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Let K be a number field and q an integral ideal in O K . A result of Tatuzawa [11] from 1973, computes the asymptotic (with an error term) for the number of ideals with norm at most x in a class of the narrow ray class group of K modulo q. This result bounds the error term with a constant whose dependence on q is explicit but dependence on K is not explicit. The aim of this paper is to prove this asymptotic with a fully explicit bound for the error term.

INTRODUCTION AND STATEMENT OF THE THEOREM

Given a number field K, the problem of counting the number of ideals in a given class of the narrow ray class group H q pKq attached to the ideal q is classical and goes back, if not to Landau, at least to Hecke. Our query in this paper is the dependence of the error term on the field K which we describe fully, and even in a completely explicit manner. Let us recall our notation in brief, n K , h K,1 , R K , µ K and d K are respectively the degree, the narrow class number, the regulator, the group of units of finite order in K and the discriminant of K while α K is the residue of its Dedekind zeta-function at 1. The ring of integers is denoted by O K and h K denotes the class number of K.

On the technical side, notation f pxq " O ˚pgpxqq means that |f pxq| ď gpxq. In this set-up, we have the following theorem; Theorem 1. Let q be an integral ideal of K and rbs be an element of H q pKq. For any real number x ě 1, we have

ÿ aĂO K , ras"rbs, Naďx 1 " α K ϕpqq |H q pKq|
x Nq `O˚ˆE pKqF pqq

1 n K logp3F pqqq n K ˆx Nq ˙1´1 n K `n8n K K R K |µ K | F pqq ˙.
where F pqq " 2 r 1 ϕpqqh K {h K,q and EpKq " 1000n

12n 2 K K pR K {|µ K |q 1 n K " log `p2n K q 4n K R K {|µ K | ˘‰n K .
Notice that F pqq ě 1. Let us briefly recall the definition of the (narrow) ray class group H q pKq. Let Ipqq be the group of fractional ideals of K which are co-prime to q and P q be the subgroup of Ipqq consisting of principal ideals pαq satisfying v p pα ´1q ě v p pqq for all prime ideals p dividing q and σpαq ą 0 for all embeddings σ of K in R. We set H q pKq " Ipqq{P q . When q " O K , the group H q pKq is the usual class group in the narrow sense.

The problem of counting ideals in a class of ray class group can be decomposed in two parts: building a fundamental domain, which turns out to be made of lattice points in some region, and counting such points. Our main effort concerns the building of the fundamental domain. Two hurdles prevents us from directly counting integral ideals of K: the fact that the narrow ray class group H q pKq is non-trivial, and the existence of units. To treat both of these, we follow the approach developed by K. Debaene in [START_REF] Debaene | Explicit counting of ideals and a Brun-Titchmarsh inequality for the Chebotarev density theorem[END_REF], as it provides us with a very tame dependence in the field (notice that no discriminant appears in our error term). This is combined, as in [START_REF] Debaene | Explicit counting of ideals and a Brun-Titchmarsh inequality for the Chebotarev density theorem[END_REF], with two general results: the first one shows that a 'short' enough basis exists for the lattice to be considered, while the second one counts the lattice points in a given domain.

An overall different approach has been followed in [11] by T. Tatuzawa, but his results lack the control of the dependency in K. There also exists an earlier completely explicit result on this subject, and with a better error term as far as the dependence in x is concerned. It is due to J. Sunley in her PhD memoir [START_REF] Sunley | On the class numbers of totally imaginary quadratic extensions of totally real fields[END_REF] and is recalled as Theorem 1.1 of [START_REF] Sunley | Class numbers of totally imaginary quadratic extensions of totally real fields[END_REF] (see also [START_REF] Lee | On the number of integral ideals in a number field[END_REF]). We have few indications as to the proof of this result, as it has not been published in any journal, but, knowing that it originates from the method of Landau, we may surmise that most of the work goes on the dependency of K, relying on a more classical fundamental domain. We finally mention that the present work relies on several highly non-trivial results, like the bound for the regulator given by E. Friedman in [START_REF] Friedman | Analytic formulas for the regulator of a number field[END_REF], and the lower bound for the height of an algebraic number provided by E. Dobrowolski in [START_REF] Dobrowolski | On a question of Lehmer and the number of irreducible factors of a polynomial[END_REF].

We have several applications of our result which we leave for future works. The paper is organized as follows. In section 2, we deal with some notations and preliminaries. In section 3, we prove Theorem 1.

NOTATION AND PRELIMINARIES

Notation. Let K ‰ Q be a number field with discriminant |d K | ě 3 (by Minkowski's bound). Also let n K " rK : Qs ě 2 and q be an (integral) ideal of K. The number of real embedding of K is denoted by r 1 whereas the number of complex ones are denoted by 2r 2 . The ring of integers of K is denoted by O K , the narrow ray class group modulo q is denoted by H q pKq, its cardinality by h K,q and the (absolute) norm is denoted by N. We shorten h K,q by h K,1 when q " O K . Whenever required, we shall replace the ideal q by the modulus q 1 " qq 8 , considered as a set of places, where q 8 is the set of all Archimedean places of K. But, as we do not consider subsets S of Archimedean places, we may safely rely only on q and recall regularly that we count narrow classes. Still to follow tradition, we denote by R K,q 1 the q 1 -regulator, by U q 1 the corresponding group of units and by µ q 1 the number of units of finite order in U q 1 , i.e. also, the cardinality of µ K X U q 1 . Throughout the article p will denote a prime ideal in O K and p will denote a rational prime number. Further an element of H q pKq containing an integral ideal a will be denoted by ras.

The Dedekind zeta-function. For s " σ ą 1, the Dedekind zeta-function is defined by

ζ K psq " ÿ aĎO K a‰0 1 Npaq s ,
where a ranges over the integral ideals of O K . It has only a simple pole at s " 1 of residue α K , say. We know from the analytic class number formula that

(1) α K " 2 r 1 p2πq r 2 h K R K |µ K | a |d K |
, where h K , R K , d K and µ K are as before.

The narrow ray-class group. By narrow ray class group H q pKq, we consider that ray class group where the integral ideal q is completed with all real Archimedean places. We have 

(2) |H 1 pKq| ď |H q pKq| ď ϕpqq|H 1 pKq|, where (3) 

Orthogonality defect and successive minima.

In this subsection we define some notions and state results about lattices in R n that will be required in due course of the proof. Definition 1. Given a lattice Λ n of rank n, the orthogonality defect Ω of the lattice Λ n is given by

Ω " inf p v 1 ,¨¨¨, vnq || v 1 || ¨¨¨|| v n || Vol pΛ n q
where t v 1 , ¨¨¨, v n u runs over the bases of Λ n .

Definition 2. Given a basis

V " t v 1 , ¨¨¨, v n u of a lattice Λ n of rank n, let V : " t v 1 : , ¨¨¨, v n : u be the Gram-Schmidt orthogonalisation of V . Let α i,j " v i ¨ v j : || v j : || 2
for i, j P t1, ¨¨¨, nu.

When n " 1, any basis element of Λ 1 in R is defined to be a reduced Korkin-Zolotarev basis. When n ą 1, the basis V of Λ n is called a reduced Korkin-Zolotarev basis if it satisfies the following properties;

(1) The vector v 1 is of minimum length among the vectors v i for 1 ď i ď n (with respect to the Euclidean norm), (2) The coefficients

|α i,1 | ď 1 2 for 2 ď i ď n, (3) If Λ n´1 is the orthogonal projection of Λ n on the orthogonal complement pR v 1 q K , then the vec- tors t v 2 ´α2,1 v 1 , ¨¨¨, v n ´αn,1 v 1 u also form a reduced Korkin-Zolotarev basis of Λ n´1 .
It is easy to see that reduced Korkin-Zolotarev bases exist for a lattice Λ n of rank n.

Definition 3. For a lattice Λ n of rank n ě 1 and for 1 ď i ď n, the i-th successive minimum of Λ n is defined by δ i pΛ n q " inftλ P R | Bp0, λq X Λ n contains i linearly independent vectorsu.

Here Bp0, λq denotes a ball of radius λ around origin in R n . For i " 0, we define δ 0 pΛ n q " 1. Further the constant

γ n " sup # ˆδ1 pΛ n q n VolpΛ n q ˙2{n | Λ n is a lattice of rank n + is called the Hermite's constant.
In this set-up, we have the following theorem.

Theorem 2 (Lagarias, Lenstra and Schnorr [START_REF] Lagarias | Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice[END_REF]). If t v 1 . . . v n u is a reduced Korkin-Zolotarev basis for a lattice Λ n of rank n, then

n ź j"1 || v j || 2 ď ˜n ź j"1 j `3 4 ¸γn n VolpΛ n q 2 ,
where γ n is the Hermite's constant. Further, an upper bound for the Hermite's constant is given by γ n ď n for n ě 1.

We now define the notion of the Lipschitz class of a subset of R n .

Definition 4. Let S be a subset of R n with n ě 2. We say that S is of Lipschitz class Lpn, M, Lq if there are M maps φ 1 , . . . φ M : r0, 1s n´1 Ñ R n such that S is contained in the union of images of φ i for i P t1, . . . M u and

||φ i pxq ´φi pyq|| ď L ||x ´y||,
where x, y P r0, 1s n´1 .

We conclude by stating a theorem of Widmer [12] which allows us to estimate the main term as well as the error term in Theorem 11.

Theorem 3 (Widmer [12]). Let Λ n be a lattice in R n with successive minima δ 0 pΛ n q, ¨¨¨, δ n pΛ n q. Let S be a bounded set in R n such that its boundary is of Lipschitz class Lpn, M, Lq for some natural number M and positive constant L. Then S is measurable and

ˇˇˇ| S X Λ n | ´VolpSq VolpΛ n q ˇˇˇď M n 3n 2 {2 max 0ďiăn L i δ 0 pΛ n q ¨¨¨δ i pΛ n q .
Lower bounds for algebraic conjugates. In this subsection we recall a theorem of Dobrowolski which gives a lower bound on the absolute value of all the conjugates of an algebraic integer which is not zero or a root of unity.

Theorem 4 (Dobrowolski [START_REF] Dobrowolski | On a question of Lehmer and the number of irreducible factors of a polynomial[END_REF]). Let α be a non-zero algebraic integer of degree n ą 1 and let α be the maximum of the absolute values of all conjugates of α. If α is not a root of unity, then α ě 1 `log n 6n 2 .

COUNTING INTEGRAL IDEALS IN CLASSES OF THE RAY CLASS GROUP

Let tσ 1 , ¨¨¨σ n K u be the set of all embeddings of K into C. The first r 1 embeddings are all real embeddings and the embeddings tσ r 1 `i, σ r 1 `r2 `iu for 1 ď i ď r 2 are complex conjugates. Consider the first r 1 `r2 embeddings from this set. We will use r to denote r 1 `r2 ´1 and as before q 1 " qq 8 to denote a modulus, where q Ď O K be an ideal and q 8 contains all real places of K.

Fundamental domain.

Let O K be the group of units of O K and U q (respectively U q 1 ) be the subgroup of O K consisting of units which are 1 mod q (respectively 1 mod ˚q1 ). Both of these subgroups U q and U q 1 are of finite index in O K. Let φ denote the embedding

φ : K Ñ R r 1 ˆCr 2 x Ñ pσ i pxqq r`1 i"1
Further let f denote the map

f : R r 1 ˆCr 2 Ñ R r`1 px i q i Ñ plog |x i |q r`1 i"1
Since rO K : U q 1 s is finite, the image under the map f ˝φ of U q 1 is also a lattice of rank r. Let tη 1 , . . . η r u be a set of multiplicatively independent generators for the group U q 1 modulo roots of unity and the vectors

v 1 " ˆ1 n K , ¨¨¨, 1 n K ˙, v j " plog |σ i pη j´1 q|q r`1 i"1 for 2 ď j ď r `1
form a basis for R r`1 . The vectors v 2 , ¨¨¨ v r`1 form a basis for a lattice of rank r and v 1 , v 2 , ¨¨¨ v r`1 are R linearly independent. We can now write the vector plog |x i |q r`1 i"1 as

plog |x i |q r`1 i"1 " α 1 pxq v 1 `¨¨¨`α r`1 pxq v r`1 ,
and therefore ( 4)

|x i | " e α 1 pxq{n K r`1 ź j"2 |σ i pη j´1 q| α j pxq " αpxq 1{n K r`1 ź j"2 |σ i pη j´1 q| α j pxq ,
where x " px 1 , ¨¨¨, x r`1 q and αpxq " e α 1 pxq . If x P K, then x i " σ i pxq for 1 ď i ď r `1 and so taking product over all i in (4), we identify αpxq:

(5)

r`1 ź i"1 |σ i pxq| e i " |Npxq| " αpxq,
where e i " 1 when i ď r 1 and e i " 2 otherwise. We now define the map

g : R r 1 ˆCr 2 Ñ R r`1
x " px i q i Ñ pαpxq, α 2 pxq, ¨¨¨α r`1 pxqq.

We now define F " g ´1pR `ˆr0, 1q r q. This corresponds to the set pf ˝φq ´1pS 1 q, where S 1 is given by the points corresponding to the vectors

tα 1 v 1 `. . . `αr`1 v r`1 | α 1 P R, α i P r0, 1q for i ą 1u.
Since the vectors give rise to a lattice of full rank, given an x P K, there is an η P U q 1 such that φpx{ηq P F. Conversely, for an x P K, with φpxq P F and any η P U q 1 , we note that φpηxq P F if and only if η is a root of unity.

3.2. Notation. Throughout the rest of the section, we will use the following notations.

(1) Fpa 1 , b 1 , . . . , a r , b r , Xq " g ´1 ´p0, Xs ˆśr j"1 ra j , b j q ¯.

(

) F 1 2 pa 1 , b 1 , . . . , a r , b r , Xq " g ´1 ´`X 2 , X ‰ ˆśr j"1 ra j , b j q ¯. 2 
(3) For γ " pγ i q r

1 i"1 P t˘1u r 1 , denote by R r 1 γ " tpx 1 , ¨¨¨, x r 1 q | signpx i q " γ i u. Then F γ pa 1 , b 1 , . . . , a r , b r , Xq " Fpa 1 , b 1 , . . . , a r , b r , Xq X pR r 1 γ ˆCr 2 q. Further, F 1 2 ,γ pa 1 , b 1 , . . . , a r , b r , Xq " F 1 2 pa 1 , b 1 , ¨¨¨, a r , b r , Xq X pR r 1 γ ˆCr 2 q. (4) F 1 2 ,γ pXq " F 1 2 ,γ p0, 1, ¨¨¨0, 1, Xq. (5 
) For j P t1, . . . , ru, m j " max i rlog |σ i pη j q|s, where tη 1 , . . . η r u is a set of multiplicatively independent generators for the group U q 1 modulo roots of unity.

Computing the Lipschitz class of the boundary.

Definition 5. Let q 1 be a modulus of K and U q 1 be the subgroup of units which are 1 mod ˚q1 . Further let tσ 1 , ¨¨¨, σ r`1 u be a set of r `1 embeddings of K into C where no two embeddings are conjugates of each other. If tη 1 , ¨¨¨, η r u are multiplicatively independent units generating U q 1 modulo the roots of unity, then the q 1 regulator R K,q 1 is defined by R K,q 1 " ˇˇdet pe i log |σ i pη j q|q i,j ˇw here i, j P t1, 2 . . . ru and e i " 1 or 2 if the corresponding embedding is real or complex respectively. Since ř r`1 i"1 e i log |σ i pη j q| " 0 for 1 ď j ď r, we see that R K,q 1 is independent of the generating set of units and the choice of r embeddings. Lemma 5. Let Γ be a set of points in R r 1 ˆCr 2 , k " pk j q r j"1 P ś r j"1 pr0, m j q X Zq and

β k " ˜r ź j"1 |σ i pη j q| ´kj {m j ¸r`1 i"1
.

Then for any γ " pγ i q r 1 i"1 P t˘1u r 1 and any positive real X, we have

|Γ X F 1 2 ,γ pXq| " ÿ k ˇˇˇp Γ ¨β k q X F 1 2 ,γ ˆ0, 1 m 1 , ¨¨¨0, 1 m r , X ˙ˇˇˇ,
where the sum runs over k P ś r j"1 pr0, m j q X Zq.

Proof. We have

|Γ X F 1 2 ,γ pXq| " ÿ pk 1 ,¨¨¨,kr qPZ r , 0ďk i ďm i ´1 ˇˇˇΓ X F 1 2 ,γ ˆk1 m 1 , k 1 `1 m 1 , ¨¨¨k r m r , k r `1 m r , X
˙ˇˇˇ.

If we multiply an element of

F 1 2 ,γ ´k1 m 1 , k 1 `1
m 1 , ¨¨¨k r mr , kr`1 mr , X ¯by β k"pk 1 ,...krq , using (4), we see that we get an element in

F 1 2 ,γ ´0, 1 m 1 , ¨¨¨0, 1 mr , X ¯. Therefore |Γ X F 1 2 ,γ pXq| " ÿ pk 1 ,...,kr qPZ r , 0ďk i ďm i ´1 ˇˇˇp Γ ¨β k q X F 1 2 ,γ ˆ0, 1 m 1 , . . . 0, 1 m r , X ˙ˇˇˇ.
Let h 1 : R r 1 ˆCr 2 Ñ R n K be a map defined by h 1 py 1 , ¨¨¨, y r 1 `r2 q " pz 1 , ¨¨¨, z n K q, where for

1 ď i ď r 1 , z i " y i and for r 1 `1 ď i ď r 1 `r2 , z i " |y i | cospargpy i qq and z r 2 `i " |y i | sinpargpy i qq,
where argument for y i 's are inside r0, 2πq. Lemma 6. Let X be any positive real number and

x " px 1 , ¨¨¨x r 1 `r2 q P F ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , X ˙.
Then ||h 1 pxq|| ď p ? r `1q e r X 1{n K , where || ¨|| is the Euclidean norm on R n K .

Proof. From the definition of the norm, we have

||h 1 pxq|| " g f f e r 1 ÿ i"1 |x i | 2 `r1 `r2 ÿ i"r 1 `1p| px i q| 2 `| px i q| 2 q.
From (4) and the definition of Fp0, 1 m 1 , ¨¨¨, 0, 1 mr , Xq, we see that

|x i | " |αpxq| 1{n K r`1 ź k"2 |σ i pη k´1 q| α k pxq
where 0 ă αpxq ď X and 0 ď α k pxq ă 1{m k for 2 ď k ď r `1. Hence for 1 ď i ď r `1, we have

||h 1 pxq|| ď p ? r `1 q e r X 1{n K .
This completes the proof of the lemma.

The next lemma can be found in [1, Lemma 6].

Lemma 7. Let f : R m Ñ R be a function such that f py 1 , . . . y m q " c ś m j"1 g j py j q, where g j : R Ñ R are functions that satisfy |g j py j q ´gj py 1 j q| ď K j |y j ´y1 j | and |g j py j q| ď M j . Then we have

|f pyq ´f py 1 q| ď ¨c m ÿ j"1 K j ź k‰j M k ' ||y ´y1 ||,
where y, y 1 P R m and ||.|| is the Euclidean norm on R m . Let h : r0, 1s m´1 Ñ R m , h " ph 1 , . . . h m q where h i : r0, 1s m´1 Ñ R are functions that satisfy |h i pyq ´hi py 1 q| ď L i ||y ´y1 ||. Then we have

|hpyq ´hpy 1 q| ď ? m pmax i L i q ||y ´y1 ||,
where y, y 1 P r0, 1s m´1 .

We now compute the Lipschitz class of the boundary of the fundamental domain F. From now on, we will denote the boundary of a set F by BF.

Lemma 8. For a number field K ‰ Q, γ P t˘1u r 1 and positive real number t, the set

BF 1 2 ,γ ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , t r`1
is of Lipschitz class Lpn K , 2r `2, Ltq, where L " ? n K p2π `rqe r .

Proof. Let x " px i q r`1 i"1 P F 1 2 p0, 1 m 1 , ¨¨¨, 0, 1 mr , 1q. Using (4), we see that |x i | for all i is uniformly bounded away from 0 by a constant that depends only on K and not on i. Hence

F 1 2 ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , 1 ˙Ď ď γ pR r 1 γ ˆCr 2 q,
where γ varies over elements of t˘1u r 1 . Since pR r 1 γ ˆCr 2 q are disjoint for distinct γ, we have

F 1 2 ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , 1 
˙" ď γ F 1 2 ,γ ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , 1 
˙.

Since F 1 2 ´0, 1 m 1 , ¨¨¨, 0, 1 mr , 1 ¯does not contain any point x " px i q i with x i " 0 for some i, we note that F 1 2 ,γ ´0, 1 m 1 , ¨¨¨, 0, 1 mr , 1 ¯are disjoint for distinct γ. This implies that ( 6)

BF 1 2 ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , 1 
˙" ď γ BF 1 2 ,γ ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , 1 
˙.
More precisely

BF 1 2 ,γ ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , 1 ˙" BF 1 2 ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , 1 ˙X pR r 1 γ ˆCr 2 q.
We want to compute the Lipschitz constant for the set BF 1 2 ,γ p0, 1 m 1 , ¨¨¨, 0, 1 mr , 1q. For any element γ " pγ i q r 1 i"1 P t˘1u r 1 , consider the map

gγ : R r 1 γ ˆCr 2 Ñ R n K
py 1 , ¨¨¨, y r 1 `r2 q Ñ pgpy 1 , ¨¨¨y r 1 `r2 q, argpy r 1 `1q, ¨¨¨, argpy r 1 `r2 qq where the argument is chosen from r0, 2πq. Then

BF 1 2 ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , 1 ˙X pR r 1 γ ˆCr 2 q " Bg ´1 ˜r 1 2 , 1q ˆr ź i"1 r0, 1 m i q ¸X pR r 1 γ ˆCr 2 q " Bg ´1 γ ˜r 1 2 , 1q ˆr ź i"1 r0, 1 m i q ˆr0, 2πq r 2 ¸.
The map

gγ : R r 1 γ ˆCr 2 Ñ R r`1 ˆr0, 2πq r 2
py 1 , ¨¨¨, y r 1 `r2 q Ñ pgpy 1 , ¨¨¨, y r 1 `r2 q, argpy r 1 `1q, ¨¨¨, argpy r 1 `r2 qq is a bijection. Indeed if gγ py 1 , . . . , y r 1 `r2 q " gγ py 1 1 , . . . , y 1 r 1 `r2 q, then |y i | " |y 1 i | for 1 ď i ď r 1 `r2 . Further the first r 1 real numbers have the same sign and the last r 2 complex numbers have the same arguments. Hence py 1 , . . . , y r 1 `r2 q " py 1 1 , . . . , y 1 r 1 `r2 q. When px 1 , . . . x n K q P R n K , then for

1 ď i ď r 1 , define y i " γ i x 1{n K 1 r`1 ź k"2 |σ i pη k´1 q| x k (7)
and for r 1 `1 ď i ď r 1 `r2 , define (8)

y i " ˜x1{n K 1 r`1 ź k"2 |σ i pη k´1 q| x k ¸e2iπx r 2 `i .
Clearly py 1 , . . . , y r 1 `r2 q P R r 1 γ ˆCr 2 and gγ py 1 , . . . , y r 1 `r2 q " px 1 , . . . x n K q. We now observe that g´1 γ is continuous on R r`1 ˆr0, 2πq r 2 . In fact, r 1 2 , 1s ˆśr i"1 r0, 1 m i s ˆp0, 2πq r 2 is homeomorphic to its image in R r 1 γ ˆCr 2 under the map g´1 γ . Therefore

Bg ´1 γ ˜r 1 2 , 1s ˆr ź i"1 r0, 1 m i s ˆp0, 2πq r 2 ¸" g´1 γ B ˜r 1 2 , 1s ˆr ź i"1 r0, 1 m i s ˆp0, 2πq r 2 ¸.
It is easy to see that

Bg ´1 γ ˜r 1 2 , 1s ˆr ź i"1 r0, 1 m i s ˆr0, 2πq r 2 ¸Ď g´1 γ B ˜r 1 2 , 1s ˆr ź i"1 r0, 1 m i s ˆr0, 2πq r 2 ¸.
We now define 2pr `1q sets as follows; I 1,1 " t 1 2 u ˆśr i"1 r0, 1 m i s, I 1,2 " t1u ˆśr i"1 r0, 1 m i s and for 2 ď j ď r `1

I j,l " $ & % r 1 2 , 1s ˆśj´2 k"1 r0, 1 m i s ˆt0u ˆśr k"j r0, 1 m i s if l " 1 r 1 2 , 1s ˆśj´2 k"1 r0, 1 m i s ˆt 1 m j´1 u ˆśr k"j r0, 1 m i s if l " 2.
For 1 ď j ď r `1, define ψ j,1 , ψ j,2 : r0, 1s n K ´1 Ñ I j,1 ˆr0, 2πs r 2 as follows;

ψ j,1 pt 1 , ¨¨¨, t n K ´1q " $ & % p 1 2 , t 1 m 1 , ¨¨¨t r mr , 2πt r`1 ¨¨¨, 2πt n K ´1q if j " 1, p 1`t 1 2 , t 2 m 1 , ¨¨¨t j´1 m j´2 , 0, t j m j ¨¨¨t r mr , 2πt r`1 ¨¨¨, 2πt n K ´1q if j ą 1,
and ψ j,2 pt 1 , ¨¨¨, t n K ´1q " $ & % p1, t 1 m 1 , ¨¨¨t r mr , 2πt r`1 ¨¨¨, 2πt n K ´1q if j " 1, p 1`t 1 2 , t 2 m 1 , ¨¨¨t j´1 m j´2 , 1 m j´1 , t j m j ¨¨¨t r mr , 2πt r`1 ¨¨¨, 2πt n K ´1q if j ą 1.
Further, for γ P t˘1u r 1 , we define h γ : I j,1 ˆr0, 2πs r 2 Ñ R r 1 γ ˆCr 2 and h 1 γ : R r 1 γ ˆCr 2 Ñ R n K as follows; h γ px 1 , ¨¨¨, x n K q " py 1 , ¨¨¨, y r 1 `r2 q, where y i 's for 1 ď i ď r 1 are defined by [START_REF] Neukirch | Grundlehren der mathematischen Wissenschaften[END_REF] and y i 's for r 1 `1 ď i ď r 1 `r2 are defined by ( 8) and h 1 γ py 1 , ¨¨¨, y r 1 `r2 q " pz 1 , ¨¨¨, z n K q, where for 1 ď i ď r 1 , z i " y i and for r 1 `1 ď i ď r 1 `r2 , z i " |y i | cospargpy i qq and z r 2 `i " |y i | sinpargpy i qq, where argument for y i 's are inside r0, 2πq. We now define 2pr `1q maps φ j,l : r0, 1s n K ´1 Ñ R n K for 1 ď j ď r `1 and l " 1, 2 as follows; φ j,l " h 1 γ ˝hγ ˝ψj,l . These φ j,l cover the boundary of

ph 1 γ ˝g ´1 γ q ´r 1 2 , 1s ˆśr i"1 r0, 1 m i s ˆr0, 2πq r 2 ¯as h 1 γ is a homeomorphism from R r 1 γ ˆCr 2 onto its image inside R n K and hence B ˜h1 γ ˜g ´1 γ ˜r 1 2 , 1s ˆr ź i"1 r0, 1 m i s ˆr0, 2πq r 2 ¸¸¸" h 1 γ ˜Bg ´1 γ ˜r 1 2 , 1s ˆr ź i"1 r0, 1 m i s ˆr0, 2πq r 2 ¸¸.
We now compute the constants in Lemma 7 for each of the maps φ j,l . Since we know that m k´1 " max i rlog |σ i pη k´1 q|s and 0 ď t k´1 ď 1, we have

|σ i pη k´1 q| t k´1
m k´1 ď e for 1 ď i ď r 1 and 2 ď k ď r `1. Further for any t, t 1 P r0, 1s, using mean value theorem, we get

ˇˇˇ| σ i pη k´1 q| t m k´1 ´|σ i pη k´1 q| t 1 m k´1 ˇˇˇď e |t ´t1 |.
From now on, we denote the i-th projection map of φ j,l by φ i j,l . Applying Lemma 7 and the above observations, for any t, t 1 P r0, 1s n K ´1 and 1 ď i ď r 1 , we have

ˇˇφ i 1,1 ptq ´φi 1,1 pt 1 q ˇˇď ˆ1 2 ˙1 n K re r ||t ´t1 ||.
Since for any t, t 1 P r0, 1s 

ˇˇˇˇˆ1 `t 2 ˙1 n K ´ˆ1 `t1 (12) 
˙1 n K ˇˇˇˇď 2 ´1 n K n K |t ´t1 |, 2 
we have for any 2 ď j ď 2pr `1q, 1 ď l ď 2, t, t 1 P r0, 1s n K ´1 and 1 ď i ď r 1 ˇˇφ i j,l ptq ´φi j,l pt

1 q ˇˇď ¨2 ´1 n K n K `r ´1' e r ||t ´t1 ||.
Using ( 9) and ( 12) and proceeding as before, we get for any 2 ď j ď 2pr `1q, 1 ď l ď 2, t, t 1 P r0, 1s n K ´1 and r 1 `1 ď i ď n K ˇˇφ i j,l ptq ´φi j,l pt

1 q ˇˇď ¨2π `2 ´1 n K n K `r ´1' e r ||t ´t1 || ď p2π `rqe r ||t ´t1 ||.
Combining, for any 2 ď j ď 2pr `1q, 1 ď l ď 2 and t, t 1 P r0, 1s n K ´1, we have (13) ˇˇφ j,l ptq ´φj,l pt 1 q ˇˇď ? n K p2π `rqe r ||t ´t1 ||.

If the interval r 1 2 , 1q is replaced by r t n K 2 , t n K q for some positive t P R, we deduce in a similar way that the bound L in the definition 4 of Lipschitz class is less than t ? n K p2π `rqe r . Hence

BF 1{2,γ p0, 1 m 1 , ¨¨¨, 0 1 mr , t n K q is of Lipschitz class Lpn K , 2r`2, Ltq, where L " ? n K p2π`rqe r .
3.4. Preliminary lemmas. Using Theorem 2 and Theorem 4, we derive the following bounds on the product ś r j"1 m j , where m j " max i rlog |σ i pη j q|s.

Lemma 9.

Let q 1 be a modulus of K. There exist r units η 1 , ¨¨¨η r modulo roots of unity which generate U q 1 such that

R K,q 1 2 r pr `1q r´1 2 ď r ź j"1 m j ď 7 r pr `1q r`1{2 n 2r K R K,q 1 ,
where as before r " r 1 `r2 ´1 and R K,q 1 is the q 1 regulator of the field K.

Proof. If there are no fundamental units, the regulator R K,q 1 is defined to be 1 and hence the above inequalities are trivially satisfied. Hence from now on, we assume that r ě 1. Let tη 1 1 , ¨¨¨η 1 r u be any set of generators of U q 1 modulo roots of unity. Let l denote the map

l : R r 1 ˆCr 2 Ñ R r`1 px i q i Ñ pe i log |x i |q r`1 i"1
Here e i is 2 if r 1 `1 ď i ď r `1 and 1 otherwise. Set Λ r " lpφpU q 1 qq, where φ is as in subsection 3.1. Note that Λ r is a lattice of rank r. The vectors

v 1 " ˆ1 ? r `1 , ¨¨¨, 1 ? r `1 ˙, v j " `ei log |σ i pη 1 j´1 q| ˘r`1 i"1
for 2 ď j ď r `1 form a basis for R r`1 . Since || v 1 || " 1 and v 1 is orthogonal to the R vector space generated by tv 2 , ¨¨¨v r`1 u, the volume of the lattice generated by the vectors tv 1 , ¨¨¨v r`1 u in r`1 is the same as the volume of Λ r in R r . Hence the volume of Λ r is ? r `1 R K,q 1 . Note that the volume of Λ r is independent of the choice of the generators tη 1 1 , ¨¨¨η 1 r u of U q 1 . Let t w 1 . . . w r u be a reduced Korkin Zolotarev basis for Λ r . Choose a set of generators η 1 , ¨¨¨η r of U q 1 modulo roots of unity such that f pφpη i qq " w i . Then for 1 ď j ď r

m j ě 1 2 max i pe i logp|σ i pη j q|qq ě 1 2 ? r `1 || w j ||.
Since ś r j"1 || w j || is greater than or equal to the volume, we have

r ź j"1 m j ě ˆ1 2 ? r `1 ˙r Vol pΛ r q ě R K,q 1 2 r pr `1q r´1 2 
.

We now compute the upper bound. Since there is at least one fundamental unit, we known that n K ą 1. If n K " 2, then R K,q 1 " | log |η| |, where η generates U q 1 modulo roots of unity. Since R K,q 1 ě R K ě 1{5 (see [START_REF] Friedman | Analytic formulas for the regulator of a number field[END_REF]), we get the required upper bound in this case. If n K ě 3, then

1 `log n K 6n 2 K ě 1 `1 7n 2 K ´1 ě e 1 7n 2 K .
Now by Dobrowolski's theorem, we know that max i pe i log |σ i pη j q|q ě 1 7n 2

K

. This implies that

m j ď 7n 2 K max i pe i log |σ i pη j q|q ď 7n 2 K || w j ||. Using Theorem 2, we now get r ź j"1 m j ď p7n 2 K q r r ź j"1 || w j || ď p7n 2 K q r ˆ3 `r 4 ˙r{2 r r{2 ? r `1 R K,q 1 ď 7 r pr `1q r`1{2 n 2r K R K,q 1 .
Lemma 10. Let q 1 be a modulus of K with n K ą 1, tσ 1 , ¨¨¨, σ r u be a set of embeddings of K into C such that no two embeddings are conjugate to each other. For η j and m j as defined earlier and α P K, the integral

(14) ż R r dx 1 ¨¨¨dx r max 1ďiďr`1 p ś r j"1 |σ i pη j q| x j {m j |σ i pαq|q n K ´1 " m 1 ¨¨¨m r R K,q 1 |Npαq| n K ´1 n K ˆnK n K ´1 ˙r .
Proof. Using the transformation x j Ñ m j x j , we see that the left hand side of ( 14) is equal to

(15) m 1 ¨¨¨m r ż R r dx 1 ¨¨¨dx r max 1ďiďr`1 p ś r j"1 |σ i pη j q| x j |σ i pαq|q n K ´1 .
We now make the substitution y i " ř r j"1 x j log |σ i pη j q|, for 1 ď i ď r. Hence ( 15) is equal to

m 1 ¨¨¨m r ś r i"1 e i R K,q 1 ż R r dy 1 ¨¨¨dy r maxpe y 1 |σ 1 pαq|, ¨¨¨e yr |σ r pαq|, e ´Y |σ r`1 pαq|q n K ´1
where e i for 1 ď i ď r is 1 or 2 depending on σ i is real or complex embedding and Y " ´r ÿ j"1

x j log |σ r`1 pη j q| "

1 e r`1 r ÿ j"1 x j p´e r`1 log |σ r`1 pη j q|q " 1 e r`1 r ÿ j"1 x j r ÿ k"1 e k log |σ k pη j q| " 1 e r`1 r ÿ k"1 e k y k .
The integral is now identical to the one computed in the proof of Lemma 10 of [START_REF] Debaene | Explicit counting of ideals and a Brun-Titchmarsh inequality for the Chebotarev density theorem[END_REF].

3.5.

Counting points in the fundamental domain. Applying Theorem 3, we will now derive the following counting theorem.

Theorem 11. Let a, q be co-prime ideals of O K , γ P t˘1u r 1 and C be the ideal class of aq in the class group of O K . For k P ś r j"1 pr0, m j q X Zq, let β k " ´śr j"1 |σ i pη j q| ´kj {m j ¯r`1

i"1

and Λ n K p kq be the lattice h 1 `φpaqq ¨β k ˘in R n K , where φ is as in subsection 3.1 and h 1 is as in subsection 3.3. Also let S ´a, q, F 1 2 ,γ pt n K q ¯" tα P a | φpαq P F 1 2 ,γ pt n K q, α " b mod qu, where b P O K . Then for any real number t ě 1, we have

ˇˇS ´a, q, F 1 2 ,γ pt n K q ¯ˇˇ" p2πq r 2 R K,q 1 t n K a 4|d K | Npaqq `O˚¨e n 2 K `8n K n 3 2 n 2 K `11 2 n K ´1 2 K t n K ´1 NpC ´1q ´1|Npaqq| n K ´1 n K `m1 ¨¨¨m r '.
where q 1 " qq 8 with q 8 containing all the infinite places of K and

NpC ´1q " max b i PC ´1 m 1 ¨¨¨mr ÿ i"1 1 |Npb i q| n K ´1 n K .
The term m 1 ¨¨¨m r may be omitted when t ě max k δ 1p Λn K p kqq ? n K p2π`rqe r or q " O K .

Proof. Since we want to count α P a such that α " b mod q, where a, q are co-prime, we need to count α in only one residue class, say a modulo aq. Recall that K ‰ Q. We need to count ˇˇpφpaqq `φpaqq č F 1 2 ,γ pt n K q ˇˇ. By Lemma 5, we have

(16) |pφpaqq `φpaqq č F 1 2 ,γ pt n K q| " ÿ k | `pφpaqq `φpaqq ¨β k ˘č F 1 2 ,γ p0, 1 m 1 , ¨¨¨, 0, 1 m r , t n K q|,
where k P ś r j"1 pr0, m j q X Zq. Since

Volph 1 `pφpaqq `φpaqq ¨β k ˘q " Volph 1 pφpaqq ¨β k qq, applying Widmer's estimate (Theorem 3), the main term for each k is

Vol ´h1 ´F 1 2 ,γ p0, 1 m 1 , ¨¨¨, 0, 1 mr , t n K q ¯Vol `h1 `φpaqq ¨β k ˘˘.
The volume of h 1 pφpaqqq is the determinant of the matrix whose column vectors form a basis for this lattice h 1 pφpaqqq. If β k " pβ i q r`1 i"1 , multiplying the i-the entry of each basis vector with β i for 1 ď i ď r 1 `r2 and for r 1 `r2 ď i ď r 1 `2r 2 with β i´r 2 , we get that Volph 1 pφpaqq ¨β k qq " Volph 1 pφpaqqqq. This implies that the main term for each k is independent of k and equal to (17) Volph 1 pF 1 2 ,γ p0, 1 m 1 , ¨¨¨, 0, 1 mr , t n K qqq Volph 1 pφpaqqqq .

We know that Volph 1 pφpaqqqq " 2 ´r2 a |d K |Npaqq (see page 31 of [START_REF] Neukirch | Grundlehren der mathematischen Wissenschaften[END_REF]). To compute the volume Volph 1 pF 1 2 p0, 1 m 1 , ¨¨¨, 0, 1 mr , t n K qqq, we note that

Vol ˆh1 ˆF 1 2 p0, 1 m 1 , ¨¨¨, 0, 1 m r , t n K q ˙˙" ż h 1 pF 1 2 p0, 1 m 1 ,¨¨¨,0, 1 mr , t n K qq dx 1 ¨¨¨dx r 1 dx r 1 `1 ¨¨¨dx n K ,
where the variables x r 1 `1 to x n K are complex. By definition

F 1 2 ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , t n K ˙" g ´1 ˜p t n K 2 , t n K s ˆr ź j"1 r0, 1 m j q ¸,
the argument for each complex coordinate in the pre-image covers the entire interval r0, 2πq.

Replacing the complex variables with polar co-ordinates and integrating over the arguments,

Vol ˆh1 ˆF 1 2 p0, 1 m 1 , ¨¨¨, 1 m r , t n K q ˙" 2 r 1 p2πq r 2 ż |x 1 | d|x 1 | ¨¨¨ż |xr 1 | d|x r 1 | ż |x r 1 `1| |x r 1 `1| d|x r 1 `1| ¨¨¨ż |x r`1 | |x r`1 | d|x r`1 |.
The ranges in the above integral are clear from the formulae (4) with αpxq P p t n K 2 , t n K s and α j pxq P r0, 1 m j q. We now make a change of variable x " px 1 , x 2 , ¨¨¨x r`1 q by pαpxq, α 1 pxq, ¨¨¨α r pxqq. To compute the Jacobian, we note that for 1 ď i ď r `1 and 1 ď j ď r, we have

B|x i | Bαpxq " |x i | n K αpxq and B|x i | Bα j pxq " |x i | log |σ i pη j q|.
We also note that αpxq " ś r`1 i"1 |x i | e i where e i " 2 for complex coordinate and e i " 1 otherwise. Now rewriting the integral, we have

Vol ˆF 1 2 p0, 1 m 1 , ¨¨¨, 0, 1 m r , t n K q ˙" 2 r 1 p2πq r 2 2 ´r2 R K,q 1 ż 1{m 1 0 dα 1 pxq ¨¨¨ż 1{mr 0 dα r pxq ż t n K t n K 2 dαpxq " 2 r 1 ´1π r 2 R K,q 1 t n K m 1 ¨¨¨m r .
Therefore for each k, the main term ( 17) is equal to

1 2 r 1 ¨2r 1 ´1π r 2 R K,q 1 t n K m 1 ¨¨¨m r ¨1 2 ´r2 a |d K |Npaqq " p2πq r 2 R K,q 1 t n K pm 1 ¨¨¨m r q a 4|d K |Npaqq .
Hence the main term after summing over k P ś r j"1 r0, m j q X Z is equal to

(18) p2πq r 2 R K,q 1 t n K a 4|d K |Npaqq .
Applying Theorem 3 and Lemma 8, the error term for each k is bounded by (19) p2r `2qn

3n 2 K {2 K max 0ďiăn K p ? n K p2π `rqe r tq i ś i j"1 δ j pΛ n K p kqq ď p2r `2qn 3n 2 K {2 K max 0ďiăn K ˜?n K p2π `rqe r t δ 1 pΛ n K p kqq ¸i .
If we have ? n K p2π `rqe r t ě δ 1 pΛ n K p kqq, then to get an upper bound of (19), we can replace i by n K ´1. To deduce the asymptotic for all t ě 1, we first consider the case where δ 1 pΛ n K p kqq ą ? n K p2π `rqe r t for some vector k. In this case, we claim that

ˇˇˇ`p φpaqq `φpaqq ¨β k ˘č F 1 2 ,γ ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , t n K ˙ˇˇˇď 1.
Suppose not and let x, y P `pφpaqq `φpaqq ¨β k ˘Ş F 1 2 ,γ ´0, 1 m 1 , ¨¨¨, 0, 1 mr , t n K ¯be distinct. Then x ´y P φpaqq ¨β k . By definition, this implies that δ 1 pΛ n K p kqq ď ||h 1 px ´yq||. Applying Lemma 6, we get ? n K p2π `rq e r t ă δ 1 pΛ n K p kqq ď ||h 1 px ´yq|| ď 2p ? r `1 q e r t, a contradiction. If q " O K , the same argument applies to x in place of x´y and this implies that there are no exceptional points. The total number of k for which δ 1 pΛ n K p kqq ą ? n K p2π `rqe r t is at most m 1 ¨¨¨m r . Hence

ÿ k ? n K p2π`rqe r t ă δ 1 pΛn K p kqq ˇˇˇ`p φpaqq `φpaqq ¨β k ˘č F 1 2 ,γ ˆ0, 1 m 1 , ¨¨¨, 0, 1 m r , t n K ˙ˇˇˇď m 1 ¨¨¨m r .
For each k for which ? n K p2π `rqe r t ă δ 1 pΛ n K p kqq, we claim that

p2πq r 2 R K,q 1 t n K pm 1 ¨¨¨m r q a 4|d K |Npaqq ď p2r `2qn 3n 2 K {2 K ˜?n K p2π `rqe r t δ 1 pΛ n K p kqq ¸nK ´1 .
Note that 2 r´1 π r 2 pr `1q

r´1 2 n n K K ď p2r `2qn n K 2 p3n K `1q K p2π `rq n K when n K ě 2 and hence p2πq r 2 2 r pr `1q r´1 2 t n K 2 a |d K |Npaqq ď p2r `2qn 3n 2 K 2 K Volph 1 pφpaqq ¨β k qq ˆ?n K p2π `rqt n K ˙nK .
By Theorem 2, we have δ 1 pΛ n K p kqq n K ď n n K K Volph 1 pφpaqq ¨β k qq and therefore p2πq r 2 2 r pr `1q

r´1 2 t n K 2 a |d K |Npaqq ď p2r `2qn 3n 2 K 2 K ˜?n K p2π `rqe r t δ 1 pΛ n K p kqq ¸nK .
Finally applying Lemma 9 and ? n K p2π `rqe r t ă δ 1 pΛ n K p kqq, we get

p2πq r 2 R K,q 1 t n K m 1 ¨¨¨m r a 4|d K |Npaqq ď p2r `2qn 3n 2 K 2 K ˜?n K p2π `rqe r t δ 1 pΛ n K p kqq ¸nK ´1 ,
as claimed. Therefore for t ě 1 the error is bounded by

(20) p2r `2qn 3n 2 K 2 K p ? n K p2π `rqe r tq n K ´1 ÿ k 1 δ 1 pΛ n K p kqq n K ´1 `m1 ¨¨¨m r .
If there are no k such that ? n K p2π`rqe r t ă max k δ 1 ´Λn K p kq ¯, then the error term is bounded by (21) p2r `2qn

3n 2 K {2 K p ? n K p2π `rqe r tq n K ´1 ÿ k 1 δ 1 pΛ n K p kqq n K ´1 .
Let µpaq, kq " min αPaq max 1ďiďr`1 ˜|σ i pαq| r ź j"1 |σ i pη j q| ´kj {m j ¸.

From the definition of successive minima δ 1 pΛ n K p kqq ě µpaq, kq. For any α P aq, let K α be the set of all k for which the minimum µpaq, kq is attained at α, i.e.

K α " # k ˇˇµpaq, kq " max 1ďiďr`1 p|σ i pαq| r ź j"1 |σ i pη j q| ´kj {m j q + .

By (4), we have

|σ i paq| " Npaq 1 n K r`1 ź j"2
|σ i pη j´1 q| α j paq .

Let b j " tα j paq ´kj´1 m j´1 u and bj " α j paq ´kj´1 m j´1 ´bj . We observe that 0 ď bj ă 1. Consider the unit u a " ś r`1 j"2 η .

Lemma 13 (Lang [5], page 127). Let q 1 " qq 8 be a modulus of K, r 1 , U q 1 , h K be as defined earlier and h K,q be the cardinality of the narrow ray class group of K modulo q. Then h K,q " 2 r 1 ϕpqqh K rO K : U q 1 s .

Lemma 14. Let r 1 , r 2 , h K , d K , R K , q 1 , U q 1 , h K,q , R K,q 1 be as in the previous subsections. Also let α K be the residue of the Dedekind zeta function at s " 1, µ K be the group of roots of unity in K and µ q 1 be the cardinality of U q 1 X µ K . We have

p2πq r 2 R K,q 1 µ q 1 a |d K | " α K ϕpqq h K,q , R K,q 1 R K " µ q 1 |µ K | 2 r 1 ϕpqqh K h K,q . 
Proof. Applying the analytic class number formula (1), we see that

p2πq r 2 R K,q 1 µ q 1 a |d K |Npqq " 2 r 1 p2πq r 2 h K R K µ q 1 a |d K |Npqq ˆRK,q 1 2 r 1 h K R K " α K Npqq ˆ|µ K |R K,q 1 2 r 1 µ q 1 h K R K .
may thus be applied to majorize NpC ´1q. On shortening F pqq by F , then n K by n and R K {|µ K | by R, this leads to the error term We separate the contribution of q and of K by using log `p2nq 4n F R˘ď 2 log `p2nq 4n R˘l ogp3F q which is a consequence of the inequality a `b ď 2ab valid when a, b ě 1. But we first notice that logpp2nq 4n F Rq ě 1 so that we may simply replace the exponent pn ´1q 2 {n by n. We further check that e n 2 `8n n 3 2 n 2 `11 2 n´1 2 6np2nq 4 ď 500 n 12n 2 .

e n 2 `
Hence the theorem follows.

H 1

 1 pKq denotes the narrow ray class group corresponding to O K . A good reference for this are the notes [10] by A. Sutherland.

m j . 3 . 6 . 2 y ÿ i" 1 Npb i q 1 n K ´1 ď 6n K y 1 n

 362111 Counting ideals in ray classes. In this subsection, we complete the proof of Theorem 1. We use notations from the previous sections. We start by simplifying the main term in Theorem 11.Lemma 12. (Debaene[START_REF] Debaene | Explicit counting of ideals and a Brun-Titchmarsh inequality for the Chebotarev density theorem[END_REF], Lemma 12) Let b 1 , b 2 , ¨¨¨be integral ideals in O K , ordered such that Npb 1 q ď Npb 2 q ¨¨¨. Then for any real number y ě K plog yq pn K ´1q 2 n K

  | cosp2πtq ´cosp2πt 1 q| ď 2π |t ´t1 | and | sinp2πtq ´sinp2πt 1 q| ď 2π |t ´t1 |,therefore for any r 1 `1 ď i ď n K and for any t, t 1 P r0, 1s n K ´1, as before using Lemma 7, we

	Now applying second part of Lemma 7, for any t, t	1 P r0, 1s n K ´1, we have
	(10)	ˇˇφ 1,1 ptq ´φ1,1 pt 1 q ˇˇď	ˆ1 2	˙1 n K ?	n K p2π `rq e r ||t	´t1 ||.
	Proceeding similarly, for any t, t 1 P r0, 1s n K ´1, we get
	(11)	ˇˇφ 1,2 ptq ´φ1,2 pt 1 q ˇˇď	?	n K p2π `rq e r ||t	´t1 ||.
	Since for any t, t 1 P r0, 1s				
	have					
		ˇˇφ i 1,1 ptq ´φi 1,1 pt 1 q ˇˇď	ˆ1 2	˙1 n K	p2π `rq e r ||t	´t1 ||.
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We also set Y 1 " tα P aq | K α ‰ Hu. Substituting in (21) (analogously in (20)), we get 1 max 1ďiďr`1 p|σ i pαq| ś r j"1 |σ i pη j q| ´kj {m j q n K ´1 ,

where 1 on the inner sum indicates that the sum is over non-associate elements of aq with respect to the unit group U q 1 . Note that there are at most m 1 ¨¨¨m r elements in the outermost sum. Applying Lemma 10, we now bound the inner sum to get

The inner sum is a constant that depends only on the inverse of the class of aq in the class group. We shall denote this by NpC ´1q. Combining all these estimates and applying Lemma 9, we get that the error term (21) is bounded by

in Theorem 11 by

Indeed, by Minkowski's lattice point theorem, there exists a point a P aq such that

As shown in Lemma 9, consider the lattice lpφpU q 1 qq and note that ? r `1 R K,q 1 is the volume of its fundamental domain. Also note that ? r `1 R K is the volume of the fundamental domain of lpφpO Kqq. We know that lpφpU q 1 qq and lpφpO Kqq are finitely generated free modules over Z of the same rank. Therefore by the structure theorem for finitely generated free modules over principal ideal domains, we have

Along with the torsion part coming from the roots of unity, we have

Applying the above identities, we have

Now using Lemma 13, we get the first formula. The second one follows along similar lines;

This completes the proof of this lemma.

We can now proceed to the proof of Theorem 1.

Proof of Theorem 1. Let us fix an ideal c P rbs ´1. Since cb " pαq for some α " 1 mod ˚q, in order to count the number of integral ideals in rbs with norm at most x, it is sufficient to count pαq, α P c such that α " 1 mod ˚q of norm at most xNc. This implies that

where η " p1, ¨¨¨, 1q. Let Λ n K p kq be the lattice h 1 `φpcqq ¨β k ˘in R n K . Using Theorem 11, we know that if x ě 1, we get (22)

We rewrite the main term by appealing to the first part of Lemma 14. We then bound above m 1 ¨¨¨m r {µ q 1 first by the quantity 7 r n 4n K K R K,q 1 {µ q 1 thanks to Lemma 9. We bound it further by

h K,q by invoking the second part of Lemma 14. The paper [START_REF] Friedman | Analytic formulas for the regulator of a number field[END_REF] by E. Friedman ensures us that R K {|µ K | ě 0.2, and so, this upper bound is at least equal to 2. Lemma 12 [11] T. Tatuzawa. On the number of integral ideals in algebraic number fields, whose norms not exceeding x. Sci. Papers College Gen. Ed. Univ. Tokyo, 23:73-86, 1973.

[12] M. Widmer. Counting primitive points of bounded height. Trans. Amer. Math. Soc., 362( 9 Email address: sanoli@imsc.res.in Email address: olivier.ramare@univ-amu.fr Email address: jyothsnaas@cmi.ac.in