Roman Iakymchuk

Daichi Mukunoki

Takeshi Ogita

Katsuhisa Ozaki

Stef Graillat

Accurate and Reproducible Conjugate Gradient in Hybrid Parallel Environments

Introduction

The Preconditioned Conjugate Gradient (PCG) method is often used for solving linear systems of equations arising in various numerical simulations. While being widely used, the solver is also known for its lack of accuracy while computing the residual. Additionally, implementations of the same PCG algorithm, e.g. with Jacobi preconditioner, in different parallel environments may lead to different results as the table shows for the matrix of a 3D Poisson's equation with 27 stencil points, n=4,019,679, and cond(A) = 10 12 .

Algorithm 1 CG solving Ax = b 1: p 0 = r 0 = b -Ax 0 // SpMV 2: ρ 0 = r 0 T r 0 // DOT 3: i = 0 4: while 1 do 5: q i = Ap i // SpMV 6:
α i = ρ i /p i T q i // DOT 7:

x i+1 = x i + α i p i // AXPY 8: r i+1 = r i -α i q i // AXPY
β i = ρ i+1 /ρ i 14: ρ i = ρ i+1
15: The same trend holds for the SuiteSparse matrices also in terms of iterations, e.g. for the gyro k matrix on the MN4 cluster at BSC and Tintorrum (TR) at UJI, both in Spain [2].

p i+1 = r i+1 + β i p i //
Matrix cond(A) MPI@MN4 MPI+OMP@MN4 MPI@TR MPI+OMP@TR gyro k 1.10e + 09 10 -8 16,557 16,064 16,518 16,623

Our goal is to secure the accuracy and reproducibility of PCG in hybrid parallel environments with the minimal possible overhead.

Strategies for Accurate and Reproducible (P)CG

Our strategies are reinforced with programmability components such as the explicit use of fma instructions and a careful re-arrangement of computations. The reproducibility of (P)CG is guaranteed via reproducibility of its building blocks: dot product, axpy, spmv.

ExBLAS [1, 2]

• ExBLAS is an accurate & reproducible BLAS based on floating-point expansions (FPE) with error-free transformations (EFT: twosum and twoprod) and Kulisch accumulator

• Assures reproducibility through correctrounding by preserving every bit of information until the final rounding

• CPU and GPU (OpenCL) versions

OzBLAS [3, 4] • OzBLAS is an reproducible & accurate BLAS using the Ozaki scheme, which is an accurate matrix multiplication method based on the error-free transformation of dot-product

• The accuracy is tunable and depends on the range of the inputs and the vector length

• CPU and GPU (CUDA) versions

Step 1: Splitting

Step 2: Multiplication (GEMM)

Step 3: Reduction x x split [START_REF] Collange | Numerical reproducibility for the parallel reduction on multi-and many-core architectures[END_REF] x split [START_REF] Iakymchuk | Reproducibility of Parallel Preconditioned Conjugate Gradient in Hybrid Programming Environments[END_REF] x split [START_REF] Mukunoki | Accurate and reproducible blas routines with ozaki scheme for many-core architectures[END_REF] x split y split [START_REF] Mukunoki | Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki scheme[END_REF] Error-free transformation of dot product

The third approach (called Opt) is a customized version of ExBLAS that relies upon FPE with EFT [2] as often it is sufficient to have several digits, see gyro k on left and msc01050 on right.

Performance Results

We provide implementations on different CPUs and GPUs and verify the accuracy of our implementations against the (P)CG with the multiple precision MPFR library. This table shows results on MN4@BSC, where Opt stands for FPE with eight digits and the earlyexit technique, i.e. omit propagating zeros. Conclusions and Future Work

• Combined algorithmic and programming strategies led to accurate and reproducible Conjugate Gradient on CPUs, GPUs, and cross-platforms

• ExBLAS-and FPE-based PCG show only 20 % and 5 % overhead, respectively, on up to 764 cores but requires development of BLAS routines

• Ozaki-scheme-based CG is tunable and efficient and it relies on vendor-provided BLAS

We explore mixed-precision scenarios as well as a more optimized FPE-based PCG variant.

 The ExBLAS & Opt results are identical for various number of MPI processes as well as on both MN4 and TR clusters.

	Iteration		Absolute Residual Norm (||r i ||)
			MPFR	MPI 48 processes	ExBLAS & Opt
		0	0x1.19f179eb7f032p+49 0x1.19f179eb7f033p+49 0x1.19f179eb7f032p+49
		2	0x1.f86089ece9f75p+38 0x1.f86089eceaf76p+38 0x1.f86089ece9f75p+38
		9	0x1.fc59a29d329ffp+28 0x1.fc59a29d32d1bp+28 0x1.fc59a29d329ffp+28
		10	0x1.74f5ccc211471p+22 0x1.74f5ccc201246p+22 0x1.74f5ccc211471p+22
	
		40	0x1.7031058eb2e3ep-19 0x1.7031058eaf4c2p-19 0x1.7031058eb2e3ep-19
		42	0x1.4828f76bd68afp-23 0x1.4828f76bda71ap-23 0x1.4828f76bd68afp-23
		45	0x1.8646260a70678p-26 0x1.8646260a6da06p-26 0x1.8646260a70678p-26
		47	0x1.13fa97e2419c7p-33 0x1.13fa97e240f7cp-33 0x1.13fa97e2419c7p-33
			Strong Scalability on MareNostrum4			(7) pdb1HYS
	Normalized time vs original	1.5 2 2.5 3 3.5 4			ExBLAS Opt		10 10 10 -12 -16 -14 10 -10 10 -8 10 -6 10 -4 2 10 10 0 10 -2 Relative residual ||r i ||/||b|| (solid), relative 0 2000 4000 6000 8000 10000 12000 residual iter FP64(CPU1) FP64(CPU2) FP64(GPU1) FP64(GPU2) FP64Oz-CR
		1	48 96 192	384	768	true residual ||b -Ax i ||/||b|| (dotted);
				Number of cores		GPU1 stands for V100 and GPU2 for P100.
	We tested the ExBLAS (FP64Ex-CR; CR -correctly-rounded) and OzBLAS (FP64Oz-
	CR) versions of CG on Intel Xeon Gold 6126 (Skylake, 24 cores) and Intel Xeon Phi 7250
	(KNL, 68 cores) for the following SuiteSparse matrices with the tolerance 10 -16
	Matrix		n	nnz nnz/n FP64Ex-CR/ FP64	FP64Oz-CR/ FP64
						Skylake	KNL Skylake KNL V100 P100
	tmt sym 5,080,961	726,713	7.0	54.9	89.5 28.2 36.6 17.1 21.7
	gridgena	48,962	512,084	10.5	16.9	13.8	11.6 10.8 12.6 12.3
	cfd1		1,825,580	70,656	25.8	22.3	17.0	15.1 11.7 12.3 14.9
	cbuckle		13,681	676,515	49.4	11.1	6.4	16.0 11.5 9.7 10.3
	BenElechi1 245,874 13,150,496	53.5	15.8	41.2	16.7 18.3 12.8 16.9
	gyro k		17,361 1,021,159	58.8	9.5	7.5	12.7 10.1 7.6 8.5
	pdb1HYS	36,417 4,344,765 119.3	9.3	12.6	13.1 8.1 6.0 6.9
	nd24k		72,000 28,715,634 398.8	5.0	22.1	13.8 12.1 5.5 6.4

Acknowledgements

This research was partially supported by JSPS KAKENHI Grant No.19K20286 and the EU H2020 MSCA-IF Robust Grant No. 842528.