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Introduction and statement of the Theorem

COUNTING IDEALS IN RAY CLASSES

SANOLI GUN, OLIVIER RAMARE AND JYOTHSNAA SIVARAMAN

ABSTRACT. Let K be a number field and q an integral ideal in Ok. A result of Tatuzawa [11]
from 1973, computes the asymptotic (with an error term) for the number of ideals with norm at
most z in a class of the narrow ray class group of K modulo q. This result bounds the error term
with a constant whose dependence on q is explicit but dependence on K is not explicit. The aim

of this paper is to prove this asymptotic with a fully explicit bound for the error term.
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1. INTRODUCTION AND STATEMENT OF THE THEOREM

Given a number field K, the problem of counting the number of ideals in a given class of

the narrow ray class group Hy(K) attached to the ideal q is classical and goes back, if not to

Landau, at least to Hecke. Our query in this paper is the dependence of the error term on

the field K which we describe fully, and even in a completely explicit manner. Let us recall
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2 SANOLI GUN, OLIVIER RAMARE AND JYOTHSNAA SIVARAMAN

our notation in brief, nk, hk 1, Rk, pk and dk are respectively the degree, the narrow class
number, the regulator, the group of units of finite order in K and the discriminant of K while
ak is the residue of its Dedekind zeta-function at 1. The ring of integers is denoted by Ok and
hxk denotes the class number of K.

On the technical side, notation f(z) = O*(g(z)) means that |f(z)| < g(x). In this set-up, we
have the following theorem;

Theorem 1. Let q be an integral ideal of K and [b] be an element of Hy(K). For any real number x > 1,

we have
1
axp(q) = *( i n (z >1“K snk K )
1= — + 0¥ E(K)F(q)"x log(3F K| — + N K —F .
[a]=[b],
Na<z

2
12ng,

L n
where F(q) = 2" p(q)hk /hk q and E(K) = 1000n g (Rk/|uk]) "x [log((QnK)4”KRK/|uK|)] .

Notice that F'(q) > 1. Let us briefly recall the definition of the (narrow) ray class group
Hy(K). Let I(q) be the group of fractional ideals of K which are co-prime to q and P, be the
subgroup of I(q) consisting of principal ideals («) satisfying v,(cv — 1) > v,(q) for all prime
ideals p dividing q and o(«) > 0 for all embeddings o of K in R. We set Hy(K) = I(q)/F;.
When q = Ok, the group H,(K) is the usual class group in the narrow sense.

The problem of counting ideals in a class of ray class group can be decomposed in two parts:
building a fundamental domain, which turns out to be made of lattice points in some region,
and counting such points. Our main effort concerns the building of the fundamental domain.
Two hurdles prevents us from directly counting integral ideals of K: the fact that the narrow
ray class group H,(K) is non-trivial, and the existence of units. To treat both of these, we follow
the approach developed by K. Debaene in [1], as it provides us with a very tame dependence
in the field (notice that no discriminant appears in our error term). This is combined, as in [1],
with two general results: the first one shows that a “short” enough basis exists for the lattice to
be considered, while the second one counts the lattice points in a given domain.

An overall different approach has been followed in [11] by T. Tatuzawa, but his results lack
the control of the dependency in K. There also exists an earlier completely explicit result on
this subject, and with a better error term as far as the dependence in x is concerned. It is due
to J. Sunley in her PhD memoir [8] and is recalled as Theorem 1.1 of [9] (see also [6]). We have
few indications as to the proof of this result, as it has not been published in any journal, but,
knowing that it originates from the method of Landau, we may surmise that most of the work
goes on the dependency of K, relying on a more classical fundamental domain. We finally
mention that the present work relies on several highly non-trivial results, like the bound for
the regulator given by E. Friedman in [3], and the lower bound for the height of an algebraic
number provided by E. Dobrowolski in [2].
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We have several applications of our result which we leave for future works. The paper is
organized as follows. In section 2, we deal with some notations and preliminaries. In section 3,
we prove Theorem 1.

2. NOTATION AND PRELIMINARIES

Notation. Let K # Q be a number field with discriminant |dk| > 3 (by Minkowski’s bound).
Also let nx = [K : Q] > 2 and q be an (integral) ideal of K. The number of real embedding
of K is denoted by r; whereas the number of complex ones are denoted by 2r,. The ring of
integers of K is denoted by Ok, the narrow ray class group modulo q is denoted by H,(K), its
cardinality by hk 4 and the (absolute) norm is denoted by 91. We shorten hx 4 by hxk ;1 when
q = Ok. Whenever required, we shall replace the ideal q by the modulus q; = qq., considered
as a set of places, where q, is the set of all Archimedean places of K. But, as we do not
consider subsets S of Archimedean places, we may safely rely only on g and recall regularly
that we count narrow classes. Still to follow tradition, we denote by Rk 4, the q;-regulator, by
Uy, the corresponding group of units and by 4, the number of units of finite order in Uy, i.e.
also, the cardinality of px N Uy, . Throughout the article p will denote a prime ideal in Ok and p
will denote a rational prime number. Further an element of H,(K) containing an integral ideal
a will be denoted by [a].

The Dedekind zeta-function. For s = o > 1, the Dedekind zeta-function is defined by

1
k(s) = ), TCIER
P

where a ranges over the integral ideals of Ok. It has only a simple pole at s = 1 of residue ak,
say. We know from the analytic class number formula that
B 2" (2m)"2hk Rk

ik |\/|dk|

(1) aK
where hx, Rk, dk and ux are as before.

The narrow ray-class group. By narrow ray class group Hq(K), we consider that ray class
group where the integral ideal q is completed with all real Archimedean places. We have

2) [H1(K)| < |Hq(K)| < o(q)[H1(K)|,
where
1
3) ¢(q) = 9N(q) - ==
lp_q[ ( ‘ﬂ(p)>

and H;(K) denotes the narrow ray class group corresponding to Ok. A good reference for this
are the notes [10] by A. Sutherland.
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Orthogonality defect and successive minima. In this subsection we define some notions and
state results about lattices in R" that will be required in due course of the proof.
Definition 1. Given a lattice A,, of rank n, the orthogonality defect 2 of the lattice A,, is given by

P | |
Q= inf ——0——+—
(vi,-,Un) Vol (An)

where {v1,- - - ,vp} runs over the bases of A,,.
Definition 2. Given a basis V' = {vi, - -- , v, } of a lattice A,, of rank n, let V= {v‘iT, e ,vﬂ} be the
Gram-Schmidt orthogonalisation of V. Let

7t
Ui'Uj

o =

RENEATE

fori,je{l,--- ,n}

When n = 1, any basis element of Ay in R is defined to be a reduced Korkin-Zolotarev basis. When
n > 1, the basis V of Ay, is called a reduced Korkin-Zolotarev basis if it satisfies the following properties;

(1) The vector vi is of minimum length among the vectors v; for 1 < i < n (with respect to the
Euclidean norm),
(2) The coefficients |a; 1| < 3 for2 <i < n,

(3) If A1 is the orthogonal projection of A, on the orthogonal complement (Rv7)*, then the vec-

— —

tors {v5 — 2101, - - , Uy, — Q101 } also form a reduced Korkin-Zolotarev basis of A,,—1.
It is easy to see that reduced Korkin-Zolotarev bases exist for a lattice A,, of rank n.

Definition 3. For a lattice A,, of rank n > 1 and for 1 < ¢ < n, the i-th successive minimum of A,, is

defined by
0i(Ay) = inf{X e R | B(0,\) n A,, contains i linearly independent vectors}.
Here B(0, \) denotes a ball of radius X around origin in R™. For i = 0, we define 6o(A,,) = 1. Further

the constant y
Y = SUp { <51(A") ) | A, is a lattice of rank n}

Vol(Ay)

is called the Hermite’s constant.
In this set-up, we have the following theorem.

Theorem 2 (Lagarias, Lenstra and Schnorr [4]). If {v] ...v;} is a reduced Korkin-Zolotarev basis
for a lattice A,, of rank n, then

n
[TI51P < (
Jj=1 J

where 7y, is the Hermite’s constant. Further, an upper bound for the Hermite’s constant is given by

”3) A Vol(An)?,
I 4

Wm<n  forn=1.
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We now define the notion of the Lipschitz class of a subset of R".

Definition 4. Let S be a subset of R™ with n > 2. We say that S is of Lipschitz class L(n, M, L) if
there are M maps ¢, ... ¢n : [0, 1] — R™ such that S is contained in the union of images of ¢; for
ie{l,...M}and

l¢i(7) — ¢:(@)I| < L[|z -7l

where T,7 € [0,1]"7L.

We conclude by stating a theorem of Widmer [12] which allows us to estimate the main term
as well as the error term in Theorem 11.

Theorem 3 (Widmer [12]). Let A, be a lattice in R™ with successive minima oyg(Ay,), -, 0n(Ay).
Let S be a bounded set in R™ such that its boundary is of Lipschitz class L(n, M, L) for some natural
number M and positive constant L. Then S is measurable and

Vol(A) | S0 0=iS 6o (An) - 0i(An)”

IS N A, —

Lower bounds for algebraic conjugates. In this subsection we recall a theorem of Dobrowolski
which gives a lower bound on the absolute value of all the conjugates of an algebraic integer

which is not zero or a root of unity.

Theorem 4 (Dobrowolski [2]). Let a be a non-zero algebraic integer of degree n > 1 and let ¢ be the
maximum of the absolute values of all conjugates of c. If o is not a root of unity, then

aZl—i—loﬂ.

6n?

3. COUNTING INTEGRAL IDEALS IN CLASSES OF THE RAY CLASS GROUP

Let {01, - ony } be the set of all embeddings of K into C. The first 7 embeddings are all
real embeddings and the embeddings {o,, 1+, 0 4r,+i} for 1 < i < 1y are complex conjugates.
Consider the first 71 + r2 embeddings from this set. We will use r to denote r; + 7, — 1 and as
before q; = qq. to denote a modulus, where ¢ £ Ok be an ideal and q, contains all real places
of K.

3.1. Fundamental domain. Let Oy be the group of units of Ok and Uj (respectively Uy, ) be
the subgroup of Ok consisting of units which are 1 mod q (respectively 1 mod *q;). Both of
these subgroups U, and Uy, are of finite index in O. Let ¢ denote the embedding

¢ K — R xC

r — (m-(@)?i}
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Further let f denote the map

f R x T2 RT+1
(z:)i — (log|zil)iX]
Since [0 : Uy, ] is finite, the image under the map f o ¢ of Uy, is also a lattice of rank r. Let
{m,...n.} be a set of multiplicatively independent generators for the group U,, modulo roots
of unity and the vectors

. 1 1 . .
1= <7 ,> ; o5 = (log|oj(mj—1)|)j] for2<j<r+1
nK nK

form a basis for R"*!. The vectors 3, - - - v,3.1 form a basis for a lattice of rank r and 1, v, - - - v, 3.1

are R linearly independent. We can now write the vector (log |z;|)/*] as

(log |zi]); 2} = a1(2)oi + - + arpa(z)viia,

and therefore

r+1 r+1
4) ji] = e @ T oy (—1)| ) = ()< [T Joi(mj—1)|* ),
j=2 J=2
where z = (z1,--- ,2,11) and a(x) = e @), If z € K, then x; = 0;(x) for 1 <i < r + 1 and so

taking product over all i in (4), we identify a(x):
r+1
©) [ [loi@)® = 1N(@)| = a(x),

i=1
where e¢; = 1 when ¢ < 1 and e; = 2 otherwise. We now define the map
g: Rt xC? — R7T1
r= (@) — (a(r),as(), o (@)):

We now define F = g7 1(R; x [0,1)"). This corresponds to the set (f o ¢)~1(S’), where S’ is
given by the points corresponding to the vectors

{avi + ...+ 10711 | a1 €R, a;€[0,1) fori > 1}.

Since the vectors give rise to a lattice of full rank, given an x € K, there is an n € Uy, such that
¢(x/n) € F. Conversely, for an x € K, with ¢(x) € F and any 1 € Uy, we note that ¢(nz) € F if
and only if 7 is a root of unity.
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3.2. Notation. Throughout the rest of the section, we will use the following notations.

(1) F(a1> bi,...,ar, bTaX) = g_l ((OvX] x H;:l[aj7 b]))

@) Fyarbi,sap b, X) = g7 (3, X] % TTj-i[a5,0)

(8) For ¥ = (%) L, € {£1}", denote by R = {(z1, -, %) | sign(z;) = v}. Then
Fy(a1,b1,...,ar,b,, X) = F(al,bl,...,ar,br,X) N (R%l x Cr2).
Further Féﬁ(al, bl, I br, X) = F%(al, bl, s, Qp, br,X) N (R%l X (C7”2)‘

) F) 4(X) =F; 5(0,1,---0,1, X).

(5) For j € {1,...,7}, mj = max;[log|o;(n;)|], where {n1,...n,} is a set of multiplicatively
independent generators for the group U,, modulo roots of unity.

3.3. Computing the Lipschitz class of the boundary.

Definition 5. Let q1 be a modulus of K and Uy, be the subgroup of units which are 1 mod *qy. Further
let {o1, - ,0r41} be a set of r + 1 embeddings of K into C where no two embeddings are conjugates
of each other. If {1, -- ,n,} are multiplicatively independent units generating Uy, modulo the roots of
unity, then the q regulator Rk g4, is defined by

RK,q1 = |det (ei log ’Ui(nj)‘)i,j
wherei,j € {1,2...r}and e; = 1 or 2 if the corresponding embedding is real or complex respectively.

Since 31 e;log |oi(n;)| = 0 for 1 < j < 7, we see that R 4, is independent of the generat-
ing set of units and the choice of embeddmgs.

Lemma 5. Let T be a set of points in R™ x C"2, k= (kj)j=1 € [ T;=1([0,m;) n Z)and

j=1
r+1
By = <H!ffz ““”) :
i=1
Then for any 5 = (v;);2, € {£1}" and any positive real X, we have
1 1
I'nF = rgg)nFi_(0,—,---0,—, X
AR = R )0 (00 x ) |
where the sum runs over k € [[;=1([0,m;) N Z).
Proof. We have
ki ki +1 kyr kr+1
D AF, (X)] = PmF1<1, 1L e B X)’
2 27T \myp oy My My

(K1, kr)€LT,
0<k;<m;—1
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k1 kil ke kel

m1’ miq me’ My

If we multiply an element of F 15 ( , X ) by 8:_ (k1. )7 USTNG (4), we see

7m17 7m7,.7

that we get an element in F1 ~ (0 L0, L X ) Therefore
2 9

1
IAF._(X)| = T-8)nF:_(0,—, . ..0,— X
PoF= % | < - )\
0<k;<m;—1

0

Let A/ : R x C™ — R"X be a map defined by ' (y1, -, Yr,+ry) = (21, , Zny ), Where for
1<i<r,zi=y,andforri +1<i<ry+ry,

zi = |yil cos(arg(yi)) and  zp,1i = [yi| sin(arg(yi)),

where argument for y;’s are inside [0, 27).

Lemma 6. Let X be any positive real number and

1 1
T = (xla"'xT1+T2)EF<O77”' 707W7X> .

m1

Then ||B/(z)|| < (V/r + 1) " XY™, where || - || is the Euclidean norm on R"X.

Proof. From the definition of the norm, we have

r1 ri+re
1B/ (@) = | D] lwil>+ Y, (1R()]? + S (@) ).
i=1 i=r1+1
From (4) and the definition of F(0, m%, <+, 0, mir, X), we see that
r+1
ji| = [a(@) |V ] T o) |+ )
k=2

where 0 < a(z) < X and 0 < ag(x) < 1/my for2 < k <r+1. Hencefor 1 <i <r+1, wehave
W (2)]] < (Wr+1)e X'k,
This completes the proof of the lemma. O
The next lemma can be found in [1, Lemma 6].

Lemma 7. Let f : R™ — R be a function such that f(yi,...ym) = c]_[;”:1 9j(y;), where g; : R — R
are functions that satisfy |g;(y;) — 9;(y;)| < Kjly; — v}l and |g;(y;)| < M;. Then we have

1f@) = F@ < (e XK ][ M| 57,

1 k#j

m

J
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where 7,5 € R™ and ||.|| is the Euclidean norm on R™. Let h : [0,1]™"! — R™, h = (hq,...hy)
where h; : [0,1]™~! — R are functions that satisfy |h;(y) — hi(¥')| < Li ||y — || Then we have

Ih(@) — h(@)| < v/m (max;L;) |[5 — 7|,
where 7,y € [0,1]™!

We now compute the Lipschitz class of the boundary of the fundamental domain F. From
now on, we will denote the boundary of a set F by JF.

Lemma 8. For a number field K # Q, 7 € {+1}"* and positive real number t, the set

1 1
8F17(0,,--~ 7077tr+1>
2 my my
is of Lipschitz class L(nk, 2r + 2, Lt), where L = \/ng (27 + r)e”

Proof. Letz = (z;)/1} e F 1 (0,1 -..,0,-1-1). Using (4), we see that |z;| for all i is uniformly

Y my) S my )

bounded away from 0 by a constant that depends only on K and not on i. Hence

1 1 ! r2
F, <0’m""’0’w’1> < | J®I x C™),

5

where 7 varies over elements of {+1}". Since (RZ! x C"2) are disjoint for distinct 7, we have
1 1 1 1
F.{0,—,---,0,b—,1) = |F2-({0,—,---,0,—,1].
;<’m1’ ) 7mTa > U ;’7<am17 ) amra >

Since F; (0, m%, <+, 0, mir, 1) does not contain any point z = (x;); with z; = 0 for some i, we

note that F'1 (0, 0,-L, 1) are disjoint for distinct . This implies that
2 T

m17 )
1 1 1 1

(6) JF1 (077"' a07a1> = U0F1y<077"' 707a1> .

2 my my 2 my m,

More precisely

1 1
S (I I
27 mq my

We want to compute the Lipschitz constant for the set JF1 (0, L0,
27

m1’

1 1
0, —-+,0,—,1) (R x C"™).
< ml’ 77mT7 >m( Y X )

m\»—‘

,1). For any ele-
ment 7y = (7;);1, € {£1}", consider the map

gy :RI xC? — R

(3/1: Tt 7y7"1+7"2) - (g(yh s 'yr1+r2)a arg(yr1+1)a T 7arg(yn+r2)>
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where the argument is chosen from [0, 27). Then

1 1 1 r
F - .. er 72 —1 - 1 T R’V‘l r2
oy (0o 0 1) (B 2 €)= g ([2, <[ 1o, mg) (B x )
= 095 (1 xHO— [0, 27)" )
The map
gy :RD xC? — R x[0,2m)"
(yla"’ 7?/7‘1+T2) - (g(yl,"' ayT’1+T2)vaTg(yT1+l)a"' ,arg(yT1+T2))
is a bijection. Indeed if Gy(y1, ..., Yri4ro) = G5 (Y1s - -+ Yry 1y ), then [y = |yi] for 1 <i < vy +7ro.

Further the first r; real numbers have the same sign and the last 7, complex numbers have the
same arguments. Hence (y1,...,Yr 1ry) = (U1, Yry 4r,)- When (z1,... 2, ) € R"%, then for
1 <i < rq, define

/ r+1
(7) = Y%y K H |Uz Nk—1 |zk
and forr{ +1 < i < ry + rq9, define
1 r+1 )
8) yi = (%mK I1 |O'i(77k—1)|$k> 2 Tra+i,
k=2

Clearly (y1, ... Yri+r,) € RE x C2 and g5(y1, - - -, Yry+ry) = (T1,. .- Tny ). We now observe that
577_1 is continuous on R™*1 x [0, 27)"2. In fact, [,1] x [];_, [0, m%] x (0,27)™ is homeomorphic

to its image in RZ' x C" under the map g- !. Therefore

ag;l ([;,1] x | 1[0, mi] X (0,277)”) =0~ 1o <[1 1] x | 1[0, mi] X (072”)r2> :
1 4 ’ i

It is easy to see that
0g=" [1 1] x ; [0 i] x [0, 2m)" g5'o( [5,1] x H [0, —] x [0,2m)"
ol 27 1 ’ml Y *

We now define 2(r + 1) sets as follows; Iy 1 = {3} x [[_; [0, - ol e = {1} x [l [0, m%]
andfor2<j<r+1

—

—

] x H?;f[,,%]x{O}x Moy [0.5] ifl=1
1 T2 10 5] x [Tiey 0.5) ifL=2.

$)\(
~
Il
NI—= N=

—
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For1 < j <r+1,define ;1,12 :[0,1]""1 — ;1 x [0, 27]"2 as follows;

S (&l L2 timn Lt omp . 9t ) ifj>1
2 vmp? my_2’ " m; my? r+1 y #TMlnyg —1 J )
t . i
andw (t et ) (1’m7115"',f~7’27rt7"+1'”527TtnK—l) lf]_l)
P2 ol (@Lz...tj—l L4t 9mp . Ort ) ifj>1
2 Y my? mj_a’ mj_1’ m; my’ r+1 y &Tlng—1 J .
Further, for j € {£1}", we define h5 : I;; x [0,27]™? — RZ' x C™ and A% : RZ x C™2 — R"
as follows; hx(z1,- -+, nx) = (Y1, , Yri4+r), Where y;’s for 1 < ¢ < ry are defined by (7) and
yi's for 1y + 1 < i < r; + ry are defined by (8) and h%(yl, Y4 ) = (21,7, Zng ), Where for

1<i<r,z=yandforri +1<i<ry+ry

zi = |yil cos(arg(yi)) and  zp,1i = [yi| sin(arg(yi)),

where argument for y;’s are inside [0, 27). We now define 2(r + 1) maps ¢, : [0, 1]"x~! — R«
for1 <j<r+1landl=1,2asfollows; ¢;; = hz o hy o 1;;. These ¢;; cover the boundary of
(h%ogzt) ([%, 1] x TTi1[0, -1 % [0, 27r)T2> as hf is a homeomorphism from R’ x C onto its

image inside R"¥ and hence

: (h; <g ([;1] <01 = [o,2w>f2>>) - 1 (6@»# ([;,1] <o <o WQ)) |

We now compute the constants in Lemma 7 for each of the maps ¢;;. Since we know that
mi—1 = max;[log |o;(ng—1)|] and 0 < tx—1 < 1, we have

th—1
|oi(me—1)[ ™1 < e

for1 <i <rjand 2 < k <r+ 1. Further for any ¢, ¢ € [0, 1], using mean value theorem, we get

t’

t
i (e—1)| =1 = |oi(e—1)| ™1 < et =],

From now on, we denote the i-th projection map of ¢;,; by <Z>3 ;- Applying Lemma 7 and the
above observations, for any ¢, fe [0,1]"x1and 1 < i < r, we have

1
1\ »x -
< () “rer|E-7)I.
2

) | cos(27t) — cos(2nt’)| < 2n [t —+| and |sin(2nt) —sin(2nt’)| < 27 |t — ¥,

MOBENG)

Since for any ¢,t’ € [0, 1]

therefore for any r + 1 < i < nk and for any ¢, T e [0,1]"x~1, as before using Lemma 7, we
have

1
. . 1\ »x L
0 - )] < (5)™ @ren e -7l
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Now applying second part of Lemma 7, for any 7,7 € [0, 1], we have

(10) 610 — 60,0 < (;) K i @m ) e |[E— 7.

Proceeding similarly, for any 7,7 € [0, 1] !, we get

a1 615(0) — dr2(F)] < v (27 +7) " [[E =T

Since for any ¢,t’ € [0, 1]

1) |(12”>K— (35)™

we have forany 2 < j < 2(r +1),1 <1<2,,f €[0,1]"'and 1 <i<r

o
< It —¢|,
nK

-1
e - 2K o
¢},l(t)—¢;,l(t) - +r—1]€e" |[t—1t]l

<

Using (9) and (12) and proceeding as before, we get forany 2 < j < 2(r+1),1 <1 < 2,
1,1 e[0,1]"*and | + 1 <i < nk

=1
27K

L) - ol (@) < |2m = —1]eE - < @ +r)e [[F-T]).

nK
Combining, forany 2 < j < 2(r +1),1 <1< 2and ,# € [0,1]"%~!, we have

(13) 050) = 60| < vk (27 + 7)e” [[E =7,

If the interval [1, 1) is replaced by [155, t"%) for some positive ¢ € R, we deduce in a similar

way that the bound L in the definition 4 of Lipschitz class is less than ¢,/nk (27 + r)e”". Hence
0F1/55(0 . O%T’ t"K) is of Lipschitz class £(nk, 2r+2, Lt), where L = /nk (2n+r)e". O

L
Yy’

3.4. Preliminary lemmas. Using Theorem 2 and Theorem 4, we derive the following bounds
on the product [ [}_, m;, where m; = max;[log |o;(n;)|].

Lemma 9. Let q; be a modulus of K. There exist r units y, - - - n, modulo roots of unity which generate
Ug, such that

R r
% < H mj < 71”(7, + 1)’"+1/2n%€ RK7q1,
QT(T + 1) 2 7j=1

where as before r = r1 + ro — 1 and Rk 4, is the q regulator of the field K.
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Proof. If there are no fundamental units, the regulator R 4, is defined to be 1 and hence the
above inequalities are trivially satisfied. Hence from now on, we assume that » > 1. Let
{n},---n.} be any set of generators of U;, modulo roots of unity. Let I denote the map

[:R™" xC? — R

(z:)i — (eilog|a;|)it]

Here e;is 2if r1 +1 <4 < r 4+ 1 and 1 otherwise. Set A, = I[(¢(Uy, )), where ¢ is as in subsection
3.1. Note that A, is a lattice of rank r. The vectors

Ui = ( ! s ! ) . U5 = (eilog ’%(77/'71)’)“1
for 2 < j < r+1 form a basis for R""!. Since ||v7|| = 1 and v; is orthogonal to the R vector space
generated by {v, - - - v,41}, the volume of the lattice generated by the vectors {vq,---vy41} in
R"*1 is the same as the volume of A, in R”. Hence the volume of A, is \/r + 1 Ry 4,- Note that
the volume of A, is independent of the choice of the generators {7}, - - - 7.} of Uy,
Let {w; ... w,} be a reduced Korkin Zolotarev basis for A,. Choose a set of generators
N1, - - - of Uy, modulo roots of unity such that f(¢(n;)) = wj. Thenfor1 < j <r

1 1 .
m; = §maxi(€i10g(|0i(ﬁj)|)) = WHU’]’H-

Since [ [;_, |[w}]| is greater than or equal to the volume, we have

[Tm > ( Jl ) Vol (A,) > — K

m; = — Z — 5 —7T-

AR TS

We now compute the upper bound. Since there is at least one fundamental unit, we known

that ng > 1. If nx = 2, then Rk 4, = |log|n| |, where 7 generates U;, modulo roots of unity.

Since Rk 4, = Rk > 1/5 (see [3]), we get the required upper bound in this case. If ng > 3, then
1

logrne oy 1o R
6ng g — 1

1+

Now by Dobrowolski’s theorem, we know that max;(e; log|o;(n;)|) = 77%2 This implies that
K

m; < Tn¥ max;(e;log|oi(n;)]) < Tn¥k |[w}|]. Using Theorem 2, we now get

I . T . , 34+ /2 ., - ” .
[Tm; < (i [Tllasll < (k) ( i > "2+ 1R, < T+ )20 Ry,
j=1 J=1

O

Lemma 10. Let q; be a modulus of K with nx > 1, {o1,--- ,0,} be a set of embeddings of K into C
such that no two embeddings are conjugate to each other. For n; and m; as defined earlier and o € K,
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the integral

(14)

f dzy - -dx, _ mi---my < nK >T
v maxi<icr 1 ([Tjy |oi(ny)[53/m3 |oy(a) [ rac—t RK,q1|‘ﬁ(a)|n57; nk —1

Proof. Using the transformation x; — m;x;, we see that the left hand side of (14) is equal to

dry---dz,

15 mi---m .
(15) LI maxicier e (L s [P o(a) s T

We now make the substitution y; = Z§=1

[T e dyy - - - dyy
Rk,q, Jrr max(e¥t|oy(a)l,---e¥r|op(a)|, e |op 1 (o))t

xjlogl|oi(n;)|, for 1 < i < r. Hence (15) is equal to

mi-- My

where ¢; for 1 <i < ris 1 or 2 depending on o; is real or complex embedding and

IS
2 —ert1log |or11(nj)])
7=1

T
— > xjlogloyia(ny)| =
j=1

T T
= Z Z ex log ok (1))]

er+1

€r+1

The integral is now identical to the one computed in the proof of Lemma 10 of [1].

3.5. Counting points in the fundamental domain. Applying Theorem 3, we will now derive

the following counting theorem.

Theorem 11. Let a, q be co-prime ideals of Ok, 7 € {£1}" and € be the ideal class of aq in the class

- r+1 -
group of Ox. For k € [[;_,([0,m;) n Z), let B = (H;:I |ai(77j)|—’fj/mj>‘ : and Ay, (k) be the
lattice B/ (gb(aq) . 613) in R"%, where ¢ is as in subsection 3.1 and h' is as in subsection 3.3. Also let

S (@0.F) 5(t")) = fa | 6(a) € Fy o(t"), o = bmod q),

where b € Ok. Then for any real number t > 1, we have

3,2 11 1
272 R 1K nZ +8nyk 5”K+7"K7§tnK—1
‘S (a7q’F§,7(tTLK)>’ _ ( 7T) K,q1 + * e 'K nK — +my--om,
V4| Staa) N(e) ! 9Nag)
where q1 = qqo With qo, containing all the infinite places of K and
miemy ]
‘)"(((’:71) == mclxbie¢—1 7’”[{*1
i=1 | M(by)| mx

maxy 01 (A (k))

The term my - - - m, may be omitted whent > W(% e

or q = Ok.
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Proof. Since we want to count o € a such that @ = b mod g, where a, q are co-prime, we need to
count « in only one residue class, say a modulo aq. Recall that K # Q. We need to count

‘ (aq) + ¢(a ﬂF% t"K‘

By Lemma 5, we have

(16) [(6(aa) + 6() (VFy 5 (") = 21 ((0(a) + 6(@) - ) [P0, -0, =07,
k

where k € [T, ([0,m;) N Z). Since

Vol(1' ((¢(aq) + ¢(a)) - Bz)) = Vol(I'(¢(aq) - By)),
applying Widmer’s estimate (Theorem 3), the main term for each k is
1 n
Vol (1 (Fy 40,7, ,0, 51, m) ))
Vol (' (¢(aa) - ) '
The volume of h/(¢(aq)) is the determinant of the matrix whose column vectors form a basis

for this lattice 2/ (¢(aq)). If B = (6,);”“11, multiplying the i-the entry of each basis vector with ;
for1 <i <7y +reandforr +ry <i<ry+ 2ry with 8;_,,, we get that

Vol(%/ (¢(aq) - Bz)) = Vol(I'(¢(aq))).

This implies that the main term for each k is independent of k and equal to

Vol(h/(F1 5(0, 7+, 0, -, £75)))
(17) Vol(%'(¢(aq)))

We know that Vol(R/(¢(aq))) = 27"24/|dk |9(aq) (see page 31 of [7]). To compute the volume
Vol(h’(F%(O, m%, <0, n”%’ t"x))), we note that

1 1
Vol (h’ (Fl((), — 0, —, t”K))) = f dry - dae dey, 41 AT,
2 mi my /( ( %7"'?07%7 tnK))

1
2

where the variables x,, +1 to z,, are complex. By definition

1 1 K r 1
Fi(0,—, - ,0,— t"& ) =g~ (— " 0,—) |,
;( . ) g ((2 <11 mﬁ>

the argument for each complex coordinate in the pre-image covers the entire interval [0, 27).

Replacing the complex variables with polar co-ordinates and integrating over the arguments,

Vol (h' <F%(0 el ni t"K)>>

= en | dnle | daal | fealdegalo | ol dol
|21 |2y | |zry +1] Ty
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The ranges in the above integral are clear from the formulae (4) with a(z) € (Y55, ¢"%] and
aj(z) € [0, m%) We now make a change of variable z = (z1, z2, - - - xTH)by( a(z), ar(x), - ar(x)).
To compute the Jacobian, we note that for 1 <i <r+ 1land 1 < j <r, we have

&]wz\ |:ZZZ'| (9|.’l?i’
= and = |Z; log a;(ni)|-

da(z)  nko

We also note that a(z) = HTH |z;|% where e; = 2 for complex coordinate and e; = 1 otherwise.
Now rewriting the integral, we have

Vol (Fl(o R t”K)> — 9M1(2m)72 27" Ry f/ml dot () - - J " () J " o)
2 my’ T T my) o 0 ' K
n e Ry g 47K
my---m,
Therefore for each E, the main term (17) is equal to
1 207 'am Ry g, t"% 1 B (27)"2 R g, t"K

or my - my 272 /ldc|M(aq)  (my ---m,)\/4|dx|N(aq)

Hence the main term after summing over & € [T;=1[0,m;) N Z is equal to

(27)"2 Ry g, 1%

V/Aldk[N(ag)

Applying Theorem 3 and Lemma 8, the error term for each k is bounded by
(19)

(18)

n A/ 2 Tt \/ 2 "t '
(2r + 2)ni’< %‘/2max0<i<nK ( :LK( Tt T)e_, ! < (2r+ 2) /21rnax0<l<nK ( nxc (27 +j)€ ) .
Hj:l 6J(AnK(k)) 51(AHK (k))

If we have /ng (21 + r)e’t > 8 (Ane(k)), then to get an upper bound of (19), we can re-
place i by nk — 1. To deduce the asymptotic for all ¢ > 1, we first consider the case where
01 (Apy (k) > /i (2w + r)e"t for some vector k. In this case, we claim that

((¢(aq) + ¢(a)) - Bz) ﬂF%ﬁ <0, 11 -0, WL,t”K)‘ <1

Suppose not and let z, y € ((¢(aq) + ¢(a)) - 5;) ﬂF ( A ,0, . ,t"K) be distinct. Then

r—y € ¢(aq) - ;. By definition, this 1mphes that &) (A (k) < ||h’ (x—y)||- Applying Lemma 6,
we get

VK Q2m 4+ 1) et < 51(AnK(E)) < W (z—y)|] < 2(vr+1)e€'t,

a contradiction. If g = Ok, the same argument applies to z in place of x —y and this implies that
there are no exceptional points. The total number of k for which 61 (A, (k) > /fx (27 +7)e"t
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is at most m; - - - m,. Hence

E
VAR (2m+r)eTt < 61 (Ang (K))

For each k for which /nk (27 + r)e"t < 6, (Any (k)), we claim that

ng—1
(27)"2 RK q, "% . 3nZ/2 [ /NK(2T +7)et
/A ey R ( 51 (A (1)) )

Note that 27177 (r + 17 nl% < (2r + 2)nge.

(2m)22"(r + 1)%115”1‘ - (2r + 2)n1% (M(Qﬂ + r)t)”K
2+/|dx|9(aq) ~ Vol(W(¢(aq) - 57)) nK '

By Theorem 2, we have §; (A (k)™ < nVol(h/(¢(aq) - B;)) and therefore

@myre2r(r )T e Sk (/g2 + et "
e ( 51 (Ang (F)) >

Finally applying Lemma 9 and /nk (27 + 7)e"t < d1(Apyg (k)), we get

(27r)r2RK K 3"%< /i (27 + 1)et nk—1
myr/4|dg [N (aq) 81 (Any (K)) ’

as claimed. Therefore for ¢ > 1 the error is bounded by

(20) (2 + 2)ngd (VK27 + r)er )" Z i (1/2))m<—1

+ myp---my.

5 (@00 ot 8 (VF 3 (000 L) < mnom,

17

If there are no k such that VK (2m+7r)e"t < max 701 (AnK (%)) , then the error term is bounded

by

3”}(/2 . ryynk—1 1
(21) (2r + 2)ng X7 (k21 + 1r)e"t) ZMA G
Let

p(ag, k) = MiNgeqqgMaXi<i<r+1 <|0i(a)| H |Ui(77j)’kj/mj> .

From the definition of successive minima &, (A, (k)) > u(aq, k). For any « € aq, let K, be the

set of all k for which the minimum s(aq, ) is attained at o, i.e.

Ko = {E ‘ p(aq, k) = maxi<icri1(|oi(a))| H \gi(nj)|kj/mj)} .

j=1
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We alsoset Y] = {a € aq | K, # J}. Substituting in (21) (analogously in (20)), we get

%51(/\”( nK1<Z Z Z

Q€Y [, keK,,

IS : =

agY1 uelq keK,, MaXi<i<r+1 (|0’Z(UO[)‘ H] 1 |Uz(77])| kj/mj)

aqk”K1 aqk”K1

1
2 Z axi<icr1(|oi ()| [ Tj-y |os(n)|~Fa/ma =27

aeY1 k‘EZT

where ’ on the inner sum indicates that the sum is over non-associate elements of aq with
respect to the unit group Uj,. Note that there are at most m; - - - m, elements in the outermost
sum. Applying Lemma 10, we now bound the inner sum to get

1 < 2" my my
Z maXjgi< 1(‘0’-(04)‘ HT |0"(’I7')|_kj/mj)nK_1 = [
kezr Srsr g=1 1w Rk g, [M(a)] "x

Now the term

ng—1

1 M 1 1 nic M 1
T S MaXgeaq Z < maxy,ce—1 Z e —

nK — ng — ng—1 "
e [9(0)] S e\ S )

/

The inner sum is a constant that depends only on the inverse of the class of aq in the class
group. We shall denote this by 91(¢~!). Combining all these estimates and applying Lemma 9,
we get that the error term (21) is bounded by

s N(eL)pnx—1
2T+1(7“ + 1)2”1(10711()2”71[(2 (vnx (2 + r)er)”K_l—( ) T
MN(aq)| "x

1 —1 nK—l
< enK+8nKnK”K+*"K** m(Q: )t '
ng—1

N(aq) "x

maxj, o1 (A”K (k))
\/7(27r+7)er

1
((2)" V/ldac] (o)) "™ 107~
t= .

ng(r+1)

Remark 3.1. One can replace the condition t > in Theorem 11 by

Indeed, by Minkowski’s lattice point theorem, there exists a point a € aq such that

ola) - g€ ofaa) - 5 and N(a) < (2) V] M)
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By (4), we have
r+1
|loi(a)| = nK 1_[ EX |a;(a)_
Let bj = |« -(a) | and b; = aj(a) — - —bj. We observe that 0 < b; < 1. Consider the unit

Uq = ]_[”1 n;’y in Of. We now have

r+1 r+1 2k
[¢(a-ugh) - Bl = 4| D} loita-ua Y[ Tloi(mj—)l ™
i=1 j=2
1 r+1r+1 2a (@)=
= MN(a)"x Z 1_[|<7Z ni—1)| "
=1 j=2
1 r+1r+1 _
= Na)x | > [ [loi(nj—1)|?
i=1j=2

L ,
< N(a) W1+ 1 eXi—1™,

3.6. Counting ideals in ray classes. In this subsection, we complete the proof of Theorem 1.
We use notations from the previous sections. We start by simplifying the main term in Theo-
rem 11.

Lemma 12. (Debaene [1], Lemma 12) Let by, by, - be integral ideals in Ok, ordered such that
N(by) < N(bg) - - -. Then for any real number y > 2

(ng—1)?

Y 1 1
b)) < 6nky K (logy) K

Lemma 13 (Lang [5], page 127). Let q1 = qq« be a modulus of K, 1, Uy, , hx be as defined earlier
and hx 4 be the cardinality of the narrow ray class group of K modulo q. Then
By — 2" p(a)hxc
" [0k Ul
Lemma 14. Let 1,72, hk, dk, Rk, q1, Uy, , hK g, RK g, be as in the previous subsections. Also let ok
be the residue of the Dedekind zeta function at s = 1, jux be the group of roots of unity in K and 14, be
the cardinality of Uy, N px. We have

(2m)" Rk.q, _ ax(q) Rxar _ oy 2" ()i
payldk|  hka T Bk ekl hkg
Proof. Applying the analytic class number formula (1), we see that
(27T)T2RK’q1 B AR (27T>T2hKRK " RK,ql oK |;LK|RK’q1

f— f— x .
taA/1d[N(@)  pgo/|dx[M(q)  27hxkRx O(q) 27 pg hk Rk
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As shown in Lemma 9, consider the lattice [(¢(U,, )) and note that /7 + 1 Rk g, is the volume
of its fundamental domain. Also note that 4/r + 1 Ry is the volume of the fundamental domain
of I(¢p(O5)). We know that [(¢(Uy,)) and I(¢(Ox;)) are finitely generated free modules over Z
of the same rank. Therefore by the structure theorem for finitely generated free modules over
principal ideal domains, we have
_ Vol(l(¢(Uy,)) _ Rk q

Vol(l(6(0%))) Bk

Along with the torsion part coming from the roots of unity, we have

[1(6(Ok)) : U¢(Uay))]

(0% : Uy, ] = [16(OF) : U(U,))] ‘Zf'.

Applying the above identities, we have

aK lux|Rxq  ax _ [Of : Uyl

X
Na) g iR Na) 2k

Now using Lemma 13, we get the first formula. The second one follows along similar lines;

Ry, 1 By 2" 0(q)hk
au _ Mo [Oik( . UCII] _ M0 )
Rk |kl x| hkg
This completes the proof of this lemma. O

We can now proceed to the proof of Theorem 1.

Proof of Theorem 1. Let us fix an ideal ¢ € [b]~!. Since ¢b = () for some a = 1 mod *q, in
order to count the number of integral ideals in [b] with norm at most z, it is sufficient to count
(a), a € ¢ such that @ = 1 mod *q of norm at most 29%c. This implies that

1
Y 1=—Hacc|¢(a)eFq(0,1,---,0,1,29%), a = 1 mod g},
acOxk, a1

[a]=[b]

Na<z

where 7 = (1,---,1). Let Ay, (k) be the lattice 7’ (¢(cq) - 8;) in R"%. Using Theorem 11, we
know thatif z > 1, we get
(22)
r n2 +8n 1--L
Haz

—X
ac O, Hqi v/ |dK| Nq

[a]=[¢]

Na<zx

We rewrite the main term by appealing to the first part of Lemma 14. We then bound above
my - - -my/pg, first by the quantity 773 Ry 4, /g, thanks to Lemma 9. We bound it further by
23nK ning 2T1g0(q)%h};{—lfq by invoking the second part of Lemma 14. The paper [3] by E. Fried-
man ensures us that Rk /|puk| = 0.2, and so, this upper bound is at least equal to 2. Lemma 12
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may thus be applied to majorize 91(¢~!). On shortening F(q) by F, then nk by n and Rk /|uxk|
by R, this leads to the error term

. _ (=12 = .
e”2+8"n%”2+%”_%6n((2n)4”FR)1/n log((2n)4"FR) " (‘qu) + (2n)"FR.

We separate the contribution of q and of K by using
log((2n)4”FR) <2 log((2n)4"R) log(3F)

which is a consequence of the inequality a + b < 2ab valid when a,b > 1. But we first notice
that log((2n)**FR) > 1 so that we may simply replace the exponent (n —1)2/n by n. We further
check that

2 3,2,11, 1 2
en +8nn2n +5n 26%(2”)4 < 500 n12n )

Hence the theorem follows. O

Acknowledgements. Research of this article was partially supported by Indo-French Program
in Mathematics (IFPM). All authors would like to thank IFPM for financial support. The first
author would also like to acknowledge MTR/2018/000201, SPARC project 445 and DAE num-
ber theory plan project for partial financial support.

We also thank Ethan Lee from Canberra for pointing out to us the work [9] of ]. Sunley.

REFERENCES

[1] K. Debaene. Explicit counting of ideals and a Brun-Titchmarsh inequality for the Chebotarev density theorem.
Int. J. Number Theory, 15(5):883-905, 2019.

[2] E. Dobrowolski. On a question of Lehmer and the number of irreducible factors of a polynomial. Acta Arith.,
34(4):391-401, 1979.

[3] E. Friedman. Analytic formulas for the regulator of a number field. Invent. Math., 98(3):599-622, 1989.

[4] J. C. Lagarias, H. W. Lenstra Jr., and C.-P. Schnorr. Korkin-Zolotarev bases and successive minima of a lattice
and its reciprocal lattice. Combinatorica, 10(4):333-348, 1990.

[5] S. Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, sec-
ond edition, 1994.

[6] E.S. Lee. On the number of integral ideals in a number field. Journal of Mathematical Analysis and Applications,
517(1):126585, 2023.

[7] J. Neukirch. Algebraic number theory, volume 322 of Grundlehren der mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and
with a note by Norbert Schappacher, With a foreword by G. Harder.

[8] J. E. S. Sunley. On the class numbers of totally imaginary quadratic extensions of totally real fields. ProQuest LLC,
Ann Arbor, MI, 1971. Thesis (Ph.D.)-University of Maryland, College Park.

[9] J. E. S. Sunley. Class numbers of totally imaginary quadratic extensions of totally real fields. Trans. Amer. Math.
Soc., 175:209-232, 1973.



22 SANOLI GUN, OLIVIER RAMARE AND JYOTHSNAA SIVARAMAN

[10] A. Sutherland. Class field theory, ray class groups and ray class fields. MIT Mathematics, 18.785, Number
Theory I, Lecture # 20, 2015.

[11] T. Tatuzawa. On the number of integral ideals in algebraic number fields, whose norms not exceeding x. Sci.
Papers College Gen. Ed. Univ. Tokyo, 23:73-86, 1973.

[12] M. Widmer. Counting primitive points of bounded height. Trans. Amer. Math. Soc., 362(9):4793-4829, 2010.

(Sanoli Gun) INSTITUTE OF MATHEMATICAL SCIENCES, A CI OF HOMI BHABHA NATIONAL INSTITUTE, CIT
CAaMPUS, TARAMANI, CHENNAI 600 113, INDIA.

(Olivier Ramaré) CNRS / INSTITUT DE MATHEMATIQUES DE MARSEILLE, AIX MARSEILLE UNIVERSITE, U.M.R.
7373, SITE SUD, CAMPUS DE LUMINY, CASE 907, 13288 MARSEILLE CEDEX 9, FRANCE.

(Jyothsnaa Sivaraman) CHENNAI MATHEMATICAL INSTITUTE, H1, SIPCOT IT PARK, SIRUSERI, KELAMBAKKAM,
603103, INDIA.

Email address: sanoli@imsc.res.in

Email address: olivier.ramare@univ-amu.fr

Email address: jyothsnaas@cmi.ac.in



	1. Introduction and statement of the Theorem
	2. Notation and Preliminaries
	Notation
	The Dedekind zeta-function
	The narrow ray-class group
	Orthogonality defect and successive minima
	Lower bounds for algebraic conjugates

	3. Counting integral ideals in classes of the ray class group
	3.1. Fundamental domain
	3.2. Notation
	3.3. Computing the Lipschitz class of the boundary
	3.4. Preliminary lemmas
	3.5. Counting points in the fundamental domain
	3.6. Counting ideals in ray classes

	References

