

Accurate and Reproducible Conjugate Gradient in Hybrid Parallel Environments

Roman Iakymchuk, Daichi Mukunoki, Takeshi Ogita, Katsuhisa Ozaki, Stef

Graillat

▶ To cite this version:

Roman Iakymchuk, Daichi Mukunoki, Takeshi Ogita, Katsuhisa Ozaki, Stef Graillat. Accurate and Reproducible Conjugate Gradient in Hybrid Parallel Environments. 2021. hal-03805196

HAL Id: hal-03805196 https://hal.science/hal-03805196v1

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accurate and Reproducible Conjugate Gradient in Hybrid Parallel Environments

。 SIT SHIBAURA INSTITUTE OF TECHNOLOGY

Roman Iakymchuk^{1,2}, Daichi Mukunoki³, Takeshi Ogita⁴, Katsuhisa Ozaki⁵, and Stef Graillat¹

¹Sorbonne Université, LIP6, France ²Fraunhofer ITWM, Germany ³RIKEN Center for Computational Science, Japan ⁴Tokyo Woman's Christian University, Japan ⁵Shibaura Institute of Technology, Japan

Introduction

The Preconditioned Conjugate Gradient (PCG) method is often used for solving linear systems of equations arising in various numerical simulations. While being widely used, the solver is also known for its lack of accuracy while computing the residual. Additionally, implementations of the same PCG algorithm, e.g. with Jacobi preconditioner, in different parallel environments may lead to different results as the table shows for the matrix of a 3D Poisson's equation with 27 stencil points, n=4,019,679, and $cond(A) = 10^{12}$.

Performance Results

We provide implementations on different CPUs and GPUs and verify the accuracy of our implementations against the (P)CG with the multiple precision MPFR library. This table shows results on MN4@BSC, where *Opt* stands for FPE with eight digits and the earlyexit technique, i.e. omit propagating zeros. The ExBLAS & Opt results are identical for various number of MPI processes as well as on both MN4 and TR clusters.

Iteration	Absolute Residual Norm (\boldsymbol{r}_i)						
	MPFR	MPI 48 processes	ExBLAS & Opt				
0	0x1.19f179eb7f032p+49	0x1.19f179eb7f03 3 p+49	0x1.19f179eb7f032p+49				
2	0x1.f86089ece9f75p+38	0x1.f86089ece af76 p+38	0x1.f86089ece9f75p+38				
9	0x1.fc59a29d329ffp+28	$0x1.fc59a29d32 \boldsymbol{d1b}p{+}28$	0x1.fc59a29d329ffp+28				
10	0x1.74f5ccc211471p+22	0x1.74f5ccc2 01246 p+22	0x1.74f5ccc211471p+22				
•••	•••	•••	•••				
40	0x1.7031058eb2e3ep-19	0x1.7031058e af4c2 p-19	0x1.7031058eb2e3ep-19				
42	0x1.4828f76bd68afp-23	0x1.4828f76bd a71a p-23	0x1.4828f76bd68afp-23				
45	0x1.8646260a70678p-26	0x1.8646260a 6da06 p-26	0x1.8646260a70678p-26				
47	0x1.13fa97e2419c7p-33	0x1.13fa97e24 0f7c p-33	0x1.13fa97e2419c7p-33				
	Strong Scalability on MareNostrum4	0	(7) pdb1HYS				
$\begin{array}{c} 4 \\ ExBLAS \\ Opt \\ \end{array}$ $\begin{array}{c} 10^{2} \\ 10^{-2} \\ 10^{-2} \\ \end{array}$							

Algorithm 1 CG solving $Ax = -$	<u>b</u>						
1: $\boldsymbol{p}_0 = \boldsymbol{r}_0 = \boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_0$ // Sp	MV Iter	Absolute Residual Norm (\boldsymbol{r}_i)					
2: $\rho_0 = \boldsymbol{r}_0^T \boldsymbol{r}_0$ // DOT		MPI 1 process	MPI 48 processes				
$3: \ i = 0$		$\frac{1}{0 \times 1 \cdot 10 f 170 \circ b \cdot 7 f 0.23 \circ b \cdot 40}$	$\frac{7}{10x1} \frac{10f170ob7f033p + 40}{10x1}$				
4: while 1 do 5: $a = A p$. // Sr		0X1.191179eb71055p+49	0X1.191179eb71055p+49				
5. $\boldsymbol{q}_i = \boldsymbol{A} \boldsymbol{p}_i$ 6. $\alpha_i = \rho_i / \boldsymbol{p}_i^T \boldsymbol{q}_i$ // J	200 T 2	0x1.f86089ece5bd4p+38	0x1.f86089ece af76 p+38				
7: $\boldsymbol{x}_{i+1} = \boldsymbol{x}_i + \alpha_i \boldsymbol{p}_i$ // A2	XPY 9	0x1.fc59a29d3 599a p+28	0x1.fc59a29d32d1bp+28				
8: $\boldsymbol{r}_{i+1} = \boldsymbol{r}_i - \alpha_i \boldsymbol{q}_i$ // A2	XPY 10	0x1.74f5ccc 1d03cb p+22	0x1.74f5ccc 201246 p+22				
9: if $ \boldsymbol{r}_{i+1} / \boldsymbol{b} < \epsilon$ then // NH	$RM2$ – \circ						
10: break	• • •	•••	•••				
11: end if 12: $\alpha_{1} = \mathbf{n}_{1} = T \mathbf{n}_{2}$	40	0x1.7031058 dd6bcf p-19	0x1.7031058 eaf4c2 p-19				
12. $\rho_{i+1} - \rho_{i+1} - \rho_{i+1}$ 13: $\beta_i = \rho_{i+1} / \rho_i$	42	0x1.4828f76 d1aa3 p-23	0x1.4828f76 bda71a p-23				
14: $\rho_i = \rho_{i+1}$	45	0x1.8646260a 2dae8 p-26	0x1.8646260a 6da06 p-26				
15: $p_{i+1} = r_{i+1} + \beta_i p_i$ // SO 16: $i = i + 1$	UAL 47	0x1.13fa97e 1e76bf p-33	0x1.13fa97e 240f7c p-33				
17: end while							
The same trend holds for the	e SuiteSp	parse matrices also in term	ns of iterations, e.g. for the				
gyro_k matrix on the MN4 cluster at BSC and Tintorrum (TR) at UJI, both in Spain [2].							
Matrix $cond(A)$ ϵ N	IPI@MN	4 MPI+OMP@MN4 MP	I@TR MPI+OMP@TR				
gyro_k $1.10e + 09 \ 10^{-8} \ 1e^{-8}$	6,557	16,064 16,5	518 16,623				
Our goal is to secure the accuracy and reproducibility of PCG in hybrid parallel environments with the minimal possible overhead.							

Strategies for Accurate and Reproducible (P)CG

Our strategies are reinforced with programmability components such as the explicit use *fma* instructions and a careful re-arrangement of computations. The reproducibility of (P)CG is guaranteed via reproducibility of its building blocks: dot product, axpy, spmv. ExBLAS [1, 2]OzBLAS [3, 4]

We tested the ExBLAS (FP64Ex-CR; CR – correctly-rounded) and OzBLAS (FP64Oz-CR) versions of CG on Intel Xeon Gold 6126 (Skylake, 24 cores) and Intel Xeon Phi 7250 (KNL, 68 cores) for the following SuiteSparse matrices with the tolerance 10^{-16}

	,			
	/			

- BLAS based on floating-point expansions (FPE) with error-free transformations (EFT: twosum and twoprod) and Kulisch accumulator
- rounding by preserving every bit of information until the final rounding
- CPU and GPU (OpenCL) versions

- ExBLAS is an accurate & reproducible OzBLAS is an reproducible & accurate BLAS using the Ozaki scheme, which is an accurate matrix multiplication method based on the error-free transformation of dot-product
- Assures reproducibility through correct- The accuracy is tunable and depends on the range of the inputs and the vector length
 - CPU and GPU (CUDA) versions

Matrix	n	nnz	nnz/n	FP64Ex-CR/	FP64	FP64Oz-CR/ FP64			04
				Skylake	KNL	Skylake	KNL	V100	P100
tmt_sym	5,080,961	726,713	7.0	54.9	89.5	28.2	36.6	17.1	21.7
gridgena	48,962	512,084	10.5	16.9	13.8	11.6	10.8	12.6	12.3
cfd1	1,825,580	70,656	25.8	22.3	17.0	15.1	11.7	12.3	14.9
cbuckle	13,681	676,515	49.4	11.1	6.4	16.0	11.5	9.7	10.3
BenElechi1	245,874	13,150,496	53.5	15.8	41.2	16.7	18.3	12.8	16.9
gyro_k	17,361	1,021,159	58.8	9.5	7.5	12.7	10.1	7.6	8.5
pdb1HYS	36,417	4,344,765	119.3	9.3	12.6	13.1	8.1	6.0	6.9
nd24k	72,000	28,715,634	398.8	5.0	22.1	13.8	12.1	5.5	6.4

Conclusions and Future Work

- Combined algorithmic and programming strategies led to accurate and reproducible Conjugate Gradient on CPUs, GPUs, and cross-platforms
- ExBLAS- and FPE-based PCG show only 20% and 5% overhead, respectively, on up to 764 cores but requires development of BLAS routines

• Ozaki-scheme-based CG is tunable and efficient and it relies on vendor-provided BLAS

We explore mixed-precision scenarios as well as a more optimized FPE-based PCG variant.

Acknowledgements

This research was partially supported by JSPS KAKENHI Grant No.19K20286 and the EU H2020 MSCA-IF Robust Grant No. 842528.

References

- [1] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk. Numerical reproducibility for the parallel reduction on multi- and many-core architectures. ParCo, 49:83–97, 2015.
- [2] R. Iakymchuk, M. Barreda, S. Graillat, J. I. Aliaga, and E. S. Quintana-Ortí. Reproducibility of Parallel Preconditioned Conjugate Gradient in Hybrid Programming Environments. IJHPCA, 34(5):502–518, 2020.
- [3] D. Mukunoki, T. Ogita, and K. Ozaki. Accurate and reproducible blas routines with ozaki scheme for many-core architectures. In Proc. of PPAM2019. Lecture Notes in Computer Science, volume 12043, pages 516–527, 2020.
- [4] D. Mukunoki, K. Ozaki, T. Ogita, and R. Iakymchuk. Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki scheme. In Proc. of HPC Asia, pages 100–109, 2021.

code: https://github.com/riakymch/ReproCG

http://www.math.twcu.ac.jp/ogita/post-k/results.html e-mail: roman.iakymchuk@sorbonne-universite.fr

