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Abstract

Observing non-classical nucleation pathways re-
mains challenging in simulations of complex
ma- terials with technological interests. This
is because it requires very accurate force fields
that can capture the whole complexity of their
underlying interatomic interactions and an ad-
vanced structural analysis able to discriminate
between competing crystalline phases. Here,
we first report the construction and a particu-
larly thorough validation of a machine-learning
force field for zinc oxide interactions using the
Physical LassoLars Interaction Potentials ap-
proach which allows us to be predictive even
for high temperature dynamical systems such as
ZnO melt. Then, we carried out several types
of crystallization simulations and followed the
formation of ZnO crystal with atomistic pre-
cision. Our results, which were analyzed us-
ing a data-driven approach based on bond or-
der parameters, demonstrate the presence of
both prenucleation clusters and two-step nu-
cleation scenarios, thus retrieving seminal pre-
dictions of non-classical nucleation pathways
made on much simpler models. Dedicated cal-
culations of high temperature ZnO free energy
within a newly developed automated nonequi-

librium thermodynamic integration method re-
vealed the existence of a thermodynamic bias
for the predicted non-classical nucleation sce-
narios.

Introduction

While crystals in material science are ubiqui-
tous, the mechanisms of their formation which
spans from nucleation to crystal growth re-
main one of the most intriguing processes in
nature. Better understanding crystallization
would allow for a rational control of material
engineering and possibly for the development
of novel functional materials and technologi-
cal applications. From the fundamental point
of view, numerous works have been dedicated
to elucidating the emergence of the nucleation
core1–5 and its role in controlling the final crys-
tal structure.6–12 For instance, it is now possible
to observe the crystal birth with electron mi-
croscopy,6,7,13–15 and colloidal science has also
provided numerous experimental results on nu-
cleation.16–19 Yet, numerical simulations remain
the principal instrument to investigate crystal-
lization at the atomistic level.20 In this context,
most of these works require large scale simula-
tions in order to observe the phase transition
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and have therefore only focused on materials for
which the interactions are very simple, includ-
ing hard-spheres,3,21–25 Lennard-Jones,1,5,9,11,26

water,23,27–34 as well as metallic potentials, like
embedded-atom model (EAM).8,10,35

Prompted by this large body of fundamen-
tal achievements, it becomes timely to reach
the same level of understanding for crystalliza-
tion in more complex materials in order to tar-
get more diverse technological applications. So
far, the need for large scale simulations have
prevented from using quantum accurate model-
ing including density functional theory (DFT),
and the research field dedicated to constructing
novel interaction potentials to bridge this com-
putational gap has been ever expanding.36–43 In
particular, the past decade has seen the emer-
gence of innovative types of interaction poten-
tials based on machine-learning algorithms.44

Various approaches have been proposed such as
Artificial Neural Networks,44 Gaussian approx-
imation potentials,45 Linearized potentials,46–51

Spectral Neighbor Analysis Potential,52,53 Sym-
metric Gradient Domain Machine learning,54,55

and Moment Tensor Potentials.56,57 The success
of those machine-learning interaction potentials
(MLIPs) is seen through the large variety of
studied materials, namely pure metals,46,58–61

organic molecules,62–65 water,66–70 amorphous
materials,71–76 and hybrid perovskites.77

The oxide materials has been much less in-
vestigated using MLIPs.78–85 With those ma-
terials, the complexity lies in the emergence
of long-range electrostatic effects difficult to
capture with traditional machine-learning ap-
proaches.86,87 In addition, oxide materials of-
ten exhibit a rich structural landscape com-
posed of numerous polymorphs.88–91 Being able
to model those polymorphs with a unique set
of atomic interaction remains challenging even
for advanced machine-learning methods.

In this article we focus on modeling ZnO
crystallization from bulk ZnO melt, based on
a newly developed approach named Physical
LassoLars Interaction Potential (PLIP), which
employs a physically-motivated mathematical
formulation and relies on a constrained linear
regression scheme for parameter adjustment.
Beyond the exiting state-of-the-art interaction

models, such as ReactFF, Tersoff potentials, or
artificial neural network potential,79,81 we ex-
plicitly show that our PLIP satisfactorily ac-
counts not only for the six most stable bulk
ZnO polymorphs and their low index surfaces,
for the vibrational characteristics and the free
energy behaviour of the most stable ZnO crys-
talline phases, but also for the structural char-
acteristics of amorphous ZnO and of its high
temperature melt.

Having demonstrated the ability of the PLIP
to model ZnO in most various situations and, in
particular, in dynamic high temperature limit,
we used it in molecular dynamics (MD) simu-
lations of ZnO crystallization by either freezing
ZnO melt or by letting it occur spontaneously
in an undercooled ZnO liquid. With help of a
data-driven approach of phase recognition, we
were able to access the nucleation of zinc oxide
with an atomic precision and to reveal a dom-
inant role of a non-classical nucleation scenar-
ios, involving the less common BCT ZnO poly-
morph. Moreover, with dedicated calculations
of ZnO free energy within a newly developed
automated nonequilibrium thermodynamic in-
tegration method we showed the existence of
a stability reversal between wurtzite and BCT
polymorphs at high temperature and thus of
a clear thermodynamic bias for such the pre-
dicted nucleation pathways.

From a material point of view, since finite size
zinc oxide crystals are found in numerous ap-
plications, e.g. photocatalysis, piezzoelectric-
ity, drug delivery, antibacterial, and gas detec-
tion,92 our results provide tools and lay grounds
for future studies on more complex, finite size
and surface- and/or interface phenomena which
are involved in formation of ZnO nanostruc-
tures.

Methods

Machine-learning interaction po-
tential using the PLIP approach

As in most MLIP approaches, the total poten-
tial energy E is decomposed as the sum of in-
dependent atomic energies Ei: E =

∑N
i=0Ei,
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where N corresponds to the number of atoms of
the considered configuration. Then, we employ
a linear model which consists in approximating
Ei as a linear combination of descriptors X i

n:
Ei =

∑
n ωnX

i
n where ωn are the linear coeffi-

cients that must be determined. More specifi-
cally, the PLIP model is made of three types of
descriptors which explicitly follow a many-body
order expansion:

[2B]in =
∑
j

fn(Rij)× fc(Rij), (1)

[3B]in,l =
∑
j

∑
k

fn(Rij)fc(Rij)fn(Rik)fc(Rik)cos
l(θijk),

(2)

[NB]in,m =

(∑
j

fn(Rij)× fc(Rij)× fs(Rij)

)m

,

(3)

where Rij is the distance between atoms i and
j, θijk is the angle centered around the atom i,
and l and m are two positive integers. fc(Rij) is
the same cut-off function as in the seminal work
of Behler and Parinello,44 namely fc(Rij) =
1
2

(1 + cos(π(Rij/Rcut))), where the cut-off dis-

tance Rcut is set at 6 Å. The shift function is
chosen in the from: fs(u) = 6u5 − 15u4 + 10u3,
where u = (Rij−r1)/(r2−r1), and r1 (resp. r2)
is defined as 95 % (resp. 105 %) of a short dis-
tance equal to 1.1 Å. Regarding the basis func-
tions fn(Rij), we previously demonstrated the
advantage of coupling different classical func-
tions at the same time.51 Yet, in this particular
study on zinc oxide where numerical efficiency is
crucial, we work only with Gaussian functions
for which the width and the central positions
are respectively listed as follows: [0.5, 1.0, 1.5]
and [0.5, 1.0, 1.5 ... 5.5, 6.0]. In addition, we
vary the integers l and m respectively from 0
to 5, and from 4 to 7. Altogether, when taking
into account the binary nature of the zinc ox-
ide system, our model is made of 1981 available
descriptors.

In order to match the first-principle database,
the model is fitted using the LassoLars ap-
proach which allows for a well-informed selec-
tion of the most preponderant descriptors and
a reduction in the complexity of the obtained

potential.51,93 In this study, each of the PLIP
models selects approximately 150 descriptors
among an order of magnitude more that are
available.

First principle calculations and
training database

Reference GGA-DFT calculations are per-
formed with VASP,94,95 using PW91 exchange-
correlation functional,96 and the projector aug-
mented wave method.97 Standard zinc and soft
oxygen (energy cutoff of 270 eV) pseudopoten-
tials provided by VASP are used in all calcula-
tions, enabling an efficient structural relaxation
of systems composed of several hundreds of
atoms. GGA results obtained with the soft and
the full (energy cutoff of 400 eV) oxygen pseu-
dopotentials show satisfactory agreement (dif-
ferences of bulk parameters a and c smaller than
0.01 Å, and cohesion energy differences ∆Ecoh

below 0.01 eV/ZnO). The present results on six
ZnO polymorphs [wurtzite (WRZ), zinc blend
(ZBL), body centered tetragonal (BCT), so-
dalite (SOD), h-BN (HBN), and cubane (CUB)
crystallographic structures] coincide very well
with the existing hybrid HSE03 reference90 [See
Tab. SI1], in particular concerning the relative
stability of the considered polymorphs. Such
agreement between the two types of modeling
indicates that the chosen GGA-DFT approach
leads to sufficiently accurate results while en-
abling for larger scale calculations.

Since the training database includes both or-
dered and disordered structures, in DFT cal-
culations we systematically use relatively large
supercells (16-19 Å large cuboids), containing
320-480 atoms, and sample the Brillouin zone
with a single Γ point. In ordered structures, the
atomic coordinates of all ions are relaxed until
residual forces dropped below 0.01 eV/Å and,
in the bulk structures, all components of the
stress tensor are smaller than 0.01 eV/Å3. The
disordered structures are collected along short
high-temperature MD runs with no further re-
laxation as to produce non-vanishing forces on
all ions.

In order to include information on the char-
acteristics of low coordinated ions, for each of
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the six ZnO polymorphs we also consider at
least one low index non-polar surface, whereas
three surface orientations are considered for the
most stable (WRZ) polymorph. In this latter
case, beyond the most stable (10-10) and (11-
20) non-polar orientations, we also include the
polar (0001)/(000-1) surfaces. As to impede the
emergence of a macroscopic dipole moment, we
use an asymmetric slab with the conventional
(2×2) reconstructed surfaces at which one sur-
face oxygen (zinc) ion of each four is removed
at the oxygen (zinc) termination.98 As a conse-
quence, in this case the calculated surface en-
ergy corresponds to an average value of the zinc-
and oxygen-terminated surfaces. In all calcula-
tions, slabs of 6-12 atomic layers are separated
by about 15 Å of vacuum, and the atomic coor-
dinates of all ions are fully relaxed. The cal-
culated surface energies, Tab. SI2, are fully
consistent with the existing computational evi-
dence.90,99–103

Three PLIPs are developed with different
training datasets. Indeed, we train a first PLIP
on a database composed of the 6 bulk poly-
morphs melted up to 5000 K. For those first
MD runs, we use a classical Buckingham ZnO
potential104 which was previously employed in
numerous studies of ZnO.105–108 We would like
to emphasize that using a classical potential in-
stead of first-principle calculations at this stage
favors a more rapid sampling of a larger va-
riety of configurations. Then, for the second
database, we considered ZnO surfaces heated
up to 2000 K using the first PLIP model as
well as structures of the first database. Finally,
for the third model, additional amorphous bulk
obtained after rapidly cooling liquid structures
from 2000 K to room temperature are added to
the previous database. There, we employed the
second PLIP model for the interaction poten-
tial. During the MD runs, we extracted respec-
tively 20 and 10 for the bulk and the surface
structures as well as 15 more amorphous struc-
tures. Thus, we sequentially increase the size
and the variety of the database always using
the previous model for sampling. Those three
PLIPs are respectively denoted V1, V2, and
V3 in the following. To validate the PLIPs,
we perform a series of calculations where bulk

and surface properties are computed for the six
ZnO polymorphs, and compared to DFT re-
sults. We employ the conjugate gradient algo-
rithm, with a force convergence criterion of 10−9

eV/Å. Moreover, we also investigate the effi-
ciency of the PLIPs in the context of disordered
ZnO structures, such as liquid and amorphous
phases. For this purpose, simulations are car-
ried out by starting with 500 atoms randomly
disposed and heated at 3000 K, and then cooled
to 300 K with a rate of 1800 K/ns.

Molecular dynamics simulations of
crystallization

After developing the PLIP models, we perform
two complementary types of molecular dynam-
ics simulations of crystallization.

On the one hand, in freezing simulations the
temperature is progressively lowered as to initi-
ate the crystallization. In this case, the system
is initialized with 1000 randomly positioned
atoms of zinc and the same number of oxygen
atoms. Then, atomic positions are first opti-
mized to remove large forces due to overlapping
atoms. We further proceed to a first equilibra-
tion at 5000 K during 1 ps in the NVT ensem-
ble with a Nose-Hoover thermostat. From pre-
liminary freezing simulations (not shown) we
found out that within the considered condi-
tions crystallization occurs in the temperature
range of 1500 K to 1000 K. Therefore, in the
reported simulations, the freezing is operated
in two steps. In the first step, the system is
quenched from 2500 K to 1500 K during 100
ps which allows us to quickly obtain a first liq-
uid structure. In the second step, the system
is slowly cooled down from 1500 K to 1000 K
during 10 ns. These two cooling steps are both
performed in the NPT ensemble at P = 1 bar.

On the other hand, we also performed con-
stant temperature simulations. For that pur-
pose, liquid structures are generated just as
in the freezing simulations. Then, a thermo-
stat and a barostat are employed to maintain
the temperature and pressure until spontaneous
crystallization is observed.

The Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) package109 with
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a custom-made pair style for PLIP modeling is
used in all the simulations.

Data-driven approach for the
structural analysis

Analysis of the obtained structures and the
crystallization dynamics requires the use of
novel order parameters which are able to dis-
tinguish between each of the six crystal poly-
morphs of zinc oxide. Such a challenging task
is clearly out of the reach of classical order
parameter including Common neighbor analy-
sis, Voronoi cell topology, or Polyhedral tem-
plate matching which are mostly designed for
monodisperse systems and for classical crys-
tal structures like face-centered cubic and body
centered cubic. In the case of zinc oxide crys-
tallization, the very rich structural landscape
requires a structurally agnostic order parame-
ter, namely one that is transferable for all kinds
of crystal structures.

In this context, we develop a data-driven ap-
proach for the structural analysis. In practice,
averaged Steinhardt parameters denoted ql with
l ∈ [3 : 6] are computed for zinc and oxygen
atoms when considering the entire system (zinc
and oxygen atoms) and only inter-species dis-
tances (Zn-Zn and O-O). We use the pyscal

Python package110 with the adaptive methods
to compute the neighbor lists. This calculation
leads to a Steinhardt vector denoted Q of 12
components (6 for the entire system and 6 for
inter-species distances) for each atom. Then,
we compute the same vector in the six bulk
polymorphs to construct a reference database
averaged over all the zinc and oxygen atoms in
those crystal structures. If a studied atom has
the same local structure as one in the bulk poly-
morph, its Steinhardt vector must be close to
that of the database which can be measured
using Euclidean distance in vector space de-
noted DY−X . In Fig. 1, we test those Euclidean
distances on nanoparticles of known structures
and show that the method is able to identify
the correct structure. In addition, the method
retrieves that the center of the nanoparticle is
more similar to the bulk than its edges.

Finally, in order to quantify these Euclidean

distances, we compute a likelihood parameter
denoted S measured along a path between two
reference structures named A and B using:

S =
e−λDAX + 2e−λDBX

e−λDAX + e−λDBX
(4)

where λ is adjusted so that DAB = 2.3/λ. As
such, we obtain a score that quantifies the local
structure: an atom which is similar to structure
A (resp. B) gives S ∼ 1 (resp. S ∼ 2). There-
fore, we consider that the value of 1.5 discrimi-
nates between the two types of structure.

In retrospective, our approach combines the
use of (1) a vector of Steinhardt parameters
which was already suggested for colloidal sys-
tems and amorphous models111,112, (2) a simi-
larity measurement with the identity function
as Kernel, and (3) a path collective variable
which was previously employed for the con-
struction of order parameters based on permu-
tation invariant vectors.113

WRZ-X
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(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 1: Structural analysis of three different
nanoparticles obtained from Viñes et al.114 that
are respectively in the WRZ (a), BCT (b) and
SOD (c) crystal phases. We measured the dis-
tances with respect to the same three different
crystal phases in bulk.
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Results

Validation of the PLIP models

Bulk crystals

As a first step to validate the developed PLIPs,
the crystal structures of the six polymorphs
were optimized using the three PLIPs, V1, V2,
and V3. The resulting lattice parameter a
and cohesion energy Ecoh relative to the lowest-
energy WRZ phase were compared to those ob-
tained using DFT in order to evaluate the accu-
racy of the PLIPs. Errors with respect to DFT
values for these two quantities are displayed in
Fig. 2.(a) and (b), respectively, along with re-
sults obtained with three classical force-field po-
tentials, namely the Buckingham,104 Tersoff,115

and ReaxFF116 potentials.
Regarding the three PLIPs, they give ap-

proximately the same results, with the V2 and
V3 PLIPs being slightly more accurate than
V1. The already accurate results obtained with
V1 indicate that training with only bulk ZnO
structures is sufficient to reach good model for
the bulk crystals. Except for the Bucking-
ham potential for which the errors are consid-
erably higher, the two other classical poten-
tials present comparable errors for all the poly-
morphs with respect to the PLIP models.

Accuracy on ZnO surfaces was also investi-
gated and the errors on the surface energy are
computed both using PLIPs and the classical
potentials [See Fig. 2.(c)]. When comparing
each PLIP version, we note that while V2 and
V3 are accurate by construction, V1 in most
cases leads to very good results in terms of sur-
face energy although it was not trained with any
surface structures. Contrary to bulk parame-
ters, the classical potentials are less accurate at
predicting the ZnO surface energies compared
to the PLIPs. Surprisingly, the Buckingham
potential, while the simplest in its mathemat-
ical formulation, exhibits the best overall re-
sults among the classical potentials. However,
the PLIP errors are generally much lower than
what is obtained with any of the classical poten-
tials with an improvement of a factor between
3 and 8.5.

In order to further test the accuracy of PLIPs

Figure 2: Absolute errors (%) with respect to
the DFT values of (a) bulk lattice parameter a,
(b) cohesion energy Ecoh relative to the wurtzite
polymorph, and (c) relative surface energy γ de-
termined from the relaxed structures obtained
with the three PLIPs as well as with three clas-
sical potentials. For signed values of the error,
please refer to Fig. S1.

on bulk crystals, we computed the phonon den-
sity of states (DOS) for the three most stable
crystal structures ie. WRZ, ZBL and BCT. For
that purpose, the phonon frequencies are com-
puted by diagonalizing of the dynamical ma-
trix obtained through measuring the variation
of atomic forces due to finite atomic displace-
ments. To increase the calculation accuracy,
we expanded the conventional unit cells follow-
ing: WRZ (5×5×3), ZBL(3×3×3) and BCT
(3×3×5). The phonon calculations were per-
formed using the PHONOPY code.117,118 From
Fig . 3, one can see that although the tested
classical potentials provided acceptable results
for static properties like lattice parameters and
cohesive energies, they are extremely inaccurate
for dynamical properties as shown by the DOS.
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From a qualitative picture, ReaxFF which was
the most accurate classical potentials already
shows additional peaks in the DOS especially
in the case of WRZ and ZBL. Quantitatively,
the error of the three PLIPs is at least two
times smaller than any of the classical poten-
tials. Along with the previous measurement on
surface energy, this results using DOS provides
an additional argument for the necessity of con-
structing PLIP models for the zinc oxide sys-
tem.

Figure 3: Phonon density of states in three crys-
tal structures. Quantitative comparison is cal-
culated as the difference of the obtained curves
with respect to the DFT reference.

Finally, we note that we evaluated the melt-
ing temperature using the phase coexistence ap-
proach and obtained 1750± 50 K for the PLIP
V3 model which is about 500 K lower than the
experimental value. The excellent matching of
PLIP and DFT vibrational characteristics for
the key ZnO crystalline phases [See Fig. 3], sug-
gests that this discrepancy originates from de-
ficiencies not of the PLIP itself but of the DFT
approximation.

Disordered regimes

After the crystal properties of ZnO, we were in-
terested in measuring the accuracy of the model
in the case of disordered structures. For this
purpose, we performed ab initio MD simula-
tions using three different initial amorphous
structures in the NVT ensemble at 1500 K. The
total duration of each simulation was equal to
4 ps with a timestep of 1 fs. The obtained struc-
tures, were analyzed by calculating the partial
RDFs. In Fig. 4, we display results obtained
with the DFT calculations, classical potentials
and PLIP models. Quantitative errors based
on the difference between RDF curves and DFT
ones are also indicated for a better comparative
evaluation. The RDFs coming from the PLIP
structures fit perfectly those of DFT structures
(visually and with the error measurements),
while a mismatch is clearly visible between the
DFT and the classical potential curves. In-
deed, the main peak of the Buckingham po-
tential curves is misaligned in all the partial
RDFs, and both Tersoff and ReaxFF curves are
completely different for the two homonuclear
curves. In the case of O-O, the ReaxFF and
Tersoff curves also predict an erroneous small
peak at around 1.3 Å. Regarding the errors, the
PLIPs are undoubtedly closer to the DFT re-
sults than al of the classical potentials, with
errors generally 2 to 3 times smaller. Moreover,
even if all the PLIP RDFs are similar, a slight
advantage is given to the V3 curve, especially
at the first peak. It remains that the train-
ing of V1 and V2 models on hot liquid struc-
tures seems sufficient to describe the amorphous
structures stabilized at room temperature. Re-
sults on the bond angle distributions shown in
Fig. S3 also displays a much better agreement
with DFT calculations for all the PLIP models.
We would like to emphasize that even if none of
the DFT liquids were included in the database,
the PLIP models are still able to extrapolate
towards such high temperatures regime.

Prompted by those results on liquid struc-
tures, we further tested the obtained PLIP in
the amorphous regime. In particular, To gen-
erate amorphous structures, a hot liquid was
cooled until reaching the ambient temperature
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Figure 4: Partial radial distribution functions
g(r) of the liquid structures obtained at 1500 K
for (a) Zn-O, (b) Zn-Zn and (c) O-O. Struc-
tures calculated with the three PLIPs are com-
pared with those computed using DFT and the
three potentials. Quantitative comparison is
obtained with the absolute errors displayed in
insets and calculated as the difference of the
RDF curves with respect to the DFT reference.

with a cooling rate equal to 1.8×106 K/ns which
allows for the formation of the amorphous form
of ZnO. Finally, the obtained structures were
further optimized in energy and forces down to
respectively 10−4 eV and 10−6 eV/Å. As such,
twenty different amorphous structures made of
360 atoms were constructed using different ini-
tial seeds and were analyzed by calculating the
partial RDFs. In Fig.SI4 and SI5, we display re-
sults obtained with the DFT calculations, clas-
sical potentials and PLIP models. Results are
very similar to what we obtained in the liquid
regime. Indeed, while more simple in its mathe-
matical formulation, the Buckingham potential

is generally the best among the classical force
field with both Tersoff and ReaxFF showing
nonphysical behavior respectively for the Zn-
Zn and the O-O first neighbor. Then, all of the
obtained PLIP exhibit a very good agreement
with DFT calculations.

Nanostructures

For this last test of the PLIP models, we em-
ployed clusters of ZnO obtained by Viñes et
al.114 using DFT. They focused on three poly-
morphs, namely BCT, WRZ and SOD, and also
worked with single-caged (SC) and multi-caged
(MC) structures and reported the most proba-
ble low energy structures for systems made of
tens to hundreds of atoms. In our test, we ad-
ditionally optimized these structures using our
own DFT flavor, the PLIP models and the three
potentials. With the obtained structures, we
computed the formation energy difference ∆E
with respect to DFT results. Moreover, as to
asses the quality of cluster structures geome-
tries, we measured the root-mean-square devia-
tion (RMSD) based on the difference of atomic
positions with respect to the DFT reference and
extracted the maximum value obtained when
examining every atom of the nanostructure.
Fig. 5 shows that the classical potentials are not
able to provide accurate results on these nanos-
tructures while the three versions of PLIP give
reliable results when compared to DFT calcu-
lations.

Interestingly, the PLIP models are able to ac-
curately reproduce the energy and the geometry
even for the smallest clusters that are qualita-
tively different from the bulk-like structures of
the largest clusters, which is an evidence for
their transferability towards untrained struc-
tures. In particular, the single cage SC-108 and
SC-90 do not show any bulk-like structure since
these are shell clusters, and the PLIP models
still give very small errors. For the three PLIPs,
a slight advantage is still given for the V2 and
V3 models for which the ∆E and RMSDs do
not exceed 1 % and 0.5 Å, respectively.

Altogether, it is worth noticing that although
the PLIP models were only trained with DFT
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Figure 5: (Top panel) Relative absolute error on the clusters energy (per ZnO formula unit) relative
to the Wurtzite bulk energy obtained with the PLIPs and the classical potentials. (Bottom panel)
Corresponding RMSD based on comparison of atomic positions with those in DFT configurations
obtained from structural optimization of geometries published by Viñes et al.114 Typical clusters
are represented in the insets. For signed values of the errors on the energies, please refer to Fig.
S2.
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forces, they are still able to reach very accu-
rate results for energetic properties (bulk, sur-
face, and nanoparticles). From now on, results
presented in the remaining article will consider
only the calculations having employed the V3
potential because it is built with a more com-
plete database.

Crystallization differences

In this last validation section, we focus on
crystallization results. In particular, we per-
formed the exact same freezing simulations us-
ing PLIP as well as the 3 classical force fields.
First, we note that the Tersoff and the ReaxFF
models do not lead to crystallization under
the considered thermodynamics conditions. In-
deed, in both cases, the difficulty in model-
ing the oxygen-oxygen short range interactions
already raised in case of the disordered ZnO
leads to a nonphysical behavior in the high tem-
perature regime where freezing simulations are
started. It is possible that those two classi-
cal potentials may also lead to crystallization
under more finely tuned initial conditions, in-
cluding, e.g., the initial distribution of atoms
and temperature of the freezing runs. How-
ever, one may also expect that the erroneous
description of the short range oxygen-oxygen in-
teraction impacts the nucleation and the initial
ZnO growth, where small grains are in contact
with the liquid. Then, Fig. 6.(a,b) shows the
structures obtained at the end of the freezing
simulations with PLIP and the Buckhingham
model. A quantitative picture is obtained by
using the Euclidean distances in Steinhardt vec-
tor space between the final structures and those
in the bulk database. From Fig 6.c, it appears
that the smallest distance for the PLIP results
is obtained with the WRZ structure while for
the Buckingham potential, it corresponds to the
BCT structure. This quantitative observation
suggests that this classical potential leads to a
qualitatively different result, i.e. the growth of
a BCT structure instead of the Wurtzite one,
which is the most stable in both experiments
and DFT calculations. This surprising result
may be in part assigned to the fact that the
classical potential overestimates stability of the

BCT phase. Indeed, according to bulk DFT
results the BCT phase is less stable than the
WRZ one by 0.048eV/ZnO but this energy dif-
ference is reduced to 0.017eV/ZnO only within
the Buckingham potential. In contrast, the
PLIP model is able to retrieve a much more
satisfying value of 0.044eV/ZnO. This analy-
sis on the final structure obtained after freezing
shows that PLIP is able to crystallize the most
stable structure which is a strong justification
for using the PLIP model over a classical po-
tential.

Figure 6: Structures obtained after freezing
simulations using (a) the PLIP model and (b)
the Buckingham potential, after a slow cool-
ing during 10 ns. (c) Euclidean distances be-
tween the obtained structures and the bulk per-
fect crystals computed in the Steinhardt vector
space. Results are averaged over 5 simulations
obtained with different initial conditions.

Thus, one of the key advantages for using
the PLIP model over classical interaction is
that, along with the quantitatively better re-
sults for bulk, surface, disordered and nanopar-
ticle properties, it also leads to qualitatively
better outcomes of freezing simulations. In ad-
dition, when comparing to DFT, the main ad-
vantage is the possibility for larger scale simula-
tions. This is crucial in studies of crystallization
where freezing simulations have to cover more
than a few nanoseconds because shorter ones
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result in amorphous structures. Furthermore,
much larger unit cells allowed by our PLIP help
avoiding any nonphysical behavior due to inter-
actions between nucleation cores in neighboring
cells.

Computational efficiency

Before closing on this validation section, Fig. 7
shows the computational efficiency of different
models of ZnO interactions. It appears that the
PLIP potentials are between 4 and 6 orders of
magnitude faster than DFT depending on the
system size. While being visibly slower than the
most simple potentials (Buckingham and Ter-
soff) their efficiency is comparable to the that of
the comparatively less reliable ReaxFF model.
Furthermore, we would like to quickly comment
on how easy the methodology can be applied
to other systems. A first bottleneck is the con-
struction of the database. In our case, a sequen-
tial increase of the database size was carried
out by using first a classical empirical potential
and then the previous version of the machine-
learning force fields. As such, this part of the
methodology is not as CPU consuming as the
usage of ab initio MD for the database sampling
and it still allows us to rapidly obtain structures
that are highly uncorrelated. In addition, a sec-
ond key aspect of the overall methodology is the
computational cost of the learning process. In
our case, because we employ LassoLars which
is a constrained linear regression methods, we
can obtain a PLIP model in approximately 10
minutes using 16 CPU cores which is relatively
a low expense compared to more advanced non-
linear regression methods.

Temporal evolution during the
ZnO crystallization

Following the section dedicated to the valida-
tion of the PLIP model, we will now describe re-
sults obtained for ZnO crystallization, and the
insights they give into the nucleation scenarios
for this material. Two complementary types of
crystallization simulations were performed with
settings described in details in the Methods Sec-
tion.

Global observations

In freezing simulations the ZnO liquid was
slowly cooled down from 1500 K to 1000 K
during 10 ns as to initiate crystallization. Re-
sults of five individual runs performed under
the same thermodynamic conditions but with
different initial atom positions and velocities
are shown in Fig. 8 (top). To complement
these out-of-equilibrium simulations, we have
also mimicked infinitely slow cooling rates with
constant temperature MD runs. Figure 8 (bot-
tom) reports the results obtained in six runs
at T = 1150 K, initiated with different atom
positions and velocities.

Regarding the structural evolution along the
crystallization path, the behavior of the num-
bers of atoms in the predominant WRZ (green
curve) and BCT (blue curve) environments re-
veals three growth stages in all the preformed
runs: (1) an abrupt and quick increase of NWRZ

and NBCT marks the nucleation and growth of
WRZ and BCT structures from liquid ZnO; (2)
a plateau more or less broad indicates the sta-
bilization of coexisting BCT and WRZ phases;
(3) a phase transformation of BCT into WRZ
visible by a drop of the curve of the former,
compensated by the increase of the latter. We
stress that similar results are obtained in freez-
ing simulations with even a faster cooling rate
of 25 K/ns (See Fig. S4), with a larger periodic
cells (4000 atoms) (See Fig. S5) and at different

Figure 7: Computational efficiency of different
models of ZnO interactions measured as the
number of timesteps that can be reached in a
second. Results were obtained on 16 CPU cores
of Intel Skylake 6140 2.3 GHz.
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BCT

WRZ

Figure 8: Number of atoms detected in WRZ or BCT phases, according to the likelihood parameter
S, along the crystallization path for independent MD runs using 2000 atoms and initiated with
different atom positions and velocities. Top panels: freezing simulations at cooling rate equal to
50 K/ns. Bottom panels: constant-temperature simulations at T = 1150 K. The red solid line
discriminates between the two observed nucleation processes. Images of the typical nucleating
structures show two nucleation scenarios: (A) WRZ surrounded by BCT (orange) and (B) Mostly
BCT (violet).

constant temperature simulations (T = 1100 K
and 1200 K) (See Fig. S6). This confirms that
the observed nucleation and early ZnO growth
characteristics are not biased by applied cool-
ing rates (which are faster than these in most
experimental situations) and are also not en-
tangled by finite size effects.

Furthermore, Fig.8 shows typical pictures of
the nucleation core during both the freezing
and the equilibrium simulations. As such, we
find two types of structures for the nucleating

clusters: (A) WRZ atoms surrounded by BCT
phase and (B) Mostly BCT atoms. Among the
reported results of 11 runs, we obtain 6 and 5
cases of scenario A and B, respectively. In the
following, we will particularly focus on what
happens during the first growth stage and we
will further describe the two types of scenarios,
exemplified in Figs. 9.
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Figure 9: (a, e) Number of atoms detected in WRZ or BCT environments along the cooling path in
typical first and second nucleation scenarios which correspond respectively to Fig.8(a1,a5). Colored
dashed lines point out different times at which typical crystal structures shown in (b, c, d) and (f,
g, h) were selected. Atoms identified as WRZ and BCT according to the likelihood parameter S
are colored in green and blue, respectively.

Focus on the nucleation mechanisms

In the first scenario, Fig. 9 (top), the growth
is initiated by a nucleation of a WRZ grain.
The behavior of NWRZ at the very beginning
of the MD simulation, Fig. 9.a, shows that
several small WRZ ZnO clusters form and dis-
solve in the ZnO liquid before the actual growth
starts. From a structural point of view, the sta-
bility of the first grain seems to be enhanced
by the formation of three-membered ZnO rings
[See Fig. 9.b], characteristic of the Wurtzite
(0001) surface. Indeed, in absence of such rings,
similarly-sized ZnO clusters tend to dissolve.
Most interestingly, the emerging WRZ clusters
are systematically surrounded by a BCT phase
taking the form of relatively thin and less crys-

tallized structures [See Fig. 9.c]. Then, dur-
ing the growth, the grain becomes significantly
elongated, with virtually parallel (0001) facets
at its opposite sides thus suggesting that crys-
tallization along the (0001) atomic planes is fa-
vored at this growth stage [See Fig. 9.d]. Alto-
gether, the first nucleation scenario comprises:
(1) Stochastic appearance of unstable WRZ
clusters that do not exhibit three-membered
rings, (2) Emergence of a stable WRZ cluster
made of three-membered rings and surrounded
by a shell of BCT phase, and (3) Continuous
growth of WRZ with a reminiscent BCT shell.

In contrast, the second scenario, Fig. 9 (bot-
tom), shows quite a different nucleation path.
Indeed, while NWRZ and NBCT increase quasi-
simultaneously in the first scenario, here, the
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BCT phase emerges sooner than the WRZ
one. Figs. 9.(f,g) clearly show that the emerging
crystal is initially made of mostly BCT phase.
Only once the BCT crystal is large enough,
a solid-solid transition is observed with BCT
turning locally into WRZ. As a consequence,
the BCT structure becomes porous, with mul-
tiple embedded WRZ clusters and is not stable
enough to continue persisting. It is remarkable
that while the initial BCT structure is much
larger than in the first scenario, it can not sur-
vive as long as in the previous scenario because
of this growth of embedded WRZ grains. The
second scenario of nucleation can be summa-
rized as a two-step mechanisms: (1) Metastable
BCT crystals constitute the nucleation core and
(2) The stable WRZ crystal only appears within
large BCT crystals. An interesting feature of
this second scenario is that we no longer ob-
serve growth of elongated WRZ grains since
WRZ phase originates from multiple embedded
smaller clusters. The elongated grains should
therefore be favored by the presence of BCT
shells.

Discussions

Both these scenarios highlight the essential role
played by the metastable BCT phase in ZnO
nucleation and early growth stages. Indeed, ei-
ther it appears in the ZnO liquid simultaneously
with the stable WRZ phase in form of a shell
surrounding the growing WRZ clusters, or it
nucleates first and the embedded WRZ clusters
appear inside the metastable BCT matrix as a
result of a solid-solid transition. From a funda-
mental perspective, both of these mechanisms
contradict the classical nucleation scenario in
which the first emerging crystal is made entirely
of the most stable phase. Such non-classical nu-
cleation scenarios have been already observed in
simulations for model systems described by sim-
ple hard spheres24,25 and Lennard-Jones inter-
actions11,26 but, to our knowledge, the present
prediction is among the first ones for sys-
tems with more complex, iono-covalent bonding
thus confirming seminal experimental observa-
tions.119–121

While a thorough analysis of physical rea-
sons of BCT involvement in the nucleation sce-
narios goes beyond the scope of the present
study, it is worth pointing out that thermo-
dynamic and kinetic effects may tend to inter-
play. On the one hand, from a kinetic view-
point, the involvement of BCT phase in ZnO
crystallization may results from a kinetic pref-
erence for an attachment pattern of ZnO4 tetra-
hedral units during crystal growth which favors
the BCT phase. On the other hand, from a
thermodynamic viewpoint, taking into account
the small stability difference at 0 K between
the WRZ and BCT phases (0.044 eV/ZnO),
the effect of lattice vibrations of differently ar-
ranged tetrahedral ZnO4 units in the two lat-
tices (corner-connected only in WRZ, whereas
some units are also edge-connected in BCT)
may impact the relative stability of the two
polymorphs at higher temperatures. In fact,
our constant-temperature simulations, Fig. S6,
tend to show that the tendency to form long-
lasting BCT increases with the temperature,
which may suggest that BCT is less unstable
at higher temperature. In order to better un-
derstand the thermodynamic influence over the
crystallization results, we first used the phonon
dispersion curves shown in Fig. 3.a to deduce
the free energy in the harmonic approximation.
Fig. 10.a shows that PLIP model is able to re-
trieve DFT values for the free energy curves
which advocate furthermore for the accuracy of
our MLIP approach. However, we must note
that these calculations were obtained under the
harmonic approximation and as such they can
not be used to investigate the thermodynamic
picture at high temperatures. To go beyond
the harmonic approximation, we use a newly
developed automated nonequilibrium thermo-
dynamic integration method.122 In particular,
we constructed two BCT and WRZ crystals
made of 2880 atoms. We used thermodynamic
integration going from the Einstein crystal to
the PLIP model during 50 ps. Three cycles
are carried out to determine the error which
is equal to 0.004 eV/ZnO. Because of its large
computational cost, such calculations are be-
yond the reach of DFT calculations but the
PLIP excellent agreement with DFT within the
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harmonic approximation supports the extrap-
olation towards this other regime. Fig. 10.b
shows that at such higher level of approxima-
tion, it exists a stability reversal between WRZ
and BCT phases as the temperatures increases.
This points towards thermodynamics as one of
key factors at the origin of the reported non-
classical nucleation mechanisms.

Further understanding of this thermodynamic
picture would involve the measurement of the
solid–liquid interfacial energies for both BCT
and WRZ as well as rare-event sampling to
compute the free energy barriers between the
liquid phase and both WRZ and BCT crystals
and also between the two crystals. However,
the appropriate choice of collective variables
for free energy calculations is already a funda-
mental challenge because of the very complex
structural landscape. Altogether, these calcula-
tions require an enormous computational effort
that can hardly be reached even with the PLIP
model.

Unfortunately, regarding experimental find-
ings, the existing evidence for the bulk BCT
phase of ZnO is relatively small since most stud-
ies focused on its appearance in ZnO ultra-thin
films or axially strained nano-objects. Indeed,
the BCT phase has been systematically pre-
dicted as the most stable ZnO polymorph in the
thin film geometry,123,124 due to the more favor-
able energies of its low index surfaces which, in
contrast to the basal WRZ(0001) surface, are

Figure 10: Free energy curves obtained under
the harmonic approximation in DFT and PLIP
V3 (a) and using the automated nonequilib-
rium thermodynamic integration method and
the PLIP V3 (b).

non-polar. Also, a reversible WRZ-BCT recon-
struction in the outmost layers of ZnO has been
observed at some of ZnO surfaces.125 These
findings suggest that the shape/morphology of
the crystallizing ZnO grains may also be an im-
portant factor.

An analogy can still be drawn with the case
of titania where rutile and anatase phases tend
to compete as observed with BCT and WRZ
in zinc oxide.126 Anatase is considered as a
metastable phase which can be kinetically sta-
bilized at lower temperatures, owing to its
less constrained structure and consequently en-
hanced kinetics of formation.127 It has been
pointed out that the more rapid crystallization
of anatase may also be due to the lower surface
free energy of this polymorph compared to that
of rutile.128 From a computational viewpoint,
zero-temperature DFT-based calculations pre-
dicted bulk anatase to be more stable than ru-
tile and it is only most recently, that fine Diffu-
sion Monte Carlo (DMC) simulations has sug-
gested that bulk rutile may become more sta-
ble than anatase at higher temperatures, where
the effect of lattice vibrations becomes cru-
cial.129 Similar conclusions were drawn from re-
cent Self-Interaction-Error-corrected DFT cal-
culations.130 However, the complete nucleation
picture drawn at the atomic scale remains un-
clear in the case of titania since very few fi-
nite temperature MD simulations were per-
formed131–133 and no a single one focused on
polymorph selection because short ab initio MD
or classical empirical force fields were employed.

Conclusions

Despite the key technological importance of
ZnO in many applications, its crystallization
features are at present relatively poorly under-
stood. This is due to overwhelming compu-
tational effort necessary for dedicated simula-
tions, which excludes a direct use of DFT-based
methods and requires fine interatomic poten-
tials, able to correctly account for the structural
diversity of ZnO as well as for its behaviour at
finite and high temperatures.

With the goal to observe crystal nucleation
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in a homogeneous ZnO liquid phase and to fol-
low the subsequent crystal growth, we have
constructed and validated a new robust ma-
chine learning interatomic potential suitable
for large-scale simulations (nanosecond molec-
ular dynamics of several thousands of atoms).
The potential is based on physically-motivated
mathematical formulation and a constrained
LassoLars method is used to identify and adjust
its pertinent parameters. The training database
was composed of DFT-GGA results on a variety
of ordered crystalline structures while also in-
cluding surface and disordered configurations.
We show that the new interaction potential
successfully reproduces the delicate structural
and energetic DFT-GGA characteristics of six
of the most stable ZnO bulk polymorphs as
well as of their low-index surfaces. The poten-
tial was also successfully tested on completely
untrained structures made of nanoparticles in
different crystal phases and was shown to re-
produce the vibrational characteristics and free
energy behaviour of the most stable bulk poly-
morphs. Importantly, it also correctly accounts
for the simulated structural characteristics of
high temperature liquid ZnO such that they
become quasi-indistinguishable from the DFT
ones. These extensive testings demonstrate the
reliability and the transferability of the PLIP
model which was then employed to study the
crystallization of zinc oxide.

In particular, we have performed molecular
dynamics simulations on freezing of bulk ZnO
liquid as well as equilibrium calculations of un-
dercooled ZnO liquid crystallization under a
constant temperature and pressure conditions.
Analysis of the crystalline phase in such com-
plex structural landscape was made possible
by employing a data-driven approach based on
Steinhardt’s parameters which enabled us to ac-
cess the nucleation of the initial zinc oxide crys-
tal at the atomistic level and to follow its be-
havior upon further growth. We have system-
atically observed two different scenarios which
are both in contradiction to classical nucleation
theory: (1) Prenucleation clusters made of two
coexisting phases, WRZ in the core and BCT
in the shell and (2) Two-step nucleation pro-
cess with metastable BCT emerging first and

turning into stable WRZ afterwards. Similar
nucleation scenarios were previously observed
in much simpler systems including Lennard-
Jones, hard-sphere, and pure metals. In our
case, the combination of the Physical LassoLars
interaction potential that allows for a quantum-
accurate modeling of zinc oxide with our data-
driven approach for a refined structural analy-
sis of crystal phases leads us to confirm previ-
ous predictions of non-classical nucleation pro-
cesses.119–121 Moreover, dedicated calculations
of ZnO free energy within a newly developed
automated nonequilibrium thermodynamic in-
tegration method showed the existence of a sta-
bility reversal between wurtzite and BCT poly-
morphs at high temperatures and thus of a clear
thermodynamic bias for such non-classical nu-
cleation pathways.

As a perspective, we note that the proposed
work paves the way for more complex numeri-
cal studies that would account the influence of
pressure, finite liquid size and/or presence of
surfaces, substrate, and/or temperature gradi-
ent, relevant for fabrication of technologically
important ZnO nanostructures and should help
understanding the relationship between their
characteristics and the conditions of their early
growth stages.
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and surface energies of the studied crystals,
(2) Signed errors for bulk lattive parameter,
cohesion energy and surface energy as well as
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ringer, V. L.; Csányi, G.; Elliott, S. R.
Similarity Between Amorphous and
Crystalline Phases: The Case of TiO2. J.
Phys. Chem. Lett. 2018, 9, 2985–2990.

(133) Alderman, O. L. G.; Skinner, L. B.; Ben-
more, C. J.; Tamalonis, A.; Weber, J.
K. R. Structure of molten titanium diox-
ide. Phys. Rev. B 2014, 90, 094204.

24



Graphical TOC Entry

Non classical  nucleation

Liquid Crystal

25



Supporting Information:

Non-classical nucleation of zinc oxide from a

physically-motivated machine-learning approach.

Jacek Goniakowski,† Sarath Menon,‡ Gaétan Laurens,¶ and Julien Lam∗,§
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Table S1: Calculated (present PW91 and reference HSE031) characteristics of
the six bulk ZnO polymorphs: lattice parameters a and c (Å), and cohesion en-
ergy differences with respect to ground state (WRZ) structure ∆Ecoh (eV/ZnO).

PW91 HSE03
a, c ∆Ecoh a, c ∆Ecoh

WRZ 3.28, 5.30 -0.00 3.25, 5.24 -0.00
ZBL 3.27, 3.27 -0.01 3.24, 3.24 -0.03
BCT 5.61, 3.29 -0.05 5.55, 3.25 -0.05
SOD 5.67, 5.67 -0.14 5.61, 5.61 -0.14
HBN 3.46, 4.59 -0.14 3.43, 4.50 -0.14
CUB 6.28, 6.28 -0.23 6.22, 6.22 -0.24

Table S2: Calculated (PW91) surface energies of low index surfaces of the six
ZnO polymorphs Esurf (J/m2).

orientation Esurf

WRZ (10-10) 0.89
WRZ (11-20) 0.93
WRZ (0001) 1.30
ZBL (110) 0.92
BCT (010) 0.49
BCT (001) 1.14
SOD (001) 1.00
HBN (0001) 0.36
CUB (001) 0.48
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Figure S1: Signed errors (%) with respect to the DFT values of bulk lattice parameter a,
cohesion energy Ecoh relative to the wurtzite polymorph, and the relative surface energy γ
determined from the relaxed structures obtained with the three PLIPs as well as with the
three classical potentials.
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Figure S2: (Top panel) Relative signed error on the clusters’s energy per unit of ZnO relative
to the Wurtzite bulk energy and evaluated compared to DFT results. (Bottom panel) RMSD
based on atomic positions of the studied structures. Snapshots representing some of those.
Results were obtained with the PLIPs and the classical potentials.

Figure S3: Bond angle distribution (BAD) P (θ) of the liquid obtained at 1500 K. Structures
calculated with the three PLIPs are compared with those computed using DFT and the
three potentials.
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Figure S4: Radial distribution functions (RDF) g(r) of final structures obtained after cooling
a hot liquid. Structures calculated with the three PLIPs are compared with those computed
using DFT and the three potentials. BAD deviations with respect to those of DFT are
presented in insets.
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Figure S5: Bond angle distribution (BAD) P (θ) of final structures obtained after cooling a
hot liquid. Structures calculated with the three PLIPs are compared with those computed
using DFT and the three potentials. BAD deviations with respect to those of DFT are
presented in insets.

Figure S6: 5 independent MD runs using 2000 atoms and a cooling rate equal to 25 K/ns
(in comparison with a 50 K/ns cooling rate presented in the main article). MD runs are
analyzed in terms of number of atoms detected in WRZ or BCT phases, according to the
likelihood parameter S, along the cooling path, i.e. with respect to time and temperature.
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Figure S7: (a-e) Number of atoms detected in WRZ or BCT phases, according to the likeli-
hood parameter S, along the cooling path, i.e. with respect to time and temperature, for 5
independent MD runs using 4000 atoms and a cooling rate equal to 50 K/ns. (f-j) Snapshots
of intermediate structures obtained during the nucleation at the time highlighted by black
dashed lines in the corresponding temporal evolution. Atoms identified as WRZ and BCT
are colored in green and blue, respectively. The red solid line discriminates between the two
observed nucleation processes.

Figure S8: (a-e) Temporal evolution of the number of atoms detected in WRZ or BCT
phases, according to the likelihood parameter S, for 6 independent MD runs using 2000
atoms at fixed temperatures.
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