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Escaping unknown discontinuous regions in blackbox optimization

Charles Audet1, Alain Batailly2, Solène Kojtych2

Abstract
The design of key nonlinear systems often requires the use of expensive blackbox simulations presenting inherent
discontinuities whose positions in the space of variables cannot be analytically predicted. Without further precautions,
the solution of related optimization problems leads to design configurations which may be close to discontinuities of
the blackbox output functions. These discontinuities may betray unsafe regions of the design space, such as nonlinear
resonance regions. To account for possible changes of operating conditions, an acceptable solution must be away from
unsafe regions of the space of variables. The objective of this work is to solve a constrained blackbox optimization problem
with the additional constraint that the solution should be outside unknown zones of discontinuities or strong variations
of the objective function or the constraints. The proposed approach is an extension of the Mesh Adaptive Direct Search
(Mads) algorithm and aims at building a series of inner approximations of these zones. The algorithm, called DiscoMads,
relies on two main mechanisms: revealing discontinuities and progressively escaping the surrounding zones. A convergence
analysis supports the algorithm and preserves the optimality conditions of Mads. Numerical tests are conducted on
analytical problems and on three engineering problems illustrating the following possible applications of the algorithm:
the design of a simplified truss, the synthesis of a chemical component and the design of a turbomachine blade. The
DiscoMads algorithm successfully solves these problems by providing a feasible solution away from discontinuous regions.
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Exclusion des zones de discontinuitées inconnues en optimisation de bôıtes
noires

Charles Audet1, Alain Batailly2, Solène Kojtych2

Résumé
La conception de systèmes non linéaires clés requiert généralement l’utilisation de simulations de type bôıtes noires,
coûteuses en temps de calculs. Ces simulations peuvent présenter des discontinuités inhérentes dont la position dans
l’espace des variables ne peut être prédite analytiquement. Sans précautions supplémentaires, la solution des problèmes
d’optimisation associés peut correspondre à une configuration proche des discontinuités des sorties de la bôıte noire.
Or, ces discontinuités peuvent révéler des régions critiques de l’espace de conception, telles que des résonances non
linéaires. Afin de prendre en compte de possibles changements des conditions opératoires, une solution acceptable doit
être située loin de ces régions critiques. L’objectif de ce travail est de résoudre un problème d’optimisation de bôıte
noire contraint avec une contrainte additionnelle imposant que la solution doit être en dehors des zones inconnues de
discontinuités ou de fort accroissement de la fonction objectif ou des contraintes. L’approche proposée est une extension
de l’algorithme de recherche directe sur treillis adaptatif (Mads, de l’anglais Mesh Adaptive Direct Search) et vise à
construire une série d’approximations intérieures de ces zones. L’algorithme proposé, nommé DiscoMads, repose sur deux
mécanismes principaux : la révélation des discontinuités et l’exclusion progressive des zones avoisinantes. L’algorithme
est supporté par une analyse de convergence qui préserve les conditions d’optimalité de Mads. Des tests numériques sont
effectués sur des problèmes analytiques et sur trois problèmes d’ingénierie : le design d’un treillis simplifié, la synthèse
d’un composant chimique et la conception d’une aube de turbomachine. Ces problèmes sont résolus avec succès par
l’algorithme DiscoMads qui fournit une solution réalisable loin des zones de discontinuités.

Mots-clés
optimisation de bôıtes noires, fonctions discontinues, recherche directe sur maillage adaptatif
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1 Introduction

Motivation

In several engineering domains, such as the power, automative and aerospace industries, a highly competitive global
economical context and stringent environmental requirements have forced engineers to push the limits in the design
of a wide variety of complex mechanical systems. Nonlinear mechanical phenomena that have long been avoided,
oftentimes by means of design solutions increasing the system’s environmental footprint, must now be fully accounted
for and prevented with appropriate design strategies. The intricacy of designing nonlinear mechanical systems is
notably related to the fact that they may exhibit a variety of coexisting stable solutions, featuring very distinct
magnitudes of vibration. In these regions, a small variation of operating conditions can induce a bifurcation of the
system, i.e. a change from one configuration to another [38]. Depending on the nature of the nonlinear phenomena
(cubic force, friction, contacts, etc.), bifurcations are characterized by various changes in the dynamics. For some
systems involving contact interactions, such as blade-casing interactions in turbomachinery [31], regions of coexistent
solutions may reveal the presence of a nonlinear resonance, with high amplitudes of vibration. These regions of the
design space, called nonlinear resonance regions, must be detected and avoided to ensure safe mechanical designs.

From a mechanical standpoint, the prediction and understanding of nonlinear phenomena has long been the
focus of researchers. Regarding numerical aspects, qualitative methods [27] are able to identify nonlinear resonance
regions, but they are focused on steady state phenomena and their use is problematic in the analysis of large-scale
systems. Indeed, numerical challenges prevent these methods from providing design-specific guidelines. Consequently,
quantitative methods (such as time integration) are the standard in an industrial context for the design of nonlinear
systems. As there exists no unified theoretical framework for comprehensively analyzing nonlinear mechanical
systems, these methods are integrated into ad hoc industrial tools. Considering the high degree of maturity reached
by these tools [34], an emerging challenge is integrating these methods into automated design processes. Indeed,
despite their accuracy, it remains challenging to use them for the detection of non-linear resonance regions. As
a consequence, it is essential for engineers to provide configurations accounting for a safe margin with respect to
the position of nonlinear resonance regions. The present work deals with the search for an optimization strategy
providing safe configurations away from nonlinear resonance regions, such as those detected by current industrial
tools.

From a mathematical standpoint, two aspects need to be taken into account. First, nonlinear resonance regions
are characterized by discontinuities of numerical quantities, because of abrupt changes between two coexistent
solutions. These discontinuities are deterministic, their magnitudes are generally much larger than the floating point
precision and their positions cannot be predicted a priori. Moreover, the position of the computed discontinuity
does not accurately match the exact position of the nonlinear resonance region. For security reasons, a solution
away from discontinuous regions is thus required. Second, related nonlinear numerical simulations often rely on
time-consuming multiphysics models in which gradients of functions are nonexistent or difficult to estimate; they
can thus be considered as blackboxes [10]. As these simulations go beyond the capabilities of commercial software
packages, they are not integrated within automated design frameworks. Consequently, noninvasive optimization
methods are required during the design process.

The following constrained optimization problem is considered, where the objective function and the constraints
are returned by a blackbox :

min
x∈Ω

f(x)

s.t. d(x) ≤ 0,
(1.1)

where Ω = {x ∈ X : c(x) ≤ 0} and X is a subset of Rn defined by unrelaxable constraints [30]. The components of the
vector c : X → Rm, where R = R ∪ {∞}, of relaxable constraints are denoted by cj , j ∈ {1, ...,m} and the objective
function f : X → R is denoted c0 in some context. In addition, one constraint d : X → R is introduced to ensure
that x is away from discontinuities of the user-selected output functions from the subset of indices J ⊆ {0, 1, ...,m}.
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Literature review

Generally, industrial design processes of complex nonlinear mechanical systems are confidential and unpublished.
Moreover, as the accounting of nonlinear phenomena in these processes is an emerging challenge, to the best of our
knowledge there exists no reference method for solving Problem (1.1) within an industrial context. This problem
could be tackled as a robust optimization problem where the variability of the quantities of interest must be
minimized, or as a blackbox optimization problem [10]. In both frameworks, additional developments would be
required to solve the problem. However, the computation times associated with nonlinear simulation tools, as well
as the need for noninvasive optimization methods, makes blackbox optimization particularly well suited to this case.
For these reasons, problem (1.1) is tackled in the present work from a blackbox optimization standpoint.

Blackbox optimization methods include heuristics, such as genetic algorithms, widely used in an industrial
context [16], and algorithms supported by a convergence analysis, such as direct search methods or trust region
methods. These methods benefit from convergence guarantees with respect to the smoothness of the functions.
Optimality conditions have also been derived for discontinuous functions [39] for some methods. Among them, the
Mesh Adaptive Direct Search (Mads) [7] algorithm has been recently used in the design of a complex nonlinear
engineering system [28]. Some methods dedicated to discontinuous optimization include the general penalty-based
approach proposed by Birgin, Krejić, and Mart́ınez [15] in which the discontinuous objective function is replaced by a
sequence of continuous approximations, and the McCormick relaxation-based branch-and-bound global optimization
approach of Wechsung and Barton [40] for factorable discontinuous objective functions that include if-then-else
statements. However, both approaches do not give control on the distance to the discontinuity and do not treat
discontinuities in the constraints.

An important difficulty of problem (1.1) lies in the treatment of the constraint d. Indeed, as the discontinuities
in X are not analytically known, the value of d at a point x cannot be computed from a single evaluation of the
blackbox. The constraint d requires an infinite number of evaluations to be deemed feasible. Infinite constraints
are encountered in some fields of robust optimization such as reliability-based design optimization [33] where the
solution must respect a limit probability of failure to be acceptable. Methodologies in this context rely on an
approximation of the probability. To the best of our knowledge, the treatment of infinite constraints in blackbox
robust optimization is limited to minimax problems, such as the iterative outer approximation approach proposed
by Menickelly and Wild [32].

A straightforward strategy for accurately approximating d consists of performing a large number of evaluations
in some neighborhood. With costly blackboxes, this is only possible if the evaluations are performed on surrogate
models of f and c. Surrogates are widely used in contexts where the simulation cost is prohibitive, such as blackbox
optimization or uncertainty quantification. A global approximation may be used as a surrogate, but the basis of
interpolation functions must be carefully chosen [1, 36] to limit oscillations and control the accuracy in the vicinity
of the discontinuity. A more common strategy consists of constructing local continuous approximations after an
effective localization of the discontinuities [3, 19, 35, 37].

A suitable strategy in the studied context is to directly compute an approximation of d from a limited number of
true evaluations of the blackbox. An accurate localization of the discontinuities is required in this case as well. Some
methods build a parametric expression of the position of the discontinuity [2, 37] or an implicit characterization [21,
35] requiring the labeling of points close to the discontinuity. This labeling may be done from the values of the
functions only [19], which requires a global sampling of the solutions. A local labeling of discontinuous regions
is preferred when a limited number of samples is available. In this case, the labeling requires two parameters
quantifying a neighborhood and a limit variation of the functions over this neighborhood [14, 16, 23]. Other methods
also use some approximation coefficients, influenced by oscillations of models in the vicinity of discontinuities [3, 25].
In any cases, for sparse data, discontinuities and strong gradients cannot be distinguished numerically with this
labeling. Sargsyan et. al. [37] define weak discontinuities as discontinuities or sharp gradient regions; this definition
is used in the present work.

Modeling

Solving problem (1.1) in a blackbox optimization framework requires numerically quantifying discontinuities. The
proposed approach detects weak discontinuities by using two parameters. An unsafe region D of weak discontinuities
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is introduced and based on a limit rate of change τ > 0 on an open ball of radius rd ≥ 0,

D = {y ∈ X : ∃j ∈ J, ∃z ∈ X ∩Brd(y), |cj(y)− cj(z)| > τ‖y − z‖},
where Brd(y) is the open ball of radius rd centered at y. In the situation where the output functions are piecewise
differentiable and L is a Lipschitz constant for all the output functions indexed in J , suppose that τ > L and
that a point y belongs to D (with a point z satisfying the inequality for that y). Then, there necessarily exists a
discontinuity between y and z for one of the output functions of index j ∈ J . In other cases, D also contains areas
without discontinuities but undergoing strong variations of one of the output functions indexed in J . Consequently,
weak discontinuous regions of full dimension in X may be detected with the proposed modeling. An example for a
region D around a single discontinuity is depicted in Figure 1.

XΩ

D

rdre

x′

x∗

Figure 1. Example of problem (1.2) with a discontinuity ( ). Regions D ( ), M ( ∪ ), and Ω̂ ( ) and infeasible domain
for c ( ). Solutions x′ and x∗ of the problem, respectively without and with the constraint d.

As the region D is defined by the two parameters rd and τ , the exact position of discontinuities within D is
unknown. To account for the remoteness of a solution to discontinuities, a safe margin region M = X ∩ (∪x∈DBre(x))
is introduced, where re > 0 is a user-defined remoteness parameter. The margin M contains the points of Ω which
should be discarded in the resolution of problem (1.1).

Finally, the optimization problem can be stated as

min
x∈Ω̂

f(x) (1.2)

where Ω̂ = Ω \M is the ideal feasible region. An example for the layout of the regions is depicted in Figure 1. The
solution of problem (1.2) is depicted by the point x∗ whereas the point x′ is the solution of the minimization problem
of f on Ω. Problems (1.2) and (1.1) are equivalent if the function d is defined so that d(x) ≤ 0 ⇐⇒ x /∈M .

The proposed approach solves problem (1.2) in a blackbox optimization context by building a series of inner
approximations of the margin M . The algorithm is called DiscoMads because it is based on the Mads algorithm,
which is well suited to incorporating necessary detection mechanisms, and can escape weak Discontinuous regions.
When the parameter rd is fixed to 0 by the user, the region D is empty and the behavior of the algorithm is identical
to Mads. The algorithm relies on two original mechanisms: a procedure for revealing weak discontinuities in the
space of variables and a mechanism for excluding the revealed areas from the feasible region progressively. The
main original contribution of this work is an algorithm with proven convergence, providing a solution that is safe
from weak discontinuities of the blackbox output, whose positions in the space of variables cannot be described
analytically.

Although the algorithm is originally designed to find a solution away from discontinuities, the modeling (1.2) and
the flexibility in the choice of the parameters enable us to search for a solution lying in a region where variations
of the functions are bounded. Consequently, numerical tests illustrate possible applications of the algorithm with
different choices of parameters alongside a turbomachine design problem illustrating the primary motivation for the
algorithm.

The rest of this work is organized as follows. The classical Mads algorithm is recalled in section 2, the DiscoMads
algorithm is described in section 3, and convergence results are given in section 4. Numerical results are given in
section 5 for analytical problems and on several engineering applications. Limitations of the approach as well as
future research directions are discussed in section 6.

Audet, Batailly and Kojtych 5

mailto:solene.kojtych@polymtl.ca


Escaping unknown discontinuous regions in blackbox optimization

2 Mesh Adaptive Direct Search

Mads [5, 7] is an iterative algorithm which only relies on the values of the blackbox output functions and not the
derivatives.

2.1 Mads for unconstrained problems

Starting from x0 ∈ X, the algorithm generates a sequence of trial points at which the blackbox should be evaluated.
Let xk be the incumbent solution at iteration k, the feasible solution with the best f -value. The aim of an iteration
is to find a new incumbent with a better value of f .

All points evaluated by the algorithm at iteration k must lie on a mesh defined by a mesh size parameter δk ∈ Rn+:

Mk := {xk + δkDy : y ∈ N2n},

where D = [I − I] ∈ Rn×2n for the present work and I ∈ Nn×n is the identity matrix.
Each Mads iteration is divided into two steps: an optional and flexible search step, followed by a local rigorously

defined poll step. During the search step, the blackbox may be evaluated at a finite number of points Sk ⊂ Mk

arbitrarily chosen by the user, allowing for a more global exploration of the space of variables. If the search step
fails, the poll step is conducted to evaluate points around the poll center xk. The set of poll trial points P k ⊂Mk

(defined in [7]) contains points at a distance at most ∆k of xk, where ∆k ∈ Rn+ is the poll size parameter such as
δk = min(∆k, (∆k)2).

If both the search and the poll steps fail to find a new incumbent, then the iteration is said to be unsuccessful,
and the parameters δk and ∆k are reduced [7]. Otherwise, the iteration is said to be successful, and these parameters
are increased or kept unchanged, so that the next mesh is at least as coarse as the previous one. The next iterate
xk+1 is the new incumbent. During an iteration, when evaluating successively the points of first Sk and then P k, if
a new incumbent is found, the iteration may stop opportunistically without evaluating the remaining points.

In Mads, the normalized poll directions grow dense in the unit sphere as the number of iterations increases. A
hierarchy of optimality conditions [7] derived from Clarke nonsmooth calculus [17] is given for the point where the
algorithm converges, depending on the smoothness of blackbox output functions.

2.2 Mads for constrained problems

Mads is able to treat constraints in optimization problems with two approaches: the extreme barrier [7], which
rejects all infeasible points, and the progressive barrier [5], which relies on a threshold on the constraint violation
to reject infeasible points. A distinction is made between the types of constraints: unrelaxable constraints [30]
defining X should be treated with the extreme barrier, whereas relaxable constraints c(x) can be treated with both
approaches. As the developed algorithm requires the use of the progressive barrier for at least one of the constraints,
more details are given about this approach.

In the progressive barrier approach, the violation of the relaxable constraints is quantified by the constraint
aggregation function h(x) : Rn → R+ [20] defined by:

h(x) =


m∑
j=1

max(cj(x), 0)2 if x ∈ X,

∞ otherwise.

If h(x) = 0, then x is Ω-feasible since it respects both relaxable and unrelaxable constraints. Otherwise, if
0 < h(x) <∞, then x respects the unrelaxable constraints but not all the relaxable constraints (x ∈ X \ Ω). Based
on f and h, an ordering of the points is defined thanks to the relation of dominance (Definition 12.2 in [10]):

Definition 2.1 (Dominated points in constrained optimization). The feasible point x ∈ Ω is said to dom-
inate y ∈ Ω when f(x) < f(y). The infeasible point x ∈ X \ Ω is said to dominate y ∈ X \ Ω when f(x) ≤ f(y) and
h(x) ≤ h(y) with at least one strict inequality. A point x in some set S ⊂ X is said to be undominated if there are
no y ∈ S that dominate x.
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At the beginning of iteration k, two sets of incumbent solutions are built. Let Fk denote the set of feasible
incumbent solutions at iteration k, and let Ik denote the set of infeasible incumbent solutions at iteration k,

Fk = arg min
x∈V k

{f(x) : h(x) = 0}, Ik = arg min
x∈Uk

{f(x) : 0 < h(x) < hkmax},

where V k is the cache (the set of points previously evaluated by the algorithm), Uk is the set of infeasible undominated
points at the beginning of evaluation k, and hkmax is a rejection threshold updated at each iteration. The poll step is
conducted around both a feasible point of Fk and an infeasible point of Ik when possible. Different decision rules are
applied for the choice of the poll center [5].

Three iteration types are distinguished in Mads with the progressive barrier. The iteration is dominating if there
exists a trial point dominating an incumbent belonging to Fk or Ik. If the iteration is not dominating but there
exists a trial point with a better f value than the infeasible incumbent, then the iteration is improving. Otherwise,
the iteration is unsuccessful. Depending on the iteration type, the parameters δk and ∆k and the barrier threshold
hkmax are updated [5].

3 Algorithmic approach

DiscoMads is directly based on the Mads algorithm but includes two new algorithmic mechanisms: a revelation
mechanism used after each evaluation (subsection 3.1) and an exclusion mechanism (subsection 3.2) used when a
weak discontinuity is revealed. To cover this case, a new type of iteration is introduced with specific barrier and
mesh parameter updates (subsection 3.3). Finally, a revealing poll is included in the poll step in addition to the
classical poll of Mads to ensure a systematic detection mechanism (subsection 3.4).

3.1 Mechanism for revealing discontinuities

The discontinuity revelation requires the following user-defined parameters: the detection radius rd ≥ 0 and the
bound τ > 0 on the rate of change for the revealing output functions of indices J ⊆ {0, 1, ...,m}. The revelation
phase is performed after each successful evaluation of the blackbox at a point y ∈ X. For each previous point z 6= y
successfully evaluated in Brd(y), the rate of change τj of each revealing output function j ∈ J is computed as

τj(y, z) =
|cj(y)− cj(z)|
‖y − z‖ .

If τj(y, z) > τ , a weak discontinuity is revealed for the output function cj thanks to the points y and z. These
points are marked as revealing points.

Definition 3.1 (Revealing point). A cache point y ∈ V k is said to be revealing for the blackbox output function
of index j ∈ J if y ∈ X and if there exists a point z ∈ V k ∩X ∩Brd(y) such that |cj(y)− cj(z)| > τ‖y − z‖.

Let the following Dk denote the set of revealing points at the start of iteration k, with respect to all the revealing
blackbox output functions:

Dk =
{
y ∈ V k ∩X : ∃z ∈ V k ∩X ∩Brd(y),∃j ∈ J, |cj(y)− cj(z)| > τ‖y − z‖

}
,

where V k is the cache at the start of iteration k. As revealing points indicate areas with a high rate of change,
Dk ⊆ D. Moreover, as long as new revealing points are discovered, the set of revealing points is enriched, and thus:
Dk ⊆ Dk+1.

3.2 Mechanism for circumventing revealed areas

From iteration k, any feasible solution x ∈ X of problem (1.2) should satisfy, for all y ∈ Dk,

‖x− y‖ ≥ re ⇐⇒ re − ‖x− y‖ ≤ 0 ⇐⇒ re − dist(x,Dk) ≤ 0, (3.1)
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where dist(x,Dk) = inf
y∈Dk

(‖x− y‖) is the distance from x to the set Dk. As a consequence, an additional constraint

dk(x) : X → R is introduced to quantify the remoteness of a point x from the set Dk at iteration k:

dk(x) =

{
1− dist(x,Dk)

re
if Dk ∩Bre(x) 6= ∅,

0 otherwise.
(3.2)

On the one hand, if there are no revealing points in Bre(x) at iteration k, then dk(x) = 0; the point x is not
considered in the vicinity of a weak discontinuity at this stage. On the other hand, if there exists a revealing point
from Dk in Bre(x), then x is in an unsafe region and is penalized: thus dk(x) > 0. It is worth noting that only the
point y ∈ Dk ∩Bre(x) which is the nearest to x, influences the value dk(x). The denominator re is used to scale dk

between 0 and 1.
The problem considered by DiscoMads at iteration k may be written as

min
x∈Ωk

f(x), (3.3)

with Ωk = {x ∈ X : c(x) ≤ 0, dk(x) ≤ 0} the set of feasible solutions at iteration k. The constraint dk(x) is
quantifiable and relaxable [30] and is treated with the progressive barrier approach developed for Mads [5]. In
our context, the constraint violation aggregation function hk : Rn → R+ used for the progressive barrier and the
dominance relation depends on the iteration k and is defined by:

hk(x) =


m∑
j=1

max(cj(x), 0)2 + max(dk(x), 0)2 if x ∈ X,

∞ otherwise.

(3.4)

3.3 Revealing iteration

After the evaluation of a point y at iteration k, if the revealing procedure of subsection 3.1 returns at least one new
revealing point z 6∈ Dk, the iteration is declared revealing. The evaluations at iteration k are stopped opportunistically
to avoid wasting evaluations in the unfavorable revealed area. Let R denote the set of new revealing points, and let
Y be the set of points evaluated at iteration k. The set of revealing points and the cache for the next iteration are
updated as

Dk+1 ← Dk ∪R and V k+1 ← V k ∪ Y. (3.5)

Then, the constraints dk+1 and hk+1 are computed for all cache points V k+1 ∩X with (3.2) and (3.4). From
a numerical standpoint, only the points whose distance to R is less than re need to be updated. In a blackbox
optimization context, the computation time required for the revealing procedure and the potential update of
constraints is negligible with respect to the running time of the blackbox. Additionally, as Dk ⊆ Dk+1, for all x in
X the following equation is satisfied:

dk+1(x) ≥ dk(x) =⇒ hk+1(x) ≥ hk(x).

In DiscoMads the constraint violation aggregation function hk is used, the set of infeasible undominated points at
iteration k may thus differ from the one used in Mads and is denoted Uk. As the value of hk may increase with
respect to k, the set Uk+1 may be different from Uk, although no dominating point can be found in a revealing
iteration. The set Uk+1 is nonempty because it contains at least a revealing point of R 6= ∅. However, it is possible
that all points of V k+1 exceed the barrier threshold hkmax. Let Ik = arg minx∈Uk{f(x) : 0 < hk(x) < hkmax} denote
the set of infeasible incumbent solutions (undominated points), and let F k = arg minx∈V k{f(x) : hk(x) = 0} be the
set of feasible incumbent solutions at iteration k. These sets are redefined with respect to Mads as they are based on
the values of hk, but they are used in the same way for the choice of the poll center. Due to a possible update of the
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constraint dk, F k+1 may be empty. It is essential to ensure that Ik+1 is nonempty to continue the algorithm at
iteration k + 1. As a consequence, the threshold hk+1

max must be chosen carefully.
Define N(k, hlim) as the number of infeasible undominated points at iteration k whose value of hk is less than

the threshold hlim > 0:

N(k, hlim) defined as #
{
x ∈ Uk : hk(x) ≤ hlim

}
,

where # is the cardinality of the set. Let x ∈ Uk+1 denote the unique infeasible undominated point such as

N(k + 1, h(x)) =

{
min

(
N(k, hkmax),#{Uk+1}

)
if N(k, hkmax) 6= 0,

#
{
Uk+1

}
otherwise.

As Uk+1 6= ∅, there always exists a point x satisfying these equations and N(k + 1, h(x)) 6= 0. The value hk+1
max is

chosen here to keep, when possible, the same number of infeasible undominated points below the barrier threshold
before and after the detection of a revealing point. This value is computed with the following equation:

hk+1
max = h(x). (3.6)

Finally, at the end of a revealing iteration, the mesh size and frame size parameters are updated as follows:

δk+1 = δk and ∆k+1 = ∆k. (3.7)

3.4 Revealing poll

The poll step of Mads is enriched to solve problem (1.2). Indeed, when DiscoMads converges toward a promising
solution due to repeated unsuccessful iterations, the frame size parameter ∆k is decreased. When ∆k < rd + re, the
classical poll of Mads can no longer detect revealing points at a sufficient distance to ensure the convergence results
described in section 4.

An additional revealing poll is defined when rd > 0 (if rd = 0 then the forbidden area D is empty). Let Ck stand
for a set of points defined by:

Ck =

{
{xF } where xF ∈ F k if F k 6= ∅,
{xI} where xI ∈ Ik otherwise.

To construct the set of additional trial points P k+ ⊂Mk, nrnd ≥ 1 point(s) are randomly generated in the ball of
radius rm > rd + re centered at a point of Ck and then rounded onto the current mesh Mk. During an execution of
DiscoMads, the points of P k+ are evaluated with an opportunistic strategy before the points P k that are generated
by the classical poll of Mads.

The complete DiscoMads algorithm is shown in Figure 2. The blackbox output functions c(x) related to constraints
(including revealing functions) can be handled with either the extreme or the progressive barrier approach. By
default in Mads, the constraints treated with the extreme barrier approach contribute to the definition of X. If a
point does not belong to X, it is rejected by DiscoMads and treated the same way as in the Mads algorithm. This
treatment is not mentioned in Figure 2 and the reader is referred to the Mads algorithm [7] for further information.
Consequently, such a point is not used to detect weak discontinuities and cannot be a revealing point.

4 Convergence analysis

The convergence analysis follows the same steps as the ones carried out for Mads [5, 7]. Under appropriate
assumptions, it is first shown that the mesh size parameter gets infinitely fine. It follows that DiscoMads generates a
refining point x̂. Depending on the position of x̂ in X, local optimality conditions are derived from Clarke nonsmooth
calculus [17]. The original contribution of the analysis lies in Theorem 4.14 which covers the case where x̂ belongs
to the margin M .
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DiscoMads: Revealing and escaping discontinuous regions
• initialization (given a starting point x0 ∈ X such as f(x0) <∞, h(x0) <∞):

– define problem parameters: rd ≥ 0, τ > 0, re > 0, and J ⊆ {0, 1, ...,m};
– define the revealing poll parameters nrnd ≥ 1 and rm > re + rd;
– define the usual Mads parameters and the starting cache V 0 ← {x0};
– let D0 = ∅ and set the iteration counter k ← 0.

• preparation: generate a set Sk of user-defined points for the search (optional), generate the revealing poll
set P k+ (subsection 3.4) and the classical poll set P k according to the Mads algorithm [5] and let the cache
V k+1 ← V k.

• evaluation: for each successfully evaluated point x ∈ Sk ∪ P k+ ∪ P k, if x ∈ X:
– compute dk(x) according to (3.2) and hk(x) according to (3.4);
– update the cache V k+1 ← V k+1 ∪ {x};
– conduct the revelation procedure (subsection 3.1) with the cache V k+1 for the output functions j ∈ J ,
– if a new revealing point is detected, the iteration is revealing: go to update.
– if x is improving or dominating, the evaluation may stop opportunistically: go to update.

• update:
– if the iteration is revealing, compute the set of revealing points Dk+1 according to (3.5); for all v ∈ V k+1,

update dk+1(v) and hk+1(v) according to (3.2) and (3.4); update the barrier threshold hk+1
max as in (3.6)

and the mesh parameters δk+1 and ∆k+1 as in (3.7);
– otherwise, classify the iteration and update the parameters as in Mads [5] considering the constraint

violation function hk;
– if no stopping criterion is met, k ← k + 1 and go back to preparation.

Figure 2. DiscoMads for revealing and escaping discontinuous regions.

4.1 Preliminaries

In the studied context, the blackbox output is generated from deterministic functions of Rn in R. The starting point
does not need to be Ω̂-feasible and may be in the unsafe area M . It should only satisfy Assumption 4.1 required by
the progressive barrier [7] to order points with the relation of dominance.

Assumption 4.1. There exists a user-provided initial point x0 such that x0 ∈ X and that both f(x0), h(x0) are
finite.

As the unsafe region is unknown at the beginning of the optimization (D0 = ∅), then h0(x0) = h(x0) and
Assumption 4.1 ensures that h0(x0) is finite. More generally, for any points x ∈ X, if h(x) is bounded, then hk(x)
is bounded for all k as dk(x) is bounded by 1. As the iterates produced by the algorithm may be unbounded,
Assumption 4.2 from Mads [5] is considered.

Assumption 4.2. All points considered by the algorithm lie in a bounded set.

In the case where the set X defined by unrelaxable constraints is bounded, then given Assumption 4.1, Assumption 4.2
is satisfied. Additionally, a bounded X may be easily defined for a large part of engineering problems in which the
variables are necessarily bounded. An assumption on the continuity of the output functions is also necessary to account
for the margin M : a tailored definition of piecewise continuity (Definition 4.3) is introduced for Assumption 4.4.

Definition 4.3 (Piecewise continuous function). The function f : Rn → R is said to be piecewise continuous
if there exists a finite subset of indices K ⊆ N and a set of open sets {Xi}i∈K satisfying

Xi ∩Xj = ∅ ∀i ∈ K,∀j ∈ K, j 6= i,

∪i∈KXi = X,

f |Xi ∈ C 0 ∀i ∈ K,
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and if, for all y ∈ X, there exists i ∈ K such that y ∈ Xi and f |Xi∪{y} ∈ C 0, where f |A denotes the restriction

of f on a set A and X is the closure of X.

Assumption 4.4. The blackbox output functions are piecewise continuous on X.

An explicit expression for the remoteness constraint d of problem (1.1) is given at this point, mirroring the
expression of dk of problem (3.3) solved by DiscoMads at each iteration. The absolute constraint d : X → R
indicating if a point x belongs to the margin M is then defined by:

d(x) =

{
1− dist(x,D)

re
if D ∩Bre(x) 6= ∅,

0 otherwise.
(4.1)

Thus 0 ≤ d(x) ≤ 1 and x ∈M ⇐⇒ d(x) > 0. The corresponding absolute constraint violation aggregation function

is defined by ĥ : Rn → R+:

ĥ(x) =


m∑
j=1

max(cj(x), 0)2 + max(d(x), 0)2 if x ∈ X,

∞ otherwise.

(4.2)

Thus x ∈ Ω̂ ⇐⇒ ĥ(x) = 0. Additional properties on the functions d and ĥ and the related functions dk and hk at
iteration k are introduced.

Property 4.5 (Continuity of d, ĥ, dk and hk). (i) d is continuous on X, and ĥ is continuous on Ω.
(ii) dk is continuous on X, and hk is continuous on Ω for all k ∈ N.

Proof. i) If D is an empty set, then d is constant and continuous according to Equation (4.1). If D is non-empty,
then dist(x,D) is well defined and the distance from a point to a set is continuous on Rn. Thus d is continuous on

X ⊆ Rn. If x ∈ Ω, then ĥ(x) = max(d(x), 0)2. The maximum of two continuous functions is a continuous function,

so ĥ is continuous on Ω.
ii) The proof is identical to i) by substituting D by Dk, d by dk and ĥ by hk.

By definition, the constraint d is locally C1 on the margin M . Assume that the constraint d(x) ≤ 0 is replaced by
d(x) ≤ ε, where ε > 0 is small, and that this new constraint is active at the optimum. Consequently, the optimum
x∗ lies in the margin M and the Lagrange multiplier λ ≤ 0 associated with the constraint exists. The effect of the
change in constraint on the value f(x∗) is about λε. In a blackbox optimization context, no empirical deductions
about the multiplier can be made. However, the change of optimal value with respect to the tuning parameter re

may be analyzed. If re is replaced by re −∆ with ∆ > 0, then d(x) ≤ ∆
re

. Hence, the variation of the value f(x∗) is

about λ∆
re
< 0, a coherent decrease in the objective function.

Property 4.6 (Characterization of the sequence {dk(x)}). Given a point x ∈ X, the sequence {dk(x)}
admits a finite limit when k tends to infinity.

Proof. Let x be a point in X. If Dk is empty for all k, then dk(x) is constant and the sequence {dk(x)} is convergent.
Otherwise, there exists a sufficiently large rank k̄ such that Dk̄ is nonempty. Let k ≥ k̄; by construction, V k ⊆ V k+1

and Dk ⊆ Dk+1. Consequently, dist(x,Dk+1) ≤ dist(x,Dk) and dk+1(x) ≥ dk(x). The sequence {dk(x)} increases
monotonically from the rank k̄ and is bounded above by 1 by definition. Thus the sequence {dk(x)} admits a finite
limit.

Under Assumptions 4.1 and 4.2, it is first shown that the mesh gets infinitely fine.

Theorem 4.7. Suppose that Assumptions 4.1 and 4.2 hold, and let {δk} stand for the sequence of mesh size
parameters generated by DiscoMads then

lim inf
k→∞

δk = lim inf
k→∞

∆k = 0.
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Proof. Suppose by way of contradiction that there exists the following lower bound δmin on the mesh size parameter:
0 < δmin ≤ δk for all k ≥ 0. By considering the closure of the bounded set of Assumption 4.2, it follows that all
iterates belong to a compact set. It is shown in Proposition 3.4 of [6] that there is only a finite number of different
iterates nit ∈ N, and one of them, denoted x, must be visited infinitely many times. Consequently, there exists a
rank k̄ ∈ N beyond which all the iterates in Brd(x) have been generated due to the revealing poll. Thus, for all
the iterations k ≥ k̄, the evaluation of x cannot lead to a revealing iteration. As a consequence, x can be visited
infinitely many times only if there is an infinite number of unsuccessful iterations. According to the results stated
for Mads [7], the mesh size parameter is then reduced infinitely many times, which contradicts the hypothesis that
δmin is a lower bound for δk. The end of the theorem follows from the equation δk = min(∆k, (∆k)2).

The convergence analysis relies on the Clarke directional derivative of a function f in the direction p at point x
denoted by f̂◦(x, p) [17]. The reader is referred to Jahn [24] for the definition of the hypertangent cone THY (x) to a
set Y at a point x. Finally, two key definitions from [10] are recalled. In the context of DiscoMads, the poll step
refers to the revealing poll, followed by the classical poll of Mads.

Definition 4.8 (Mesh local optimizer). The point xk is called a mesh local optimizer if and only if both the
search step and the poll step fail at iteration k.

Definition 4.9 (Refining subsequence, refining point and refining direction). A convergent subsequence
of mesh local optimizers {xk}k∈K (where K is an infinite set of indices) is said to be a refining subsequence if and
only if limk∈K δk = 0. The limit of a refining subsequence is called its corresponding refined point. Given a refining
subsequence {xk}k∈K and its corresponding refined point x̂, a direction p is said to be a refining direction if and only

if there exists an infinite subset L ⊆ K with poll directions pk ∈ D such that xk + δkpk ∈ Ω and limk∈L
pk

‖pk‖ = p
‖p‖ .

4.2 Refining points analysis

With respect to Assumptions 4.1 and 4.2 and Theorem 4.7, it is shown that there exists at least one converging
refining subsequence (Theorem 3.6 in [6]). Depending on the nature of the refining subsequence {xk} and the
position of the refining point x̂, different local optimality conditions are derived. As DiscoMads is an extension of
Mads, it is chosen, when possible, to base a maximum on Mads optimality conditions without taking advantage of
the revealing poll.

Two results follow directly from the convergence analysis of Mads [5]. First, a convergence result is given in
subsection 4.2.1 for f in the case where a Ω̂-feasible refining subsequence converging to x̂ ∈ Ω̂ is generated. Second,
the function ĥ is analyzed in subsection 4.2.2 for the case where an infeasible refining subsequence in X \M
converging to x̂ ∈ X \M is generated. For these two cases, the results of Mads are preserved with similar proofs

because hk = ĥ outside the margin M . However, for refining sequences belonging to M , only hk is known; the
revealing poll mechanism, as well as Assumption 4.4, is required to state novel convergence results in subsection 4.2.3.
These additional elements allow Theorem 4.14 to ensure stronger optimality conditions than those of Mads [5].
Additionally, this theorem may be applied as well to refining subsequences belonging to X \M . Consequently, and
to maintain coherence with former results, the theorems stated in the following subsections are kept as general as
possible. An adequate use of the theorems for the different cases covered by the convergence analysis is presented in
Table 4.1.

4.2.1 A feasible refining subsequence: Result on f based on Mads

Theorem 4.10. Under Assumptions 4.1 and 4.2, suppose that the algorithm generates a refining subsequence
{xk}k∈K , with xk ∈ Ω̂ converging to a refined point x̂ ∈ Ω̂ near which f is Lipschitz. If p ∈ TH

Ω̂
(x̂) is a refining

direction for x̂, then f◦(x̂, p) ≥ 0. Moreover, if the set of refining directions for x̂ is dense in TH
Ω̂

(x̂) 6= ∅, then x̂ is a

Clarke stationary point for (1.2).

Proof. As the iterates {xk}k∈K belong to Ω̂, then dk(xk) = 0 and hk(xk) = 0 for all k ∈ K. Consequently, Theorem
3.3 of [5] is valid for this refining subsequence. It follows that f◦(x̂, p) ≥ 0. The end of the theorem follows from
Corollary 3.4 of [5].
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Table 4.1. Cases covered by the convergence analysis of DiscoMads.

result on {xk} x̂ covered by assumptions

f Ω̂ Ω̂ Theorem 4.10 4.1, 4.2

Ω̂ subsection 4.2.2 (lines 1-2) 4.1, 4.2

Theorem 4.11 4.1, 4.2
X \M

Theorem 4.14 4.1, 4.2, 4.4X \M
M Theorem 4.14 4.1, 4.2, 4.4

Ω̂ subsection 4.2.2 (lines 1-2) 4.1, 4.2

X \M Theorem 4.14 4.1, 4.2, 4.4

ĥ

M

M Theorem 4.14 4.1, 4.2, 4.4

It is worth noting that if all the blackbox output functions are revealing, then if x̂ ∈ Ω̂, the function f is
necessarily Lipschitz near x̂ by definition of Ω̂.

4.2.2 An infeasible refining subsequence: Result on ĥ based on Mads

If ĥ(x̂) = 0, then x̂ is a global minimum of ĥ on X. Otherwise, x̂ satisfies some necessary conditions in order to be a

local minimizer of ĥ.

Theorem 4.11. Under Assumptions 4.1 and 4.2, suppose that the algorithm generates a refining subsequence
{xk}k∈K , with xk ∈ X \M converging to a refined point x̂ ∈ X near which ĥ is Lipschitz. If p ∈ THX (x̂) is a refining

direction for x̂, then ĥ◦(x̂, p) ≥ 0. Moreover, if the set of refining directions for x̂ is dense in THX (x̂) 6= ∅, then x̂ is a

Clarke stationary point for minx∈X ĥ(x).

Proof. For all the iterates of the refining subsequence {xk}k∈K , dk(xk) = 0 by definition of dk in (3.2). Consequently,

hk(xk) = ĥ(xk), and Theorem 3.5 of [5] can be applied without restriction to the refining subsequence. It follows

that if p is a refining direction for x̂, then ĥ◦(x̂, p) ≥ 0. The end of the proof is given by Corollary 3.6 of [5].

4.2.3 An infeasible refining subsequence: Result on ĥ based on the revealing poll

With additional assumptions and by using the revealing poll mechanism, a stronger convergence result on ĥ is
derived in Theorem 4.14, relying on Lemmas 4.12 and 4.13. The quantity ∆r = rm − re − rd > 0 is introduced.

Lemma 4.12. Under Assumptions 4.1 and 4.2, if x̂ is the refined point of a refining subsequence {xk}k∈K , then the
revealing poll generates a dense set of trial points in Brm(x̂).

Proof. Let y belong to the open ball Brm(x̂), and let ε1 > 0; it suffices to show that the revealing poll around some

iterate xk generates a trial point zk ∈ Bε1(y). Define ε = min
(
rm−‖y−x̂‖

2 , ε1

)
, a strictly positive quantity.

As {xk}k∈K is a refining subsequence, it follows by definition that limk∈K δk = 0. Consequently, there exists a
mesh size parameter δ′ > 0 such that

round(u) ∈ Bε(y) ∀u ∈ Bε/2(y),∀δ < δ′, (4.3)

where round(u) is the rounding of u on the mesh of coarseness δ.
There exists a sufficiently large threshold t such that δk < δ′ and xk ∈ Bε(x̂) for all k ∈ K with k ≥ t. Thus for

all k ∈ K, k ≥ t and v ∈ Bε(y), the following equation holds:

‖v − xk‖ ≤ ‖v − y‖︸ ︷︷ ︸
<ε

+ ‖y − x̂‖︸ ︷︷ ︸
≤rm−2ε

by definition of ε

+ ‖x̂− xk‖︸ ︷︷ ︸
<ε

< rm.
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Consequently, Bε(y) ⊂ Brm(xk). The probability that the revealing poll around xk generates a random point (before
rounding) in Bε/2(y) is given by the strictly positive constant:

vol(Bε/2(y))

vol(Brm(xk))
> 0,

where vol(•) denotes the volume of the ball. Consequently, there exists an index k ∈ K for which a random
point uk generated by the revealing poll around xk belongs to Bε/2(y). From (4.3), the corresponding trial point

zk = round(uk) necessarily belongs to Bε(y), which is contained in Bε1(y).

Lemma 4.13. Under Assumptions 4.1, 4.2 and 4.4, suppose that the algorithm generates a refining subsequence
{xk}k∈K converging to a refined point x̂ ∈ X; if y ∈ X ∩B∆r(x̂), then limk→∞ hk(y) = ĥ(y).

Proof. Let y be a point such that y ∈ X ∩ B∆r(x̂). Three cases may occur: i) y ∈ D, ii) y ∈ M \ D, and iii)
y ∈ X \M . If rd = 0, then D = M = ∅ and only case iii) is possible.

i) Assume that y ∈ D; then there exists at least one blackbox output function cj , j ∈ J , and a point z ∈ X∩Brd(y)

such that
|cj(y)−cj(z)|
‖y−z‖ > τ . According to Assumption 4.4, there exists an open set Xy ⊆ X such that y ∈ Xy and cj

is continuous on Xy ∪ {y}. From Lemma 4.12, a dense set S of trial points is generated by the revealing poll in
Brm(x̂). As Xy ∩Brm(x̂) is an open nonempty set in Brm(x̂), it is thus possible to build the following sequence of
points {yk} ∈ S ∩Xy converging to y: limk∈L yk = y, where L ⊆ K.

From Assumption 4.4, there also exists an open set Xz ⊆ X such that z ∈ Xz and cj is continuous on Xz ∪ {z}.
Moreover, ‖x̂ − y‖ < ∆r and ‖z − y‖ < rd, which results in z ∈ Brm(x̂). As the set S is dense on Brm(x̂), it is
possible to build the following sequence of points {zk} ∈ S ∩Xz converging to z: limk∈L′ zk = z, where L′ ⊆ L. By
continuity of cj on Xy and Xz, the following equation holds:

lim
k∈L′

|cj(yk)− cj(zk)|
‖yk − zk‖ =

|cj(y)− cj(z)|
‖y − z‖ > τ.

Consequently, there exists a rank k ∈ L′ above which the pair of points (yk, zk) is revealing for the output function cj .
It follows that dk(yk) = 1 for a sufficiently large rank k ∈ L′. As dk is continuous on X (Property 4.5), it follows that
limk∈L′ dk(yk) = limk∈L′ dk(y). Since the sequence {dk(y)}k∈N has a finite limit (Property 4.6), each subsequence
has the same limit, hence limk∈L′ dk(y) = limk→∞ dk(y). It follows that limk→∞ dk(y) = limk∈L′ dk(yk) = 1 = d(y).

ii) Assume that y ∈M \D; then there exists a point z ∈ D such that dist(y,D) = ‖y − z‖ and ‖y − z‖ < re.

There also exists a point z′ ∈ X ∪Brd(z) and a blackbox output function cj such that the pair of points (z, z′) is
revealing for cj . As the inequalities

‖x̂− z‖ ≤ ‖x̂− y‖︸ ︷︷ ︸
<∆r

+ ‖y − z‖︸ ︷︷ ︸
<re

< rm and ‖x̂− z′‖ ≤ ‖x̂− z‖︸ ︷︷ ︸
<∆r+re

+ ‖z − z′‖︸ ︷︷ ︸
<rd

< rm,

are satisfied, then z and z′ belong to Brm(x̂). Consequently, two sequences {zk}k∈L and {z′k}k∈L′⊆L converging,
respectively, to z and z′ can be constructed in the same way as in i). There exists a sufficiently large rank k ∈ L′
such that the pair (zk, z′k) is revealing for the output function cj . From such a rank, Dk is nonempty and the
distance dist(y,Dk) is well defined. As Dk ⊂ D and zk ∈ Dk, the following equation holds for all k ∈ L′:

dist(y,D) ≤ dist(y,Dk) ≤ ‖y − zk‖.

As the distance from a point to a set is continuous, the limit of this inequality can be considered. Remembering
that zk converges to z and that ‖y − z‖ = dist(y,D), it follows that limk∈L′ dist(y,Dk) = dist(y,D). Hence,
limk∈L′ dk(y) = d(y). Each subsequence of a converging sequence has the same limit, and thus limk→∞ dk(y) = d(y).

iii) Assume that y ∈ X \M ; then d(y) = 0. For all rank k and for all x ∈ X, 0 ≤ dk(x) ≤ d(x), and then

dk(y) = 0. Consequently, limk→∞ dk(y) = d(y).
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In each case, limk→∞ dk(y) = d(y). From (3.4), it follows that

lim
k→∞

hk(y) =

m∑
j=1

max(cj(y), 0)2 + max(d(y), 0)2 = ĥ(y).

The following theorem considers the case where x̂ belongs to M and requires that ĥ is piecewise continuous
near x̂. Note that this requirement is satisfied for all x ∈ Ω according to Property 4.5. The theorem states the
convergence of the algorithm to a local minimizer of ĥ on X, which is a stronger optimality condition than those
derived for Mads involving contingent KKT stationary points [5]. This is made possible by taking advantage of the
revealing poll mechanism as well as Assumption 4.4. A supporting graphic of the proof is given in Figure 3.

Theorem 4.14. Under Assumptions 4.1, 4.2 and 4.4 suppose that the algorithm generates a refining subsequence
{xk}k∈K converging to x̂ ∈ X near which ĥ is piecewise continuous; then x̂ is a local minimizer of ĥ on X.

Proof. Let {xk}k∈K be a refining subsequence converging to x̂ ∈ X. By way of contradiction, suppose that x̂ is not

a local minimizer of ĥ on X; then there exists a point z near x̂ such that z ∈ B∆r(x̂) ∩X and

ĥ(x̂) > ĥ(z). (4.4)

As ĥ is piecewise continuous near x̂, there exist two open sets Xx̂ and Xz such that x̂ ∈ X x̂, z ∈ Xz, and ĥ is
continuous on {x̂} ∪X x̂ and on {z} ∪Xz. By the piecewise continuity of ĥ and according to (4.4), there exists a
pair ε > 0, δ > 0 such that

ĥ(a) > ĥ(b) + δ ∀a ∈ Bε(x̂) ∩Xx̂,∀b ∈ Bε(z) ∩Xz. (4.5)

As {xk}k∈K converges to x̂, according to Lemma 4.12, a dense set S of trial points is generated by the revealing
poll in Brm(x̂). Since the set Xx̂ ∩Brm(x̂) is an open subset of Brm(x̂), then infinitely many points are generated
by the algorithm in Xx̂. Consequently, there exists a refining subsequence {xk}k∈L in S ∩ Xx̂ converging to x̂:
limk∈L xk = x̂.

As z ∈ (B∆r(x̂) ∩ X) ⊂ (Brm(x̂) ∩ X), it is possible to build in the same way a subsequence {zk}k∈L′⊆L in
S ∩Xz converging to z: limk∈L′ zk = z. The sequences {xk}k∈L, {zk}k∈L′⊆L and the pieces Xx̂, Xz are depicted in
Figure 3.

There exists a rank k sufficiently large such that xk ∈ Bε(x̂) ∩Xx̂, zk ∈ Bε(z) ∩Xz and from Lemma 4.13 and
by definition of the limit, the following inequalities hold:

ĥ(xk)− δ

2
< hk(xk) < ĥ(xk) +

δ

2
(4.6)

ĥ(zk)− δ

2
< hk(zk) < ĥ(zk) +

δ

2
. (4.7)

For such a rank k, it follows that

hk(xk) >︸︷︷︸
from (4.6)

ĥ(xk)− δ

2
>︸︷︷︸

from (4.5)

ĥ(zk) + δ − δ

2
>︸︷︷︸

from (4.7)

hk(zk).

Thus hk(xk) > hk(zk), and xk is not a mesh local optimizer, which contradicts the fact that xk ∈ {xk}k∈L is a

refining subsequence. Finally, x̂ must be a local minimizer of ĥ on X.
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X ∩Brm(x̂)

∆r
Xx̂

ε

Xz

ε

x̂

z

Figure 3. Schematic related to Theorem 4.14: pieces Xx̂ and Xz ( ), and sequences of mesh points {xk}k∈L and {zk}k∈L′ ( )
converging, respectively, to x̂ and z.

5 Numerical results

The parameters rd, τ , and re required for DiscoMads are considered with different statuses. The quantities rd and τ
numerically characterize the unsafe region D and result from modeling choices. They are considered fixed by the
user from insights on the underlying system dynamics, similarly to what is done in the literature [14, 16]. However,
some guidelines for the choices of rd and τ are given below considering a single revealing output cj , and examples
of values are given in numerical tests. In the case where a solution away from discontinuities is sought, when an
estimate of the Lipschitz constant is known, it may be used for τ alongside a value of rd large enough for early
detection of revealing points during a run. When only an approximate magnitude of discontinuities “jumps” ∆cj is

known, then τ may be chosen as
∆cj

rd
. Otherwise, it is assumed that the user has insights on the magnitude of cj . A

default value may be chosen for rd (e.g. rd = 1 when x is scaled between 0 and 100) and τ may be chosen as the
maximal safe variation allowed for cj considering a variation of rd in x. In the case where a solution outside strong
variation regions is sought, rd and τ derive directly from the sharp gradient modeling chosen by the user. On the
contrary, the re parameter defining the margin M is considered as a flexible tuning parameter to obtain a solution
far from the unsafe region D when the evaluation budget is limited. Indeed, in this case, the region D may not be
sufficiently well approximated. The influence of re is analyzed in the numerical tests.

DiscoMads is implemented with NOMAD 3.9.1 [29], the open-source implementation of Mads. For the revealing
poll, the convergence analysis only prescribes for the sampling radius that rm > re + rd and for the number of
sampled points that nrnd > 0. For all the numerical tests, the radius rm is arbitrarily fixed to 1.01(re + rd) and nrnd

to n, the dimension of the problem. Unless otherwise stated, the default options of NOMAD are used. Particularly,
the stopping criteria are the evaluation budget and the minimal mesh size; the first criterion met terminates the
execution. The anisotropic mesh is disabled with DiscoMads to ease distance computations. The quadratic models
are considered ill suited to representing discontinuous functions and are also disabled. For the search step, only
the speculative search [7], activated by default in NOMAD 3.9.1, is used. This is a single-point search run after a
dominating or improving iteration, in the corresponding previous successful direction. The opportunistic strategy is
employed for both the search and poll steps.

The behavior of DiscoMads is validated on several 2-dimensional test problems with closed-form expressions for f
and c, among which only one is presented in the following section. For this problem, the region D is explicitly known
for a pair of parameters (rd, τ), and the low number of variables allows for comprehensive graphs. The performance
and flexibility of the algorithm is then assessed on three design problems of nonlinear systems, illustrating three
possible applications of the algorithm. These problems are representative of the blackbox optimization framework,
as a numerical simulation is required to compute the objective function and the constraints. First, the design of
a two-bar truss is considered, which leads to a 2-dimensional problem with a single discontinuity. This simplified
problem is representative of stability problems occurring, for example, in crash simulations [16]. Then, a styrene
production process is optimized and demonstrates an original use of DiscoMads to find a solution away from hidden
constraint regions. To the best of our knowledge, this is the first time that this requirement is specifically treated.
Finally, a turbomachine blade design problem exhibiting discontinuities similar to those of industrial numerical
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simulations is considered. This problem is representative of emerging industrial challenges, which primarily motivates
the development of DiscoMads. Consequently, an in-depth mechanical analysis of the solutions computed by the
algorithm is provided.

5.1 Validation on analytical problems

Results of a typical run

Problem (1.2) is solved with n = 2 on X = [−10; 10]× [−10; 10], with the functions f and c depicted in Figure 4. The
two functions are revealing for DiscoMads, and the region D is defined by rd = 0.25 and τ = 0.3. The margin radius
is fixed to re = 0.25. The discontinuities and the regions are presented in Figure 5a with the optimal solution x∗.
Up to 2000 evaluations are allowed, the minimal mesh size is fixed to 10−9, and the starting point is x0 = (−5,−5)
(Ω-feasible).

−10

0

10

−10
0

10

0

2

x1x2

f
(x
)

(a)

f(x) =

{
−0.025x2 + 3 if ‖x− ωf‖ > 12,

0.04x2 otherwise.

with ωf = (0, 10)

−10

0

10

−10
0

10

−0.1

2

x1x2

c(
x
)

(b)

c(x) =

{
2 if x1 > 0,

−0.1 otherwise.

Figure 4. Discontinuous functions with closed-form expressions.

The algorithm is stopped by the minimal mesh size criterion, which is consistent with the fact that the algorithm
converges; the solution depicted in X in Figure 5a is outside the unsafe area D, as expected, but within the margin
M . This does not contradict the convergence results based on an infinite number of iterations. For this run, 152
iterations out of 299 are revealing. All points evaluated during the run are presented in Figure 5b, and the exclusion
areas are limited by circles of radii re. The superposition of these circles on the margin M shows that the algorithm
is able to reveal the region D and to escape it.

−2 0 2

−2

0

2

x1

x
2

(a) DiscoMads solution ( ) and op-
timal solution x∗ ( ).

−2 0 2
x1

(b) Cache points: revealing
( ), other Ωk-infeasible ( ),
and Ωk-feasible ( ) points.

−2 0 2
x1

(c) DiscoMads solutions ( )
and optimal solution x∗ ( ).

Figure 5. Results of DiscoMads on problem (1.2) with X = [−10; 10]× [−10; 10] and closed-form functions f and c. Single run
(a),(b) and runs with 100 seeds (c).
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Let {xkc}k∈K be the sequence of best feasible incumbents with xkc ∈ F k, and K is the subset of iteration indices
for which F k is nonempty. Contrary to the usual behavior of Mads, {f(xkc )}k∈K is not decreasing; in DiscoMads, a
revealing iteration leads to an update of the additional constraint dk of some cache points, and the best current
point may become infeasible due to such an update.

As the revealing poll is based on a random sampling, the runs must be repeated with different random seeds to
validate the robustness of the algorithm. Results of 100 instances of DiscoMads executed with 100 different random
seeds are presented in Figure 5c. The returned solutions are close to the optimal solution x∗ and outside the unsafe
region D. The robustness of the algorithm with regard to the random character of the revealing poll is illustrated
on the analytical problems.

Discussion of algorithmic parameters

The parameters rd and τ characterize the region D. However, locally, the border of the region is usually limited by
only one of these parameters. Consequently, obtaining an explicit expression for the border of D is not trivial, even
for low-dimensional problems. The border of D may be approximated in the graphs of this work, particularly in the
vicinity of the X borders.

The parameter re can be tuned by the user to obtain solutions away from D. To show this flexibility, the
algorithm is run 100 times with 100 distinct radii re varying from 0.001 to 0.5. The runs are executed with a single
random seed. For each value of re, the distance of the solution from the closest discontinuity is computed and
depicted in Figure 6, alongside the distances of the borders of regions D and M from the closest discontinuity. A
general trend can be observed: when re increases, the distance to the closest discontinuity of the returned solution
tends equally to increase. The solution tends to get closer to the margin border. The gaps are caused by the
premature stop of the algorithm which can occur after a revealing iteration questions the feasibility status of the
evaluated points.

rd
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Figure 6. Distances of solutions ( ) from the closest discontinuity with respect to re. Distances from the border of the regions
D ( ) and M ( ).

5.2 Design of a two-bar truss

The model consists of two identical bars of Young’s modulus E, cross-sectional area A and free length l0 (Figure 7a).
The bars are constrained by pivot links to the frame at points PA and PB and are linked together by another pivot
at the point PC , whose coordinates at rest are denoted (b,h). The system parameters are fixed to h = 0.5 m, b = 1 m,
and E = 70,000 MPa. A vertical load F is applied at point PC , the bars are compressed, and buckling failure of
the structure may occur. Consequently, the vertical displacement v of point PC is discontinuous with respect to F
and A. This quantity is depicted in Figure 7b, where F and A are scaled between 0 and 100, corresponding to the
ranges A ∈ [50; 300] mm2 and F ∈ [5; 10] kN.

The computation of v1 results from a quasi-static analysis; the nonlinear equilibrium equation is g(v) = 0 [18,
pp. 4-5]. It is solved iteratively with the Newton–Raphson method. The computation time of v for a given pair of
variables (A,F ) is about 0.5 ms on a personal computer.

1A blackbox for the buckling of a 2-bar truss is available online at https://gitlab.lava.polymtl.ca/depots_publics/codes/

blackbox_buckling
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Figure 7. Characteristics of the nonlinear two-bar truss.

Optimization problem

The two-bar truss design problem can be stated as a mass minimization problem (5.1) for a given load with respect
to the two variables A and F scaled between 0 and 100. To avoid buckling, a constraint c(x) limits the displacement
v to vmax = 200 mm, and the sought configuration must be away from the discontinuity of this constraint for safety
reasons. In Figure 7b, a numerical estimation of the position of the discontinuity is depicted by the dashed line in
the space of variables (A,F ). The problem can be written as

min
(A,F )∈X

f(A,F )

subject to c(A,F ) ≤ 0

and d(A,F ) ≤ 0.

(5.1)

with X = {(A,F ) : 0 ≤ A ≤ 100, 0 ≤ F ≤ 100}, f(A,F ) = A, and c(A,F ) = v(A,F ) − vmax. The constraint d
refers to the remoteness constraint of problem (1.1).

To solve problem (5.1) with DiscoMads, the only revealing output function is the displacement constraint c(x),
and the unsafe area D (dark-colored in the plane (A,F ) in Figure 7b) is described by the detection radius rd = 5
and the limit rate of change τ = 0.02. The parameter re is fixed at 10. Two starting points are considered: an
Ω-feasible point x0

A = (80, 80) describing a configuration without buckling, and an Ω-infeasible point x0
B = (0, 100).

This last point corresponding to a buckling configuration is not realistic and only used to validate the behavior of
the algorithm in this case. Each problem instance is solved for 100 different random seeds.

Results

For each of the 100 runs from the starting point x0
A, the solution returned by DiscoMads is depicted in the space of

variables in Figure 8a. In all cases, the algorithm stopped when reaching the minimal allowed mesh size of 10−9.
Both the optimal solution x∗ of problem (5.1) and the solution x′ of this problem, with the constraint d relaxed, are
also depicted in Figure 8a. The DiscoMads solutions are located in the same area and are very close to x∗, which
attests to the robustness of the algorithm with respect to the random component of the revealing poll. The solutions
are within the margin M and are not in the unsafe area D. This behavior is as expected considering the evaluation
budget and the relatively simple topology of the problem, which makes it easier for the revealing poll to accurately
detect the area D. From a mechanical standpoint, the solutions lead to reliable designs with no buckling effect,
even for small variations of the variables around the solutions. The objective function values for these solutions are
depicted in Figure 8b and compared to the values f(x∗) and f(x′). As expected, the f values of the 100 solutions of
problem (5.1) are higher than f(x′). The results from the problem instance with starting point x0

B are very similar
and are not presented here. This demonstrates the robustness of the algorithm on this problem with an Ω-infeasible
starting point.
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Figure 8. Characteristics of the solutions returned by DiscoMads for the 100 runs from the Ω-feasible starting point x0
A = (80, 80).

Finally, the influence of the evaluation budget on the quality of the returned solutions is investigated. A histogram
representing the distance to the discontinuity of each solution is depicted in Figure 9 for three budgets of 100,
200, and 2000 evaluations. When the budget is low, the distance to the discontinuity of the solutions strongly
varies—some solutions even belong to the unsafe area D. On the contrary, with the 2000-evaluation budget, all
solutions are away from D and close to the border of Ω̂. This is explained by the fact that a higher evaluation
budget allows for a more intensive sampling during the revealing poll.
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Figure 9. Histograms of the distances of the solutions from the discontinuity for different budgets for the runs with the starting
point x0

A = (80, 80) ∈ Ω̂.

5.3 Design of a styrene production process

Optimization problem

The aim is to optimize a chemical process for styrene production by minimizing the production costs while satisfying
environmental and industrial constraints [4]. The problem has 8 variables scaled between 0 and 100 and 11 constraints:
7 relaxable constraints and 4 binary constraints. This process is simulated in the open-source blackbox styrene2

which incorporates several numerical methods, such as Newton or Runge–Kutta. The computation time of the
blackbox for a single evaluation is about 600 ms on a personal computer.

This problem has been studied in many works [4, 8, 9, 22] and is well known to exhibit hidden constraints:
for some points x, the simulation fails and the blackbox output cannot be computed [30], even if x is Ω-feasible.
According to Gramacy and Le Digabel [22], about 20% of the blackbox evaluations violate some hidden constraints,
and the returned solution may be close to points violating such constraints.

2https://github.com/bbopt/styrene

Audet, Batailly and Kojtych 20

https://github.com/bbopt/styrene
mailto:solene.kojtych@polymtl.ca


Escaping unknown discontinuous regions in blackbox optimization

Solution with DiscoMads

The DiscoMads algorithm is applied to this 8-variable problem to obtain a solution away from the unsafe area where
hidden constraints are violated. To achieve this, the blackbox is slightly modified to return an artificially high
value of the objective and the relaxable constraints when a hidden constraint is violated. The violation of hidden
constraints thus leads to discontinuities of the objective function, which can be revealed by DiscoMads.

An indicator H(x, σ) is introduced to quantify the quality of a solution and it is defined as the number of points
violating hidden constraints among 1000 points randomly sampled in X ∩Bσ(x). At the time when the text was
written,, one of the best feasible solutions of the styrene problem is a point xs such that f(xs) = −33 709 000. As
H(xs, 15) = 435, this point is close to at least 435 points violating hidden constraints.

The starting point xs is used for DiscoMads, and 100 instances of the problem are run with 100 random seeds.
Only the objective function is used to reveal discontinuities, the detection procedure is driven by the parameters
rd = 5 and τ = 1015, and the exclusion radius is fixed to re = 10. The other parameters are based on previous
publications related to styrene. In particular, a budget of 1000 evaluations is allowed, and the minimal mesh size
is fixed to 10−7. The binary constraints are treated with the extreme barrier approach and the relaxable constraints
with the progressive barrier.

Results

For each seed, the f -value of the solution returned by the algorithm is depicted in Figure 10a alongside the value
f(xs). The algorithm is able to return an Ω-feasible solution for each run. The solutions returned by DiscoMads
have similar f -values and are not very sensitive to the random sampling for this case. Moreover, these values are
higher than f(xs): as expected, the algorithm moved from the starting point xs, which is revealed close to points
violating hidden constraints.

For each solution x, the indicator H(x, σ) is calculated for two values of σ, and its distributions are depicted in
Figure 10. If σ = re + rd = 15, most of the solutions have an H(x, σ) value less than 400, but the dispersion of
values is large. Note that in this case, the indicator quantifies the number of revealing points of D at distance less
than re + rd from the returned solution. This indicator is severe because in most cases the returned solution lies in
the region M \D, according to previous numerical results. Consequently, it is difficult to draw conclusions about
the performance of the algorithm from this isolated measure. If σ = rd = 5, most of the H(x, σ) values are low and
below H(xs, 5) = 120, which indicates that few revealing points have been detected in balls of radius σ around the
solutions. The algorithm is thus able to return solutions away from areas where hidden constraints are violated for
this 8-variable problem.
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Figure 10. Characteristics of the solutions for the styrene problem.

5.4 Design of a turbomachine blade

Over the past few years, more stringent economic and environmental constraints pushed engine manufacturers to
reduce aircraft engine fuel consumption. A preferred approach consists of reducing clearances between rotating
blades and the surrounding casing components to limit aerodynamic leakage and thus increase the overall engine
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efficiency. However, due to vibrations in operation [31], clearance reductions yield more frequent structural contacts
that must now be accounted for in blade design. These contacts lead to unsafe nonlinear resonance regions where the
simulated quantities are discontinuous. These areas must be detected and escaped from in the optimization process.

Simulation

A simplified problem is considered in this section. The maximal radial displacement at the tip of the blade is
analyzed with respect to two variables: the blade rotational speed ω and the tip clearance s (depicted in Figure 11a),
assumed constant from the leading edge to the trailing edge. The radial displacement u(s, ω) is computed with a
numerical strategy [31] relying on the industrial finite element model of a low-pressure compressor blade. For a
pair of variables (ω, s), 20 revolutions of the blade at constant speed ω are simulated accounting for centrifugal
effects [13].
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(b) Interpolation of the maximal radial displacement at the tip of the blade computed
from 45 000 simulation points (s, ω). Scaled displacement.

Figure 11. Presentation of the turbomachine blade design problem.

Let s0 denote a typical tip clearance for compressor blades and let ω0 denote the nominal blade rotational speed;
s is varied between 0.8s0 and 6.5s0 and ω between 0.85ω0 and 1.15ω0. The displacements computed for 45 000
points (s, ω) are scaled between 0 and 1 and depicted in Figure 11b with respect to s and ω, both scaled between 0
and 100. Strong local variations of the displacement with respect to both speed and clearance are visible. Optimal
configurations should lead to reduced displacements while minimizing the tip clearance for a specific range of speeds.
As the system is strongly nonlinear, optimal configurations may be very close to unsafe configurations.

The computation time of a single simulation is about 1 min 40 s on a standard processor. Consequently, 52 days
are required to run all the simulations on a single processor. From a practical standpoint, blackbox optimization is
required to identify meaningful cost-effective configurations. A simplified blade design problem is considered in the
next section as a proof of concept for the resolution of such industrial design problems with DiscoMads.

Optimization problem

The design problem is representative of a reverse engineering problem and aims at minimizing the tip clearance
to reduce aerodynamic loss for a prescribed speed range. Two variables are considered: the tip clearance s and
the rotational speed ω. To account for structural constraints, the displacement u(s, ω) is limited to the value umax,
corresponding to a scaled displacement of 0.37 in Figure 11b. To ensure the reliability of the configuration, the
displacement should not vary widely for small variations of the variables around this configuration. For a speed
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range [ωmin;ωmax] ⊆ [0, 100] the problem is stated as

min
(s,ω)∈X

f(s, ω)

subject to u(s, ω)− umax ≤ 0

and (s, ω) away from discontinuities of u,

(5.2)

with X = {(s, ω) : 0 ≤ s ≤ 100, ωmin ≤ ω ≤ ωmax} and f(s, ω) = s. For development purposes, the displacement
u(s, ω) is computed from a piecewise linear interpolation of the displacement on X (Figure 11b) built from the 45,000
simulation runs. The whole procedure can be applied with the original numerical strategy [31] in an engineering
context.

Four instances of problem (5.2), detailed in Table 5.1, are solved with DiscoMads with a single random seed.
Only the displacement constraint is revealing, the unsafe region is fixed by the parameters rd = 1 and τ = 0.4 and
the margin is fixed by re = 1. The minimal mesh size is set to 10−9, and 2000 evaluations are allowed.

Table 5.1. Instances of problem (5.2) related to the design of turbomachine blades.

instance 1 2 3 4

range [ωmin, ωmax] [22, 28] [22, 28] [75, 83] [75, 83]

starting point (s0, ω0) (40, 25) ∈ Ω̂ (5, 25) /∈ Ω (90, 80) ∈ Ω̂ (25, 76) /∈ Ω

Optimization results and analysis of solutions

The cache points of instances 3 and 4 are depicted in the plane (s, ω) in Figure 12 alongside the returned solution.
Exclusion balls are limited by vertically stretched circles. The solutions returned by DiscoMads are close to the
optimal solution and outside the unsafe area, even with an Ω-infeasible starting point. In this case, problem (5.2) is
more difficult because the algorithm must escape from the unsafe region D while moving to the feasible Ω domain at
the same time. Instances 1 and 2 are solved successfully with DiscoMads as well [11].

s

ω
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(a) instance 3 (x0 ∈ Ω̂).

s
0 20 40 60 80 100

(b) instance 4 (x0 6∈ Ω).

Figure 12. Instances of problem (5.2): DiscoMads solution ( ), optimal solution ( ), and cache points: revealing ( ), other
Ωk-infeasible ( ), and Ωk-feasible ( ) points.

A stress analysis is performed for the simulation point (s, ω) = (5, 25) for which the displacement is large. The
stresses are computed at the time step of maximal radial displacement at the tip of the blade. The resulting scaled
stress field is depicted in Figure 13a where 1 corresponds to the yield stress of the material. Some areas located
along the leading edge undergo stress as high as 1.6 times the yield stress. Consequently, the Ω-infeasible domain
of problem (5.2) contains critical design points. The same stress analysis is conducted for the solutions y1 and
y3 returned by DiscoMads respectively for instances 1 and 3. The corresponding scaled stress fields, depicted in
Figure 13b and Figure 13c, are very similar for the two points. Contrary to Figure 13a, stress levels are far below
the yield stress, and higher stress areas are located on the leading edge in both cases. Finally, the stress fields are
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computed for two additional points y′1 and y′3 located at distance re from y1 and y3 respectively, in the direction of
the nearest discontinuity (Figure 13d and Figure 13e). Although the maximal stress for the point y′1 is higher than
for the point y1, it is far below the yield stress and thus remains acceptable. The same observation holds for the
points y′3 and y3. It is worth noticing that the points y′1 and y′3 close to solutions provided by DiscoMads lead to
safe mechanical designs.

(a)
(s, ω) = (5, 25).

(b)
y1 ' (12.8, 28.0).

(c)
y3 ' (54.9, 83.0).

(d)
y′1 ' (12.5, 27.0).

(e)
y′3 ' (54.8, 82.0).

0

0.25

0.5

0.75

> 1

Figure 13. Stress fields for an unsafe configuration (a), DiscoMads solutions (b), (c) and adjoining solutions (d), (e). Values
scaled by the yield stress.

6 Discussion

This work proposes an original approach for solving a constrained blackbox optimization problem with the additional
constraint that the solution must be away from unsafe regions of weak discontinuities. The approach is based on the
Mads algorithm and builds successive inner approximations of the safe margin M by revealing the unsafe region and
escaping it as the algorithm is deployed.

The Mads convergence results are preserved and stronger optimality conditions are proved by using the revelation
mechanism, under assumptions of piecewise continuity of functions. The developed approach is validated on
analytical problems and numerical results on three engineering problems demonstrate the relevance of the algorithm
while preserving the evaluation budget. These problems illustrate possible applications of the algorithm, e.g., to
successfully escape an unsafe region of hidden constraints.

Although DiscoMads was originally developed for a turbomachine blade design problem, it may be used for
the design of other nonlinear systems where discontinuities reveal unsafe regions, such as resonance zones or
bifurcations. Moreover, the algorithm returns information on the position of the unsafe region and can provide a
better understanding of the underlying system dynamics. In a different context, the algorithm may be used for
problems frequently exhibiting hidden constraints, in order to find a solution away from these regions. Finally,
taking advantage of the flexible modeling proposed in this work, the algorithm may also be used for problems where
sharp gradient regions should be detected and escaped.

Future efforts may focus on extending the application field of DiscoMads by relaxing some restrictive hypotheses.
The mandatory scaling of the input may be avoided by adapting the anisotropic mesh option of Mads [12] or by using
scaled detection regions. A distinct limit rate of change could also be considered for each output function, leading to
a more complex convergence analysis. Another research direction may be to accelerate the numerical efficiency of
DiscoMads. A more sophisticated revealing mechanism may be used, as well as the inclusion of a reliability index
inspired from reliability-based design optimization [26] to prematurely stop the algorithm. Lastly, although the
Mads surrogate framework is not used in this work for clarity, it would certainly accelerate the convergence of the
algorithm.

Audet, Batailly and Kojtych 24

mailto:solene.kojtych@polymtl.ca


Escaping unknown discontinuous regions in blackbox optimization

From a mathematical standpoint, the developed approach is a proof of concept for the treatment of specific
infinite constraints in blackbox optimization and may be generalized to other types of unsafe regions or other
direct search methods. From a practical standpoint, it reinforces the possibilities of using blackbox optimization
methods for the design of systems with strong variations in the quantities of interest. The development of such ad
hoc algorithms contributes to the more systematic use of rigorous methods with proven optimality conditions for
engineering problems.
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