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We construct a good sequence with uncountable spectrum. As an application, we answer to a question of Lesigne, Quas Rosenblatt and Wierdl.

Good sequences with uncountable spectrum

Let S = (s n ) n≥1 be an increasing sequence of positive integers. We say that S is a good sequence if the following limit exists for every λ ∈ S 1 (S 1 = {z ∈ C : |z| = 1}), [START_REF] Bergelson | Rigidity and non-recurrence along sequences[END_REF] c(λ) = c S (λ) := lim

N →+∞ 1 N N n=1 λ sn .
Equivalently, S is good if, for every λ ∈ S 1 , the following limit exists

(2) lim

N →+∞ 1 π S (N ) 1≤k≤N, k∈S λ k ,
where π S (N ) = # (S ∩ [1, N ]).

Good sequences have been studied by many authors. See for instance Rosenblatt and Wierdl [START_REF] Rosenblatt | Pointwise ergodic theorems via harmonic analysis[END_REF] (who introduced that notion), Rosenblatt [START_REF] Rosenblatt | Norm convergence in ergodic theory and the behavior of Fourier transforms[END_REF], Boshernitzan, Kolesnik, Quas and Wierdl [START_REF] Boshernitzan | Ergodic averaging sequences[END_REF], Lemańczyk, Lesigne, Parreau, Volný and Wierdl [START_REF] Lemańczyk | Random ergodic theorems and real cocycles[END_REF] or Cuny, Eisner and Farkas [START_REF] Cuny | Wiener's lemma along primes and other subsequences[END_REF].

Given a good sequence S, we define its spectrum as the set [START_REF] Cuny | Wiener's lemma along primes and other subsequences[END_REF] Λ S := {λ ∈ S 1 : c(λ) ̸ = 0} .

By theorem 2.22 of [START_REF] Rosenblatt | Pointwise ergodic theorems via harmonic analysis[END_REF] (due to Weyl), for any good sequence S, Λ S has Lebesgue measure 0. If moreover, S has positive upper density, i.e. satisfies lim sup N →+∞ (π S (N )/N ) > 0, then Λ S is countable. See Proposition 2.12 and Corollary 2.13 of [START_REF] Cuny | Wiener's lemma along primes and other subsequences[END_REF] for a proof based on a result of Boshernitzan published in [START_REF] Rosenblatt | Norm convergence in ergodic theory and the behavior of Fourier transforms[END_REF]. See also [START_REF] Kahane | Sur les coefficients de Fourier-Bohr[END_REF] for more general results of that type.

On another hand, up to our knowledge, no good sequence with uncountable spectrum is known.

In [START_REF] Cuny | Wiener's lemma along primes and other subsequences[END_REF], good sequences have been studied in connection with Wiener's lemma. In particular they obtained the following results for good sequences, see their Proposition 2.6 and Theorem 2.10. Recall that if τ is a finite measure on S 1 , then τ (n) = S 1 λ n dτ (λ), for every n ∈ Z.

Proposition 1. Let S = (s n ) n≥1 be a good sequence. Then, for every probability measure µ on S 1 , we have

1 N N n=1 |μ(s n )| 2 -→ N →+∞ (S 1 ) 2 c(λ 1 λ2 )dµ(λ 1 )dµ(λ 2 ) .
In particular, if S has countable spectrum and µ is continuous,

(4) 1 N N n=1 |μ(s n )| 2 -→ N →+∞ 0 .
Remark. (4) implies that μ(s n ) converges in density to 0, by the Koopman-von Neumann Lemma (see e.g. Lemma 2.1 of [START_REF] Cuny | Wiener's lemma along primes and other subsequences[END_REF]).

The above considerations yield and put into perspective the following question: does there exist a good sequence with uncountable spectrum ?

We answer positively to that question below. To state the result, we need some more notation.

Let (m j ) j≥1 be an increasing sequence of positive integers, such that m j+1 /m j ≥ 3 for every j ≥ 1.

We associate with (m j ) j≥1 the sequence S = (s n ) n≥1 made out of the integers (an empty sum is assumed to be 0) [START_REF] Host | Analyse harmonique des mesures. (French) [Harmonic analysis of measures[END_REF] 

m k + 1≤j≤k-1 ω j m j : k ≥ 1, (ω 1 , . . . , ω k-1 ) ∈ {-1, 0, 1} k-1
in increasing order. Notice that our assumption on (m j ) j≥1 implies that all the integers in (5) are positive and distinct.

Denote by ∥ • ∥ the distance to the nearest integer: ∥t∥ := min{|m -t| : m ∈ Z} for every t ∈ R.

Theorem 2. Let (m j ) j≥1 be an increasing sequence of positive integers, such that m j+1 /m j ≥ 3 for every j ≥ 1 and define S as above. Then, S is good and

(6) Λ := e 2iπθ : θ ∈ [0, 1)\Q, j≥1 ∥m j θ∥ 2 < ∞ ⊂ Λ S .
Proof. For every k ≥ 1, consider the following set of integers

M k := 1≤j≤k-1 ω j m j : (ω ℓ ) 1≤ℓ<k ∈ {-1, 0, 1} k-1 .
For every k ≥ 1 and every θ ∈ [0, 1), set

L k (θ) : = 1≤j≤k-1 1 3 (1 + 2 cos(2πm j θ)) (7) = 1 3 k-1 1≤j≤k-1 (1 + e -2iπm j θ + e 2iπm j θ ) = 1 3 k-1 x∈M k e 2iπx . ( 8 
)
Let θ ∈ [0, 1). As -1/3 ≤ (1 + 2 cos(2πθm j ))/3 ≤ 1 for all j, if 1 + 2 cos(2πθm j ) is infinitely often non positive, then (L k (θ)) k≥1 converges to 0.

Assume now that 1+2 cos(2πθm j ) > 0 for j ≥ J, for some integer J. Then, the convergence of (L k (θ)) k≥1 follows from the convergence of ( k j=J (1 + 2 cos(2πθm j ))/3) k≥J which is clear since we have an infinite product of positive terms less than or equal to 1. Moreover this infinite product converges, i.e. the limit is non-zero, if and only if 6) the above condition is satisfied and moreover, as θ is then irrational, the product J-1 j=1 (1 + 2 cos(2πθm j ))/3 does not vanish.

∞ k=J 1 - 1 3 (1 + 2 cos(2πm k θ)) = ∞ k=J 2 3 1 -cos(2πm k θ) < +∞, which is equivalent to ∞ k=J ∥m k θ∥ 2 < +∞. If θ is in the set Λ defined by (
Hence in any case (L k (θ)) k≥1 converges, say to L(θ), and L does not vanish on Λ.

We wish to prove that for every θ ∈ [0, 1), ( 1

N N n=1 e 2iπsnθ ) N ≥1 converges to L(θ). Let N ≥ 1. Since (s n ) n≥1
is the increasing sequence made out of the numbers given by ( 5), we can write

s N +1 = m k N + 1≤j≤k N -1 ω j (N )m j .
The integers s 1 , . . . , s N may be split into consecutive blocks

m 1 + M 1 , . . . , m k N -1 + M k N -1 , W N ,
where

W N = {ℓ ∈ m k N + M k N : ℓ ≤ s N } . As each block M k consists in 3 k-1 integers, we have (9) 3 k N -1 -1 2 ≤ N < 3 k N -1 2 
We may furthermore split

W N into translates of blocks M k . Namely, if ω k N -1 (N ) ̸ = -1, then W N begins with m k N -m k N -1 + M k N -1 , if ω k N -1 (N ) = 1 another block m k N + 0 × m k N -1 + M k N -1
follows, and so on. More precisely, W N is the disjoint union

W N = 1≤j≤k N -1 ω<ω j (N ) m k N + k N -1 ℓ=j+1 ω ℓ (N )m ℓ + ωm j + M j .
Hence, by ( 8), ( 10)

N n=1 e 2iπsnθ = k N -1 j=1 3 j-1 e 2iπm j θ L j (θ) + k N -1 j=1 ω<ω j (N ) 3 j-1 e 2iπu j (ω)θ L j (θ) , where u j (ω) = m k N + k N -1 ℓ=j+1 ω ℓ (N )m ℓ + ωm j . Let us first assume that L(θ) = 0. Then we have 1 N N n=1 e 2iπsnθ ≤ 1 N k N -1 j=1 3 j-1 |L j (θ)| + 1 N k N -1 j=1 ω<ω j (N ) 3 j-1 |L j (θ)| -→ N →+∞ 0 ,
where the convergence follows from a Cesàro type argument.

Assume now that L(θ) ̸ = 0. Then, e 2iπmnθ -→ n→+∞ 1.

Fix ε > 0. Let r ∈ N be such that e -r < ε, and let d ∈ N be such that |1-e 2iπm j θ | < ε/(r+1) and |L(θ) -L j (θ)| < ε for every j ≥ d.

For every N such that k N ≥ d + r, we have on one hand, since (L n (θ)) n≥1 is bounded by 1, [START_REF] Rosenblatt | Norm convergence in ergodic theory and the behavior of Fourier transforms[END_REF] 

k N -r-1 j=1 3 j-1 |e 2iπm j θ L j (θ) -L(θ)| + k N -r-1 j=1 ω<ω j (N ) 3 j-1 |e 2iπu j (ω)θ L j (θ) -L(θ)| ≤ k N -r-1 j=1 3 j-1 [2 + 2 × 2] ≤ 3 k N -r < 3 k N ε.
And on the other hand, as k N -r ≥ d, when k N -r ≤ j ≤ k N we have |1 -e 2iπm j θ | < ε/(r + 1) and

|1 -e 2iπu j (ω)θ | ≤ k N ℓ=k N -r |1 -e 2iπm ℓ θ | < ε,
for every choice of ω. So, [START_REF] Rosenblatt | Pointwise ergodic theorems via harmonic analysis[END_REF] 

k N -1 j=k N -r 3 j-1 |e 2iπm j θ L j (θ) -L(θ)| + k N -1 j=k N -r ω<ω j (N ) 3 j-1 |e 2iπu j (ω)θ L j (θ) -L(θ)| < k N -1 j=k N -r 3 j-1 [2ε + 2 × 2ε] < 3 k N ε.
Gathering [START_REF] Rosenblatt | Norm convergence in ergodic theory and the behavior of Fourier transforms[END_REF] and ( 12), we get

N n=1 e 2iπsnθ -N L(θ) < 2 • 3 k N ε.
Finally, in view of (9), lim sup

N →+∞ 1 N N n=1 e 2iπsnθ -L(θ) ≤ 12ε ,
and the announced result follows since ε is arbitrarily small. □

It follows from Theorem 2 that, in order to produce a good sequence with uncountable spectrum, it is sufficient to exhibit an increasing sequence of integers (m j ) j≥1 , with m j+1 /m j ≥ 3 for every j ≥ 1, and such that the subgroup of S 1 (13)

H 2 = H 2 ((m j ) j≥1 ) := {e 2iπθ : θ ∈ [0, 1), j≥1 ∥m j θ∥ 2 < ∞} , be uncountable.
It turns out that those type of subgroups have been studied in [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF] (and [START_REF] Parreau | Ergodicité et pureté des produits de Riesz[END_REF]).

A similar subgroup, defined by H 1 := {e 2iπθ : θ ∈ [0, 1), j≥1 ∥m j θ∥ < ∞}, studied in [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF] in connection with H 2 , has also been considered by Erdős and Taylor [START_REF] Erdős | On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences[END_REF] and by Bergelson et al. [START_REF] Bergelson | Rigidity and non-recurrence along sequences[END_REF] in connection with IP-rigidity.

In the above papers, sufficient conditions have been obtained for H 2 or H 1 to be uncountable.

To state the results concerning H 2 subgroups, we shall need a strengthening of the lacunarity condition. We say that (m j ) j≥1 satisfies assumption (A) if one of the conditions (A 1 ) or (A 2 ) below is satisfied:

(A 1 ) j≥1 m j m j+1 2 < ∞ (A 2 ) ∀j ≥ 1 m j |m j+1 and m j+1 /m j -→ j→+∞ ∞ .
Proposition 3. Let (m j ) j≥1 be a sequence of integers satisfying assumption (A). Then, H 2 ((m j ) j≥1 ) is uncountable.

The proposition was proved by the second author [START_REF] Parreau | Ergodicité et pureté des produits de Riesz[END_REF] (see also section 4.2 of [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF]) under (A 1 ) (notice that the condition inf j∈N m j+1 /m j ≥ 3 used in [START_REF] Parreau | Ergodicité et pureté des produits de Riesz[END_REF] and [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF] is not restrictive for the uncountability of H 2 ). Actually, it is proved in [START_REF] Parreau | Ergodicité et pureté des produits de Riesz[END_REF] and [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF] that H 2 supports a continuous (singular) probability measure given by a symmetric Riesz product. A proof of the uncountability of H 2 under (A 1 ) can also be derived from the proof of Theorem 5 in [START_REF] Erdős | On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences[END_REF], which states that H 1 is uncountable when j≥1 m j+1 /m j < ∞.

Under condition (A 2 ), the proposition follows from Theorem 3 in [START_REF] Erdős | On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences[END_REF] which states that H 1 ⊂ H 2 is uncountable. We use their argument below in the proofs of Proposition 5 and Theorem 6.

We are now able to state our main result, which follows in a straightforward way from Proposition 3 and Theorem 2.

Theorem 4. Let (m j ) j≥1 be an increasing sequence of positive integers, such that m j+1 /m j ≥ 3 for every j ≥ 1 and define S as above. If assumption (A) is satisfied then S is a good sequence and it has uncountable spectrum.

We also derive the following proposition which complements Proposition 1. It can be shown as an abstract consequence of the existence of a good sequence with uncountable spectrum, but we shall give explicit examples. Proof. We construct such a measure for each sequence S associated with a sequence (m j ) j≥1 satisfying (A 2 ) and inf j∈N m j+1 /m j ≥ 3.

Under this assumption, choose a subsequence (m j k ) k≥1 such that j 1 > 1 and m j /m j-1 > 2 k+2 for all j ≥ j k . For every sequence η = (η k ) k≥1 ∈ {0, 1} N * , let

θ(η) = ∞ k=1 η k m j k .
Given j ≥ 1, let k be the smallest integer such that j k > j. Since m j /m j ℓ is an integer when ℓ < k, we have ( 14)

∥m j θ(η)∥ ≤ m j ℓ≥k 1 m j ℓ ≤ 2 m j m j k ,
and in particular ∥m j θ(η)∥ ≤ 1/4, which yields that all the terms in the products ( 7) are positive.

We also have j<j k m 2 j < 2m 2 j k -1 , so if we sum up the ∥m j θ(η)∥ 2 by blocks from j k-1 to j k -1 (or from 1 to j 1 -1 for the first one), we get that each partial sum is less than

8(m j k -1 /m j k ) 2 , ∞ j=1 ∥m j θ(η)∥ 2 < 8 ∞ k=1 m 2 j k -1 m 2 j k < ∞ k=1 1 4 k < +∞.
and L(θ(η)) > 0 follows. Now, let ξ = (ξ j ) j≥1 be a sequence of i.i.d. random variables with P(ξ 1 = 0) = P(ξ 1 = 1) = 1 2 and let µ be the probability distribution of e 2iπθ(ξ) . Then, as the mapping η → e 2iπθ(η) is oneto-one, µ is a continuous probability measure concentrated on Λ S and

1 N N n=1 μ(s n ) = E 1 N N n=1 e 2iπθ(ξ) → E L(θ(ξ) > 0 as N → +∞.
Finally, Proposition 1 ensures the convergence of 1 N N n=1 |μ(s n )| 2 and the positivity of the limit follows the inequality 1

N N n=1 |μ(s n )| 2 ≥ 1 N N n=1 μ(s n ) 2 . □
Remark. Under assumption (A 1 ) and inf j∈N m j+1 /m j ≥ 3, the result holds for the measure µ constructed in [START_REF] Parreau | Ergodicité et pureté des produits de Riesz[END_REF] or [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF]. Indeed then µ is a generalized Riesz product, weak*-limit of products of trigonometric polynomials P j with coefficients in blocks {km j ; -k j ≤ k ≤ k j } and Pj (m j ) = Pj (-m j ) = cos(π/(m j + 2)). Then for every s = 1≤j≤n ω j m j where |ω j | ≤ k j for all j, we have μ(s) = Π 1≤j≤n Pj (ω j m j ) (see [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF]). From there, the convergence of

1 N N n=1 |μ(s n )|
2 and the positivity of the limit can be proven as in Theorem 2 (we skip the details).

singular asymptotic distribution

We now turn to a matter adressed by Lesigne, Quas, Rosenblatt and Wierdl in the preprint [START_REF] Lesigne | Generation of measures by statistics of rotations along sets of integers[END_REF].

Let S = (s n ) n∈N be a good sequence. Let λ ∈ S 1 . Since S is good, the sequence

1 N N n=1 δλ sn (m) N ∈N = 1 N N n=1 λ msn
N ∈N converges towards c(λ m ) for any integer m, that is for any character on S 1 , so that ( 1 N N n=1 δ λ sn ) N ∈N converges weakly to some probability ν S,λ .

Given a probability measure ν on S 1 , if there exists a good sequence S and λ ∈ S 1 such that ν S,λ = ν, one says that S represents the measure ν at the point λ.

Lesigne et al. proved several interesting results concerning the measures that can be represented by a good at some point λ ∈ S 1 . For instance, they proved that if λ is not a root of unity then ν S,λ is continuous (see their Theorem 8.1). They also proved that if a given probability measure ν on S 1 is not Rajchman (i.e. its Fourier coefficients do not vanish at infinity) then, for almost every λ with respect to the Haar measure, there does not exist any good sequence representing ν at λ (see their Theorem 8.2). On the opposite, if ν is absolutely continuous with respect to the Haar measure, then for every λ ∈ S 1 which is not a root of unity there exists a good sequence S representing ν at λ (see their Theorem 9.1).

The above results raise the following questions. Does there exist a continuous but singular probability measure ν on S 1 that can be represented by a good sequence? If so, can one take ν to be non Rajchman? It turns out that Theorem 2 allows to exhibit a good sequence S and a point λ such that ν S,λ is a non Rajchman probability measure. Theorem 6. Let (m j ) j∈N be an increasing sequence of integers satisfying (A 2 ) and inf j∈N m j+1 /m j ≥ 3, and let S be the sequence associated with it. There are uncountably many λ ∈ Λ S such that the weak*-limit ν S,λ of ( 1

N N n=1 δ λ sn ) N ∈N satisfies lim sup j→+∞ |ν S,λ (m j )| = 1.
Proof. We proceed as in the proof of Proposition 5, except that we require a stronger condition on the subsequence (m j k ) k≥1 , namely m j /m j-1 > 2 k+2 m j k-1 for all j ≥ j k if k > 1.

For η ∈ {0, 1} N * , we still define θ(η) = k≥1 η k /m j k . By the proof of Proposition 5, this yields an uncountable family of λ = e 2iπθ(η) in Λ S .

For each such θ = θ(η) we have νS,λ (m) = c(e 2iπmθ(η) ) = L(mθ) for all m ∈ Z. So, it will be sufficient to show that L(m jn θ) → 1 as n → +∞. Clearly, from the expression of L(θ) as an infinite product, it is equivalent to prove that ∞ j≥1 ∥m jn m j θ∥ 2 converges to 0 as n → +∞. Fix n > 1. We may apply the inequality (14) either to ∥m j θ∥ or to ∥m jn θ∥. For j < j n we get ∥m jn m j θ∥ ≤ m j ∥m jn θ∥ ≤ 2 m jn m j /m j n+1 , and in the opposite case ∥m jn m j θ∥ ≤ m jn ∥m j θ∥ ≤ 2 m jn m j /m j k where k is the smallest integer such that j k > j. So, For j ≥ j n , we sum again by blocks from j k-1 to j k -1, for k > n, The property lim sup j→+∞ |ν(m j )| = 1 means precisely that ν is a Dirichlet measure, see [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF] and [START_REF] Host | Analyse harmonique des mesures. (French) [Harmonic analysis of measures[END_REF] for properties of Dirichlet measures.

In particular there is then a subsequence (n j ) j≥1 such that λ n j converges towards a constant of modulus 1 in the L 1 (ν) topology, and it follows that any measure absolutely continuous with respect to ν is itself a Dirichlet measure.

On the other hand, any probability measure absolutely continuous with respect to some Rajchman measure is itself a Rajchman measure.

Hence, we infer that ν is singular with respect to any Rajchman probability measure on S 1 .

Question. In view of Theorem 6, one may wonder if it is possible to find a good sequence S and λ ∈ S 1 such that 0 < lim sup

n→+∞ |ν S,λ (n)| < 1 .
Another question is whether one can have ν S,λ Rajchman and singular with respect to the Lebesgue measure.

Proposition 5 .

 5 There exist a good sequence (s n ) n≥1 and a continuous measure µ on S 1 , such that ( 1 N N n=1 |μ(s n )| 2 ) N ≥1 converges to some positive number.

j k - 1 j k- 1 ∥m jn m j θ∥ 2 ∥m jn m j θ∥ 2 < ∞ k=n 1 4 k

 1124 → 0 as n → +∞.□Let S and λ ∈ S 1 be as in Theorem 6 and write ν = ν S,λ .
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