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Introduction

The Preconditioned Conjugate Gradient (PCG) method is often used for solving linear
systems of equations arising in various numerical simulations. While being widely used,
the solver is also known for its lack of accuracy while computing the residual. Additionally,
implementations of the same PCG algorithm, e.g. with Jacobi preconditioner, in different
parallel environments may lead to different results as the table shows for the matrix of a
3D Poisson’s equation with 27 stencil points, n=4,019,679, and cond(A) = 1012.

Algorithm 1 CG solving Ax = b
1: p0 = r0 = b−Ax0 // SpMV
2: ρ0 = r0

Tr0 // DOT
3: i = 0
4: while 1 do
5: qi = Api // SpMV
6: αi = ρi/pi

Tqi // DOT
7: xi+1 = xi + αipi // AXPY
8: ri+1 = ri − αiqi // AXPY
9: if ||ri+1||/||b|| < ε then // NRM2

10: break
11: end if
12: ρi+1 = ri+1

Tri+1 // DOT
13: βi = ρi+1/ρi
14: ρi = ρi+1

15: pi+1 = ri+1 + βipi // SCAL
16: i = i + 1
17: end while

Iter Absolute Residual Norm (||ri||)
MPI 1 process MPI 48 processes

0 0x1.19f179eb7f033p+49 0x1.19f179eb7f033p+49
2 0x1.f86089ece5bd4p+38 0x1.f86089eceaf76p+38
9 0x1.fc59a29d3599ap+28 0x1.fc59a29d32d1bp+28
10 0x1.74f5ccc1d03cbp+22 0x1.74f5ccc201246p+22
... ... ...
40 0x1.7031058dd6bcfp-19 0x1.7031058eaf4c2p-19
42 0x1.4828f76d1aa3p-23 0x1.4828f76bda71ap-23
45 0x1.8646260a2dae8p-26 0x1.8646260a6da06p-26
47 0x1.13fa97e1e76bfp-33 0x1.13fa97e240f7cp-33

The same trend holds for the SuiteSparse matrices also in terms of iterations, e.g. for the
gyro k matrix on the MN4 cluster at BSC and Tintorrum (TR) at UJI, both in Spain [2].

Matrix cond(A) ε MPI@MN4 MPI+OMP@MN4 MPI@TR MPI+OMP@TR

gyro k 1.10e + 09 10−8 16,557 16,064 16,518 16,623

Our goal is to secure the accuracy and reproducibility of PCG in hybrid parallel en-
vironments with the minimal possible overhead.

Strategies for Accurate and Reproducible (P)CG

Our strategies are reinforced with programmability components such as the explicit use
of fma instructions and a careful re-arrangement of computations. The reproducibility of
(P)CG is guaranteed via reproducibility of its building blocks: dot product, axpy, spmv.

ExBLAS [1, 2]

•ExBLAS is an accurate & reproducible
BLAS based on floating-point expan-
sions (FPE) with error-free transforma-
tions (EFT: twosum and twoprod) and
Kulisch accumulator

•Assures reproducibility through correct-
rounding by preserving every bit of infor-
mation until the final rounding

•CPU and GPU (OpenCL) versions

OzBLAS [3, 4]

•OzBLAS is an reproducible & accurate
BLAS using the Ozaki scheme, which is
an accurate matrix multiplication method
based on the error-free transformation of
dot-product

•The accuracy is tunable and depends on
the range of the inputs and the vector
length

•CPU and GPU (CUDA) versions
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Error-free transformation of dot product

The third approach (called Opt) is a customized version of ExBLAS that relies upon FPE
with EFT [2] as often it is sufficient to have several digits, see gyro k on left and msc01050
on right.
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Performance Results

We provide implementations on different CPUs and GPUs and verify the accuracy of our
implementations against the (P)CG with the multiple precision MPFR library. This table
shows results on MN4@BSC, where Opt stands for FPE with eight digits and the early-
exit technique, i.e. omit propagating zeros. The ExBLAS & Opt results are identical for
various number of MPI processes as well as on both MN4 and TR clusters.

Iteration Absolute Residual Norm (||ri||)
MPFR MPI 48 processes ExBLAS & Opt

0 0x1.19f179eb7f032p+49 0x1.19f179eb7f033p+49 0x1.19f179eb7f032p+49
2 0x1.f86089ece9f75p+38 0x1.f86089eceaf76p+38 0x1.f86089ece9f75p+38
9 0x1.fc59a29d329ffp+28 0x1.fc59a29d32d1bp+28 0x1.fc59a29d329ffp+28
10 0x1.74f5ccc211471p+22 0x1.74f5ccc201246p+22 0x1.74f5ccc211471p+22
... ... ... ...
40 0x1.7031058eb2e3ep-19 0x1.7031058eaf4c2p-19 0x1.7031058eb2e3ep-19
42 0x1.4828f76bd68afp-23 0x1.4828f76bda71ap-23 0x1.4828f76bd68afp-23
45 0x1.8646260a70678p-26 0x1.8646260a6da06p-26 0x1.8646260a70678p-26
47 0x1.13fa97e2419c7p-33 0x1.13fa97e240f7cp-33 0x1.13fa97e2419c7p-33
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We tested the ExBLAS (FP64Ex-CR; CR – correctly-rounded) and OzBLAS (FP64Oz-
CR) versions of CG on Intel Xeon Gold 6126 (Skylake, 24 cores) and Intel Xeon Phi 7250
(KNL, 68 cores) for the following SuiteSparse matrices with the tolerance 10−16

Matrix n nnz nnz/n FP64Ex-CR/ FP64 FP64Oz-CR/ FP64
Skylake KNL Skylake KNL V100 P100

tmt sym 5,080,961 726,713 7.0 54.9 89.5 28.2 36.6 17.1 21.7
gridgena 48,962 512,084 10.5 16.9 13.8 11.6 10.8 12.6 12.3
cfd1 1,825,580 70,656 25.8 22.3 17.0 15.1 11.7 12.3 14.9
cbuckle 13,681 676,515 49.4 11.1 6.4 16.0 11.5 9.7 10.3
BenElechi1 245,874 13,150,496 53.5 15.8 41.2 16.7 18.3 12.8 16.9
gyro k 17,361 1,021,159 58.8 9.5 7.5 12.7 10.1 7.6 8.5
pdb1HYS 36,417 4,344,765 119.3 9.3 12.6 13.1 8.1 6.0 6.9
nd24k 72,000 28,715,634 398.8 5.0 22.1 13.8 12.1 5.5 6.4

Conclusions and Future Work

•Combined algorithmic and programming strategies led to accurate and reproducible
Conjugate Gradient on CPUs, GPUs, and cross-platforms

•ExBLAS- and FPE-based PCG show only 20 % and 5 % overhead, respectively, on up
to 764 cores but requires development of BLAS routines

•Ozaki-scheme-based CG is tunable and efficient and it relies on vendor-provided BLAS

We explore mixed-precision scenarios as well as a more optimized FPE-based PCG variant.
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