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Introduction:  Two well known phenomena associated 

with low perihelion distance bodies in orbital dynamics 

are general relativistic (GR) precession and Lidov-

Kozai oscillations.  
 

The accurate prediction of the perihelion shift of Mer-

cury in accord with real observations is one of the sig-

nificant triumphs of the general theory of relativity 

developed by Einstein [1]. Past works have looked into 

the GR precession in perihelion in different types of 

solar system bodies like planets [2], [3], [4], [5], aster-

oids [6], comets [7] and meteoroid streams [8], [9], 

[10]. More recently some works have explored the cas-

es of GR precession in exoplanetary systems [11], [12].  

 

The Lidov-Kozai mechanism was first proposed and 

derived by [13] and independently by Lidov [14] ex-

plaining the periodic exchange between eccentricities e 

and inclinations i thereby increasing or decreasing the 

perihelion distance q secularly in the orbiting body.  

 

[15] found that this mechanism is the most efficient 

way by which asteroidal and cometary orbits could 

land up in sunskirting or sungrazing orbits. The mech-

anism has been related to the rapid change in orbits of 

artificial satellites [14] around the Earth. Past works 

have shown that the Lidov-Kozai mechanism can lead 

to a flip in orbits i.e. inclinations switching from pro-

grade to retrograde or vice-versa [15], [16], [17], [18] 

during the body’s secular evolution. The mechanism is 

known to have an important role in the long term evo-

lution of different classes of small bodies [19], [20] in 

the context of impact studies [21] due to the Lidov-

Kozai cycles in orbital elements which lead to compli-

cations in using analytical and numerical techniques 

[22] to compute impact probabilities from small bodies 

on planets. More recently there are examples found in 

the exoplanetary systems [23] which undergo Lidov-

Kozai oscillations around the central body thus show-

ing the generality of this phenomenon in any suitable 

dynamical system.  

 

Co-existence of GR Precession and Lidov-Kozai 

Oscillations:  In this work, we were interested to iden-

tify bodies evolving in the near future (i.e. thousands of 

years in this case) into rapid sungrazing and sun collid-

ing phases and undergoing inclination flips, due to Li-

dov-Kozai oscillations and being GR active at the same 

time. Of all the bodies we checked from the IAU-MPC, 

and Marsden plus Kracht families from the comet cata-

logue [24], 96P/Machholz 1 stands out because it 

shows all these trends in the near future.  

 

The uniqueness of 96P has been reported before in 

different contexts, its dynamical behaviour having oc-

tuple crossing possibilities [25], similar to the case of 

another periodic comet Machholz, 141P, discussed in 

[26]. The linkage of the orbit of 96P with orbits of Ex-

treme Trans Neptunian Objects (ETNOs) has been 

explored by [27]. 96P has been linked with two fami-

lies of sungrazing comets and two meteoroid streams. 

Because of its previously established connection [28], 

[29] with the Marsden and Kracht sungrazers and low 

q meteoroid streams like Daytime Arietids (ARI) and 

Southern Delta Aquariids (SDA), our tests were re-

peated on all these related objects as well.  

 

Here we find that there are cases where significant GR 

precession and Lidov-Kozai mechanism can co-exist 

and can complement each other in an interesting way. 

Lidov-Kozai leads to secular lowering of q which in 

turn leads to a huge increase in GR precession of ar-

gument of pericentre. This in turn gives feedback to the 

Lidov- Kozai mechanism as the e, i and argument of 

pericentre in Kozai cycles are closely correlated.  
 

In this work, we find real examples of solar system 

bodies which show the continuum nature between GR 

precession dominant and Kozai mechanism dominant 

regimes. 

 

Results and Discussion:  We have shown that there 

are bodies in the solar system in which both GR pre-

cession and Lidov-Kozai mechanism can co-exist at the 

same time and for which these effects can be measured 

and identified using analytical and numerical tech-

niques. Thus there is a continuum of bodies encom-

passing, firstly GR precession dominant, secondly GR 

precession plus Lidov-Kozai mechanism co-existing 

and finally Lidov-Kozai mechanism dominant states 

which are all permissible in nature. A real solar system 

body in this intermediate state is identified using com-

piled observational records from IAU-MPC, Cometary 

Catalogue, IAU-MDC and performing analytical plus 
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numerical tests on them. This intermediate state brings 

up the interesting possibility of drastic changes in GR 

precession rates (at some points peaking to about 60 

times that of Mercury’s GR precession) during orbital 

evolution due to sungrazing and sun colliding phases 

induced by the Lidov-Kozai mechanism, thus combin-

ing both these important effects in a unique and dynam-

ically interesting way. Comet 96P/Machholz 1 stands 

out as the only real body identified (from our simula-

tions) to be exhibiting these interesting traits, as well as 

inclination flips, in the near future.   
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