
HAL Id: hal-03805196
https://hal.science/hal-03805196v1

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate and Reproducible Conjugate Gradient in
Hybrid Parallel Environments

Roman Iakymchuk, Daichi Mukunoki, Takeshi Ogita, Katsuhisa Ozaki, Stef
Graillat

To cite this version:
Roman Iakymchuk, Daichi Mukunoki, Takeshi Ogita, Katsuhisa Ozaki, Stef Graillat. Accurate and
Reproducible Conjugate Gradient in Hybrid Parallel Environments. 2021. �hal-03805196�

https://hal.science/hal-03805196v1
https://hal.archives-ouvertes.fr

LATEX TikZposter

Accurate and Reproducible Conjugate Gradient in
Hybrid Parallel Environments

Roman Iakymchuk1,2, Daichi Mukunoki3, Takeshi Ogita4, Katsuhisa Ozaki5,
and Stef Graillat1

1Sorbonne Université, LIP6, France 2Fraunhofer ITWM, Germany 3RIKEN Center for Computational Science,

Japan 4Tokyo Woman’s Christian University, Japan 5Shibaura Institute of Technology, Japan

Accurate and Reproducible Conjugate Gradient in
Hybrid Parallel Environments

Roman Iakymchuk1,2, Daichi Mukunoki3, Takeshi Ogita4, Katsuhisa Ozaki5,
and Stef Graillat1

1Sorbonne Université, LIP6, France 2Fraunhofer ITWM, Germany 3RIKEN Center for Computational Science,

Japan 4Tokyo Woman’s Christian University, Japan 5Shibaura Institute of Technology, Japan

Introduction

The Preconditioned Conjugate Gradient (PCG) method is often used for solving linear
systems of equations arising in various numerical simulations. While being widely used,
the solver is also known for its lack of accuracy while computing the residual. Additionally,
implementations of the same PCG algorithm, e.g. with Jacobi preconditioner, in different
parallel environments may lead to different results as the table shows for the matrix of a
3D Poisson’s equation with 27 stencil points, n=4,019,679, and cond(A) = 1012.

Algorithm 1 CG solving Ax = b
1: p0 = r0 = b−Ax0 // SpMV
2: ρ0 = r0

Tr0 // DOT
3: i = 0
4: while 1 do
5: qi = Api // SpMV
6: αi = ρi/pi

Tqi // DOT
7: xi+1 = xi + αipi // AXPY
8: ri+1 = ri − αiqi // AXPY
9: if ||ri+1||/||b|| < ε then // NRM2

10: break
11: end if
12: ρi+1 = ri+1

Tri+1 // DOT
13: βi = ρi+1/ρi
14: ρi = ρi+1

15: pi+1 = ri+1 + βipi // SCAL
16: i = i + 1
17: end while

Iter Absolute Residual Norm (||ri||)
MPI 1 process MPI 48 processes

0 0x1.19f179eb7f033p+49 0x1.19f179eb7f033p+49
2 0x1.f86089ece5bd4p+38 0x1.f86089eceaf76p+38
9 0x1.fc59a29d3599ap+28 0x1.fc59a29d32d1bp+28
10 0x1.74f5ccc1d03cbp+22 0x1.74f5ccc201246p+22
...
40 0x1.7031058dd6bcfp-19 0x1.7031058eaf4c2p-19
42 0x1.4828f76d1aa3p-23 0x1.4828f76bda71ap-23
45 0x1.8646260a2dae8p-26 0x1.8646260a6da06p-26
47 0x1.13fa97e1e76bfp-33 0x1.13fa97e240f7cp-33

The same trend holds for the SuiteSparse matrices also in terms of iterations, e.g. for the
gyro k matrix on the MN4 cluster at BSC and Tintorrum (TR) at UJI, both in Spain [2].

Matrix cond(A) ε MPI@MN4 MPI+OMP@MN4 MPI@TR MPI+OMP@TR

gyro k 1.10e + 09 10−8 16,557 16,064 16,518 16,623

Our goal is to secure the accuracy and reproducibility of PCG in hybrid parallel en-
vironments with the minimal possible overhead.

Strategies for Accurate and Reproducible (P)CG

Our strategies are reinforced with programmability components such as the explicit use
of fma instructions and a careful re-arrangement of computations. The reproducibility of
(P)CG is guaranteed via reproducibility of its building blocks: dot product, axpy, spmv.

ExBLAS [1, 2]

•ExBLAS is an accurate & reproducible
BLAS based on floating-point expan-
sions (FPE) with error-free transforma-
tions (EFT: twosum and twoprod) and
Kulisch accumulator

•Assures reproducibility through correct-
rounding by preserving every bit of infor-
mation until the final rounding

•CPU and GPU (OpenCL) versions

OzBLAS [3, 4]

•OzBLAS is an reproducible & accurate
BLAS using the Ozaki scheme, which is
an accurate matrix multiplication method
based on the error-free transformation of
dot-product

•The accuracy is tunable and depends on
the range of the inputs and the vector
length

•CPU and GPU (CUDA) versions

Step 1: Splitting

Step 2: Multiplication (GEMM)

Step 3: Reductionx
xsplit

(1)
xsplit

(2)
xsplit

(3)
xsplit

(4)

y
ysplit

(1)
ysplit

(2)
ysplit

(3)
ysplit

(4)

Error-free transformation of dot product

The third approach (called Opt) is a customized version of ExBLAS that relies upon FPE
with EFT [2] as often it is sufficient to have several digits, see gyro k on left and msc01050
on right.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

S
ig

n
if

ic
an

t
F

P
E

 d
ig

it
s

Iterations

datafile using 1:2
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000 1200 1400

S
ig

n
if

ic
an

t
F

P
E

 d
ig

it
s

Iterations

datafile using 1:2

Performance Results

We provide implementations on different CPUs and GPUs and verify the accuracy of our
implementations against the (P)CG with the multiple precision MPFR library. This table
shows results on MN4@BSC, where Opt stands for FPE with eight digits and the early-
exit technique, i.e. omit propagating zeros. The ExBLAS & Opt results are identical for
various number of MPI processes as well as on both MN4 and TR clusters.

Iteration Absolute Residual Norm (||ri||)
MPFR MPI 48 processes ExBLAS & Opt

0 0x1.19f179eb7f032p+49 0x1.19f179eb7f033p+49 0x1.19f179eb7f032p+49
2 0x1.f86089ece9f75p+38 0x1.f86089eceaf76p+38 0x1.f86089ece9f75p+38
9 0x1.fc59a29d329ffp+28 0x1.fc59a29d32d1bp+28 0x1.fc59a29d329ffp+28
10 0x1.74f5ccc211471p+22 0x1.74f5ccc201246p+22 0x1.74f5ccc211471p+22
...
40 0x1.7031058eb2e3ep-19 0x1.7031058eaf4c2p-19 0x1.7031058eb2e3ep-19
42 0x1.4828f76bd68afp-23 0x1.4828f76bda71ap-23 0x1.4828f76bd68afp-23
45 0x1.8646260a70678p-26 0x1.8646260a6da06p-26 0x1.8646260a70678p-26
47 0x1.13fa97e2419c7p-33 0x1.13fa97e240f7cp-33 0x1.13fa97e2419c7p-33

 1

 1.5

 2

 2.5

 3

 3.5

 4

48 96 192 384 768

N
o
rm

al
iz

ed
 t

im
e

v
s

o
ri

g
in

al

Number of cores

Strong Scalability on MareNostrum4

ExBLAS
Opt

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 0 2000 4000 6000 8000 10000 12000

re
s
id

u
a
l

iter

(7) pdb1HYS

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz-CR

Relative residual ||ri||/||b|| (solid), relative
true residual ||b − Axi||/||b|| (dotted);
GPU1 stands for V100 and GPU2 for P100.

We tested the ExBLAS (FP64Ex-CR; CR – correctly-rounded) and OzBLAS (FP64Oz-
CR) versions of CG on Intel Xeon Gold 6126 (Skylake, 24 cores) and Intel Xeon Phi 7250
(KNL, 68 cores) for the following SuiteSparse matrices with the tolerance 10−16

Matrix n nnz nnz/n FP64Ex-CR/ FP64 FP64Oz-CR/ FP64
Skylake KNL Skylake KNL V100 P100

tmt sym 5,080,961 726,713 7.0 54.9 89.5 28.2 36.6 17.1 21.7
gridgena 48,962 512,084 10.5 16.9 13.8 11.6 10.8 12.6 12.3
cfd1 1,825,580 70,656 25.8 22.3 17.0 15.1 11.7 12.3 14.9
cbuckle 13,681 676,515 49.4 11.1 6.4 16.0 11.5 9.7 10.3
BenElechi1 245,874 13,150,496 53.5 15.8 41.2 16.7 18.3 12.8 16.9
gyro k 17,361 1,021,159 58.8 9.5 7.5 12.7 10.1 7.6 8.5
pdb1HYS 36,417 4,344,765 119.3 9.3 12.6 13.1 8.1 6.0 6.9
nd24k 72,000 28,715,634 398.8 5.0 22.1 13.8 12.1 5.5 6.4

Conclusions and Future Work

•Combined algorithmic and programming strategies led to accurate and reproducible
Conjugate Gradient on CPUs, GPUs, and cross-platforms

•ExBLAS- and FPE-based PCG show only 20 % and 5 % overhead, respectively, on up
to 764 cores but requires development of BLAS routines

•Ozaki-scheme-based CG is tunable and efficient and it relies on vendor-provided BLAS

We explore mixed-precision scenarios as well as a more optimized FPE-based PCG variant.

Acknowledgements

This research was partially supported by JSPS KAKENHI Grant No.19K20286 and the
EU H2020 MSCA-IF Robust Grant No. 842528.

References

[1] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk. Numerical reproducibility for the parallel reduction on multi- and
many-core architectures. ParCo, 49:83–97, 2015.

[2] R. Iakymchuk, M. Barreda, S. Graillat, J. I. Aliaga, and E. S. Quintana-Ort́ı. Reproducibility of Parallel Preconditioned
Conjugate Gradient in Hybrid Programming Environments. IJHPCA, 34(5):502–518, 2020.

[3] D. Mukunoki, T. Ogita, and K. Ozaki. Accurate and reproducible blas routines with ozaki scheme for many-core architectures.
In Proc. of PPAM2019. Lecture Notes in Computer Science, volume 12043, pages 516–527, 2020.

[4] D. Mukunoki, K. Ozaki, T. Ogita, and R. Iakymchuk. Conjugate Gradient Solvers with High Accuracy and Bit-wise Repro-
ducibility between CPU and GPU using Ozaki scheme. In Proc. of HPC Asia, pages 100–109, 2021.

code: https://github.com/riakymch/ReproCG
http://www.math.twcu.ac.jp/ogita/post-k/results.html

e-mail: roman.iakymchuk@sorbonne-universite.fr

