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Abstract. We show why a type of CHSH Bell-type inequality cannot be applied to the experiments it
has been designed for due to a normalization error. The inequality is based on a confusion between two
different definitions of probability, with the effect of erroneously assuming that they are identical.

PACS. 03.65.Ta, 03.65.Ud, 03.67.-a

We want to point out a normalization error in the application of CHSH Bell inequalities to the experiments for
which they have been designed, like e.g. the famous experiments carried out by Aspect et al. [1L[2]. We will not dwell
here on further experiments with improved set-ups that have been carried out after these first experiments.

Probabilities are defined as the number of desired outcomes divided by the total number of all possible outcomes.
Let us call the set of all possible events or outcomes the event space. To teach probabilities one often draws the event
space in the form of a probability tree, consisting of points and branches connecting these points. The two end points
of a branch PQ on such a tree correspond to probabilities p(P) and p(Q). We assume that P is here the lower point
of the branch where it sprouts from the tree. The branch itself corresponds to the conditional probability p(Q|P) and
we calculate p(Q) = p(Q|P)p(P) in travelling upwards along the tree. In Fig. [I| we show the tree for the part:

plar A b1) —plar A bz) — plaz A b1) — plaz A bs), (1)
which occurs within the CHSH Bell inequality:

0 <p(ar A b1) —plar A b2) —plaz A b1) —plaz A ba) +plaz) + p(ba) < 1, (2)

for the case that the polarizers deliver answers 1 for the transmission and 0 for the absorption of photons. There are
other types of polarizers which deliver answers +1 and —1. Both types have been used by the team led by Aspect. We
focus here on the type that yields answers 0 or 1. We assume that the set-ups of these experiments are well-known.

The polarizer A in the left arm of the set-up can be in the settings A; (angle o) or Ay (angle o). The polarizer B
in the right arm of the set-up can be in the settings By (angle 81) or By (angle (2). In Eqgs. a; stands for the event
that polarizer A in setting A; yields the answer 1 for a photon. The same holds mutatitis mutandis for b,. We have in
total four possible configurations for the combined settings of the two polarizers. We can select the angles o, j € {1,2}
and Sk, k € {1,2} with random generators in such a way that both settings A; occur with equal probability 1/2, with
the same mutatis mutandis for the settings By. And if the two random generators are statistically entirely independent
the four combined settings (A4;, By) will each occur with probability 1/4.

The probabilities p(a;) for transmission by filter A in settings A; are both 1/2. The probabilities p(by) for absorption
by filter B in settings By, are also both 1/2. The conditional probabilities p(bi|a;) for transmission by filter B provided
there is transmission by filter A is p(bglaj) = cos®(a; — B)). We have further also p(=by|—a;) = cos?(a; — By),
p(=bila;) = sin®(a; — Br), p(bx|-a;) = sin®(a; — Bx). The quantities p(a; A by) in Eqs. are the probabilities for
joint transmission p(bk|a;)p(a;) = & cos*(a; — Bi). Hence, in the setting (A;, By) the probability for simultaneous
transmission is 1 cos?(a; — ). The event space for such a single setting (A;, By) is illustrated in Fig. [1] for the case
(A1, Bs). Tt is symbolized by the rectangle in dashed lines. This rectangle corresponds to the event space for the
real experiment in the setting (A1, B2). The total event space for the Bell inequality must contain all four set-ups
(Aj, By) and corresponds therefore to the whole figure. In fact, this is compulsory because the inequality contains all
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Fig. 1: Probability tree in the event space for the quantity in Eq. |lf which occurs in the CHSH Bell inequality in Eq.
The point O is the root of the tree. Two branches are starting from O. They represent the possibilities A; and As
for the setting of the filter A (in the left arm of the set-up). The end points of these branches are both the starting
point for branches corresponding to the possibilities By and By for the setting of the filter B (in the right arm of the
set-up). The four combined settings (A;, Bi,) occur each with the frequency 1/4. The higher parts of the tree represent
the possible outcomes for the photon correlation experiments in the four settings. In order not to burden the figure we
have introduced the notations p = cos?(ay — 1), ¢ = cos?(ay — B2), 7 = cos?(a — 1), s = cos?(aa — B2). The rectangle
drawn in dashed lines represents the event space for the setting (A;, Bz). In this setting the other points (A4;, By) and
their related events are not elements of physical reality, because a polarizer cannot assume two orientations at the
same time. The four points only exist simultaneously in our mind and in the event space for the Bell inequality. The
latter corresponds to the complete figure. It shows that the experimental probabilities are normalized with respect
to a smaller event space than the probabilities that occur in the Bell inequality, such that they must be normalized
differently. The experimental probability is ¢/2, while probability to be inserted into the Bell inequality is ¢/8.

four probabilities %COSQ(OZJ' — Bi) simultaneously and therefore the event space for the Bell inequality must allow for
defining all these probabilities simultaneously. In real life the four settings (A4;, By) cannot exist simultaneously. The
Bell inequality is therefore based on a wrong modelling of the physical reality.

We see thus that the event space needed to derive the inequality is larger than the individual event spaces in the
four individual real-life experiments. This implies that the total number of outcomes in the event space we use to
normalize the probabilities in real-life single set-ups is different from the total number of outcomes in the theoretical
event space on which the Bell inequality is being proved.

The probabilities in the Bell inequality must therefore be normalized differently in the event space for the inequality
than the probabilities in the event spaces for isolated experiments. Consequently, the probabilities to be fed into the
Bell inequality must be attributed the values & cos?(a; — B¢) rather than § cos®(o; — Bi) = §cos?(a; — Bi)/(1/4),
where 1/4 is the probability for selecting the configuration (A;, By). In the Bell inequality, the real-world probability
becomes a conditional probability, whereby the condition is the selection of the configuration (A;, By). The violation
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of the Bell inequality in Eq. [2]is therefore due to a normalization error in the definitions of the quantities which occur
in Eq. |1} With the correct normalization the inequality is not violated. We could rephrase this by stating that there
has been a confusion between two different definitions of probability, by tacitly assuming that they were identical.

Everybody knows that probability calculus is full of pitfalls, as illustrated by the ferocious polemics that have
historically surrounded the correct solution of the Monty Hall problem by Marilyn von Savant. It is therefore not
recommended practice to question special relativity on the basis of some results obtained by probability calculus.
That might be considered as a rather heedless attack on special relativity. The weak element in such a confrontation
is a priori not the theory of relativity but the probability calculus. Furthermore, if there were really a flaw in special
relativity then it must be replaced by something else and it is then useless to search for a theory of quantum gravity
before the problem with special relativity has been settled. Entanglement implies that the connectivity of space-time
is different from what has been assumed in special relativity. Not many persons seem to bother about such issues of
all-out importance. Perhaps they consider blatant contradictions in the foundations of physics as not very much of
a problem. For the rebuttal of other experiments which claim that the existence of entanglement has been proved,
other approaches are needed. A much extended version of this paper [3] was submitted to Universe where it received
three vicious referee reports full of underhanded violence. When I rebutted this the editor Nathen Zhang used double
standards refusing to see the beam in his own eye and those of the referees.
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