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Abstract (101 words) 32 

Coevolutionary interactions, from the delicate co-dependency in mutualistic interactions to the 33 

antagonistic relationship of hosts and parasites, are a ubiquitous driver of adaptation. Surprisingly, 34 

little is known about the genomic processes underlying coevolution in an ecological context. 35 

However, species are composed of genetically differentiated populations that interact with 36 

temporally variable abiotic and biotic environments. We discuss the recent advances in 37 

coevolutionary theory and genomics as well as shortcomings, to identify coevolving genes that 38 

take into account this spatial and temporal variability of coevolution, and propose a practical guide 39 

to understand coevolution in a more realistic manner using genomic and phenotypic data.  40 

 41 

 42 
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What we know and do not know about coevolution 45 

Species involved in symbioses have the potential to shape each other's evolutionary trajectory 46 

through reciprocal selection and adaptation, i.e., they have the potential to coevolve. Coevolution 47 

between two or several species is a fundamental mechanism shaping the organization and diversity 48 

of life [1–5]. Surprisingly, we know little about the genomic processes underlying coevolution, 49 

particularly in an ecological context. Indeed, genomic studies of coevolution have predominantly 50 

focused on only one of the partners, thus telling only half of the story (but see [6–9]). Furthermore, 51 

most genomic studies of coevolution have focused on single populations [10–18] (but see [6,9]). 52 

However, species are composed of genetically differentiated populations embedded in a network 53 

of interactions with complex and temporally varying abiotic and biotic environments. Local 54 

populations of species coevolve over short and long-time scales in complex habitats. Thus, the 55 

coevolution of two (or more) species is expected to vary across space and time, and depends on 56 

the cumulated effects of ecological and evolutionary processes acting within and among 57 

populations. So far, the large set of population genomics and statistical association tools (applied 58 

to model and non-model species) available for understanding the evolutionary processes involved 59 

in species diversification and adaptation [19–21] have seldom been used to investigate the genes 60 

underlying coevolution [22].  61 

We argue that the lack of ad hoc inference and statistical approaches to study the 62 

complexity of coevolution at appropriate temporal and spatial scales hampers our understanding 63 

of the processes involved in coevolution, and prevents the detection of genes underlying 64 

coevolution. This theoretical lag can be partly explained by the strong divide between the 65 

theoretical predictions of the ecological dynamics of coevolution over short time scales, which do 66 

not imply genomic perspectives [23–25], and the theory of the genomic consequences of 67 



3 
 
 

coevolutionary dynamics which would benefit from a deeper consideration of the ecological 68 

context (Boxes 1 and 2).  69 

Here, we first summarize the main theoretical and empirical advances that allow the 70 

identification of the main processes shaping coevolution. We emphasize that understanding both 71 

the demographic and adaptive processes over space and time is critical for identifying the genes 72 

involved in coevolution. Second, we review the recent advances in coevolutionary theory, as well 73 

as in population genomics and association mapping methods (i.e., genome-wide association 74 

studies, GWAS, and gene-environment-wide association studies, GEAS), that have proving useful 75 

for understanding coevolutionary dynamics and the genes involved. We also discuss the need to 76 

develop suitable statistical methods to address coevolution in a more realistic manner (i.e., in its 77 

complexity) using genomic and phenotypic data. In a third part, we provide a practical guide (Box 78 

3) for studies of coevolution using genomic data, that aim to determine whether adaptations in 79 

interacting species truly stem from reciprocal selection [4,5,15,16]. We focus on host-parasite 80 

systems involving two species because data and theoretical expectations are primarily available 81 

for these systems. We believe that the theoretical and empirical developments currently tested on 82 

host-parasite systems, and presented below, could be applied to other symbiotic systems involving 83 

two or more species. 84 

 85 

The three main processes shaping coevolution across space 86 

Theory identifies three processes that shape coevolution (Box 1, Figure 1). The first one is 87 

demographic processes [3,26,27] (Figure 1a), which include genetic drift affecting allele 88 

frequencies within populations, gene flow between populations and metapopulation dynamics 89 

(local population extinction and recolonization) [3]. In addition, interacting species may have 90 
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different population structures, different levels of gene flow and be differentially affected by local 91 

(abiotic) environments. It is therefore crucial to consider the population structure of each 92 

interacting species when studying coevolution [28,29]. At the metapopulation level, populations 93 

of interacting species can also share elements of a past demographic history (e.g., common post-94 

glacial expansion), which are relevant for understanding the processes of coevolution. Second, the 95 

outcome of inter-specific interactions, i.e., the genotype-by-genotype interactions (referred to as 96 

GxG hereafter, Figure 1b) defines directly the parameters of coevolution (strength of coevolution, 97 

disease severity, virulence of the parasite, fitness costs of resistance or infectivity). Third, within 98 

and across habitats, spatially variable selection, i.e., the selection mosaic, is characterized by the 99 

heterogeneity in biotic and abiotic interactions. This selection mosaic can, in its simplest form, be 100 

represented by a spatial matrix of coevolutionary coldspots and hotspots defined by the presence 101 

of one species (single species evolution) or both interacting partners (coevolution), respectively. 102 

For instance, in the mutualism between fig trees and fig wasps, there are only hotspots as fig trees 103 

and fig wasps fully depend on each other. The spatial heterogeneity has also the potential to 104 

generate more complex patterns: genotype-by-genotype-by-environment interactions (referred to 105 

as GxGxE hereafter, Figure 1c). This means that the strength and speed of coevolution can vary 106 

across localities within and among habitats (Figure 1c). In other words, the importance of 107 

coevolution to the overall evolution of a population can vary across space. Low levels of gene flow 108 

can result in asynchrony of the coevolutionary dynamics between populations while high levels 109 

of gene flow may homogenize gene pools and synchronize coevolutionary dynamics across space 110 

[24,30].  111 

Given the complexity of variable selection and demographic processes (Figure 1d), it is 112 

crucial to assess the relative importance of demographic (i.e., effective population size Ne and 113 
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gene flow) vs. adaptive (i.e., GxG, GxE and GxGxE) processes in driving coevolution over space 114 

and time. Below, we summarize studies which provide first glimpses into coevolutionary 115 

dynamics, that rely on two main approaches: 1) population genomics inference methods that take 116 

into account demographic processes to detect GxG interactions, and 2) genome-wide association 117 

studies (GWAS and GEAS), which provide insights into GxGxE interactions. We also discuss new 118 

or improved statistical methods in these fields that allow the study of more realistic, hence more 119 

complex, scenarios. 120 

 121 

How have population genomics and genome-wide association studies provided an insight into 122 

the dynamics of coevolution? 123 

a. On demographic processes and co-spatial genetic structures 124 

Inferring the demographic history of each species in each population and the spatial genetic 125 

structure of each species is important to draw accurate conclusions regarding the strength of 126 

coevolution [29]. This can be achieved using a population genomics approach based on a large set 127 

of genetic markers (preferably genome-wide polymorphism data) to simultaneously estimate the 128 

effective population size (Ne) and its variation over time and space, the population genetic 129 

structure and the extent of gene flow among populations of each species in interaction. The 130 

population structure of coevolving species has been characterized only in a few model systems. 131 

One of these is the anther smut fungus Microbotryum violaceum and its host, members of the plant 132 

genus Silene (specifically S. latifolia). These species show strong spatial genetic co-structure, 133 

probably because the pollinator of Silene is responsible for both the long-distance dispersal of the 134 

smut fungus and long-distance gene flow in Silene [28,31]. In newts (Taricha granulosa) that are 135 

preyed on by garter snakes (Thamnophis sirtalis), the levels of newt (prey) toxin and garter snake 136 
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(predator) resistance are tightly matched across the landscape. Although predator resistance is 137 

geographically structured according to signatures of local adaptation to prey, levels of prey toxin 138 

are structured following neutral population divergence [32]. This later study suggests that neutral 139 

processes, including gene flow, rather than reciprocal adaptation explain most of the phenotypic 140 

variation of the two interacting species observed across the landscape. Two other studies that 141 

investigated spatial co-structure of mutualist interactions [33] also detected spatial structure in 142 

either the host or the symbiont, but no spatial co-structure: 1) in [34], genetic differentiation in the 143 

legume Medicago lupulina was roughly concordant with the geographic turnover of its N-fixing 144 

bacterial symbionts Ensifer but only at the genus level; 2) in [35], the leafcutter ant Atta texana 145 

showed variable levels of congruence with its two main fungal symbionts, most likely because the 146 

strength of drift and gene flow differs between the fungal partners. There is a need for additional 147 

studies of interacting species to quantify the importance of life-history traits such as host and 148 

parasite life span, parasite transmission, dormancy, selfing or clonal reproduction in shaping the 149 

spatial co-structure and the coevolutionary dynamics within and between populations. New 150 

methods [36,37] can be used to infer divergence time, rate of gene flow and Ne (and its variation 151 

in time, Box 2), while taking into account variable rates of gene flow along the genome. Such 152 

inferences are important for defining a neutral threshold (i.e., the consequences of demography) 153 

in order to identify the genes under selection in host and parasite genomes. Population genomics 154 

inference methods should also be developed to compare demographic histories, spatial structures 155 

and gene flow in several species simultaneously (see recommendations in [19]; Box 3).  156 

 157 

b. Inference of local selective process of coevolution per se (GxG) 158 
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Classical models that predict coevolving loci within populations rely on the identification of 159 

signatures of selective sweeps (i.e., arms race) or balanced polymorphisms (i.e., trench warfare 160 

dynamics, also called Red Queen dynamics) in the genomes [2,38] (Box 1). Few methods take into 161 

account the role of polygenic traits in coevolution [25,39,40]. Furthermore, the theoretical 162 

expectations regarding loci of major effect have been recently challenged by studies that take 163 

demographic processes (e.g., genetic drift) into account [41–45]. Specifically, trench warfare 164 

dynamics are predicted to be less likely than arms race dynamics when local population sizes are 165 

small (Box 1) [43–45]. This seems particularly true when population sizes vary over time due to 166 

eco-evolutionary feedback [43,44,46]. Nevertheless, trench warfare dynamics may occur in local 167 

populations as alleles from asynchronized populations are reintroduced by gene flow [47] or 168 

because of spatial heterogeneity among populations [48,49]. The signatures of trench warfare or 169 

arms races, especially when these dynamics occur over a brief period of time, are not necessarily 170 

detectable in the genome [43,45]. Theory also predicts that polymorphism signatures of 171 

coevolution within a population, especially signatures of selective sweeps due to arms race, are 172 

more likely to be detected in parasite than in host genomes, but only if parasites show sufficiently 173 

high rates of recombination [41]. Recently, host and parasite polymorphism data were jointly 174 

analyzed using a new framework: approximate Bayesian computation (ABC hereafter). This 175 

framework was used to infer the type of dynamics at coevolving loci, as well as detect genes in 176 

coevolution and infer the parameters of coevolution (disease severity, effectiveness of resistance, 177 

etc.) [22]. This is an interesting new tool for understanding the dynamics of coevolution, but it also 178 

has drawbacks as it requires repeated sampling in space and time in order to infer the main 179 

parameters that define coevolution, namely, the reduction in host fitness due to infection [48,50].  180 
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Future approaches to identify coevolving genes from genomic data need to move beyond the 181 

analysis of single populations and the focus of coevolutionary dynamics only from major loci. 182 

New quantitative models could be based on phenotypic-matching and phenotypic-difference 183 

approaches and should take population heterogeneity into account (Box 1). At present, methods to 184 

detect genes under selection across populations rely on the identification of population 185 

differentiation outliers (e.g., FST, XtX). Statistical thresholds in such scans need to account for the 186 

neutral spatial structure and demographic history of each species. New approaches can provide 187 

more explicit demographic models based on the inferred co-structure and co-demographic history 188 

of coevolving pairs of species (Box 2). 189 

 190 

c. Inference of spatially heterogeneous selection (GxGxE) 191 

Selection pressure from abiotic and biotic conditions (e.g., temperature, humidity, food sources, 192 

competition) can be highly variable over space and time [3]. Hence, in addition to coevolution 193 

depending on variation in the host and the parasite (GxG), spatial variation in species interactions 194 

can be affected by other sources of variation leading to GxGxE (Figure 1). The contribution of 195 

environmental conditions to overall selection depends, amongst other factors, on the closeness of 196 

the interaction. Intracellular parasites, for instance, are nearly exclusively exposed to selection 197 

pressures imposed by the host, although parasites of invertebrates and plants are also indirectly 198 

exposed to the outside environment since it determines the host’s temperature. By contrast, 199 

parasites and mutualists with extended free-living periods face significant selection pressures other 200 

than factors associated with host resistance [4,51]. Parasites of annual crops (and other annual 201 

plant species) must survive extended periods in a host-free environment before the host becomes 202 

available. Hence, tolerance to desiccation, solar radiation and possibly alternative modes of 203 
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nutrition that are independent of a host may be important [52]. Some parasites, such as fungal 204 

pathogens or aphids, also rely on an alternative host to complete their life cycle [53,54]. For 205 

instance, the devastating stem rust pathogen of wheat requires an alternative host, barberry, for 206 

sexual reproduction, thus adding further host-dependent selection on the parasite. Crop pathogens 207 

also show local adaptation to climatic conditions and the presence of chemicals (i.e., fungicides 208 

applied to protect crops, see below).  209 

GxGxE can generate local adaptations and potentially constrain the evolution of 210 

exploitative strategies (e.g., pathogenicity) and in turn alter the coevolutionary dynamics. 211 

Furthermore, even though a trade-off between traits in the host (or parasite) can occur in the 212 

absence of environmental variation, the magnitude and direction of the trade-offs can show large 213 

variance across habitats, and thus potentially shed light on the genetic bases of GxGxE 214 

interactions. For instance, fungicides sprayed on crops select for pathogen populations with 215 

reduced growth rates in absence of fungicides [55]. Hence, fungicides impose a shift towards a 216 

new trait optimum. Pathogen populations often vary in such trait optima [55]. GWAS are well 217 

suited to identify loci with genetic variants associated with these trait variations [56]. In a major 218 

wheat pathogen, a systematic investigation of environment-dependent trade-offs among adaptive 219 

traits across the life-cycle revealed significant constraints [57]. Importantly, adaptation to different 220 

hosts showed trade-offs with environmental adaptation, in this case to temperature and fungicides 221 

[57]. Although traits related to pathogenicity on different host genotypes were largely correlated, 222 

the pathogen faced a specific trade-off between killing host plant tissue necessary to acquire 223 

nutrients and producing spores for dispersal. The exact molecular mechanisms underlying these 224 

trade-offs remain largely unknown. In a recent pioneering study, Roberts et al. [58] demonstrated 225 

that in the lepidopteran species (Plodia interpunctella) and its DNA virus (PiGV), variation in the 226 
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architecture of resistance of the host to PiGV depends on available resources (i.e., the abiotic 227 

environment). GWAS in controlled conditions can be used to reveal the genetic basis of the trade-228 

offs between coevolving genes but also between coevolving genes and other metabolic pathways, 229 

while providing empirical data for the population genomic analyses. Furthermore, GEAS studies 230 

can identify genes and alleles of importance in GxGxE interactions, while taking as co-variables 231 

environmental data (e.g., climate) across habitats [59]. However, in all association studies, 232 

distinguishing the effects of mutations that are directly responsible for the phenotype from 233 

correlated mutations (i.e., from linkage disequilibrium) remains an issue [60]. We argue that 234 

systematic investigation of GxGxE will prove crucial for deciphering the genetic architecture of 235 

trade-offs across habitats, and for predicting the coevolutionary trajectories of interacting species 236 

across heterogeneous landscapes (Box 3, Figure 2). 237 

 238 

A framework to decipher the genetic bases of coevolution 239 

Advances in technology and statistical approaches will open new avenues understanding 240 

coevolution from an ecological and genetic perspective. In the near future, methods to jointly 241 

analyze genomic data from hosts and parasites across populations and habitats should become 242 

available. We propose a practical guide for carrying out such analyses based on existing methods 243 

(Box 3, Figure 2). Note that we focus on host-parasite interactions because these are the best 244 

studied systems (but see [6]). However, research on coevolution is increasingly trying to 245 

understand how networks rather than just pairs of interacting species coevolve [1–5]. The next 246 

challenge will be to develop the statistical and theoretical toolbox that can integrate population 247 

genomics and association mapping in different ecological settings, i.e., that can integrate a large 248 

parameter space with several species at the community level while retaining statistical power. 249 



11 
 
 

Solving these issues will go a long way in addressing the question of whether adaptation in 250 

coevolving species truly stems from coevolution [4,5,25,26], and will improve our understanding 251 

of the evolution of complex communities [1,4,61–63].  252 
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 456 

Highlight  457 

● Coevolution is a fundamental process shaping species interactions and communities. 458 

● Coevolution has been mostly studied experimentally as an isolated process involving local 459 

reciprocal selection between two species. However, species are composed of genetically 460 

differentiated populations across space in constant interaction with dynamic abiotic and 461 

biotic environments. Coevolution is therefore a dynamic equilibrium. 462 

● The genes and genomic processes underlying the complexity of coevolution over time and 463 

space are still poorly known. 464 

● A range of new theoretical developments, technological advances and empirical 465 

approaches now allow coevolutionary dynamics to be investigated with genomic data from 466 

interacting species. 467 

● Recent advances in population genomics and genome-wide association studies will enable 468 

us to better understand the genetic basis of coevolutionary dynamics. 469 

 470 

Outstanding questions  471 

● What and how many genes are involved in coevolution, i.e., what is the genetic architecture 472 

underlying coevolution? 473 

● What are the evolutionary trajectories of these genes (type of selection) within and between 474 

populations and habitats, and can these be inferred from patterns of polymorphism?  475 
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● Are the same genes/types of genes involved across 1) host or parasite species, 2) habitats 476 

of a given symbiont species (host or parasite), or 3) antagonistic or mutualistic systems 477 

from the same geographic location (trophic network)? What is the genetic basis of trade-478 

offs in host and parasite populations? 479 

● How can the theory and genomic tools developed for the study of two-species interactions 480 

be adapted to multi-species interactions at the community level?  481 

 482 

Glossary  483 

Coevolutionary dynamics: dynamics of genotype/trait/allele frequencies in interacting species 484 

due to the reciprocal nature of coevolution. 485 

Coevolutionary hotspots/coldspots: locations where interspecific interactions are strong and 486 

reciprocal are defined as hotspots, whereas areas where population interactions are asymmetric or 487 

nonexistent are defined as coldspots. 488 

Genetic co-structure: statistical congruence between the population genetic structures of 489 

interacting species. 490 

Demographic processes: include population size fluctuations over time and space, which 491 

influences the variation in effective population size (Ne), and gene flow among populations. 492 

Changes in Ne (the demography history of a population) and gene flow influence the efficiency of 493 

selection and thus the strength of coevolution. 494 

Ecological dynamics: changes in population size (or population density), here in the context of 495 

eco-evo feedbacks in host and parasite populations.  496 

Effective population size (Ne): the number of individuals that effectively participate in 497 

producing the next generation. Ne determines the rate of change in the composition of a 498 
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population caused by genetic drift, i.e., the random sampling of genetic variants in a finite 499 

population. 500 

Habitat: the set of local abiotic and biotic conditions experienced by one or several populations 501 

in a given geographic area.  502 

Gene flow: the migration of individuals, and thus of genes/alleles, between populations/demes. 503 

Local adaptation: In spatially heterogeneous environments, evolution can lead to the adaptation 504 

of populations to their local environmental conditions. Pattern of local adaptation occurs when the 505 

mean fitness of a population in their home environment is higher than the mean fitness of 506 

populations from elsewhere [64]. 507 

Metapopulation: populations connected by gene flow. Individual populations may go extinct and 508 

new populations may be established by migrants. 509 

Population: a group of individuals who are more genetically similar to each other than they are to 510 

individuals outside the subpopulation, as a result of genetic drift, migration, mutation, and 511 

selection. Also called “deme” in the metapopulation framework, and often assumed as a panmictic 512 

group inferred from Bayesian inference methods in population genomics studies [65–67]. 513 

Selection mosaic: spatial variation in the strength of coevolution (hot- and cold- spots) among 514 

interacting species due to spatial variation in the biotic and selective pressure.515 
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Box 1. Theoretical foundation of the genetic basis of coevolution 516 

Theory predicts that the coevolutionary dynamics of allele frequencies in antagonistic interactions 517 

are situated between two extreme scenarios [2,22,38]. In “arms race” dynamics, alleles at 518 

coevolving loci are repeatedly fixed, typically leading to signatures of positive selection. “Trench 519 

warfare” dynamics, in which several alleles at coevolving loci are stably maintained, typically 520 

result in signatures of balancing selection. The genomic architecture of coevolution, i.e., the 521 

number, location, and effect of the genes involved, has been considered to be either Mendelian or 522 

quantitative [25]. In Mendelian models, the arms race occurs at one or few major genes. An arms 523 

race in a quantitative trait set up corresponds to the phenotypic difference model [25]. The 524 

quantitative model equivalent in trench warfare is the phenotypic matching model [25]. While 525 

these expectations provide a rationale for conducting selection scans on genes of major effect, the 526 

theoretical framework is ill-suited for making inferences on the genomic footprint of coevolution 527 

in an ecological context. First, coevolutionary dynamics are affected by ecological and 528 

evolutionary factors [43,44,46,68]. This means that demographic processes due to finite population 529 

size [45] and changing population sizes due to eco-evolutionary feedback need to be accounted for 530 

when analyzing genome-wide patterns of polymorphism [43,44,46,68]. Indeed, it has now been 531 

shown convincingly [44,48] that (negative indirect) frequency-dependent selection generated by 532 

host-parasite coevolution in itself does not guarantee the occurrence of long-term trench warfare 533 

dynamics [44,45]. Second, the complex and heterogeneous spatial structure of interacting species 534 

and the variable rates of gene flow and recombination across the genome need to be accounted for 535 

when detecting selection because these change the expectations regarding the footprints of 536 

coevolution (signatures of arms race or trench warfare) (reviewed in [22]). 537 

 538 
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Box 2. Co-demographic processes in host-parasite interaction 539 

Coevolution is characterized by a variation in the hosts’ and the parasites’ fitness over time, which 540 

generates variation in population size within and between populations of a metapopulation (Figure 541 

1 and Box 1, [41,44,46,47,69]). Within a population, there is covariation in host and parasite 542 

population sizes over short timeframes due to the eco-evolutionary feedback (Figure 1), which is 543 

referred to as the co-demographic history [47]. The strength of the eco-evolutionary feedback is 544 

determined by the environmental effect on infection, epidemiology and local density-dependent 545 

regulation [69]. Such rapid eco-evolutionary changes in population size (the effective population 546 

size, Ne, of both species) are observable using genomic data sampled in a time series, and are thus 547 

likely to be relevant for predicting host-symbiont genome coevolution [58]. At the metapopulation 548 

level, field studies show that Silene or Plantago lanceolata populations exhibit strong 549 

metapopulation dynamics with frequent host and/or parasite extinction-recolonization influencing 550 

parasite persistence and population sizes [52]. To reveal these co-demographic events, a large 551 

dataset obtained across space and time is necessary; however, obtaining this may be difficult for 552 

many systems. The approach proposed in [68] may allow the fast reconstruction of the 553 

coevolutionary dynamics of interacting species using sequence data of species amenable to 554 

laboratory coevolution experiments or for which data can be sampled over a sufficient number of 555 

generations across several coevolutionary cycles. The sampling time scale is then defined by the 556 

generation time of hosts and parasites. For instance, time sampling is more amenable in annual or 557 

multi-annual species than in perennials. In the future, genome-wide statistical methods should 558 

allow the inference of coevolving host and parasite allele trajectories across populations and 559 

habitats using samples at different time points, while taking into account for the past demography 560 

and spatial structure of each species and their co-demographic history. This would allow us to 561 
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decipher the bases of GxGxE interactions using genomic scans of selection at a high spatial and 562 

temporal resolution (see above).563 
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Box 3. A practical guide of the ecological genomics approaches for investigating coevolution.  564 

We propose the following steps for carrying out in-depth coevolutionary studies (Figure 2):  565 

1) Hierarchical sampling: sample infected (and uninfected if present) hosts and their infecting 566 

parasites in several populations from the same habitat and in several different habitats. The 567 

information regarding which parasitic individual infects which host should be kept.  568 

2) Sequencing: sequence individuals of both host and parasite and perform read mapping and 569 

variant calling. Ideally, high-quality reference genomes are available for analyzing gene families. 570 

Sequencing can involve full genomes or sequence capture of a few thousand genes including 571 

candidates for immunity, resistance and pathogenicity.  572 

3a) Inferences of the demography and population structure for each species. The variance of 573 

migration rate can be compared to information from recombination maps when available (or by 574 

simultaneous modelling of demographic history and inference of recombination maps using the 575 

iSMC method on full genome data [70]). Indeed, correlation between the rate of gene flow and 576 

that of recombination depends on selection at introgressed genes (adaptive versus maladaptive, 577 

across populations and habitats). We also suggest using full genome data to test for correlation 578 

between the demographic history of host populations and that of parasite populations using the 579 

comparative pairwise sequentially Markovian coalescent, C-SMC method [71]. ABC [72] and 580 

machine learning methods [73] can be used to infer the demographic history and the spatial 581 

structure parameters for more complex scenarios.  582 

4a) Selection scans: apply scans using the neutral demographic model and inferred spatial 583 

population genetic structure to set statistical thresholds. It is possible to run selection scans on host 584 

(infected and non-infected) and parasite samples within a population, on a pool of populations 585 

from the same habitat and on all populations from different habitats. This makes use of the power 586 
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of hierarchical sampling to detect selection based on FST [74], XtX [75], or dimension reduction 587 

(e.g., principal component analyses [76] or genotype matrices) methods as well as on classic 588 

selective sweep or balancing selection tests.  589 

3b and 4b) Sampling over time: with appropriate sampling, it is possible to test the co-590 

demographic history of hosts and parasites based on the site frequency spectrum of hosts and 591 

pathogens at different time points [68]. The number and periodicity of the time sampling depend 592 

on the life cycle of the host and the parasite. For instance, time sampling is more amenable in 593 

annual or multi-annual species than in perennials. Based on simulations of neutral background 594 

changes in allele frequencies, it is possible to study genes under coevolution with outlier allele 595 

frequencies over time [77].  596 

5a) Co-genomics: using the full genomes or sequence capture data from hosts and parasites, we 597 

suggest carrying out co-GWAS for organisms for which it is doable [26,78], from which cross-598 

species association indices can be used to identify genes under significant association [20,50], 599 

followed by the inference of coevolutionary parameters at major loci [74]. If experiments are 600 

possible, performing all possible pairwise infection tests and using co-GWAS is very powerful to 601 

identify the genes underlying the interaction [40]. It is advisable to perform co-GWAS under 602 

different environmental conditions to account for GxGxE effects, or use GEAS to link genetic 603 

variation of hosts and parasites to environmental variables [59], e.g., climate. 604 

5b) Functional validation: if controlled experiments are possible, the number of candidate loci 605 

involved in coevolution can be obtained from co-expression analyses (joint RNAseq [79] or 606 

proteomics) of host and symbiont samples. Co-expressed genes can be compared to those 607 

identified by co-GWAS and selection scans. Cross-species eQTL mapping combined genomes and 608 

gene expression can identify polymorphisms in the host genome affecting parasite expression, and 609 
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vice versa [80]. New tools to determine protein structure (AlphaFold and RoSetta for instance 610 

[81,82]) may also deepen our insights into the molecular basis of protein interactions and 611 

coevolution. Functional assays to validate these candidate genes and proteins at the population 612 

level in the host and the parasite is the final step that can be done together with population 613 

genomics approaches.  614 

 615 
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Figure 1. Major factors underlying coevolutionary dynamics in an ecological context. For 616 

simplicity, we focus on host-parasite (h-p) coevolution [3,83]. Species that interact in a given 617 

geographic area (i.e., habitat) are collected multiple times across a spatial gradient. Gene flow 618 

occurs among host or parasite populations and habitats. The three processes determining 619 

coevolutionary interactions in an ecological context using a population genomics lens are: a. the 620 

demographic processes occurring within and between populations; b. the process of coevolution 621 

(GxG) in its simplest representation: hotspot (Gh x Gp) or coldspot where the species co-occur but 622 

do not coevolve (Gp or Gh); c. the outcomes of coevolution are impacted by spatially varying 623 

selection : in a habitat, the strength of the interaction (coldspot or hotspot) between host and 624 

parasite populations can vary depending on within habitat heterogeneity (Gh x Gp, Gp or Gh, Gh x 625 

E or Gh x E, Gp x Gh x E), as well as on between habitat heterogeneity (Gp x Gh x E). Overall, the 626 

heterogeneity in biotic and abiotic interactions among populations and habitats (GxGxE) leads to 627 

a complex pattern of spatially heterogeneous selection. d. Adding demographic processes (i.e., 628 

effective population size Ne  and gene flow) to the adaptive processes driven by interactions (i.e., 629 

GxG, GxE and GxGxE) helps to assess variation in selection pressure and the speed of coevolution 630 

over space and time.  631 

 632 

Figure 2. Practical guide for future studies of coevolutionary dynamics using ecological 633 

genomics 634 


