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Evaluation of Fractional-Order Sliding Mode Control
Applied to an Energy Harvesting System

Julio Cesar C. Basilio1, Tiago Roux Oliveira2, José Geraldo T. Ribeiro3 and Americo Cunha Jr4

Abstract— The use of fractional operators in control theory is
recent and new approaches are emerging more and more. The
existing literature shows improvement in control performance
when using fractional controllers. One of the main reasons
for this improvement is due to the greater number of control
parameters, inserted by the exponents that represents the
fractional-order of the integral or derivative operators. Another
interesting feature of fractional calculus is that it is often
used to describe phenomena with memory. In this context, this
paper proposes a comparison between Sliding Mode Controls of
Integer-Order (SMC) and Fractional-Order (FOSMC). Sliding
Mode Control is one of the most successful approaches in
dealing with uncertainties and one of the most efficient in
nonlinear dynamics. The problem chosen for the application
of the controllers is a nonlinear bi-stable vibration energy
harvesting system, since controlling this system makes the
relationship between generated energy and consumed energy
(control effort) very important, being an ideal situation to
evaluate and compare the performance of the two methods.
A novelty in this paper is the use of the Cross Entropy
optimization method to obtain the set of optimal parameters
(best performance) in the SMC and FOSMC controllers. The
result of the optimization tests reinforces the improvement in
the use of the fractional operator reducing the control effort by
up to 93% when compared to the integer-order controller. The
Cross Entropy method was also very effective for controllers
with a large number of adjustment parameters.

I. INTRODUCTION

Studies on the application of fractional operators in control
theory are increasingly in the literature, mainly due to the
benefits they provide in control performance. Fractional-
order operators are known to describing phenomena with
memory. In addition, the exponents of fractional operators in
a control system provide a additional degree of freedom for
tuning a controller, enabling improvements in the controller
performance as well [16].

Several control techniques already have a fractional ver-
sion, from classical control methods, such as the PID
(Proportional-Integral-Derivative) controller [4] [10], to ro-
bust control methods, such as the Sliding Mode Control
(SMC) [1] [18].

From the fractional method proposed by [1], this paper
compares a classic Sliding Mode Control (SMC) and a
Fractional-Order Sliding Mode Control (FOSMC), focusing
on the performance evaluation of controllers for energy
consumption. Thus, the system chosen to be controlled is
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a nonlinear bistable vibration energy harvester, precisely
because of the importance of the relationship between gener-
ated energy and consumed energy. It is worth noting that the
study aims to evaluate the performance of the controller and
not the feasibility of a controller of this type in this energy
harvester. Finally, to obtain the set of optimal parameters
(best performance) of the two controllers, the optimization
by the Cross-Entropy method is performed. This global
optimization method is chosen mainly because it has a good
efficiency in problems with many design variables, as is the
case with fractional controllers.

II. ENERGY HARVESTER

Based on the concept of nonlinear vibratory energy har-
vesting introduced by [7], a bistable piezoelectric energy
capture system proposed by [13], represented in Fig. 1,
is used in this paper to application and comparison of
controllers performance.
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Fig. 1. Schematic representation of a non-linear bistable energy harvester.

The mathematical model of the energy harvester dynamics
is represented by the following dimensionless equations

ẍ+ 2 ξ ẋ− 1

2
x (1− x2)− χ v = F + u, (1)

v̇ + Λ v + κ ẋ = 0, (2)



where v represents the voltage across the resistor, x is the
horizontal displacement of the tip of the beam, t is the
time variable, χ is the mechanical coupling factor, κ is the
electrical coupling factor, Λ is the inverse characteristic time,
u is the control signal and F is the natural system excitation,
which can be harmonic or random.

The Eq. (1) and Eq. (2) are complemented by the initial
conditions x(0) = x0, ẋ(0) = ẋ0 and v(0) = v0, which
depending on their values can result in system trajectories
with chaotic behavior [2] [19]. There are even studies that use
this system to perform chaos control through the extended
delayed feedback method [24] and OGY method [25].

A harvester system with harmonic behavior presents more
energy to be harvested. In this context, the purpose of this
paper is to control the randomly excited energy harvesting
system, through the horizontal displacement of the beam
tip x, to pursue the reference displacement xref of the
same energy harvesting system harmonically excited by F =
f cos(Ω t).

III. FRACTIONAL-ORDER SLIDING MODE
CONTROL

In any control problem, there is always a difference
between the real dynamics of the plant and its mathematical
model used in the controller design, either due to internal
or external disturbances, lack of knowledge of the plant
parameters or due to unmodeled dynamics. To solve this
problem, robust methods for control were developed and with
them the SMC is one of the most successful approaches in
dealing with uncertainties. Its idea is to guide the system tra-
jectory towards a “tailored” designed sliding surface, which
is introduced in the controller design by the sliding variable
S. Since the sliding variable is driven to zero, the control
signal that is reached on the sliding surface is expected to
remain the system trajectories on the surface and slide to the
origin point which is the desired position, as illustrated in
Fig. 2 [5] [33].

The sliding surface of the SMC control in a second-order
system, as presented in section II, can be obtained according
to proposed in [5]:

S(t) = λ1e(t) +
d e(t)

dt
(3)

where λ1 ∈ IR denotes the sliding gain and e(t) the tracking
error. A fractional version of the SMC, as shown in Eq. (3),
is only possible due to the increasing development of the
theory of fractional calculus, where many different fractional
operators were proposed, including the fractional derivatives
of Riemann-Liouville and Caputo [12] [16] [20] [21] [22].

The fractional Riemann-Liouville integral [16] of order α,
where α ∈ IR and α > 0, is defined in terms of a convolution
operation between the function of real value y(t) and kernel
tα−1

Iαa,ty(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1 y(τ) dτ , t > a (4)
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Fig. 2. Schematic representation of the Sliding Mode Control (SMC),
where e(t) and ė(t) are the tracking error and its derivative. Adapted from
[5].

where Γ is the Gamma function. The fractional Riemann-
Liouville derivative [16] is defined in terms of the classical
derivative of order n ∈ ZZ+ and the integral of fractional-
order Eq. (4)

RLDαa,ty(t) =
1

Γ(n− α)

dn

dxn

∫ t

a

(t− τ)n−α−1 y(τ) dτ ,

(5)
is a global operator (not local as in classical calculus) that
presents “memory”, with t > a and n−1 < α < n. With nu-
merical methods emerged to simulate fractional system, who
usually use the fractional derivative of Grünwald-Letnikov
[11] [17] [31], was made it possible to implement fractional
operators in controllers [3] [6] [23] [30] [32].

The use of the fractional derivative instead of the classical
derivative on the sliding surface of Eq. (3) result in an
unfeasible control. Therefore, for this paper, the fractional
version of the SMC used in simulations is based on the
controller designed in [1]. So considering a second order
system, the sliding surface of the FOSMC fractional control
can be obtained by:

S(t) = λ1 e(t) + λ2
d e(t)

dt
+ λ3 Dαe(t) (6)

where λ1, λ2 and λ3 ∈ IR are proper sliding gains and Dα
is the fractional derivative operator.

The general expression for the control signal of both
SMC and FOSMC consists of a switching control term and
equivalent control term as indicated in Eq. (7)



u(t) = ueq(t) + usw(t) (7)

where the switching control usw corresponds to the reaching
phase when S(t) 6= 0, while the equivalent control ueq
corresponds to the sliding phase when S(t) = 0. Both
control terms are obtained from the stability analysis by
the Lyapunov theorem, as used in [5]. From the following
Lyapunov function candidate:

V (S) =
1

2
S2 (8)

where V (S) > 0 and V (0) = 0, we find u(t) in Eq. (7) so
that the derivative of Eq. (8) must be negative definite, i.e.,

V̇ (S) = S Ṡ < 0. (9)

Hence, the equivalent control ueq is set to make V̇ (S) = 0
and the switching control usw is set to make V̇ (S) < 0,
according to the following expression:

usw = −k S

||S||+ ε
(10)

where k is the switching control gain that modulates the term
that replaces the sign function to avoid chaterring from the
definition of ε > 0, which is sufficiently small.

To illustrate the proposed fractional control method
(FOSMC), several simulations were performed with different
initial conditions for the following academic example:

ÿ + ẏ2 cos (3 y) = u (11)

where y is the output variable to be controlled so that it is
equal to zero and u is the control signal. By setting k = 100,
ε = 0.1, λ1 = 7, λ2 = 25, λ3 = 1 and α = 0.1, the
results for the various initial conditions can be seen in the
represented phase-plane in Fig. 3. It is possible to clearly
observe the sliding surface by which the curves are attracted.

Fig. 3. Phase-plane graph of the academic example controlled by a FOSMC

Now, to obtain the control signal u(t) of the proposed
energy harvester system, both switching usw(t) and the
equivalent ueq(t), it is necessary to define the sliding surface.

The surfaces can be defined from Eq. (3) for the SMC con-
troller and from Eq. (6) for the FOSMC fractional controller,
considering the tracking error as

e(t) = x(t)− xref (t) (12)

Once the S(t) sliding surface is defined for both controls,
it is enough to take the derivative of the Lyapunov function
to obtain the equivalent control signals. Then, substituting
the sliding surface of the SMC, given by Eq. (3), in Eq. (9)
we have to

S (λ1ė(t) + ë(t)) < 0. (13)

Like S > 0, so

λ1ė(t) + ë(t) < 0 (14)

or else

λ1ė(t) + ẍ− r̈ < 0. (15)

Finally, we replace ẍ with the expression in Eq. (1)

λ1ė(t)−2 ξ ẋ+
1

2
x (1−x2) +χ v+F +u− r̈ < 0. (16)

Considering u = ueq + usw and the switching control
signal defined by Eq. (10), therefore the equivalent control
signal of the SMC controller ueqIO can be expressed by

ueqIO = r̈ + 2 ξ ẋ− χ v − 1

2
x(1− x2)− F − λ1 ė. (17)

From the same process, but using the sliding surface given
by Eq. (6), the equivalent control signal of the FOSMC ueqFO

can be expressed by

ueqFO
= r̈+2 ξ ẋ−χ v−1

2
x(1−x2)−F−λ1

λ2
ė−λ3

λ2
Dα+1e

(18)

IV. CROSS ENTROPY METHOD

The optimal set of controller parameters that result in
its optimal performance is the Cross-Entropy method. This
method was proposed by R. Rubinstein in 1997 [26] [27]
[28] initially for simulation of rare events, and then its
effectiveness was observed in the application in optimization
problems [14] [29].

Conceptually, the method transforms a non-convex op-
timization problem into a rare event estimation problem,
solved with the aid of a Monte Carlo simulation [9] [14]
[15].

The process starts with sampling a viable region according
to a given probability distribution v0, then the objective
function F(X1...Ns) in each of these samples X1...Ns is eval-
uated, including the statistics (mean and standard deviation)
that will be used in the adaptation process of the algorithm.



Then, the samples that produced the optimal values for the
objective function are identified, this subset is defined as the
elite sample set. With this in hand, the parameters of the
probability distribution are updated based on the mean and
standard deviation of the elite sample set εt, modifying the
distribution vt to make it as close as possible to a Dirac
measure centered at the global optimum. The previous steps
are repeated while a stopping criterion, which are dependent
on the standard deviation (σt) and mean (µt), are not met.
This iterative process can be seen in Fig. 4 to follow.
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Fig. 4. Schematic representation of the CE algorithm for optimization [8].

For the optimization process performed in this paper, the
system performance indicator to compare the two controllers
is defined as the ratio between the control effort (ISU ) and
the average power generated (Pavg) given by the following
equations, respectively:

ISU =
1

T

∫ T

0

Λ u(t)2dt (19)

Pavg =
1

T

∫ T

0

Λ v(t)2dt (20)

The ratio F = ISU/Pavg is the objective function of the
optimization process via Cross-Entropy and which one wants
to minimize.

V. RESULTS

The optimization processes to find the ideal parameters
of the integer and fractional controllers that result in their
best performance were carried out using the Cross-Entropy
method code, available in [8], through numerical simula-
tions in Matlab software. For the fractional calculus, the
toolbox FOMCON was used for derivatives and integrals of
fractional-order [31].

For the simulations reported in this paper, the following
values were used both for the system to be controlled
(randomly excited) and for the system used as reference
(harmonically excited): ξ = 0.01, χ = 0.05, κ = 0.5 and
Λ = 0.05, with initial conditions (x0; ẋ0; v0) = (1; 0; 0).
The parameters of harmonic excitation are given by: Ω = 0.8
and f = 0.2. These parameters were chosen because they are
known in the literature to result in high energetic values [25].

The results obtained after the optimization of the SMC
and FOSMC controllers are presented in Tab. I, with the
optimal set of the controllers parameters and their respective
performance indexes for each configuration. As can be seen,
the FOSMC fractional-order controller reduces up to 93%
of the control effort ISU when compared to the SMC
controller, keeping the same amount of average generated
power Pavg . The time series of the control signal from both
controllers are shown in Fig. 5 showing the reduction in
control energy expenditure as well.

TABLE I
OPTIMIZED PARAMETERS OF SMC AND FOSMC CONTROLLERS AND

THEIR RESPECTIVE PERFORMANCE INDEXES.

parameters SMC FOSMC

ε 0.1 0.1
k 13.07 17.27
λ1 3.21 11.39
λ2 - 0.56
λ3 - 10.74
α - 1.65

performance

ISU 378.37 25.11 -93.36%
Pavg 0.0183 0.0183
F 20697 1374.6

Fig. 5. Time series of SMC and FOSMC control effort.

Finally, Fig. 6 shows a comparison between the phase-
plane of the energy harvesting system with the SMC and
FOSMC approaches, and also with the reference trajectory.
The zoom shows that the fractional controller is more effi-
cient in chasing the reference than the integer controller, that
is, it has a smaller tracking error when observed graphically.



Fig. 6. Phase-plane of reference trajectory and the corresponding responses
for SMC and FOSMC controllers.

VI. CONCLUSION

This paper used a energy harvesting problem to compare
the performance of controllers by classical sliding modes
(SMC) and fractional-order sliding modes (FOSMC). The
objective of the control is to direct the randomly excited
system to a trajectory obtained by the same harmonically
excited system and with a higher-average power output.

To obtain the ideal configuration of the two types of con-
trollers, the optimization process is carried out via the Cross-
Entropy method, aiming to reduce the ratio between the
control effort and the average power generated (ISU/Pavg).

The optimization results indicate that the controller using
fractional operators can obtain configurations that reduce
the control energy expenditure, making the FOSMC control
up to 93% more economical (less control effort), and still
maintaining the same generated energy.

In addition, the Cross-Entropy optimization method
proved to be effective to find the optimal performance, even
with increasing parameters, being a method with potential to
deal with fractional controllers.
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