditions and supposed to be all served by the new transport mode, and the problem’s structure through a
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bi-level programming.
Another objective should be to maximize the ridership of P&R systems. Farhan and Murray (2008) aim to maxi-

mize P&R demand coverage but also the accessibility and the integration with existing transit systems by minimizing
the park distance to the major roads of the network. Discrete choice models can be used to estimate modal shift in
mobility networks and the ridership within the transportation system. Aros-Vera et al. (2013) propose to maximize the
ridership within a P&R system by optimally locating a given number of parks used to access a shared mobility service.
The authors capture mode choice decisions via a logit model wherein users’ disutilities represent their generalized
travel costs via the designed P&R system and private travel is a reserve option. Chen et al. (2016) and Chen and Kim
(2018) propose a combined mode split and traffic assignment model to find the combination of possible locations and
capacity for the P&R system of interest. Cavadas and Antunes (2019) aim at diminishing the number of cars in urban
areas by deploying P&R facilities and adopting a fixed travel cost logit-based model to capture demand elasticity. In
their iterative approach to design a transport network with a variable travel demand, Lee and Vuchic (2005) aim at
determining the transit network frequency, through a logit formulation based on the the travel cost including the travel
time. The approach tends to both minimizing travel time and social cost and maximizing the profit. According to the
Mohring effect (Mohring, 1972), an increase in travel demand may lead to more efficient transit networks if service
frequency is increased due to reduced user waiting time. Du and Wang (2014) propose a continuum model, able to
incorporate commuter heterogeneity and travel time reliability, to optimally develop multiple P&R services, by defin-
ing the optimal transit locations, in a linear travel corridor with competitive railway/highway system. Along a corridor
with continuous entry points to the highway, railway and continuous P&R transfer services, the commuters could use
the private vehicle, the railway to the P&R mode to reach the destination. The multimodal choice is based on the user
equilibrium that a commuter would use the travel mode with the lower generalized travel cost.

Basciftci and Van Hentenryck (2020) design an on-demand multimodal transit system through a bi-level opti-
mization process, considering the latent demand as a pool of potential riders with a personalized mode choice model,
deciding whether a rider will switch mode for a given on demand transit system. The model aims at finding the most
cost-efficient and convenient route for each trip with the inclusion of a personalized mode choice for each rider to deter-
mine mode switching or latent demand. The designed transit network optimizes the hubs locations for connecting them
with high frequency buses and each rider chooses the optimal route under a given design through buses. To determine a
time-varying demand adapted fleet of vehicles, Zhang et al. (2021) proposes a two-stage heuristic approach for solving
the fleet management problem under time-varying demand by first optimizing the vehicles’ utilization schedule and
second optimizing the vehicle purchase and retirement schedules. Finally, Ruan et al. (2016) consider a P&R facility
location problem adapted to a specific event, the International Horticultural Exposition 2019, Beijing, China, by both
minimizing the total travel cost and maximizing the accessibility for all the passengers during the special event subject
to a given total construction budget and the availability of candidate locations.

Although the optimal location of P&R facilities has received considerable attention in the literature, the focus has
been on developing formulations that account for long-term user behavior. This presumes that the deployment of P&R
facilities and the network design is permanent, whereas we aim at developing a flexible P&R systemwhere connections
between facilities can be adjusted based on network disruptions. We focus on the case of re-configurable P&R facilities
which are designed to improve network resilience by offering an on-demand mobility service complementary to the
existing transport network.
2.2. Quantifying and improving the resilience of mobility networks

Transportation networks are frequently subject to various types of disruptions such as extreme weather events,
human attacks or technological failures. This may affect the performance of transportation systems which are essential
for societies hence the interest of obtaining a resilient transport system. Holling (1973) first introduced this concept
in ecological systems and defined it as “the ability of these systems to absorb changes of state variables, driving
variables, and parameters, and still persist”. In the field of transportation, two major approaches, the topological and
the dynamic ones, are studied to analyse the transport network resilience to ensure acceptable levels of service under
disrupted network conditions (Haimes, 2009; Hassan et al., 2019).

The topological approach, based on the graph theory aims at quantifying the resilience looking at the connectivity
properties of the network, using centrality measures. The transport network is represented by an undirected or directed
graph G = (V ,E), where edges (E) correspond to roads, and nodes (N) to intersections. Such approach is mainly
used. Freiria et al. (2015) identified the most important roads in a Portuguese network thanks to patterns. Shalaby
et al. (2016) studied performances of public transport network in Toronto and USA. Tu et al. (2010) applied topologi-
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cal vulnerability index, inter alia, on Sioux Falls network (Berche et al., 2009). Graph theory is “suitable for identifying
structural criticalities” (Eusgeld et al., 2009). By randomly or targetly removing some nodes or edges, the impact of
an event influencing the transport network could be quantified. The dynamic approaches are closer to the traffic the-
ory. They characterize resilience by taking into account actual or simulated traffic dynamics, using demand-sensitive
indicators like links speed, queue length, road capacity or recovery time, as discussed in (Murray-Tuite, 2006; Oliveira
et al., 2014). Jenelius and Cats (2015) notice that increasing the public transport network contribute to greater capa-
bility to withstand system breakdowns, by increasing the network redundancy. Following the topological approach
used to quantify the network resilience, in the context of graph augmentation and centrality improvement, Bergamini
et al. (2018) and Angelo et al. (2016) suggest to maximize the Edge Betweenness Centrality measure through an op-
timization problem by creating a limited set of edges. Crescenzi et al. (2016) consider a similar optimization problem
by quantifying how much a node can increase its Node Closeness Centrality measure with a graph augmentation.
However, it is worth to mention that these approaches are extremely time consuming and therefore hardly apply to the
settings of our study that focus on large metropolitan areas by also taking into account traffic dynamics as described in
terms of travel demand and travel times (Gauthier et al., 2018).

The deployment of relief trains to enhance the resilience level of the rail network by optimizing location and al-
location of them is examined by Bababeik et al. (2018). The authors propose a bi-objective location and allocation
model for relief trains in the rail network with the aim of maximizing the cooperative coverage of link importance
by relief trains stations and minimizing the total travel time from relief trains stations to the whole components of
the network. Finally, Henry et al. (2021) proposed a flexible transit network design methodology by deploying a re-
configurable shuttle service, adapted to some recurrent disruptions such as weather events or public transport failures.

In this study, we build on and significantly extend the methodology developed by Aros-Vera et al. (2013) which
aims to maximize the ridership of a public transport system via modal shift. In their study, Aros-Vera et al. considered
paths subdivided in two portions: from the origin to a P&R facility and from the P&R facility to the public transport
station considered as a central business district. In our study, we model paths from users’ origin to their destinations
by considering three portions: from the origin to a P&R facility (pick up), from the pick up facility to another P&R
facility (drop off),and from the drop off facility to the final destination. This extension of two links to three links is non-
trivial since it requires additional modeling and significantly increases the size of the optimization problems at hand.
Since some of the disruptions are recurrent such as public transport failures, strikes, or heavy rainfalls and snowfalls,
user behavior is predictable and can be captured by scenario-specific travel demand trip tables. For these reasons,
we choose to elaborate a stochastic problem, rather than a deterministic one, in order to consider both normal traffic
conditions and recurrent disruptions in the deployment of the transport service. To solve large scale problems, we
develop a Lagrangian Relaxation Algorithm (LRA) which aims at simplifying a model by relaxing some constraints.
We next present the proposed methodology.

3. Park-and-ride facility location problem
In this section, we focus on the presentation and the formulation of the proposed P&R facility location problem.

After describing the problem (Sec. 3.1), we present the mathematical notations used in the rest of the paper (Sec. 3.2),
we introduce the mode choice model (Sec. 3.3) and we formulate the constraints (Sec. 3.4) and the objective function
(Sec. 3.5). Finally we summarize the mixed-integer programming formulation of the proposed P&R facility location
problem (Sec. 3.6).
3.1. Problem description

We consider the problem of deploying a P&R system in an urban mobility network. We assume that there is a
known travel demand for a set of origin-destination pairs in the network. We consider two travel mode choices, the
proposed P&R system and the reserve mode, which represents user’s private mode choice. As previously explained,
the P&R system to be designed consists of pick up location, where users can park their private vehicles and board
transit shuttles, and drop off location, where users disembark and are assumed to pursue their journey by walking to
their destination. To be attractive, a P&R system must provide competitive travel times compared to users’ reserve
mode. We propose to capture users’ mode choice between using the P&R system and their reserve mode via a discrete
choice model. To maximize the P&R attractiveness, car parks (pick ups) should be within short driving range from
users’ origins, and transit stops (drop offs) should be in close walking distance to users’ destinations. To put it in a
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nutshell, the goal of the P&R facility location problem is to determine the optimal locations for pick ups and drop offs
so as to maximize ridership in the P&R system. Observe that the roles of pick up and drop off nodes is only indicative.
In principle, a P&R transit stop can serve both purposes, i.e., pick up or drop off.
3.2. Mathematical modeling framework

In this article, we propose a stochastic problem which aims at considering a set Ω of different scenarios ! with a
probability of occurrence p!, representing both normal conditions or recurrent disruptions, to optimize our P&R sys-
tem in an existing transport network. The stochastic nature of the problem allows making resilient-aware P&R design,
by taking into account the probability of occurrence of multiple possible scenarios of disruptions. The scenario-
dependency of the following variables and parameters will be noted with a superscript !. The transport network is
represented by a directed graph with E edges representing the roads andN nodes corresponding to the road intersec-
tions. In each scenario we determine the set of the OD pairs (r, s) with a non-zeros total travel demand d!rs. This set iscalledW ! = {(r, s) ∶ d!rs > 0, r ∈ N, s ∈ N}.For each OD pair, we determine the sets of the accessible pick ups i and drop offs j. To be attractive, we assume
that the generic P&R pick up i has to be reached from the origin r in a reasonable time t!ri lower than a fixed time
taccess, as well as the destination s must be reached from the drop off j in a given time t!js lower than the fixed egress
time tegress. The travel times t!ri (resp. t!js) correspond to the shortest travel time between the origin r and the pick up
i of our road network (resp. the drop off j and the destination s). At the end, we obtain the set of the potential pick
ups P!r = {i ∈ P ∶ t!ri ≤ taccess} among all the pick ups P and the set of potential drop offs D!

s = {j ∈ D ∶ t!js ≤
tegress} among all the drop offs D. From these potential pick ups and drop offs, we extract for each OD pair the set
Σ!rs = {(i, j) ∶ i ∈ P

!
r , j ∈ D

!
s , (r, s) ∈ W

!} of the P&R alternatives which corresponds to the possible combinations
of pick ups and drop offs at each OD pair.

To determine the mode choice via a market share model based on a logit formulation, we use, for each itinerary,
a generalized cost g!rijs (resp. g!rmns) composed of the travel cost between r and s using the proposed P&R system,
that we consider equal to the travel time, between the three parts of the path: from the origin r to the pick up i (resp.
m), caccess,!ri , from the pick up i (resp. m) to the drop off j (resp. n), croute,!ij , and from the drop off j (resp. n) to the
destination s, cwalkjs . When using the reserve mode to realize the entire itinerary, symbolized as Rrs, the travel cost
cRrs,!rs , equal to the generalized cost gRrsrs , is modeled as the travel time to reach the destination s from the origin r by
car. We denote � the logit parameter corresponding to the users’ sensitivity to the generalized cost. The higher is �, the
more people are sensitive to the travel cost and will chose the cheaper transport mode. Finally, the parameters −�gRrsrscorrespond to the utility of the reserve mode and −�g!rijs (resp. −�g!rmns) represent the utility of the P&R system from
the pick up i (resp. m) to the drop off j (resp. n) for the path going from the origin r to the destination s. Although
simple, our utility function considers the travel time preference in the mode choice. A more complex function could
more accurately represent this mode choice, for instance by being trip purpose-dependent (Andrejszki et al., 2015).

A budget B is allowed to the construction of the pick ups and the drop offs whose costs cloci mostly depends on the
nature of the facility. Whereas car parks must be constructed at the pick ups locations for users to park their cars and
embark the shuttles of the P&R system, transit stops are sufficient to leave the shuttle and reach the final destination
by walk. We define a binary decision variable yi ∈ {0, 1}, ∀i ∈ P ∪ D, indicating the facility locations by being
equal to one when a car park (pick up) or a transit stop (drop off) is open. Further, we define the decision variable
x!rijs ∈ ℝ+, ∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs ∪ {Rrs}, as the flow which determines the part of the scenario-
dependent demand d!rs associated to our P&R system on the OD pair (r, s) using the pick up i and the drop off j. The
decision variable x!,Rrsrs defines the part of the users that choose the reserve mode on the OD pair (r, s).

All the mathematical notations are summarized in Table 1.
3.3. Mode choice model

The mode-choice behaviour and the route choice are emulated by means of a market share model based on a logit
formulation, widely used in the field of transportation (Aros-Vera et al., 2013; Chen et al., 2016; Huang et al., 2018;
Jian et al., 2019). The probability of choosing a transport mode for a specific itinerary is equal to the ratio of the
exponential of the utility e−�g!rijs of this transport mode and the sum of the utilities for all the other transport mode.
It is important to notice that in our model, each combination of pick up and drop off available to realize the itinerary
is a possible choice for the transport mode. At the end, the transport mode alternatives are the reserve mode and the
shuttle service of the proposed P&R from all accessible pick ups i to all accessible drop offs j.
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Sets Definition

Ω Set of stochastic scenarios
N Set of nodes in the network
E Set of edges in the network
W ! ⊂ N ×N Set of OD pairs in scenario ! ∈ Ω.
P ⊂ N Set of pick up nodes.
P !
r ⊂ P Set of accessible pick ups nodes from the origin node r ∈ N in scenario

! ∈ Ω.
D ⊂ N Set of drop off nodes.
D!
s ⊂ D set of accessible drop offs nodes from the destination node s ∈ N in

scenario ! ∈ Ω.
Σ!rs ⊂ N ×N Set of P&R paths in scenario ! ∈ Ω for OD (r, s) ∈ W !. Each element

(i, j) ∈ Σ!rs corresponds to the path (r, i, j, s) in the P&R system.

Parameters

p! Probability of the scenario ! ∈ Ω.
d!rs Travel demand in scenario ! ∈ Ω for OD pair (r, s) ∈ W !.
cloc
i Construction cost of a pick up (car park) or a drop off (transit stop) at

node i ∈ P ∪D.
B Budget available for the construction of pick up and drop off nodes
caccess,!ri Travel time, assumed to be assess by car, allowing to reach the pick up i

from the origin r
croute,!
ij Travel time from pick up i ∈ P to drop off j ∈ D through the P&R system.

cwalk
js Travel time from drop off j ∈ D to destination s ∈ N (assumed to be

walking).
g!rijs Generalized cost of path (r, i, j, s) in the P&R system.
� Parameter in the logit model representing users’ sensitivity to the general-

ized cost.

Decision variables

x!rijs ∈ [0, 1] Proportion of users in scenario w ∈ Ω on OD (r, s) ∈ W ! using the P&R
system via path (r, i, j, s).

x!Rrs ∈ [0, 1] Proportion of users using the reserve mode in scenario w ∈ Ω on OD
(r, s) ∈ W !.

yi ∈ {0, 1} Decision to open a pick up or drop off facility at node i ∈ P ∪D.

Table 1
Notation table

As Aros-Vera et al. (2013) pointed out, we do not know which pick ups or drop offs are open before the solution of
the model. For this reason, we adapt the logit formulation to consider all the transport mode alternative possibilities.
Because both pick up and drop off have to be open to be considered as an option in the mode choice, the exponential
of the utility for all the transport mode possibilities are multiplied by the pick up and the drop off location decision
variables yi and yj . The closure of a pick up, a drop off or both will remove the consideration of the associated transport
modes in the logit computation. For the sake of simplicity, in the implementation of the model, we consider x!,Rrsrs and
x!rijs as a unique variable where i and j could take the value Rrs, symbolizing the use of the reserve mode to realize
the entire itinerary. At the end, the probability that users choose the pair i and j of the P&R system is:

x!rijs ≡
yiyje

−�g!rijs
∑

(m,n)∈Σ!rs∪{Rrs}
ymyne−�g

!
rmns

∀(r, s) ∈ W ,∀(i, j) ∈ Σ!rs ∪ {Rrs} (1)
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Variable x!rijs represents the probability of using the reserve mode between the OD pair (r, s), when i and j are
equal to Rrs, as well as the probability of using the proposed P&R system by using a shuttle joining the pick up i to
the drop off j for the OD pair (r, s). The consideration of the possible use of a pick up and a drop off depends on the
opening of both locations, i.e., yi = 1 and yj = 1. If the pick up i or the drop off j or both are not located (i.e., yi = 0,
yj = 0 or yi = 0 and yj = 0) the probability of using this transport mode is null. The reserve mode, conversely,
is always a possible alternative to perform a trip between an origin r and a destination s, as yRrs is always equal to
one. It is worth to recall that � symbolizes the users’ sensitivity to the generalized costs gRrsrs , which corresponds to the
travel time between r and s using the reserve mode and the parameter g!rijs (resp. g!rmns) corresponds to the travel time
between r and s using the P&R system from the pick up i (resp. m) to the drop off j (resp. n) for the path going from
the origin r to the destination s.
3.4. Flow and linking constraints

The linearization of the market share equation given by the logit model (1) is essential to consider the mode choice
in our Mixed-Integer Linear Programming (MILP) problem. The combination of the following equations (2a), (2b),
(2c) and (2d), based on the ones proposed by Aros-Vera et al. (2013), reproduce the logit formulation and represents
the proportion of the users for each mobility alternative.

∑

(i,j)∈Σ!rs∪{Rrs}
x!rijs = 1 ∀! ∈ Ω,∀(r, s) ∈ W ! (2a)

x!rijs ≤ x!rmns
e−�g

!
rijs

e−�g!rmns
+ (2 − ym − yn) ∀! ∈ Ω,∀(r, s) ∈ W !,∀(m, n), (i, j) ∈ Σ!rs ∪ {Rrs} ∶

∀(m, n), (i, j) ∈ Σ!rs ∪ {Rrs} ∶ (i, j) ≠ (m, n) (2b)
x!rijs ≤ yi ∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs (2c)
x!rijs ≤ yj ∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs (2d)
x!rijs ≥ 0 ∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs ∪ {Rrs} (2e)
yRrs = 1 ∀! ∈ Ω,∀(r, s) ∈ W ! (2f)
yi ∈ {0, 1} ∀i ∈ P ∪D (2g)

The first constraint (2a) ensures that the whole demand is served for each origin-destination pair. Users must
perform these trips through the P&R system or using the reserve mode. The second constraint (2b) requires that the
flow share of each mobility alternative obey to a logit model. For each OD pair, this choice is governed by the utility
of mobility alternatives through the P&R system which is function of opened P&R facilities and of that of the reserve
mode. For a given P&R path (r, i, j, s), if the pick up location yi or the drop off location yj or both are closed, the
constraint is inactive due to linking constraints (2c) and (2d), forcing the flow share to be lower than one when parks
are open, and zero otherwise. For a given OD pair (r, s), it is only possible to have a non zero portion of users use path
(r, i, j, s) if and only if yi = yj = 1. The decision variable representing the portion of users going from the origin r to
the destination s through the pick up i and the drop off j, x!rijs, must be positive (2e). Constraints (2f) and (2g) set the
domain of binary variables yi and fix all such variables to one for the mobility alternative corresponding to the reserve
mode.

The following result is an extension of the result of Aros-Vera et al. (2013) for three-link trip chains.
Proposition 1. The set of integer-linear constraints (2) is equivalent to the logit formulation (1).
Proof. The proof logic is based on the proof of Theorem 1 in Aros-Vera et al. (2013). To demonstrate the equivalence
of both equations (1) and (2), we enumerate the four possible cases depending on facility location decisions at nodes i
and j. For any scenario ! ∈ Ω and for any OD pair (r, s) ∈ W !:

• At least one facility (pick up or drop off) is closed (yi = 0 and yj = 1; yi = 1 and yj = 0; or yi = yj = 0):
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If yi = 0 or yj = 0 for a pair (i, j) ∈ Σ!rs ∪ {Rrs}, from (1), it is immediate to see that x!rijs = 0. We show that (2)
also yields the same outcome. In this case, the linking constraints (2c) or/and (2d) impose x!rijs ≤ 0. Since the decisionvariable is required to be non-negative, i.e., x!rijs ≥ 0, this implies x!rijs = 0. Furthermore, on the one hand, if ym = 0or (resp. and) yn = 0 in constraint (2b), then the flow share on any concurrent mobility alternative (i, j) ∈ Σ!rs∪{Rrs} isunrestricted. Indeed in such situation, x!rmns = 0 because of the linking constraints (2c) or (resp. and) (2d). If only oneof the two parks is closed (ym = 0 or yn = 0), we obtain x!rijs ≤ 1 which is already induced by the linking constraints
(2c) and (2d); while if both parks are closed (ym=0 and yn = 0), x!rijs ≤ 2 which is also redundant. On the other hand,if ym = yn = 1 in constraint (2b), then the flow share on any concurrent mobility alternative (i, j) ∈ Σ!rs ∪ {Rrs} is
upper-bounded by x!rmns e

−�g!rijs

e−�g
!
rmns

≥ 0 which is redundant since x!rijs = 0. This shows the equivalence of (1) and (2) if
at least one facility is closed.

• Both pick up and drop off are open (yi = yj = 1):

If yi = yj = 1 for a pair (i, j) ∈ Σ!rs ∪ {Rrs}, from (1), we find that x!rijs is equal to the flow share
x!rmns

e
−�g!rijs

∑

(m,n)∈Σ!rs∪{Rrs}∶ym=yn=1
e−�g

!
rmns

, which corresponds to the flow share of alternative (i, j) in the presence of activated

(ym = yn = 1) concurrent alternatives (m, n), as determined by a logit formulation. From (2), if yi = yj = 1, then the
linking constraints (2c) and (2d) yield a unit upper bound on x!rijs and constraint (2b) yield additional upper bounds
for each activated (ym = yn = 1) concurrent alternative. Consider now a pair of activated alternatives (i, j) and
(m, n). The corresponding pair of constraints (2b) require x!rijs ≤ x!rmns

e
−�g!rijs

e−�g
!
rmns

and x!rmns ≤ x!rijs
e−�g

!
rmns

e
−�g!rijs

, implying
x!rmns = x

!
rijs

e−�g
!
rmns

e
−�g!rijs

. Assume that |Σ!rs| = k. From constraint (2a), we have:

x!,Rrsrs + x!ri1j1s +…+ x!rijs +…+ x!rikjks = 1

e−�g
!
Rrs

e−�g
!
rijs
x!rijs +

e−�g
!
ri1j1s

e−�g
!
rijs

x!rijs +…+ e−�g
!
rijs

e−�g
!
rijs
x!rijs +…+ e−�g

!
rikjks

e−�g
!
rijs

x!rijs = 1

Re-arranging yields:
x!rijs =

e−�g
!
rijs

∑

(m,n)∈Σ!rs∪{Rrs}
e−�g!rmns

which completes the proof of equivalence between Eqs. (1) and (2).

3.5. Budget constraint and objective function
The P&Rmodel aims at maximizing the part of users of the P&R system, by opening some facility locations, within

a set of candidates, accessible from the users’ origin and destination. The determination of the scenario-dependent flow
per pick up/drop off path insights about the fleet sizing needed for a specific event. In the proposed P&R model, the
facility location variable is binary due to the two potential state of the parks (closed or open) and is constrained by the
park construction cost cloci and the global allocated budget B.

∑

i∈P∪D
cloci yi ≤ B (3)

The budget constraint (3) determines the ability of building the facilities by satisfying the global cost of the open
parks. The objective function aims to maximize the expected ridership in the P&R system across stochastic scenarios
and can be written as:

max ∑

!∈Ω
p!

∑

(r,s)∈W !
d!rs

∑

(i,j)∈Σ!rs

x!rijs (4)
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By maximizing the objective function (4), the solution increases for all the OD pairs (r, s) the portion x!rijs of thedemand d!rs using our P&R system whatever the chosen pick up i and drop off j in each scenario !. The higher the
probability p! related to the occurrence of an event is, the more the system will fit it. By being attractive in terms of
travel time with the car parks and transit stops opening, the P&R system helps to reduce the private vehicle circulation
in the city center of the cities and increase its resilience with respect to recurrent disruptive scenarios by providing an
alternative transport mode.
3.6. Park and ride facility location formulation

The resulting P&R facility location formulation summarized in (5) is a MILP. The complexity of the problem
highly increases with the graph size due to the number of variables, as detailed in Section 6.1.1: for the small network
composed of 59 nodes used in our numerical experiments, the formulation corresponds to 267 000 constraints and
15 000 variables; the problem grows to 15 000 000 constraints and 270 000 variables for the larger one, composed of
135 nodes. We thus propose, in the next Section 4, a scalable approach that can accommodate large mobility networks.

max ∑

!∈Ω
p!

∑

(r,s)∈W !
d!rs

∑

(i,j)∈Σ!rs

x!rijs (5a)

s.t. ∑

i∈P∪D
cloci yi ≤ B (5b)

∑

(i,j)∈Σ!rs∪{Rrs}
x!rijs = 1 ∀! ∈ Ω,∀(r, s) ∈ W ! (5c)

x!rijs ≤ x!rmns
e−�g

!
rijs

e−�g!rmns
+ (2 − ym − yn) ∀! ∈ Ω,∀(r, s) ∈ W !,∀(m, n), (i, j) ∈ Σ!rs ∪ {Rrs} ∶

(i, j) ≠ (m, n) (5d)
x!rijs ≤ yi ∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs (5e)
x!rijs ≤ yj ∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs (5f)
yRrs = 1 ∀! ∈ Ω,∀(r, s) ∈ W ! (5g)
x!rijs ≥ 0 ∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs (5h)
yi ∈ {0, 1} ∀i ∈ P ∪D (5i)

4. Lagrangian relaxation algorithm
To efficiently solve the proposed P&R facility location problem represented by Formulation (5), we adopt a de-

composition approach based on Lagrangian Relaxation (LR). The proposed LR provides upper bounds on the original
problem and we present customized heuristic algorithms to iteratively generate lower bounds during the solution of
the LR problem. We first present the proposed LR formulations and introduce a subgradient algorithm to solve the LR
problem (Section 4.1) before discussing the heuristic algorithms to generate feasible solutions (Section 4.2).
4.1. Lagrangian relaxation formulations

Let x be the vector of scenario-based flow variables x!rijs and let y be the vector of facility location variables yi.We dualize constraints (5d), (5e) and (5f) which contain both flow variables (xrijs) and location variables (yi). Let
�!rijmns ≥ 0 be Lagrange multipliers (LM) for constraint (5d) (with matching indices); let �!rijs ≥ 0 be LM for constraint
(5e); and let �!rijs ≥ 0 be LM for constraint (5f). Let L(�, �,�) be the Lagrangian function, the resulting Lagrangian
relaxation of (5) is summarized in Formulation (6). The LR formulation (6) provides an upper bound on the objective
value of Formulation (5).

L(�, �,�) = max ∑

!∈Ω
p!

∑

(r,s)∈W !
d!rs

∑

(i,j)∈Σ!rs

x!rijs
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+
∑

!∈Ω

∑

(r,s)∈W !

∑

(i,j)∈Σ!rs

(

�!rijs(yi − x
!
rijs) + �

!
rijs(yj − x

!
rijs)

)

+
∑

!∈Ω

∑

(r,s)∈W !

∑

(i,j)∈Σ!rs∪{Rrs}

∑

(m,n)∈Σ!rs∪{Rrs},
(m,n)≠(i,j)

�!rijmns

(

x!rmns
e−�g

!
rijs

e−�g!rmns
+ 2 − ym − yn − x!rijs

)

(6a)

s.t. ∑

i∈P∪D
cloci yi ≤ B (6b)

∑

(i,j)∈Σ!rs∪{Rrs}
x!rijs = 1 ∀! ∈ Ω,∀(r, s) ∈ W ! (6c)

x!rijs ≥ 0 ∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs ∪ {Rrs} (6d)
yRrs = 1 ∀! ∈ Ω,∀(r, s) ∈ W ! (6e)
yi ∈ {0, 1} ∀i ∈ P ∪D (6f)

The motivation for this LR formulation is that by relaxing the constraints involving both variables x and y, i.e., (5e),
(5f) and (5d), the resulting formulation (6) can be separated into two sub-problems: i) a linear assignment problem in
x to distribute users within paths of the P&R system or their reserve mode (7); and, ii) a facility location problem in y
which is an integer-linear problem (8) that is expected to be easier to solve than Formulation (5). LetLx(�, �,�) be thepart of L(�, �,�) which contains exclusively terms in x ; and let Ly(�, �,�) be the part of L(�, �,�) which contains
exclusively terms in y . The Lagrangian sub-problem corresponding to variable x is summarized in Formulation (7).

Lx(�, �,�) = max ∑

!∈Ω
p!

∑

(r,s)∈W !
d!rs

∑

(i,j)∈Σ!rs

x!rijs −
∑

!∈Ω

∑

(r,s)∈W !

∑

(i,j)∈Σ!rs

(

�!rijs + �
!
rijs

)

x!rijs

+
∑

!∈Ω

∑

(r,s)∈W !

∑

(i,j)∈Σ!rs∪{Rrs}

∑

(m,n)∈Σ!rs∪{Rrs},
(m,n)≠(i,j)

�!rijmns

(

x!rmns
e−�g

!
rijs

e−�g!rmns
− x!rijs

)

(7a)

s.t. ∑

(i,j)∈Σ!rs∪{Rrs}
x!rijs = 1 ∀! ∈ Ω,∀(r, s) ∈ W ! (7b)

x!rijs ≥ 0 ∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs ∪ {Rrs} (7c)

Lx can be further decomposed into scenario-based sub-problems by separating flows variables x corresponding to
each scenario ! ∈ Ω. Hence, we denoteLx,! the Lagrangian sub-problem ofLx for scenario ! ∈ Ω and the following
relationship holds: Lx(�, �,�) = ∑

!∈Ω Lx,!(�, �,�).The Lagrangian sub-problem corresponding to variable y is summarized in Formulation (8).

Ly(�, �,�) = max ∑

!∈Ω

∑

(r,s)∈W !

∑

(i,j)∈Σ!rs

(

�!rijsyi + �
!
rijsyj

)

+
∑

!∈Ω

∑

(r,s)∈W !

∑

(i,j)∈Σ!rs∪{Rrs}

∑

(m,n)∈Σ!rs∪{Rrs},
(m,n)≠(i,j)

�!rijmns(2 − ym − yn) (8a)

s.t. ∑

i∈P∪D
cloci yi ≤ B (8b)

yRrs = 1 ∀! ∈ Ω,∀(r, s) ∈ W ! (8c)
: Preprint submitted to Elsevier Page 10 of 28



Locating Park-and-Ride Facilities for Resilient On-Demand Urban Mobility

yi ∈ {0, 1} ∀i ∈ P ∪D (8d)

For any vector of LM �, � and �, L(�, �,�) = Lx(�, �,�) + Ly(�, �,�). Observe that Formulation (7) is a linear
programming problem and that Formulation (8) is binary knapsack problem. Both of these formulations are expected
to be significantly easier to solve than the MILP formulation (5).
4.2. Solution algorithm

The Lagrangian subgradient algorithm provides a method to explore the solution space of the P&R facility location
problem but only generates relaxed solutions at each iteration. An overview of the LRA is detailed in Algorithm 1.
The goal of LR is to find the LM �⋆, �⋆ and �⋆ which maximize L(�, �,�) so that the lower bound is as tight as
possible (ideally equal) to the optimal objective value. To solve the LR problem, we use the traditional subgradient
algorithm. Such choice is motivated by the easy computation of the method and its ability to properly solve several
practical problems (Fischer et al., 2013).

The proposed LRA is presented in Algorithm 1. As a first step of the LRA, we initialize the LMs and the iteration
counter. A first lower bound LB0, issued from the constructed vectors x̂0 and ŷ0, is computed using the heuristic
described in Algorithm 2, before beginning the iterations. Such step could help the proposed LRA to converge if
this LB0 is better than the lower bound issued from the iterations, especially when the problem complexity limits the
number of iterations in a given time. Although simplistic, the heuristic provides more accurate results, with a higher
lower bound and a lower gap between the lower and the upper bounds, for large-scale instances than the one obtained
in a very small set of iterations of the proposed LA. In this heuristic we first open all the locations yi to compute
the feasible flow x!rijs (Alg. 3), with the market share model issued from the logit formula (1), for each scenario, each
origin/destination pair and each pick up/drop off or reserve mode of the P&Rmodel, in order to know the flow crossing
each location. After sorting the decision variable yi, depending on the ratio of the construction cost over the part of
the flow of users crossing each facility, then we close the car park and/or transit stop with the higher ratio, while the
budget constraint is respected. The new corresponding flow is computed using the logit formulation (Alg. 3). As a
final step, the lower bound is computed, issued from the objective function. The combination of this heuristic (Alg. 2)
with the LRA ensures a reduced gap between the lower and the upper bounds especially for large scale instance.

After initializing the parameters and computing a first lower bound, we begin the LR (Alg. 1, line 1 to line 5).
At each iteration n we repeat the same steps. First, we compute the optimal solution for of sub-problems Lx(�, �,�)and Ly(�, �,�). The first sub-problem Lx(�, �,�) provides a vector xn (Alg. 1, line 8 to line 11) which may not be
feasible. To obtain a feasible solution from this vector, we build a feasible vector ŷn from xn (Alg. 1, line 12). To that
purpose, we open all the parks crossed by a non zero flow. If opening all these parks violates the budget constraint, we
close the pick up and/or drop off whose ratio of construction cost over the crossing flow is the highest, until the budget
constraint is satisfied. Finally, we recompute the flow x′n corresponding to the P&R design ŷn (Alg. 4).

The second sub-problem Ly(�, �,�) gives a solution yn (Alg. 1, line 13). We use the logit formula to obtain a
feasible flow pattern x̂n corresponding to this P&R design solution (Alg. 5) (Alg. 1, line 14). Once the two feasible
solutions are established (xn, ŷn) and (x̂n, yn) we are able to compute both corresponding lower bounds LBnLx and
LBnLy

respectively issued from Lx(�, �,�) and Ly(�, �,�). The higher of the two is conserved as a local lower bound
LBn and the couple of vectors (x∗,n, y∗,n) corresponding to the best vectors combination, maximizing the lower bound,
(xn, ŷn) or (x̂n, yn) is defined (Alg. 1, line 15 to line 19). The global lower bound LB, which corresponds to the highest
lower bound obtained since the beginning of the LRA, including the first lower bound LB0, is updated, as well as the
couple of vectors (x, y), if and only if the local lower bound LBn exceeds the global one.

To improve the performance of our heuristic, we apply local search algorithms for the solutions with the aim to
further increase the previously discussed lower bound. To this purpose, we alternate between a neighbourhood search
and swap moves until there is no improvement in the lower bound or all the local combinations have been explored.
We also use a time limit constraint to avoid spending excessive computation time in the search procedure for local
improvement of a given iteration of the LR (Alg. 1, line 21 to line 24). In our neighborhood exploration (Alg. 6), we
sequentially set binary facility variables of the current best solution ŷn to their complementary value, i.e., open parks
that are closed and close parks that are open, provided that the budget constraint remains satisfied. For each solution
in the neighborhood of the current best solution, we recalculate the flow assignment x (Alg. 3) and determine the
corresponding objective value which will replace the local lower bound LBn if the result is higher. The global lower
bound LB should also be replaced by this solution if LB is lower.
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Algorithm 1: Lagrangian Relaxation Algorithm Overview
Input: �, TLglob, TLℎeur
Output: LB, UB, x, y
/* Initialization of bounds, LM and parameters */

1 Gap ← +∞
2 UB ← +∞
3 LB ← Algorithm 2 // Construct initial feasible solution
4 �, �,�← 0
5 TLglob ← 0
6 n← 0

/* Main loop */
7 while Gap > � or Timerglob ≤ TLglob do
8 for ! ∈ Ω do
9 x!,n ← Solve Lx,!(�, �,�)

10 Lx(�, �,�)←
∑

!∈Ω Lx,!(�, �,�)
11 xn ← [x!,n]!∈Ω
12 ŷn,x′n,LBnLx ←Algorithm 4 (xn) // Construct feasible solution from x

13 yn ← Solve Ly(�, �,�)
14 x̂n,LBnLy ←Algorithm 5 (yn) // Construct feasible solution from y

15 LBn ← max{LBnLx ,LB
n
Ly
}

16 if LBnLx ≥ LBnLy
then

17 (x∗,n, y∗,n)← (x′n, ŷn)
18 else
19 (x∗,n, y∗,n)← (x̂n, yn)
20 TLℎeur ← 0

/* Local search loop */
21 while LBn improved by the local search and Timerℎeur ≤ TLℎeur do
22 LBn,x∗,n, y∗,n ← Algorithm 6 (LBn, y∗,n) // 1-distance local search on y
23 LBn,x∗,n, y∗,n ← Algorithm 7 (LBn, y∗,n) // Swap local search on y

24 Update Timerℎeur

25 if LBn ≥ LB then
26 LB ← LBn (x, y)← (x∗,n, y∗,n)
27 UB ← min{UB, Lx(�, �,�) + Ly(�, �,�)}
28 Gap ← UB−LB

UB
29 Update LM using Eq. (9)
30 Update Timerglob

We apply a second local search which swaps pairs of open and closed parks (Alg. 7). Contrary to the neighborhood
local search, the y vector is modified in a way that a park opening is combined with a park closure and a park closure
is paired with a park opening based on the respective park construction costs. We also recalculate the flow assignment
x and modify the LBn if the solution improves.

LM are updated at the end of each iteration of the main while loop using (9) (Alg. 1, line 29). To update the LM,
we use a classical formulation (Fisher, 2004). If the constraints (2b), (2c) or (2d) are not respected, the corresponding
LM �!rijmns, �!rijs or �!rijs are updated and become greater than 0. Indeed, if a flow share x!rijs crosses a closed park
yi, i ∈ P (resp. yj , j ∈ D), the LM �!rijs (resp. �!rijs) will increase to incentivize the constraint to be respected in
the next iterations. Regarding �!rijmns, the LM increases if the flow share does not follow the used market share model
represented by the logit formula. Because we aim at maximizing the ridership, and because the LM are deducted from
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Algorithm 2: First LB computation
Input:
Output: x0, y0, LB0

1 for i ∈ P ∪D do
2 ŷ0i ← 1 fi ← Sum of the flows x0 crossing i
3 Sŷ0 ← Sort ŷ0 increasingly by cloci ∕fi
4 for i ∈ Sŷ0 do
5 while

∑

j∈P∪D clocj yj ≥ B do
6 ŷ0i ← 0

7 x̂0 ← Feasible flow for the park design ŷ0 according to Eq. (1) using Algorithm 3
8 LB0 ← Compute objective function (5a) for (x̂0, ŷ0) while LB0 improved by the local search and

Timerℎeur ≤ TLℎeur do
9 LB0, x̂0, ŷ0 ← Algorithm 6 (LB0, ŷ0) // 1-distance local search on y

10 LB0, x̂0,← Algorithm 7 (LB0, ŷ0) // Swap local search on y

11 Update Timerℎeur

Algorithm 3: Feasible flow computation
Input: x
Output: y

1 for ! ∈ Ω do
2 for (r, s) ∈ W ! do
3 for (i, j) ∈ Σ!rs do

4 x!rijs ←
yiyje

−�g!rijs
∑

(m,n)∈Σ!rs∪{Rrs}
ymyne−�g

!
rmns

the objective function, such updates will incentivize the constraints to be respected.

�!,n+1rijs = max
(

�!,nrijs + 
n
(

x!,nrijs − y
n
i

)

, 0
)

∀! ∈ Ω,∀(r, s) ∈ W !,

∀(i, j) ∈ Σ!rs (9a)
�!,n+1rijs = max

(

�!,nrijs + 
n
(

x!,nrijs − y
n
j

)

, 0
)

∀! ∈ Ω,∀(r, s) ∈ W !,

∀(i, j) ∈ Σ!rs (9b)

�!,n+1rijmns = max

(

�!,nrijmns + 
n

(

x!rmns
e−�g

!
rijs

e−�g!rmns
+ 2 − ym − yn − x!rijs

)

, 0

)

∀! ∈ Ω,∀(r, s) ∈ W !,∀(i, j) ∈ Σ!rs,

∀(m, n) ∈ Σ!rs ∶ (i, j) ≠ (m, n) (9c)

To compute the step-size n, we use the traditional formulation Fisher (2004); Lag.

n = �n
L(�, �,�) − LB

‖

‖

‖

x!,nrijs − y
n
i
‖

‖

‖2
+ ‖

‖

‖

x!,nrijs − y
n
j
‖

‖

‖2
+
‖

‖

‖

‖

‖

x!,nrijs − x
!,n
rmns

e
−�g!rijs

e−�g
!
rmns

− 1 + ynmn
‖

‖

‖

‖

‖2

(10a)
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Algorithm 4: Construction of a feasible solution from Lx
Input: xn
Output: ŷn, x′n, LBnLx

1 for (i, j) ∈ Σ!rs do
2 if x!rijs ≠ 0 then
3 (ŷi

n, ŷj
n)← (1, 1)

4 fi ← Sum of the flows xn crossing i
5 Sŷn ← Sort y by increasing cloci ∕fi
6 for i ∈ Sŷn do
7 while

∑

j∈P∪D clocj yj ≥ B do
8 ŷni ← 0

9 x′n ← Feasible flow for the park design ŷn (1)
10 LBnLx

← Compute the objective function for (xn, ŷn) (5a) Algorithm 3

Algorithm 5: Construction of a feasible solution from Ly
Input: yn
Output: x̂n, LBnLy

1 x̂n ← Feasible flow for the park design yn using the logit formula Eq. (1) Algorithm 3
2 LBnLy

← Compute the objective function for (x̂n, yn) (5a)
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5. Case study
In this section, we present the data used to test the proposed methods. We first present the dataset (Sec. 5.1), then

we introduce the P&R instances generated for the numerical experiments (Sec. 5.2).
5.1. Data preparation

For our case study, we use the road network of Lyon, France, composed of 10 905 nodes and 19 703 edges. The ge-
ography of the city constructed around a peninsula makes the center sensitive to disturbances due to the relatively weak
number of alternative paths. The city center is also the location where most events take place and where businesses
are attracting most people. Finally, the pedestrianisation of Lyon’s peninsula is currently an active topic of discussion
in the city1. For these reasons, we investigate the potential of an alternative, on-demand transport mode to improve
accessibility and reduce the use of private vehicles. We focus on trips from outside the peninsula to the peninsula. All
the destinations, which could be potential drop offs (j), are located in the 1st and the 2nd neighborhoods of Lyon which
form the peninsula, whereas all the origins and potential pick ups (i) are sited in the rest of the city.

Travel times and travel costs are determined using floating car data (FCD) recorded by BeMobile operator2 from
1https://www.lyoncapitale.fr/politique/pietonnisation-presqu-ile-a-lyon-la-coalition-climat-veut-des-actes/
2http://be-mobile.com
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Algorithm 6: One distance neighborhood search
Input: LBn, y∗,n
Output: LBn, x∗,n, y∗,n, x, y

1 update← True
2 while update = True do
3 update← False
4 for i ∈ P ∪D do
5 y ← y∗,n
6 if y∗,ni = 1 then
7 yi ← 0
8 else
9 yi ← 1

10 x ← Feasible flow for the park design y (1) Algorithm 3
11 LB ← Compute the objective function for (x, y) (5a)
12 if LB ≥ LBn then
13 LBn ← LB
14 (x∗,n, y∗,n)← (x, y)
15 update← True
16 break

October 2017 to September 2018. This provides the travel cost, equal to the recorded travel time, for the proposed
P&R system between the origin and the pick up caccess,!ri and between the pick up and the drop off croute,!ij . The travel
cost between the drop off and the destination cwalkjs corresponds to the walking travel time and is computed through
the road network using a walking speed of 1.5m∕s. The travel cost between the origin and the destination using the
reserve mode cRrs,!rs corresponds to the travel time of the shortest path between the origin and the destination, recorded
through the FCD. We do not consider the additional costs associated to the reserve transport mode (e.g., fuel, parking,
congestion, pollution) in accordance with the simplistic representation but the generalized cost computation could be
improved in the future in accordance with the existing literature (Aros-Vera et al., 2013; Hitge and Vanderschuren,
2015).

During the recorded period, many events of different nature perturbing traffic conditions occurred such as snowfall,
strike, road works or public transport disruptions, corresponding to recurrent disturbances. By selecting the recurrent
abnormal traffic conditions in the FCD, as well as the baseline one, we build a first instance with four stochastic
scenarios. These four scenarios have their own travel cost, recorded during different days whereas the construction
cost is defined once and for all. To create other instances, used for the sensitivity analysis (Sec. 6.1), we only select
different days recorded during the holidays, during the weekend and during the working days. In the sensitivity analysis
(Sec. 6.1), the four scenarios have an equiprobability of happening.

For the realistic analysis (Sec. 6.2), the scenarios are recorded: i) during a snowfall, ii) with a public transport
disruption where two subway lines were stopped, iii) during a normal week day, and iv) during a normal week end
day. Each scenario presents a different speed profile representative of the disruption (Fig. 1). Regardless of the studied
scenario, we weight the graph by using the travel times recorded at 7 ∶ 30 am when the impacts are the worst. The
snowfall scenario (Fig. 1a), based on data from Monday 18tℎ 2017, hugely impacts the average speed during the
morning peak hours compared to a typical Monday; the subway disruption scenario (Fig. 1b), based on data from
Tuesday 19tℎ 2017, also introduces a speed reduction during the whole day compared to a typical Tuesday. The
observed speed reduction may be due to the modal shift from the disrupted public transportation system towards
privately owned vehicles which might have generated congestion on the road network. Finally, as the ultimate goal
of the P&R system is to be competitive either during the week days or during week-ends, we consider two stochastic
scenarios representing each kind of day (Fig. 1c). The probability depends on the scenario. We assumed the snowfall
has similar impact to a rainfall and fix the probability of occurrence of 35%. The subway disruption could model
more generally a public transport failure, which is a rather regular event. We fix the probability to 30%. Finally the
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Algorithm 7: Swap search
Input: LBn, y∗,n
Output: LBn, x∗,n, y∗,n, x, y

1 update← True
2 while update = True do
3 update← False
4 for i ∈ P ∪D do
5 y ← y∗,n
6 if y∗,ni = 1 then
7 yi ← 0
8 for j ∈ P ∪D do
9 if y∗,nj = 0 & clocj < cloc

i then
10 yj ← 1

11 else
12 yi ← 1
13 for j ∈ P ∪D do
14 if y∗,nj = 1 then
15 yj ← 0

16 x ← Feasible flow for the park design y (1) Algorithm 3
17 LB ← Compute the objective function for (x, y) (5a)
18 if LB ≥ LBn then
19 LBn ← LB
20 (x∗,n, y∗,n)← (x, y)
21 update← True
22 break

(a) Snowfall (b) Subway disruption
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Figure 1: Average speeds observed at 7:30am are used to generate the four stochastic scenarios (snowfall (a), subway
disruption (b), working and week-end days (c)).

probability for the normal week day (resp. week end day) is set to 25% (resp. 10%). Regarding the demand d!rs, we userealistic data reconstructed by Krug et al. (2021) by relying on a methodology combining survey-based information,
simulations and measures of flows collected via loop detectors installed in the city of Lyon. Moreover, demand data
have been properly adapted, via an aggregation procedure, to the specific graph sizes considered in our evaluation (Sec.
6.1.1).

The construction cost cloci for the pick up nodes corresponds to the cost that is required for a car park to be built,
whereas the construction cost for drop off nodes corresponds to that of a transit stop. Hence, in our numerical experi-
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(a) 59 nodes (b) 93 nodes (c) 135 nodes

Figure 2: Reduced graphs with a given number of nodes where the green nodes are origins
(potential pick ups) and the red nodes are the destinations (potential drop offs).

ments the construction cost of pick up nodes is chosen about ten times greater than that of drop off nodes. The budget
allocated to the facility location constructionB is defined as a percentage of the total cost corresponding to the opening
of all the facility locations. In both sensitivity and real analysis, we use four different budgets corresponding to 20%,
40%, 60% or 80% of the total construction cost.
5.2. Experiments design

We implement the proposed P&R facility location formulations to instances based on the city of Lyon: trip gen-
eralized costs g!rijs are determined based on the travel cost components cRrs,!rs and caccess,!ri , croute,!ij , cwalkjs ; the demand
d!rs and the construction cost of the pick ups and the drop offs cloci . We conduct two analyses: a sensitivity analysis to
measure the performance of the proposed LRA approach versus a direct MILP approach, and a real case study analysis
to illustrate the behavior of the proposed P&R system in an operative context. We only consider the morning peak
hour. For the evening commute, the role of pick ups and drop offs will be reversed.

For the sensitivity analysis, we consider three graph sizes: a small graph (S) composed of 59 nodes, which rep-
resents both potential pick ups and potential drop offs, a medium graph (M) composed of 93 nodes and a large graph
(L) composed of 135 nodes (see Table 2). We aim at considering a restricted number of nodes of the road network,
evenly distributed in Lyon. Therefore, we divide Lyon in equal areas using a spatial clustering method and assume that
there is a unique origin (resp. destination) in each area which acts as a potential pick up (resp. drop off) based on its
location in Lyon. For these instances (see Fig. 2a-2c), the set of origins (resp. destinations) is equal to the set of the
potential pick ups P (resp. drop offs D). The green nodes represent the origins and the potential pick ups whereas the
red nodes correspond to the destinations and the potential drop offs.

For the realistic case study, we assume that the set of origins (resp. destinations) differs from the set of potential
pick ups (resp. drop offs) (see Fig. 3b). We use a segmentation of the city into zones, called Iris sectors (see Fig.
3a), developed by the French Institute of Statistics. Iris sectors divide the conurbation of Lyon into small geographical
areas, each grouping approximately 2 000 inhabitants3. These areas are thus used to uniformly distribute the sets of
potential pick ups and drop offs nodes in the graph. We assume that there is a unique potential pick up (resp. drop
off) per Iris sector, which is the closest node to the centroid of the area. Concerning origin and destination nodes, they
correspond to a tenth of the road intersection nodes of the real road network of Lyon, and they are uniformly distributed
over the Lyon’s city network.

The proposed formulations and algorithms are implemented in Python on a machine with 16 Gb of RAM and a
CPU of 4.20GHz (Intel(R) Core(TM) i7-7700K). All mixed-integer and/or linear programs are solved using CPLEX’s

3https://www.insee.fr/fr/metadonnees/definition/c1523

: Preprint submitted to Elsevier Page 17 of 28



Locating Park-and-Ride Facilities for Resilient On-Demand Urban Mobility

(a) Iris areas (b) Real graph

Figure 3: Iris areas (a): territory divisions encompassing 2 000 inhabitants. Network used
for the real instance IR (b): origins (light green), destinations (light red), potential pick
ups(dark green) and potential drop offs (dark red).

Small (S) Medium (M) Large (L) Real (R)

Origins 53 83 121 745
Pick ups (P ) 53 83 121 155
Drop offs (D) 6 10 14 25
Destinations 6 10 14 171

Table 2
Graph sizes description

Python API.

6. Results
In this section, we conduct numerical experiments to explore the behavior of the proposed P&R facility location

formulations and compare the performance of the proposed Lagrangian Relaxation Algorithm (LRA) with a direct
MILP approach.
6.1. Sensitivity analysis

The following results aim to showcase the ability of the proposed LRA to provide results that are superior to those
obtained using a direct MILP solver for solving Formulation (5). We first examine the influence of the graph size
(S, M , L) and the budget B (20%, 40%, 60%, 80%) on both solution methods (Sec. 6.1.1). In a second analysis,
we explore the impact of the access time taccess and the egress time tegress which determine the set of accessible pick
ups from the origins and the set of drop offs allowing to access the destinations, respectively (Sec. 6.1.2). Finally,
we observe the impact of the waiting time related to our P&R on the ridership. These parameters directly impact the
: Preprint submitted to Elsevier Page 18 of 28
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Parameters MILP LRA

Instance taccess tegress Budget (%) Objective Gap (%) LB Gap (%) # Iterations Gain (%)

IS1 3 10 20 1 053.850 4.6 1 001.849 25.2 237 -5.2
40 1 189.682 3.8 1 181.146 12.4 259 -0.7
60 1 241.595 1.5 1 235.390 9.6 253 -0.5
80 1 259.218 0.0 1 257.202 8.1 261 -0.2

IM1 3 10 20 137.546 100.0 1 219.896 13.4 24 88.7
40 1 257.042 6.3 1 289.893 8.4 24 2.5
60 1 319.766 1.3 1 315.126 6.6 27 -0.3
80 1 331.724 0.4 1 333.122 5.4 22 0.1

IL1 3 10 20 405.012 100.0 1 329.833 12.2 5 69.5
40 - - 1 400.280 7.6 5 -
60 - - 1 435.024 5.3 4 -
80 1 455.080 0.3 1 450.163 4.3 4 -0.3

Table 3
Sensitivity analysis results after 1 hour running for the I1 with an access time taccess and an egress time tegress fixed to 3
and 10 minutes.

number of constraints in the formulations and may thus significantly influence the computational performance of the
solution methods tested.

To perform our sensitivity analyses, we use a time limit of one hour. We analyze two different instances, named I1and I2. The first instance I1, is built on the construction cost randomly defined in the range of a car park construction or
the transit stop installation, the travel time recorded in the FCD and the demand modified in accordance with the travel
time variations during four specific days to define our four different stochastic scenarios: one Sunday, one Saturday,
Christmas day and one Thursday. The second instance I2, is also composed by construction cost, demand and travel
times recorded by the FCD during other four different days: one Tuesday, one Monday, one day during the school
holidays and one day during a city-center event in Lyon. By extracting the recorded travel time from the FCD (Sec.
5.1) and by adapting the recorded data to the three graph sizes (S,M , L) (Sec. 5.2) we create six instances IS1 , IS2 ,
IM1 , IM2 , IL1 and IL2 , with their own travel costs (caccess,!ri , croute,!ij , cwalkjs and cRrs,!rs ), demands (d!rs) and construction
costs cloci ). For the purpose of the sensitivity analysis, we decided to assign an equal probability of occurrence to each
scenario.
6.1.1. Graph size

To analyze the impact of the graph size on the performance of the solution methods, we set taccess and tegress to 3
minutes and 10 minutes, respectively. This means that the pick up must be reachable within a travel time of 3 minutes
by a car from its origin and the drop off must be within a distance of 900 meters from the destination, to respect a
maximum walking time constraint of 10 minutes. With such parameters, Formulation (5) leads to a problem with,
on average, 267 000 constraints and 15 000 variables (binary and continuous) for the small graph size S, 2 000 000
constraints and 67 000 variables for the medium oneM , and 15 000 000 constraints and 270 000 variables on the the
large graph size L.

Tables 3 and 4 summarize the results obtained using the MILP approach and the proposed LRA algorithm for
instances I1 and I2, respectively. We compute the LRA-gap as the relative gap between the upper and the lower
bounds (100 × (UB − LB)∕UB). Notably, the gap obtained using LRA is for some instances greater than the MILP
gap even though both methods found comparable solutions in terms of objective value. This is because the Lagrangian
relaxation duality gap cannot be guaranteed to be zero (Fisher, 2004). This occurs especially for the small graph size
S where our lower bound often exceeds the best bound of the MILP approach. Conversely, we occasionally observe a
lower MILP gap compared to the LRA gap but the MILP solution has a lower objective value than the best LB found
using LRA. To compare the obtained feasible solutions, most of time sub-optimal, using the MILP approach and the
LRA, we compute the gain as the relative gap between both solutions (100 × (LB − Objective)∕LB). Note that the
optimality gaps of both methods (MILP and LRA) may not reflect accurately the quality of the solutions obtained. A
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Parameters MILP LRA

Instance taccess tegress Budget (%) Objective Gap (%) LB Gap (%) # Iterations Gain (%)

IS2 3 10 20 1 005.633 1.2 971.167 25.2 295 -3.5
40 1 164.179 1.9 1 147.485 12.5 318 -1.4
60 1 213.253 1.8 1 212.745 9.0 312 -0.0
80 1 234.696 3.0 1 234.311 7.7 317 -0.0

IM2 3 10 20 386.739 100.0 1 163.132 17.4 33 66.7
40 1 199.063 10.1 1 265.998 10.1 35 5.3
60 1 295.332 2.1 1 297.806 7.9 31 0.2
80 1 315.854 5.0 1 316.831 6.5 29 0.1

IL2 3 10 20 - - 1 277.515 15.7 5 -
40 1 234.430 17.4 1 382.467 8.7 5 10.7
60 - - 1 426.541 5.8 6 -
80 1 443.765 0.4 1 443.189 4.7 6 -0.0

Table 4
Sensitivity analysis results after 1 hour running for the I2 with an access time taccess and an egress time tegress fixed to 3
and 10 minutes.

positive gain means that our lower bound is higher than the MILP solution. In this case, the gain is written in green
and prove the ability of the proposed LRA to provide a better solution. Else, the gain is written in red.

On the small graph S, the proposed LRA is less efficient than the direct MILP approach (Tab. 3): the gain is
negative for all instances and ranges from −5.2% for a budget of 20% to −0.2% for the larger budget 80%. We find
that the proposed LRA is not particularly efficient for the small graph S and the lower budget 20% with a gap between
the upper and the lower bounds of 25.2%. Nonetheless, for the mediumM and the large L graph sizes, the proposed
LRA is competitive relative to the MILP approach. For the first instance I1 (Tab. 3) (resp. second instance I2, Tab.4), the gain is positive for all the budgets except for the one of 40% (IM1 ) (resp. all the budgets (IM2 )) for the medium
graph sizeM . Moreover this gain is very high, 88.7% for IM1 and 66.7% for IM2 for the lower budget of 20%. For the
large graph size L, the gain is positive for the budget going from 20% to 60%. For both instances, the MILP approach
is unable to provide a solution in one hour for two budgets tested (40% and 60% for IL1 and 20% and 60% for IL2 ).Regardless of the graph size (S,M , L) and the instance (I1 and I2), the lower the budget, the higher the LRA gap due
to the complexity of the problem (see Fig. 4). For all the graph sizes (S,M , L), we obtained a gap greater than 10.0%
and most of time greater than 20.0% where the budget is 20% which is not particularly conclusive, although this is
due to the slow reduction of the upper bound. Using a greater budget (40%, 60%, 80%) tends to reduce the optimality
gap of the proposed LRA. This behavior can be explained by the fact that the initial upper bound, which is mostly the
better one due to the slow even non-existent decrease during the one-hour allowed runtime, is equal to the portion of
passengers using the P&R system when all the pick ups and drop offs are open. With a larger budget, more and more
locations are open and the P&R’s ridership rises, thus reducing the LRA gap with the upper bound.

The reported results clearly highlight an important limitation of the proposed LRA in the upper bound computa-
tion. Indeed, this bound is supposed to decrease through the iterations thanks to the evolution of the LM coefficients.
Nonetheless, such decrease is only observed for the small graph size S, composed of 59 nodes, where a significantly
higher number of iterations, more than 200, is performed within the allowed run-time constraint of one hour. Nonethe-
less, the lower bound rises across the iterations for all the budgets (20%, 40%, 60%, 80%) and the graph sizes (S,M ,
L), reducing the LRA-gap between the upper and lower bounds, proving the efficiency of the proposed LRA.

Figure 4 confirms these observed results and claims. For both instances, the gap between the proposed LRA based
lower and upper bounds is larger when the budget is 20% for all the graph sizes (S,M , L) tested. The curves decrease
significantly when the budget is equal to 40% and again when it is equal to 60%. Between 60% and 80% the decrease
becomes more steady.
6.1.2. Impact of access time (taccess) and egress time (tegress) on the model solving

The modification of taccess and tegress highly influences the complexity of the problem by significantly increasing
the number of constraints and decision variables of the model. With the small graph size S, the number of constraints
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Figure 4: Evolution of the gap between the Upper and Lower Bounds (UB and LB)
computed with the proposed Lagrangian Relaxation Algorithm (LRA) for varying budget
(20%, 40%, 60%, 80%). Results are reported for both instances I1 and I2 and for all three
graph size (Small (S), Medium (M), Large (L)). In this computation, the access and
egress parameters are set to taccess = 3 minutes and tegress = 10 minutes.

Parameters MILP LRA

Instance taccess tegress Budget (%) Objective Gap (%) LB Gap (%) # Iterations Gain (%)

IS1 5 15 20 1 213.533 13.4 1 312.649 6.6 13 7.5
40 1 351.306 1.8 1 355.782 3.5 14 0.3
60 1 367.905 0.6 1 368.623 2.6 12 0.0
80 1 374.490 0.1 1 372.509 2.3 14 -0.1

IM1 5 15 20 - - 1 362.338 3.3 3 -
40 - - 1 379.385 2.1 2 -
60 - - 1 386.546 1.6 2 -
80 - - 1 390.005 1.3 2 -

IL1 5 15 20 - - 1 478.955 - - -
40 - - 1 493.202 - - -
60 - - 1 496.828 - - -
80 - - 1 498.430 - - -

Table 5
Sensitivity analysis results for instance I1 with a time limit of 1 hour with an access time taccess and an egress time tegress

fixed to 5 and 15 minutes.

increases of 1 500% and the number of variables rises of 450%. For themedium graph sizeM , the number of constraints
increases of 1 750% and the number of variables rises also by 450%. For the large graph size L the direct MILP
approach fails to be successfully implemented and CPLEX is unable to provide the number of constraints and variables
for these instances. Table 5 presents the results obtained using the MILP approach and the proposed LRA with taccess
equal to 5 minutes and tegress equal to 15 minutes for the first instance I1 and Table 6 shows the results for the second
instance I2. Contrary to the results for taccess and tegress respectively equal to 3 and 10minutes (Tab. 3 and 4), even for
the small graph size S, the proposed LRA exhibits a better performance relatively to the MILP approach for a budget
of 20%. Because of the complexity of the problem with the one-hour time constraints and the large graph size L, we
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Parameters MILP LRA

Instance taccess tegress Budget (%) Objective Gap (%) LB Gap (%) # Iterations Gain (%)

IS2 5 15 20 - - 1 302.943 7.3 17 -
40 1 346.282 1.8 1 348.614 4.0 20 0.2
60 1 362.894 0.6 1 358.044 3.4 23 -0.4
80 1 368.242 0.2 1 368.312 2.6 24 0.0

IM2 5 15 20 - - 1 338.419 5.0 4 -
40 - - 1 376.012 2.3 3 -
60 - - 1 382.271 1.9 3 -
80 1 373.301 1.1 1 386.093 1.6 2 0.9

IL2 5 15 20 - - 1 468.108 - - -
40 - - 1 491.181 - - -
60 - - 1 498.100 - - -
80 - - 1 500.114 - - -

Table 6
Sensitivity analysis results for instance I2 with a time limit of 1 hour with an access time taccess and an egress time tegress

fixed to 5 and 15 minutes.
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Figure 5: Evolution of the gap between the Upper and Lower Bounds (UB and LB)
computed with the proposed Lagrangian Relaxation Algorithm (LRA) for varying budget
(20%, 40%, 60%, 80%). Results are reported for both instances I1 and I2 and for two graph
size (Small (S), Medium (M)). In this computation, the access and egress parameters are
set to taccess = 5 minutes and tegress = 15 minutes.

are unable to solve Formulation (5) using a direct MILP. Solving the Lagrangian relaxation formulations (7) or (8)
is also impossible in the one-hour time constraints for the large graph size. Nonetheless, the first heuristic (Alg. 2)
developed in the LRA successes to provide a lower bound to the problem which is a feasible solution. The quality of
this solution cannot be assessed due to the lack of an upper bound. For the medium graph sizeM (Tab. 2), the direct
MILP approach is unable to find a feasible solution, except for IM2 and a budget of 80%, whereas the LRA provides a
solution whose gaps do not exceed 5.0% for all the considered budget values.

Figure 5 provides insights about the accuracy of our algorithm. Regarding these results, we can conclude that
except for a budget of 20% computed with the small graph size S (IS1 and IS2 ), the gap between the bounds is globally
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LB P&R flow share

Budget (%) 0min +5min +10min +15min 0min +5min +10min +15min

IS 20 963.5 972.4 964.7 952.3 66.9% 66.0% 66.2% 64.7%
40 1 147.3 1 157.5 1 145.7 1 124.8 78.1% 78.6% 77.8% 70.8%
60 1 249.6 1 246.0 1 238.2 1 239.4 84.6% 82.4% 80.9% 81.5%
80 1 286.2 1 282.1 1 276.4 1 271.1 86.7% 86.7% 86.3% 86.3%

IM 20 1 055.5 1 059.8 1 054.8 1 049.7 78.8% 72.6% 77.8% 75.8%
40 1 147.6 1 145.8 1 141.9 1 137.9 86.6% 84.0% 75.7% 76.2%
60 1 194.7 1 197.1 1 193.8 1 190.5 90.2% 87.6% 87.3% 87.0%
80 1 221.9 1 220.2 1 217.4 1 214.5 91.7% 91.7% 91.3% 91.3%

IL 20 1 1973.6 1 1943.7 1 1913.1 11 881.9 84.9% 82.6% 85.0% 84.7%
40 1 2771.0 1 2744.3 12 716.9 12 688.9 92.2% 92.1% 91.9% 91.7%
60 1 3043.3 1 3077.2 13 056.5 13 043.0 93.0% 93.3% 93.1% 92.8%
80 1 3303.1 1 3286.0 13 268.3 13 250.3 95.8% 95.4% 95.2% 95.4%

Table 7
Sensitivity analysis on the waiting time of P&R mobility alternatives.

lower than 5.0% and thus truly close to the optimal solution.
6.1.3. Impact of the P&R system waiting time

We next conduct a sensitivity analysis on the attractiveness of P&R mobility alternatives by incorporating user
waiting time within the corresponding generalized costs. Specifically, we inflate the generalized costs of P&R alter-
natives by adding a waiting time ranging from 5 to 15 minutes. The results of this analysis are summarized in Table 7.
As expected, a longer waiting time tends to lower the percentage of users choosing the P&R system. Nonetheless, the
differences are very marginal, with the only exception of the case where the budget is fixed to 40% of the maximal one
between both extreme waiting times (0 minute and +15 minutes): in this case, the reduction of users is about 7.3% for
the small graph size, 10.4% for the medium one, and only 0.4% for the large one. For all the other budgets and graph
sizes, the difference induced by the waiting time increase is always lower, not exceeding 4% between both extreme
waiting times (0 minute and +15 minutes).

In conclusion, the sensitivity analysis highlights the potential of our solution with larger taccess and tegress times,
in terms of the larger size of the problem that we are able to solve. Similarly, larger percentages of construction
cost budgets underline the ability of our LRA solution to outperform the commercial MILP solver by providing a
competitive solution for all the percentage range. Regarding the following realistic analysis, we focus instead on
smaller budgets, comprised between 5% and 20%, because of the consistency of the flow share with the reality.
6.2. Realistic case study

In this section, we present results computed on a realistic graph size (R) composed of 746 origins and 171 desti-
nations with 155 potential pick ups and 25 potential drop offs. The set of potential pick ups and drop offs is uniformly
distributed across the network geography and the population spreading. Specifically, we determine a potential pick
up or drop off per Iris area (Sec. 5). The access and egress times are respectively fixed at taccess = 2 minutes and
tegress = 8 minutes. Such problem is composed of about 9 062 000 variables and induced around 77 000 constraints.
We customize the proposed LRA in order to balance the time assigned to the local search heuristics and the number
of realized iterations in one hour of runtime. The time dedicated to the local search heuristics (Alg. 6 and Alg. 7) is
fixed at 20 minutes per iteration rather than 10 minutes per iteration in the sensitivity analysis (Sec. 6.1).

Table 8 summarize the results obtained with the realistic instance for access times fixed to 2 minutes and egress
times equal to 8minutes. The sensitivity parameter to the generalized cost � is equal to 0.1 as in the sensitivity analysis.
Whatever the allocated budget (5%, 10%, 15% and 20%), the LRA always exceeds theMILP approach performances by
always providing an higher feasible solutions. For the smallest budget, the gain between both solutions even exceeds
50%. Although the gap of the LRA is important due to the small reduction of the upper bound, the lower bound,
representing the best found feasible solution, is very interesting to solve the complex problem of allocating P&R,
respecting a market share model, on a large-scale network.

Table 9 summarizes the flow shares using the P&R for an access time fixed at 2minutes and an egress time set to 8
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Parameters MILP LRA

Instance taccess tegress Budget (%) Objective Gap (%) LB Gap (%) Gain (%)

IR 2 8 5 287.956 2.9 902.346 51.5 68.1
10 1 156.906 0.3 1 352.844 27.3 14.4
15 1 408.596 0.2 1 534.226 17.6 8.1
20 1 618.571 0.0 1 618.593 13.0 0.0

Table 8
Real instance results after 1 hour running for the first instance I1 with an heuristic time constraint of 20 minutes and with
the first lower bound LB0 computation (Alg. 2). The access time taccess and the egress time tegress are fixed to 2 and 8
minutes and the generalized cost sensitivity � is set to 0.1.

Scenario P&R flow share

Index Description Prob. Budget 5% Budget 10% Budget 15% Budget 20%

0 Snowfall / heavy rainfall impact 0.35 42.67% 67.41% 76.84% 86.35%
1 Public transport disruption 0.30 46.95% 75.78% 82.70% 86.90%
2 Week day 0.25 54.82% 72.05% 86.25% 88.98%
3 Week-end 0.1 44.33% 69.56% 78.65% 82.79%

Table 9
� = 0.1, taccess = 2 minutes, tegress = 8 minutes

(a) 5%: 12 P and 10 D (b) 10%: 20 P and 15 D (c) 15%: 29 P and 20 D (d) 20%: 37 P and 20 D

Figure 6: Real instance with a given number of nodes where the green nodes are origins
(potential pick ups) and the red nodes are the destinations (potential drop offs) for an
access time fixed at 2 minutes and an egress one set to 8 minutes with � = 0.1.

minutes, depending on the allocated budget to the facilities construction and the scenario. The higher the the budget,
the more people use the P&R due to the increase of possible path alternatives induced by the rise of the open pick
ups and drop offs (Fig. 6), reducing the travel cost of the P&R mode by being closer to both origin and destination.
We notice the P&R is fitted to recurrent disruptions by being highly attractive even in presence of snowfall or public
transport disruption. Although the flow share is not equal for all the scenarios, the order of magnitude remains the
same.

An increase of acces and egress times leads to a rise of the attractiveness for the P&R by serving a larger part of
the demand for the same allocated budgets. This observation has been confirmed for and egress times respectively
fixed to 3 and 10 minutes. Whereas, for a construction budget of 5% (resp. 20%), in average 47.91% (resp. 86.25%)
of users choose the P&R system with and egress times fixed at 2 and 8 minutes, 61.73% (resp. 92.71%) of people use
the P&R system for and egress times set to 3 and 10 minutes. By being larger, the access and egress times make P&R
alternatives accessible to more origins and more destinations increasing the part of the demand served by the transport
service with a similar number of opened pick ups and drop offs. For this greater pair of access and egress time, the
MILP approach is unable to provide solution contrary to our LRA.
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Parameters MILP LRA

Instance taccess tegress Budget (%) Objective Gap (%) LB Gap (%) Gain (%)

IR 2 8 5 116.441 7.1 679.262 63.5 82.8
10 444.019 1.9 1 050.090 43.6 57.7
15 545.510 1.6 1 271.339 31.7 57.1
20 1 379.869 0.1 1 374.214 26.1 0.0

Table 10
Real instance results after 1 hour running for the first instance I1 with an heuristic time constraint of 20 minutes and with
the first lower bound LB0 computation (Alg. 2). The access time taccess and the egress time tegress are fixed to 2 and 8
minutes and the generalized cost sensitivity � is set to 1.

Scenario P&R flow share

Index Description Prob. Budget 5% Budget 10% Budget 15% Budget 20%

0 Snowfall / heavy rainfall impact 0.35 35.70% 54.98% 64.19% 73.02%
1 Public transport disruption 0.30 36.16% 55.75% 67.24% 72.75%
2 Week day 0.25 40.18% 58.97% 73.57% 77.54%
3 Week-end 0.1 39.13% 53.29% 65.81% 71.69%

Table 11
� = 1, taccess = 2 minutes, tegress = 8 minutes

(a) 5%: 11 P and 11 D (b) 10%: 18 P and 20 D (c) 15%: 29 P and 20 D (d) 20%: 38 P and 20 D

Figure 7: Real instance with a given number of nodes where the green nodes are origins
(potential pick ups) and the red nodes are the destinations (potential drop offs) for an
time fixed at 2 minutes and an egress one set to 8 minutes with � = 1.

6.2.1. Sensitivity with respect to the generalized cost in the market share model (� = 1)
In this analysis, we measure the impact of parameter � (sensitivity to the generalized cost in the mobility choice

model) by increasing it from 0.1 to 1. By observing the results obtained in such conditions (Table 10), we notice
that whatever the budget and the and egress times, the lower bounds, corresponding to the best feasible solutions, are
always lower than the ones obtained with a smaller � (Table 8). The P&R system is less attractive when the sensitivity
to the generalized cost is increased, due to the longer travel cost induced by the consideration of a walking travel time
part, between the drop off and the destination, in the P&R path.

The flow share distributions (Tab. 11) confirm this decrease in the usage of the P&R system with the increase
of the generalized cost sensitivity. Whereas on average 47.91% (resp. 86.25%) of people use the P&R system for an
access time set to 2 minutes, an egress time fixed to 8 minutes and a budget for the construction limit to 5% (resp.
20%) of the global construction cost with a � parameter equal to 0.1, with the increase in generalized cost sensitivity
(� = 1), only 37.79% (resp. 73.75%) of people choose the P&R system to travel. Similar trends are observed with
higher budgets.
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7. Conclusion and perspectives
In this study, we proposed a new approach for locating P&R facilities to enhance the resilience of urban mobility

networks. By proposing an on-demand P&R system and bymaximizing the ridership of the P&R system in the presence
of recurrent disruptions, we aim at reducing the use of private vehicle over the network which are often the source of
congestion in mobility networks. With the establishment of such a new public transport mode we reduce the number of
vehicles over the network for a same amount of travelers. Thus, by capturing a part of the demand, the P&R system is
expected to improve the resilience of the mobility network to recurrent traffic disruptions. Our rationale is that using the
model outputs, i.e., scenario-based OD route flow shares x!rijs, the decision-maker can determine the expected number
of users on a transit route as d!rs × x!rijs. This expected route flow can then be used to plan for shuttle deployment.
Although the integration of shuttle and maintenance costs in the problem formulation might increase the level of detail
from an operational standpoint, the proposed model aims to inform decision-making at a strategic level. We leave
the development of more operational formulations for future research. The proposed formulation aims to find optimal
location for pick up and drop off facilities. These P&R facilities are used to provide on-demand mobility services
that complement the existing transport network. Users’ trips in the P&R system are modeled as three-link chains,
i.e. from origin to pick up, drop off and destination. Users’ modal shift from reserve travel modes to the proposed
P&R mobility service is modeled using a logit choice model and the goal is to maximize the expected ridership in
the P&R system under varying traffic conditions. Specifically, we propose a stochastic programming approach where
a set of finite scenarios is considered, which may represent both regular traffic conditions and recurrent disruptions
in the network. The resulting P&R facility location formulation is a challenging mixed-integer linear programming
(MILP) problemwith a large number of decision variables. We develop a Lagrangian relaxation approach to solve large
scale instances. We decompose the relaxed formulation into sub-problems that can be solved efficiently and propose
local-search algorithms to find competitive solutions along the search.

We conduct extensive numerical experiments based on instances generated using real data from the urban transport
network of Lyon, France. Across our numerical experiments, we observe that the complexity of the problem increases
with the size of the graph and the decrease of the allocated budget for opening facilities in the P&R system. Compared
to the direct MILP approach, the proposed Lagrangian Relaxation Algorithm (LRA) is more scalable and capable to
generate feasible solutions with large-size instances. Although the optimality gap of the LRA is sometimes higher
than that of the MILP approach, the LRA often finds better feasible solutions. The results obtained on the realistic
instance (Sec. 6.2) proves the ability of the proposed LRA to provide information about the implementation of a
budget constrained optimized P&R system adapted to the recurrent disruptions in a large-scale network. The results
also insight about the flow share distribution between the reserve mode and the P&R for a given allocated budget. For
larger budgets, the number of opened pick up and drop off facilities increases significantly. This leads to an increase in
the number of feasible transit routes in the P&R system which results in relatively large flow shares for this mobility
option compared to the reserve mode. While flow shares of this magnitude may be unrealistically high, this can be
explained by the fact that only a single concurrent mobility mode is considered – the reserve mode – which may not
be sufficient to fully capture competition effects across travel options in an urban multi-modal transportation network.
Since the focus of our study is on developing optimization methods, we leave the detailed modeling of such mobility
alternatives for future research.

This study has focused on the design of P&R systems with the aim to improve the resilience of urban mobility
networks in presence of recurrent disruptions. However, the proposed facility location approach can be generalized
beyond P&R systems to the design of flexible multi-modal and on-demand mobility networks. Indeed, the proposed
framework could be used to model three-link trip chains in a generic context. Further research is also needed to
incorporate fleet sizing and vehicle or line capacity in the proposed framework. The addition of the P&R system may
influence transit flows and subsequently traffic congestion in the network. The incorporation of congestion effects in
the proposed framework may be achieved by incorporating a traffic and/or transit assignment. Such extensions of the
proposed formulation will be explored in future works.
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