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This article investigates the signature of the seventeen multiconnected flat spaces in cosmic microwave
background(CMB) maps. For each such space it recalls a fundamental domain and a set of generating
matrices, and then goes on to find an orthonormal basis for the set of eigenmodes of the Laplace operator on
that space. The basis eigenmodes are expressed as linear combinations of eigenmodes of the simply connected
Euclidean space. A preceding work, which provides a general method for implementing multiconnected to-
pologies in standard CMB codes, is then applied to simulate CMB maps and angular power spectra for each
space. Unlike in the 3-torus, the results in most multiconnected flat spaces depend on the location of the
observer. This effect is discussed in detail. In particular, it is shown that the correlated circles on a CMB map
are generically not back to back, so that negative search of back-to-back circles in the Wilkinson Microwave
Anisotropy Probe data does not exclude a vast majority of flat or nearly flat topologies.
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I. INTRODUCTION Recent measurements show that the density parafigter

is close to unity and the observable Universe is approxi-

Early pioneers in the field of cosmic topolog¥—3] in-  mately flat. CMB data obtained by the Archeops balloon ex-
vestigated some properties of multiply connected spaces ¢feriments[5] and more recently by the Wilkinson Micro-

positive, zero or negative curvature. Nevertheless, among af{,ave Anisotropy Prob@VMAP) [6] place strong constraints
multiconnected three-dimensional spaces, “flat spates”

. _ _ > gn the curvature. In addition, WMAF] and later the Planck
have been studied the most extensively in the cosmologmai,jlte”ite [8] do and will provide full sky maps of CMB
context. This is due to the computational simplicity of the™ . : . b : Y b .
simplest compact flat three-manifold, the 3-torus, which hagmsotrgples, offerlng an opporFunlty to prqbe the topolqglcal
been used extensively in numerical simulations. The maifProperties of our universe. Thl_s observatl_onal constraint on
goal of this article is to provide tools to compute the cosmicthe curvature radius of the universe motivates the detailed
microwave backgroundCMB) properties and produce high study_ (_)f flat spaces even though spherical spaces are also
resolution CMB maps for all seventeen multiconnected flaPromising candidate9—14.
spaceg, following the general method introduced in our pre- At present, the status of the constraints on the topology of
ceding work[4]. flat spaces is evolving rapidly driven by the release of the
WMAP data. Previous analysis, based on the Cosmic Back-
ground ExplorefCOBE) data, mainly constrained the topol-

*Electronic address: riazuelo@iap.fr ogy of a 3-torus(see Refs[15-25 and Refs[26-2§ for
'Electronic address: weeks@geometrygames.org reviews of different methods for searching for the topology
*Electronic address: uzan@iap.fr The WMAP data[6] possess some anomalies on large
8Electronic address: lehoucq@cea.fr angular scales that may be explained by a topological struc-
IElectronic address: jean-pierre.luminet@obspm.fr ture. In particular, the quadrupole is abnormally low, the oc-

Ui this article, we follow the cosmological use and we call “flat topole is very planar and the alignment between the quadru-
spaces” the eighteen types of spaces with zero curvature, and “EyPole and octopole is also anomalo[29]. Besides many
clidean space” the simply connected universal cdgér other potential explanatiorj80], it was suggested that a to-

2Test maps for these spaces are available on demand. roidal universe with a smaller dimension on the order of half
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the horizon scale may explain all these anomdI&&§ but it © ¢t
was later shown, on the basis of a finer statistical analysis, YiH=> > d9%%m, @)
that it did not[31]. Another topology was recently proposed (=0 m=-¢

to explain some of this anomaly in the case of a slightly L . .
positively curved space, namely the Poircdmlecahedral S° that all the topological information is encoded in the co-
, [T]s

space14]. efficientséj,r,, , wheres labels the various eigenmodes shar-
The first results of the search for the topology through thend the same eigenvaluek?. Referencg4] computes these
“circles in the sky” method[32] gave negative results for Coefficients for the torus and lens spaces and Ré&f37]
back-to-back or almost back-to-back circk&l,33. While ~ discuss more general cases. o
the first applies only to back-to-back circle with no twist, the ~TO summarize, this article aims at several goals. First, it
second study includes an arbitrary twist and conclude that “itvill give the complete classification of flat spaces and the
rules out the possibility that we live in a universe with topol- xact form of the eigenmodes of the Laplacian for each of
ogy smaller than 24 Gpc.” As will be discussed in this paper,them. It will also provide a set of simulated CMB maps for
back-to-back circles are generic only for homogeneous tofost of these spaces. Among other effects, it will illustrate
pologies such as e.g. 3-tori and a subclass of lens spaces. it effect of non-compact directions and discuss the influ-
non-homogeneous spaces the relative position of the circlédce of the position of the observer in the case of non-
depends on the position of the observer in the fundamentdlomogeneous spaces, which has never been discussed be-
polyhedron. fore. It also explains the structure of the observed CMB
In conclusion, as demonstrated by these preliminary reSPectrum in the case of a very anisotrofiie., flattened or
sults, only the toroidal spaces have been really constrainegfongated in one directioriundamental domain. .
[31,33. In addition, a series of studies have pointed out a This article is organized as follows. We start by recalling
departure of the WMAP data from statistical isotropy. Copithe properties of the eighteen flat spat8ec. 1) as well as
et al. [34] recently argued in particular that they are incon-the eigenmodes of the simply connected three-dimensional
sistent with an isotropic Gaussian distribution at 98.8% conEuclidean spac&® (Sec. Ili), and in particular how to con-
fidence level. Previous studies pointed toward a possibl¥ert planar waves, which suit the description of topology, to
north-south asymmetry of the ddta6,36. Spaces with non- Spherical waves, which are more convenient for CMB com-
trivial topology are a class of models in which global isot- Putation. Then, in Sec. IV, we explain how to extract the
ropy (and possibly global homogenelitis broken. Simulated modes_ of a given muItlconne_cted space from_the modes of
CMB maps of these spaces may help to construct estimatofs - This method is then applied to give the eigenmodes of
for quantifying the departure of the temperature distributionthe ten compact flat spacéSec. V), the five multiconnected
from isotropy, and also give a deeper understanding of receri@t spaces with two compact directiotfshimney spaces,”
results. Sec. V) and the two multiconnected flat spaces with only
Let us emphasize that in the case where the topologicdn€ compact directioii*slab spaces,” Sec. VIL Applying
scale is slightly larger than the size of the observable unithe general formalism developed in our previous wptk
verse, no matching circles will be observed. This might alsgve produce CMB maps for some of these spaces. With three
happen for a configuration where the circles would all lie in€xceptions the manifolds are not homogeneous, in the sense
the direction of the galactic disk where the signal-to-noisethat a given manifold does not look the same from all points.
ratio might be too low. Contrary to the simply connected TO discuss the implication of the observed CMB and the

case, the correlation matrif;ﬁé]m'5<agmag/mf>, of the co- genericity of the maps, we detail in Sec. IX the influence of

- . __the position of the observer on the form of the eigenmodes
efficients of the development of the temperature fluctuations .

X ; ; . and we study its consequences on the observed CMB maps.
on spherical harmonics, will not be proportional to

8,018 . The study of this correlation matrix could offer We show in particular that the matched circles are generi-

- . .~ cally not back to back, but their relative position depends on
the possibility to probe topologgslightly) beyond the hori the topology, the precise shape of the fundamental domain,

zon. Computing the correlation matr@ﬁ,’nm' for different  ang the position of the observer.

multiconnected spaces will help design the best strategy to

constrain the deviation from the simply connected case, and

gives a concrete example of cosmological models in which

the global homogeneity and isotropy are broken. The local geometry of the uAniverse is described by a lo-
As described in detail in our preceding wde|, what is  cally Euclidean Friedmann-Lentee metric

needed for any CMB computation are the eigenmodes of the

Notation

Laplacian ds’= —c?dt®+a’(t)[dx*+ x*dw?], 3
wherea(t) is the scale factort the cosmic time, andlw?
[MT— _ 2y (Il
AYi =~k (@) =dg?+ sirfede? the infinitesimal solid angle.
with boundary conditions compatible with the given topol- Il. THE EIGHTEEN FLAT SPACES

ogy. These eigenmodes can be developed on the Pasgis
of the (spherically symmetriceigenmodes of the universal Let us start by recalling the list of flat spaces. They are
covering space as obtained as the quotief@/T" of three-dimensional Euclid-

103518-2



COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN . .. PHYSICAL REVIEW B9, 103518 (2004

= . 4
=

/(0‘ /@
Y EY

Sixth Turn Space Third Turn Space Hantzsche-Wendt Space

Chimney Space Chimney Space with
Half Turn

Chimney Space with Chimney Space with Chimney Space with
Vertical Flip Horizontal Flip Half Turn and Flip

FIG. 2. The chimney space is made from an infinitely tall rect-
angular chimney with front and back facéeft and right faces

Riein Space glued straight across. The fogr v_ariations on the chimney spa_ce_glue
with Horizontal Flip the front face to the back as indicated by the doors. In all variations
except the last the left and right faces are glued straight across; in
the last variation they are glued with a top-to-bottom flip so that the
windows match(Courtesy of Adam Weeks Marano.

waves. The former are more convenient when seeking eigen-
bases for multiconnected spaces, while the latter are more
convenient for simulating CMB maps. This section considers
both bases and the conversion between them, as also detailed

Klein Space Klein Space in the particular case of the torus in RE4).
with Vertical Flip with Half Turn
FIG. 1. Fundamental domains for the compact flat three- A. Planar waves

manifolds. The unmarked walls are glued straight across. Courtesy Each vectok defines a planar wave
of Adam Weeks Marandfirst published in Ref[42]).

Yi(x) =€ 4
ean spaceE® by a groupl’ of symmetries ofE® that is
discrete and fixed point free. The classification of suc
spaces has long been knoys8,39, motivated by the study
of crystallography and completed in 198#0]. The ten com-
pact flat spaces are quotients of the 3-torus; six are orientab
and four are non-orientable. Figure 1 shows fundamental
polyhedra. The non-compact spaces form two families, the
chimney space and its quotients having two compact direc-
tions (Fig. 2) and the slab space and its quotient having only
one compact directioiFig. 3). The termsslab spaceand
chimney spaceavere coined by Adams and Shapiro in their
beautiful exposition of the flat three-dimensional topologies
[41]. Table | summarizes the properties of the whole family
of flat spaces.

hThe defining vectok, called thewave vectorlives in the

dual space, so the dot productx is always dimensionless.
These modes are indeed not square integrable and are nor-
[galized as

Slab Space Slab Space with Flip

IIl. EIGENMODES OF E 3 FIG. 3. The slab space is made from an infinitely tall and wide
slab of space with its front face glued to its back face straight
The eigenmodes of Euclidean spdgeadmit two differ-  across. The variation glues the faces with a fiourtesy of Adam
ent bases: a basis of planar waves and a basis of spherioftteks Marang.
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TABLE I. Classification of the 18 three-dimensional flat spaces.

Symbol Name No. of compact directions Orientable
E; 3-torus 3 Yes
E, Half turn space 3 Yes
E, Quarter turn space 3 Yes
E, Third turn space 3 Yes
Eg Sixth turn space 3 Yes
Eg Hantzsche-Wendt space 3 Yes
E, Klein space 3 No
Eg Klein space with horizontal flip 3 No
Eq Klein space with vertical flip 3 No
Eqg Klein space with half turn 3 No
Eqp Chimney space 2 Yes
E.» Chimney space with half turn 2 Yes
Ei3 Chimney space with vertical flip 2 No
Eqs Chimney space with horizontal flip 2 No
Eis Chimney space with half turn and flip 2 No
Eis Slab space 1 Yes
Eq; Slab space with flip 1 No
Eig Euclidean space 0 Yes
3 C. Conversion

f VYOV E (00— = 2(k—K') 5
RO (22 '

Subsequent sections will find explicit bases for the eigen-
modes of multiconnected flat three-manifolds as linear com-
binations of planar waves. The planar waves may easily be
converted to spherical waves using Egs. 5.17.3.14 and
Each spherical wave factors into a radial part and an an®.17.2.9 of Ref[43]:

B. Spherical waves

gular part, Y (x) =k
2 3/2; m -
Veem( X, 0,¢) = ;(277) Je(kx)Y¢'(0,0),  (6) = i ,(K|X|)(2€+1)P,(cosby )
=0 '
where (v, 6,¢) are the usual spherical coordinates
X= x sin 6 cose, =D iukIxD| 47 D Y)Y (k)
=0 m=—¢
y=xsinésine,
% €
2= x €0S. @ =2 2 PR (k) YR

The radial factorj ,(ky) is the spherical Bessel function of
index ¢, and the angular facto¥}'(6,¢) is the standard

spherical harmonic. The modg, is not square integrable — 2 E (I(Ym*(k))ykm( X), (9)
and is normalized according to =0 m=—
2 ~ ~
J Y x“dxdcospde wherek=|k|, k=k/|k|, andx=x/|x].
Ra” KMk e (2m)® In particular, the conversion formul@®) lets one easily
translate a planar wavé, to the framework we developed in
1 Ref.[4], which expresses each basis eigenmode as a sum of
k SP(k—K")S¢¢10m n » (8)  spherical waves,
which is analogous to the normalizati@®) and which deter- -
Y =Yys= v , 10
mines the numerical coefficient2/r. Ko ks Zo m:z—{’ Skemdkem (10

103518-4



COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW B9, 103518 (2004

wheres indexes the differenY’, whose wave vectoils share  if and only if for eachj (modn)
the same moduluk. In the Euclidean case the index may be o
chosen to bes=k. Comparison with Eq(9) immediately aj+1:elkMJTaj- (15
gives the coefficients Proof. Both parts are immediate corollaries of Lemma 1.
X Specifically, the action ofy takes a linear combination
E =Y (k). (12)
aYta Yyt - .- ta, oY un-2+a,-1Ymn-1

16
IV. EIGENMODES OF MULTICONNECTED SPACES (16

A multiconnected flat three-manifold is the quoti&i I’ to

of Euclidean spac&?® under the action of a group of
isometries. The group is called theholonomy groupand is

always discrete and fixed point free. Each eigenmifdef _,_anileikM”*lTYk, (17)
the multiconnected spade®/T" lifts to a I'-periodic eigen-
modeY of E®, that is, to an eigenmode &° that is invari-  so it is clear that ther-dimensional subspace spanned by
ant under the action of the holonomy grolip Common  {Y, Y\, ... Y un-1} is preserved as a set. Equatifig)
practice blurs the distinction between eigenmode€9f"  to (17) and comparing coefficients proves the second part.
andTI -periodic eigenmodes @2, and we follow that prac- ]
tice here. Thus the task of finding the eigenmodes of the
muItic.onnect'ed space®/T becomgs the 'task of.findin.g the V. COMPACT FLAT THREE-MANIFOLDS
I'-periodic eigenmodes d&°. In this section we investigate
how an isometryy e I' acts on the space of eigenmodes. The We will first find the eigenmodes of the 3-torus, and then
two lemmas we obtain will make it easy to determine theuse them to find the eigenmodes of the remaining compact
eigenmodes of specific multiconnected spaces in subsequeiat three-manifolds.
sections.

Every isometryy of Euclidean spac&?® factors as a A. 3-torus
rotation/reflection followed by a translation. If we write the
rotation/reflection as a 83 matrix M in the orthogonal
group O(3) and write the translation as a vecigrtheny
acts onE® as

. . . n—2
e Y mt+a € MY 2t .. Fan M TY et

The 3-torusis the quotient of Euclidean spa& under
the action of three linearly independent translatidns T,
and T3. Its fundamental domain is a parallelepiped. Its
eigenmodes are the eigenmodesEdf invariant under the

X My My, Mg\ [ x T, translationsT,, T, andT; (recall from Sec. IV the conven-
tion that eigenmodes of the quotient are represented as peri-

Y= My My My 11y [+ Ty . (12 odic eigenmodes oE3). The Invariance Lemmawith n

z My My Mg,/ \z T, =1) implies that an eigenmodg, of E2 is invariant under

the translationl; if and only if €' T1=1 which occurs pre-

This isometry of E® induces a natural action cisely whenk:T; is an integer multiple of 2. Thus geo-
Y(X)—>Y(Mx+T) on the space of eigenmodes. metrically the allowed values of the wave vectoform a
Lemmal (Action Lemma The natural action of an isom- family of parallel planes orthogonal t@;. Similarly, the
etry y of E® takes a planar eigenmodg, to another planar  ejgenmodeY . is invariant under the translatioh, (T) if

eigenmodee’ 7Yy . and only ifk lies on a family of parallel planes orthogonal to
Proof. Keeping in mind thak is a row vector whilexisa T, (T;), defined byk-T,e27Z (k- Tse 27Z). The eigen-
column vector, the proof is an easy computation: modeY is invariant under all three translatiofig, T, and

T, if and only if it lies on all three families of parallel planes

— k- ik-(Mx+T) _ aik-ToikM A . . .
Yi(x)=e/lX el (M) = gl TelkMx simultaneously. The intersection of the three families forms a

=&k TY, (). (13) lattice of discrete points. Figure 4 illustrates the construction
KM for the 2-torus; the construction for the 3-torus is analogous.
m This lattice of points defines the standard basis for the
Lemmaz2 (Invariance Lemmpa If y is an isometry o>  €igenspace of a torus. _ 5
with matrix partM and translational pai, the modeY, is a Definition. The standard basidor a 3-torusT* generated

planar wave, and is the smallest positive integer such that Py three linearly independent translatiofs, T, and T; is

k=kM" (typically n is simply the order of the matrip),  the seB={Y|k-Tie27Z fori=1,23;. _

then the action ofy The most important special case of a 3-torus is rert-
angular 3-torus generated by three mutually orthogonal

(1) preserves then-dimensional space of eigenmodes translations

spanned by Y, ,Yym, - - ., Yxun-1} @s a set, and
(2) fixes a specific element T1=(L4,0,0),
aon+ alYkM+ C +an_1Yan—1, (14) T2:(0,Ly,0),

103518-5
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s are linearly dependentT@+T,+Tz=0); eliminating any
T \ one of them suggests an alternative fundamental domain as a
~ 2 ~ prism with a rhombic base. Even though the hexagonal and
\ \ rhombic prisms look different, they define the same mani-
\ fold. Either way, the allowed wave vectdksform a hexago-
\ nal lattice(Fig. 5 righty and may be parameterized as
N
o \ T1 Ny 2n;—n, ns
k k=2’7T —T,T,L— y (21)
N 3L z

FIG. 4. An eigenmodé&’, of E? is invariant under the transla- forllntﬁger vaIu?s oy, n2| gnd N3. . h lati
tion T; if and only if k lies on a family of parallel lines orthogonal n the case of a general 3-torus, one writes the translations

toT,, defined byk- T, € 27Z. The modeY, is invariant under both 11+ 12 @ndTg as the columns of a:83 matrixT and solves
translationsT, andT, if and only if it lies in the lattice of intersec-  the equatiorkT=2(n;,n,,ny) to find the allowable wave
tion points of the two families of parallel lines. The construction in VEctorsk=2m(ny,n, .n3) T~ 1 for integersn,, n, andns.

three dimensions is similar, but with three families of planes instead When one wants to simulate CMB maps, one needs to
of two families of lines. Strictly speaking we should not draw the know not only the modes themselves but also how the modes
parallel lines in the same space as the translation ve€idiecause  are paired under complex conjugation. The reason is that the
the wave vectork live in the dual spacfwith units of (length ] cosmological fields are in fact real-valued stochastic vari-
while the T; live in the primary spacéwith units of length), but ables. Any such field can be decomposed into Fourier modes

nevertheless it is visually helpful to do so. as
T3=(0,0L,), (18 d3k o
‘ $(x,)= f UL (22
in which case the allowed wave vectdrdake the form )

Ny Ny n, wheree, is a complex, usually Gaussian, random variable
k=2m| —,—=,—|, (19 tisfyin
L, 'L,L, satisfying
for integer values of,, n, andn,, thus forming a rectan- (exef)y="(k—k"). (23

gular lattice(Fig. 5 left). i . . .
The second most important special case isteragonal The evolution equations of the cosmological perturbations

3-torusgenerated by involve time derivatives and a Laplacian so that the coeffi-
cient ¢, (t) can be decomposed as
T:=(L,0,0), _
Br(t) = pi(t)e'’x, (24
T.=| = EL n EL 0 whered), is a phase that is constant throughout the evolution.
2 2 2 ) By absorbing the phase into the random variable, we can

always choosepy to be a real function ok only, i.e., ¢(t).
1 \/5 ) Sincee' X ande k"X are conjugate in the preceding decom-

— EL,— —L,0 position, the fact thaty(x,t) is real implies that

T3: 2

é: = é,k . (25)
T,=(0,0L,). (20)
o . This latter constraint may not hold for all the other spaces
These four generators and their inverses define a fundamegy,died in this article and we will need to give its analogue

tal domain as a hexagonal prism. The first three generatokg, each case.

B. Quotients of the 3-torus

For ease of illustration we first explain our general
method for the two-dimensional Klein bottle. Figure 6 shows
a portion of the Klein bottle’s universal cover, in which al-
ternate images of the fundamental domain appear mirror re-
versed. Half the holonomies are pure translations while the
other half are glide reflections. In other words, the holonomy

FIG. 5. In a rectangular 3-torugeft) the allowed wave vectors groupl’ contains an index 2 subgrowjg CI" comprising the
k form a rectangular lattice. In a hexagonal 3-tofiight) the lattice ~ pure translations. Whil&?/T gives the original Klein bottle,
is hexagonal within each layer. [i2/T" gives a torus whose fundamental domain is the square

103518-6
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q q q [Y2m(n iy ng ) T (= D™ 200 i, ,ny/Ly)]/\/5

n
______________________ for n,eZ",njeZz,

F F F YZW(O,?) for nye2z. (28)
HIEREE

Let us now apply this same method to each of the nine
“““““““““““ quotients of the 3-torus.

1. Half turn space

q :I q The analysis of the half turn space closely follows that of
______________________ the Klein bottle given immediately above. The only differ-
F F F ence is that the Klein bottle’s holonomy group contained
translations and glide reflections, while the half turn space’s
holonomy group contains translations and corkscrew mo-
FIG. 6. The Klein bottle’s holonomy group contains glide re- tions. Specifically, we begin with the generators for the ho-
flections as well as translations. The translations alone form an inlonomy groupl’’ of a rectangular 3-torus
dex subgroup defining a torus.

X X Ly X X 0
formed by the solid lines in Fig. 6gnoring the dotted lings yl={y|+| 0 ylsly|+| L
According to the convention introduced in Sec. 1V, the Klein ' aB
bottle’s eigenmodes are represented ageriodic functions z z 0 z z 0
on [i?2. But every I'-periodic function is automatically a
I''-periodic function as well, becau$g is a subgroup of . X X 0
Thus every eigenmode of the Klein bottle aspriori an yl|y]+| o0 (29)
eigenmode of the 2-torus. The task in finding the eigenspace , . L

z

of the Klein bottle is to start with the eigenspace of the torus
and find the subspace that is invariant under the glide reflec- )
tion (the one taking the lower half of a square to the uppe@nd add a generator for the half-turn corkscrew motion

half). In practice this is quite simple. A rectangular torus has

holonomy groupl’’ generated by the two translations X -1 0 0\ /x 0
X x\ Ly X X yl—=| 0 -1 0ffy|+f 0 [, (30
+ + .2
vyl o) and vy ly L, (26) z 0 0 1/\z L,/2

to get the full holonomy group’ of the half turn space. The
The standard eigenbasis for this torus takes the fGify, Invariance Lemma shows that wheky (k,) # (0,0) the two-
namely B={Y[k=2m(n,/Ly,ny/Ly) for n,,nyeZ}. To  dimensional subspacEYy . «.Y_, _x x} is preserved
extend thisI"" to the full holonomy groud™ of the Klein 45 4 sef(part 1 of the Invariance L:emr{)m;/hile the mode
bottle, we add the glide reflection ka,ky,kz+(_ 1)nZY7kX,7ky,kz is fixed exactly(part 2 of the

Invariance Lemmp In the exceptional case thakky)
X -1 0\(x 0 =(0,0), the one-dimensional subspda&, o } is preserved
— + , 27 . o . R
y 0 1/\y Ly/2 as a set, whlleYO,o}(Z is fixed if and only ifn, is even. In
summary, an orthonormal basis for the space of eigenmodes
[E]

and ask which elements of the bafist preserves. The In- ©f the half tum Spaceykx,ky,kz' is the union of

variance Lemma provides a ready answer: wke# 0 the
two-dimensional subspa¢&’y ,ky’Y—kx ,ky} ispreservedasa 1
set (part 1 of the Invariance Lemmawhile the mode T[YZW(nX/LX,ny/Ly,nZ/LZ)

Yy Kk, (- 1)“yY,kX Ky is fixed exactly(part 2 of the Invari- 2 31)
ance Lemma In the exceptional case thi;=0, the one- (= D)"Y an(ngii, -y, L)

dimensional subspac@Yo,ky} is preserved as a set, while
Yo,ky is fixed if and only ifn, is even[because whem

=1, part 2 of the Invariance Lemma requiras=e' Ta,
which impliesk-T/(27)=n,/2e Z]. In summary, an ortho-
normal basis for the space of eigenmodes of the Klein bottlén terms of the notations used in R¢#], it leads to the
is the union of coefficients

for (nyeZ*,ny,n,eZ) or (n,=0nyezZ* n,e2),
Y27T(O,Onzn_z) for n,e2Z.
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( ie . ~ YZW(O,OHZ/LZ) for nZE4Z. (36)
—[Y7* (k) + (= 1)"=2Y§™ (kM)]
\/E As in the case of the half turn space, one can easily check
fﬁzm: for (neZ*,ny,n,e2) that
_ +
or (I‘AIX OnhyeZ™,n,e2), Y[kf?I](:,kZ:(_l)nZYI[(E?I](y,ka’ (37)
‘Y™ (k) for (ny,ny)=(0,0, n,e2z,
\ so that the analogue of E(R5) is given as follows:

(32
k being given by Eq(19). Passing from the expression of the (1) whenk,#0, e, is a complex random variable satis-

modes to the coefficients,,, is straightforward and in the fying
following we will give only the expressions of the modes.

If desired, one could construct a more general half turn éﬁx,ky,kzz(—1)nzékx,ky,—kz; (39
space from a right prism with a parallelogram base, instead
of a rectangular box. _ (2) whenk,=0, g is a real random variable.
To find the analogue of Eg25), one simply needs to
check that 3. Third turn space
yIE2l* —(- 1)nzY~[E2] (33) The third turn space is a three-fold quotient of a hexago-
Ky Ky Kz Ky Ky —k; ! nal 3-torus, not a rectangular one. To the generg{20s of
. the hexagonal 3-torus we add a one-third turn corkscrew mo-
so that it follows that tion
(1) whenk,#0, e, is a complex random variable satis- 1 \/g
fying -— —— 0
- (1) 34 X 2 2 X 0
e =(—1)"¢ ko
Ky oKy Ky Ky Ky =K, y | \/5 1 . v+l o (39
(2) whenk,=0, e is a real random variable. z 2 z L,/3

2. Quarter turn space
The quarter turn space is similar to the half turn space, buthe eigenmoded’, of the hexagonal 3-torus are already

with a quarter turn corkscrew motion known from Eq.(21) (and illustrated in Fig. b Applying the
Invariance Lemma to them with the additional generé&3®y
_ . . - Ar[Eq]
X 0 1 0\ /x 0 yields the elgenbaSIQKKkay’kz,
yi|—| 1 O O|l|{y|+| O [. (35
z 0 0 1/ \z L, /4 1
) —=[ Y+ ™Y o+ 2" 2]

In particular this implies thatL,=L,. The Invariance ‘/E

Lemma shows that when k{k,)#(0,0) the four- for nieZ*,n,eZ"U{0},nzeZ,
dlmenS|ona_I subspac{eYkX,kkaz, kavjkx'kz' Y*kxfky’kz' Yonoon,n, for nze3z, (40)
Y—ky,kx,kz} is preserved as a set, while the moﬂgx,ky,kz '

Fi"Y i i, T (m1)™Y ok H (DY ik, IS where (=e?" is a cube root of unity and it is easily
fixed exactly. In the exceptional case tha (k,)=(0,0), checked that

the one-dimensional subspa{:léoy()kz} is preserved as a set,

while Yoy is fixed if and only ifn, is a multiple of 4. In K= 2 —Nz 20 —Np Ny
summary, an orthonormal basis for the space of eigenmodes L’ \/§|_ L,
of the quarter turn spacéf,[kEﬁ]( _«» Is the union of
Xy z
ny 2n,—nq Nz
1 . kM=27| —, ,—
E[Yzw(nX/Lx,ny/Ly,nZ/LZ)+'nZYqu(ny/Ly,—nX/LX,nZ/LZ) L 3L L.
+i2nZY27r(—nX/LX,—ny/Ly,nZ/LZ) ) =Ny —Ny—Nz N3
KM<=21 T Tk 41
+|3nzY2w(—ny/Ly,nX/Lx,nZ/LZ)] \/§L z
for n,eZ",nyez"U{0},n,eZ, One can check that

103518-8
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2
Y n-n..-n. when n,>nq,
g 2112 1 3 2 1
Y* = (42
nq,,N5 N n
1:M2:M3 §3Ynl_n2,nl,_n3 when n;=n,.

It follows that the analogue of E@25) is given by

2N
. 4 %€n,.n,—ny,—ng when n,>ny,

* =
ng.ny,ng

s (43
{™%€n, —n,.ny,—ng when n;=n,.

4. Sixth turn space

PHYSICAL REVIEW B9, 103518 (2004

One can check that

YE o =(—1)%Y

nl,nz,ns

ng,Ny,—Ng (47)

so that whenng#0 an analogous relation exists with the
corresponding complex random variables, and whgn 0,

the random variablénl,nzo is real.

5. Hantzsche-Wendt space

The sixth turn space is like the third turn space, but with  The fundamental polyhedron of the Hantzsche-Wendt

a one-sixth turn corkscrew motion

1 3
LRRCE
X 2 2 X 0
y|l—| 3 1 yl+| 0 |. (49
_ - 0
z 2 2 z L,/6
0 0 1

The same reasoning as before shows the eigenbasis,

[Esl
ka?ky'kz, to be

1
—=[ Y+ Y+ £2"3Y 2

V6

+ %3 3+ Y mat Y s

for nyeZ",n,eZ*U{0},n,<ny,nzeZ,
YZW(OVOHQ,/LZ) for n3 (S 6Z, (45)

where ;=27

checked that

is a sixth root of unity and it is easily

(46)

space is a rhombic dodecahedron circumscribed about a rect-
angular box of sizel(,/2,L,/2L ,/2). The holonomy group is
generated by the three half-turn corkscrew motions

1 0 0\ /x L,/2
y|l—|0 -1 Olly|+]| L/2]|,
z 0 0 -1 z 0
-1 0 0\ /x 0
y|— 0 1 Ol y|+|Ly/2]|,
z 0 -1 z L,/2
X -1 X L,/2
V|— 0o - y |+ 0 . (48)
z 0 1) \z L,/2

The composition of these three generators is the identity, so
any two suffice to generate the group. Each element of the
Hantzsche-Wendt group has a rotational componiht
e{diag(1,1,1), diag(x1,—-1), diag(-11-1), diag
(—1,-1,1)}. The pure translationselements with M
=diag(1,1,1)) form a subgroup of index 4; the correspond-
ing four-fold cover of the Hantzsche-Wendt space is a rect-
angular 3-torus of sizel(,L,L,), whose holonomy is gen-
erated by the squares of the above corkscrew motions. Thus
we may begin with the eigenspace for a rectangular 3-torus
(19) and ask what subspace remains fixed by the three
Hantzsche-Wendt generato(48). The Invariance Lemma
shows that all three generators preserve (tiipically four-
dimensional subspace{ka,ky,kz,ka,_ky,_kz,Y_kx'ky,_kz,
Y*kxﬁkyykz} as a set, and fix the linear combination

Yk, b, (D™ g i B (DY i,

H(=DMY kg (49

Visualizing the four wave vectors in the subscriptg48) as
alternate corners of the cube *k,,*k,,*k,)
=2m(*=n,/Ly,=ny/Ly,*=n,/L,), one sees that subspace
will be degenerate if and only if at least two of the indices
{n«,ny,n,} are zero. In the degenerate case a two-

dimensional subspace m{éka,o,o,Yka,o,o} is preserved as
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a set, while the mod&y oo+ Y -k, 00 is preserved by all  (4) Whenn,cZ*, nyeZ* orn,eZ*, & o0, €ox,0and
three generators if and only ih, is even. Thus the

] ) éo,Ok are real random variables.
Hantzsche-Wendt’s eigenspace has baéLE?k o z
Xy 1z

6. Klein space

1 . . : .
1Y Klein space is generated by two glide reflections
5[ 2m(n, 1, ny iy 0,y
_ X 1 0 0\ /x L,/2
(=D ™Y onn L~y L, 0L )
v yl—|0 -1 O|[y]|+|Ly/2],
(= DY " Y on(nt gLy -0y 7 o o0 1/ \z 0
— Nz—Ny
(=D ™Y on-ngi,, -0y iy )] X 1 0 0\ /x L /2
for (ne,nyeZ",n,eZ) or (n,=0ny,n,eZ") y|—|0 =1 0f|y]|+|-LyJ2|, (55
or (ny=0ny,n,eZ"), z 0 0 1/ \z 0
L along with a simple translation
ﬁ[Yzw(nx/l_x,o,O)+ Yon(-n 00l for nce2z7, X X 0
Y[—=|lY|[+] O]. (56)
1 z z L,

—=[Yanon,n,0t Yoro-nn,0l for nye2z . . .
\/E The first (secondl glide reflection corresponds to the two
upper(lower) faces of the hexagonal prism in Fig. 1, taking

1 one to the other so that the small dark-colotight-colored
_[YZﬂ'(O,OnZ/LZ)+Y2ﬂ'(0,0fnz/LZ)] for n,e2z*. windows match. The simple translation takes the front hex-
\/5 agonal face to the back hexagonal face so that the doors

(500 match.

The square of either glide reflection is a horizontal trans-
lation T=(L,,0,0) (taking the unmarked left wall to the un-
marked right wall in Fig. 1, while the composition of one
glide reflection with the inverse of the other is a vertical

N N translationT = (0,L,,0). Thus the Klein space is the two-fold
when (n,,nyeZ",n,eZ) or (”x:O[-Qxi’nzez ) or (ny  quotient of a rectangular 3-torus of size,(Ly,L,).
=00ny,n;eZ7) and that otherwis&’, % s real. It fol- To find the Klein space’s eigenmodes, we begin with the
lows that the analogue of ER5) is given as follows. modes(19) of the rectangular 3-torus and ask which remain

1) Whennx,nyeZ+ andn, e Z, ék is a complex random invariant under the glide rgflecuon@S).l The Invariance

: c Lemma shows that the Klein space’s eigenmodes have the
variable satisfying .

orthonormal basis

One can easily check that

[Eel* _ —n[Eel
ka?ky,kz_(_l)n nYkX?ky,_kZ, (51)

é:)(,ky,kzz(_1)nxinzékx,ky,—kz- (52) 1

It is thus a real random variable kf,=0 andn,e2Z and a \/E[YZ”(nX/LX'nV/LV’nZ/Lz)
purely imaginary random variable if,=0 andn, ¢ 2Z.

(2) Whenn,=0 andny,nZeZ+, e, is a random variable
satisfying for nyeZ",ny,n,eZ,

ny+n
(=D MY om0y i ity

€ p Yonn i on ) fOr nce2zZ,n,eZ. (57)
eé,ky,kzz(_l)nyeo,ky,kz, (53 Ny /L 0Nz /L, x z

One can easily check that
so that it is a real random variable whepe 2Z* and purely

imaginary otherwise. YED =y B (58)
(3) Whenn,=0 andn,,n,e Z*, ¢, is a random variable e e
satisfying whenn,e Z*,n,,n,eZ and thatY!*”)  is real otherwise.

k, .k, k
Xy 1tz
~ ~ It follows that the analogue of E@25) is given as follows:
& o=~ 1"y oy, (54 analogue of Eq25) is giv
Xz Xz (1) WhennyeZ™,n,,n,e Z, g must satisfy

so that it is a real random variable whepe 2Z" and purely ~y _ nodnn
imaginary otherwise. S A Sl T (59

103518-10
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It is thus a real random variable whég=k,=0 andn,
e 2Z and a purely imaginary random variable whgr=k,

=0 andny ¢ 2Z. . _ so that it is a real random variable whiep=0 andn, € 2Z
(2) Whennye 2Z, ny=0 andn,e Z, e ok isarealran- and a purely imaginary random variable whep=0 and
dom variable. nye&2Z.

(3) Whenn,e Z*, n,=0 andn, Z, &, oy must satisfy

ég,ky K= (= 1)“yéo,ky —ky (63)

7. Klein space with horizontal flip

The Klein space with horizontal flip is a two-fold quotient e o =(—1)"e o 4., (64)
of the plain Klein space. It includes the same two glide re- — o
flections(55) as the Klein space, but adds a square root  so that it is a real random variable whiep=0.

(4) Whenn,e 2Z it has to satisfy

X -1 0 O X 0
y|—| 0 1 o|fy|+| O (60) €%.0x,= €00k, (65)
z 0 0 1 z L,/2

8. Klein space with vertical flip
of the Klein space’d, translation(56). Because the Klein

) i N / i ) The Klei ith vertical fli I 0) with
space with horizontal flip is a quotient of the plain Klein e Klein space with vertical flip replace8) wi

space, every eigenmode of the former is automatically an X 1 0 0\ /x 0

eigenmode of the lattdrecall the reasoning of the first para-

graph of Sec. IV. Thus our task is to decide which of the yl={0 =1 0ffyj+{ 0 [, (66)
Klein space’s eigenmodé57) are preserved by the new gen- z 0 0 1/ \z L,/2

erator (60). The Invariance Lemma shows the orthonormal

basis to be whose action interchanges the mode&”(kx s

H(—l)”ZY(kX,,ky,kz). Consistency with the glide reflec-
tions (55, whose action interchangesY(kx,ky'kz)

_[YZw(n /L, ,n,/L,,n, /L)
2 CormyyTeE <—>(—1)"X+"VY(kX,—ky,kz): requires ny+n,=n, (mod?2).

+(— 1)”X+nyY2w(nX/Lxrny/Ly,nZ/Lz) Thus the orthonormal basis is
(= D)"Y o ngiL, ity iy, 1 oy
= Zw(nx/Lx,ny/Ly,nzle)
(D)™ -y L gLy V2
for n,,nyeZ",n,ez, +(=D™ N 000 1, —ny Ly n,iLy)
1 for nyeZ",n,,n,eZ,ne+ny=n, (mod?2),
—=[Yamon i, iyt (=™ o0 -n 0yl
V2 e e Yon(n, it,0n,L, fOr ng,n,e2Z. (67)
for ngeZ",n,e22, Following the same procedure as before, we obtain that
the analogue of Eq25) is given as follows.
1 (1 When neZ" and ny,n,eZ with n,+n,
_ _1\n - )
\/E[Y27T(nX/LX,O,nZ/LZ)+( 1™Y o 0n,,)] =n, (mod 2), &, must satisfy
“ o ann
fOI’ nXE ZZ+,nZ€ Z’YZW(O,OHZ/LZ) f0r nZE 22 ekx'ky'kz_( 1) Ze_kx‘ky'_kZ’ (68)

(61 so that it is a real random variable whip=k,=0.

_ ) (2) Whenn,,n,e 2Z, it has to be such that
Following the same procedure as before, we obtain that

the analogue of Eq25) is given as follows. * ] (69)
(1) Whenn,,nye Z*,n,e Z, &, must satisfy -
9. Klein space with half turn

é* =(-1 nX+ny+nZé L 62
K rky Kz (=1 Kcky ke (62 The Klein space with half turn replac€80) or (66) with
It is thus a real random variable when=0 andn,+n, X 1 0 0\ /x 0
e2Z and a purely imaginary random variable whey= 0
andn,+n, ¢ 2Z. y|—| 0 =1 O0f{y|+| O |, (70
(2) Whenn,=0, nyeZ" andn,e Z, éO,ky,kZ must satisfy z 0 0 1/ \z L,/2
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The orthonormal eigenbasis, which differs only slightly from two linearly independent translatiog andT,. Its funda-
that of the Klein space with horizontal flig1), is mental domain is an infinitely tall chimney whose cross sec-
tion is a parallelogramiFig. 2). And just as the allowable
E[Y (= 1)™yY - wave vectors_k for an _eigenmodé(k of_z_i 3-torus were de-
2+ 7 2mndLyny Ly /L) 2m(n/lmnyIby 2/l fined by the intersection of three families of parallel planes
(=1 (Sec. V A),_ the allowable wave vectols for_an eigerjmode
2m(=n /Ly, =y /Ly 0, /L) Y, of a chimney space are defined by the intersection of two
F (=)™ families of parallel planes. Thus the allowable wave vectors
2m(=lbny /by ng/La) form a latticework of parallel lines.
for n,,nyez*,n,ez, The most important special case is teetangular chim-
ney spacegenerated by two orthogonal translations

1 T1=(Ly0,0
ﬁ[YZw(o,ny/Ly,nZ/Lz)Jr(—1)nYY2w(o,—ny/Ly,nZ/Lz)] 1= (0.0,
T,=(0.L,,0), (76)
+ -
for nyeZ",n,eZny=n; (mod2, in which case the allowed wave vectdrgake the form
1
E[sz(nx /LX‘O’nZ/LZ)+ ( - :I-)nZYZW(_nx“-x'o'nz/"z):| k: 2’77 & y & yrz) (77)
L'L,
for  nee2Z".n,eZ,Y o 00n,11,) for integer values oh, andn, and real values of,. The
corresponding orthonormal basis
for n,e2Z. (77)

) ) YZW(nx/Lx’ny/Ly'rz) for Ny ,nyE Z,rZE R (78)
Following the same procedure as before, we obtain that

the analogue of EG29) is given as follows. is continuous, not discrete as for the 3-torus. Nevertheless,
(1) Whenn, ,nyeZ+ andn,e Z, e, must satisfy restricting to a fixed moduluk=|k| recovers a finite-
A A dimensional basis.
& k k=(=D"e (72 The next four spaces are quotients of the chimney space,
Xty 1tz X'ty Tz H H H
so their eigenmodes will form subspaces of those of the
so that it is a real random variable whiep=0. chimney space itself. i
(2) When nyeZ+, n,e Z and ny=n, (mod 2), ék must As in the case of the torus, the random variableis a
satisfy complex random variable satisfying
ég,ky K== 1)”"(:3‘0,ky —ky (73 e =e . )
so that it is a real random variable whip=0 andny e 2Z B. Quotients of the chimney space
ra:n: 2azpurely imaginary random variable whiep=0 and 1. Chimney space with half turn
y : . . . .
(3) Whenn, e 2Z* andn, e Z, &, must satisfy The chimney space with half tulifFig. 2) is generated by
the rectangular chimney spacelstranslationT,=(L,,0,0)
ézx,o,kf (— 1)nzékx,0,— o (74) ~ @long with
- . X -1 0 0\ /x 0
so that it is a real random variable whip=0
(4) Whenn,e 2Z, it has to be such that yl—=| 0 1 Of{y|]+| O ]. (80
z 0 0 -1 z Ly/2

ég,okf €00 K, (75 _ _ _
Even though the eigenmodes are not discrete, the Invariance
Lemma applies exactly as in the compact case, giving the

VI. DOUBLY PERIODIC SPACES eigenbasis

We will first find the eigenmodes of the chimney space,
and then use them to find the eigenmodes of its quotients.
9 a E[YZW(nX/LX,ny/Ly,rZ)+(_ D™ 2a(-n Ly ngity 1))
A. Chimney space

+ _ +
Just as a 3-torus is the quotient of Euclidean spate for (nyeZ".r,eR) or (n,=0r;eR"),
under the action of three linearly independent translations
T,1, T, andTs, achimney spacis the quotient oE2 by only Yaron,n,0 for nye2z. (81)
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FIG. 7. (Color onling The last scattering surface seen from outside for a half-turn dpaeéth L,=L,=0.64,L,=1.28 in units of the
radius of the last scattering surface. Each row presents the two pairs of matching circles alardjrétion, but seen from opposite
directions. The left panels show circles which match with eotation while the right panel shows circles which match without rotation. We
recover the invariance by a translationlgfdue to the fact that the cubic torus of sizg=1.28 is the double cover of the half-turn space
considered here. Only the Sachs-Wolfe contribution has been depicted here.

This case is analogous to the case of the half turn space so X 1 0 0 X 0
the analogue of Ec{fS) is given as follows. L . vlslo 1 olly]|+| L2l 84)

(1) When (h,eZ",r,eR) or (ny,=0r,eR"), g satis-

The Invariance Lemma shows the orthonormal eigenbasis to
ek, Ky b= (— 1)y, —k, k, (82 be
—_ _ n

It is thus a real random variable whery=0 and complex Q[YZW(HX/va“y’Ly'fz)+( 0 yYZW(nx/LX'nylLY’_rz)]
otherwise.

~ +
(2) Whenny e 2Z, g satisfies for ncnyeZr,eR",

A A YZW(HX/LX n, /Ly,O) for Ny e Z,ny e2”Z. (85)
eg,ky,o= €0, k,.0- (83
One might also consider a chimney space with a vertical
flip in the x direction as well as thg direction. Surprisingly,
such a space turns out to be equivalent to a chimney space
The chimney space with vertical flifrig. 2) is generated with a single flip, but with cross section a parallelogram
by the translatiorT ;= (L,,0,0) along with rather than a rectangle. In other words, the chimney space

2. Chimney space with vertical flip
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FIG. 8. (Color onling The last scattering surface seen from outside for a quarter-turn aaeéth L,=L,=0.64 andL,=1.28. We
present the four pairs of matched circles alongzlais, which match with a twist ofr/2, 7, 37/2 and 2r, respectively. We recover the
invariance by a translation &f, for the last pair due to the fact that the cubic torus of &ize 1.28 is the four-fold cover of the quarter-turn
space considered here. Only the Sachs-Wolfe contribution has been depicted here.

with two flips has the same topology as the chimney spac@&he Invariance Lemma shows the orthonormal eigenbasis to
with one flip, even though they may differ geometrically.  be
Concerning the properties of the random variable, the

analogue of Eq(25) is given as follows. 1
~ n
(1) Whenn, ,n, e Z andr,e R", e satisfies ﬁ[YZW(nX/LX,ny/Ly,rz)—’_(_1) Y om(-neityny Ly )]
e:X,ky,kZ:(_1)nye*kx,*ky,kz; (86) for n,eZ",nyeZr,eR,
it is thus a real random variable whép=k,=0. YZW(O,E—y,rZ) for n,e2Zr,eR. (89)
y

(2) Whenn, e Z andn, e 2Z, ¢ satisfies

- - Concerning the properties of the random variable, the
€, Ky, 0~ €=k —ky,0° (87)  analogue of Eq(25) is given as follows.
(1) Whenn,e Z, nye Z andr,eR, & satisfies
3. Chimney space with horizontal flip

The chimney space with horizontal flifFig. 2) is gener- éﬁx,ky,kzz(—1)nyékx,—ky,—kz- (90)
ated by the translatiom;=(L,,0,0) along with
It is thus a real random variable whé&p=k,=0.

X -1 0 0} /x 0 (2) Whenn, e 2Z andr,eR, g, satisfies
yl—| 0 1 O0||y]|+]|L/2]. (89 . A
z 0 0 1/ \z 0 €ok,.0~ €0,k 0- (91)
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FIG. 9. (Color onling The last scattering surface seen from outside for a third-turn spaedth L,=L,=0.64 andL,=1.92 in units
of the last scattering surface. The first column presents the three pairs of circles alaraxighehich match after a rotation of23, 4/3
and 27 respectively. We recover the invariance by a translatioh ,afue to the fact that the cubic torus of sizg=1.92 is the three-fold
cover of the third-turn space considered here. The second column present the three pairs of circles related by translatigrnslanehe
Only the Sachs-Wolfe contribution has been depicted here.

4. Chimney space with half turn and flip X -1 0 0 X 0
The chimney space with half turn and fiipig. 2) is gen- yl={ 0 1 0ffy[+]|Ly/2 (92
erated by z 0 0 -1 z 0
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Fe Options B Options

FIG. 10. (Color onling The last scattering surface seen from outside for a sixth-turn $pawgth L,=L,=0.64 andL,=1.92 in units
of the last scattering surface. We present the six pairs of circles along dlxés which match after a rotation af/3, 2#/3, ... .27
respectively. We recover the invariance by a translation,afue to the fact that the cubic torus of sizg=1.92 is the six-fold cover of the
sixth-turn space considered here. Only the Sachs-Wolfe contribution has been depicted here.
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=18l

FIG. 11. (Color onling The last scattering surface seen from outside for a Hantzsche-WendtSpaih L,=L,=L,=0.64 in units of
the last scattering surface. The geometry of the circle pairings corresponds to the geometry of the fundamental polyhedron. The pairs of

matching circles are shown here looking from directions parallel txtgeandz axes, respectively. Only the Sachs-Wolfe contribution has
been depicted here.

and
X 1 0 0\ /x L/2 Itis a four-_fold quotient of the plain chimney space, unlike
the preceding examples, which were two-fold quotients. The
Y| 1 Ofty|+| 0 ]. (93 Invariance Lemma gives an orthonormal basis for its eigen-
z 0 0 -1 z 0 modes
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FIG. 12. (Color onling The last scattering surface seen from outside for a Klein shaeeith L,=L,=L,=0.64. We present four pairs
of matched circles. The lower right figure corresponds to the translation along dkis while the three other plots correspond to the
holonomies acting in th&y plane. Only the Sachs-Wolfe contribution has been depicted here.

1 Following the same procedure as before, we obtain that
Y 2mtn i ng ity i)t (= D™ onn i nginy 1) the analogue of Eq25) is given as follows.
(1) Whenn,eZ*, nyeZ andr,eR", & must satisfy
(= D™ Y on(n iy ny 1Ly .1y
€k, = (D™ i ke (95

+
(=D Y prngi, iy )

for n,e Z*,nyeZ,rze R, so that it is a real random variable whigp=0.
(2) Whenny e 2Z andr,e R", e must satisfy

1 ey -
e =ey_ , 96
ﬁ[YZn(O,ny/Ly|rz)+Y2~n-(0,ny/Ly,—rZ)] Oky kg™ =0y kg (%6)
. so that it is a real random variable whiep=0.
for nye2zr,eR", (3) Whenn,e2Z* andnye Z, & must satisfy

1 ek ox,= (—D™e k0, (97)
_[YZW(nx/Lx,ny/Ly,O)+(_1)nyY2w(—nX/LX,ny/Ly,O)]
\/E so that it is a real random variable whiep=0.
¢ o7+ 7y (4) Whenny e 2Z, it has to be such that
or nye Nye s, 2m(0ny/L,,0)

A
for n,e2Z. (94) €0k,,0~ €0,~k,.0- (98)
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FIG. 13. (Color onling The last scattering surface seen from outside for a Klein space with horizonteflipith L,=L,=L,
=0.64. We present four pairs of matched circles. The first three are identical to those of Klein space, while the last one correspond to the
transformation along the axis (the upper and lower circles are mirror images of each ati@mly the Sachs-Wolfe contribution has been
depicted here.

VII. SINGLY PERIODIC SPACES n,
e . k=2w(rx,ry,—>, (100
We will first find the eigenmodes of the slab space, and L,

then use them to find the eigenmodes of the slab space with

flip.
P for real values ofr, andr, and integer values af,. The
corresponding orthonormal basis is
A. Slab space
Just asa 3-torus is the quotient of Euclidean space under YZw(rx Ly for r,ryeR,n,eZ. (101
the action of three linearly independent translations and a y

chimney space is the quotient by two translationsslab

spaceis the quotient oE* by a single translation. Its funda- Eyen if we restrict to a fixed modulus=|k|, the eigen-
mental domain is an infinitely tall and wide slabig. 3,  modes of slab space remain continuous, not discrete.

with opposite faces identified straight across. The allowable |t desired, one could construct a more general slab space
wave vectork for an eigenmodd’, of a slab space define a py jdentifying opposite faces with a rotation. Such a space

family of parallel planes. . would be topologically the same as a standard slab space, but
If we choose coordinates so that the translation takes thgeometrically different.
form As in the case of the torus and of the chimney space, the
T=(0,0L,), (99) random variables, is a complex random variable satisfying
then the allowed wave vectoksare e =€ k. (102
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_mapj-1.
Fie Optons e Options

FIG. 14. (Color onling The last scattering surface seen from outside for a Klein space with vertic&8flyth L,=L,=L,=0.64. We
present the six pairs of matched circles. The first two rows correspond to the same holonomies as for the Klein space, while the last row
corresponds to the translation plus flip specific to this space. Two different views of the same holonomy are shown.

B. Slab space with flip The Invariance Lemma provides the orthonormal basis for its
eigenmodes
A slab space with flipgs generated by

(Y 2r(rry myy t (D" Yanr rnyiy)]
X -1 .0 0} /x 0 for r.eR"ryeRn,eZ,
Y| — 0 1 OJ|lyl|+| O |. (@03
5 0 0 1/ \3 L2 Yar(or, m,n,y for ryeRn,e2z. (104
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topoall01-9_mapi-1.txt =l81x| re—r—yey
Fie Options

Fie Options

Lopoall01-5_mapi-Ltxt TP ~ topoaiioi-o_mopi-Ltxt
e Optins Fie Options

e L

‘\)7@‘;

18|

FIG. 15. (Color onling The last scattering surface seen from outside for a Klein space with halEggwith L,=L,=L,=0.64. We
present the six pairs of matched circles. The two upper left rows correspond to the same holonomies as for the Klein space, while the last
row corresponds to the translation plus half turn holonomy specific to this space. Two different views of the same holonomy are shown.

Concerning the properties of the random variable, the
analogue of Eq(25) is given as follows.

(1) Whenr,eR*, ry,eR andn,e Z, ¢, satisfies

ég,ky,kzz éO,—ky|—kZ- (106

VIIl. NUMERICAL SIMULATIONS

- e

ekx'ky'kz_( D i —ky kg (109 We can now compute the correlation matrix and simulate

] ] CMB maps for the 17 multi-connected spaces described in
It is thus a real random variable whép=k,=0. the previous sections.

(2) WhenryeR andn,e2Z, e, satisfies In all the simulations, we have considered a flat cold dark
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Cubig: torus 10600 Cubic torus

Increasing oblatenesg —— \ ncreasing prolatenesg

N\ al? —

1000 1000

[(+1) C,/ 2n
I1+1) C,/ 2n

100

FIG. 16. (Color onling CMB anisotropies in a rectangular torus with=L, andL,<L, (left) or L,>L, (right). The volume of the
fundamental domain is always the same (OI{@%). The spectra start from a cubic torus dngdvaries by a factor of 2 from each spectrum
to the next(so that the ratid_, /L, reaches 64' for the most anisotropic configurations shown hefide spectrum is boosted and behaves
as¢ ! of ¢ 2 depending on whether the fundamental domain is flattened or elongated alangjrbetion. Note that the scale at which the
cutoff in the spectrum occurs increases with nax(,) and that the spikes in the spectrum are less present forllgrgéhis is because the
mode spacing decays as nﬁ@f‘,L{l) and hence the discreteness of the spectrum is less obvious. This is of course all the more true when
there are two large directions where the mode density is higlafrpane).

matter model with a cosmological constatk@DM mode) L,=0.64 for the Hantzsche-Wendt and Klein spaces
with 0,=0.7, a Hubble parameter H,  (Figs. 11 through 15

=10Ch km s ! Mpc™! with h=0.62, a baryon densityw, Turning to theC,, let us examine the effects of the to-
=(,h?=0.019 and a spectral indexs=1. With this the pology and of the volume of the fundamental domain.
radius of the last scattering surfaceRgss= 15.0 Gpc. To understand the properties of the angular power spec-

We present a series of CMB maps with a resolutiof of trum on large scales, let us develop a simple geometrical
=120 for the different spaces. These maps are represent@dgument based on the properties of the eigenmodes of the
on a sphere portraying the last scattering surface seen frohaplacian operatofsee Ref[24] for an analogous discussion
outside in the universal cover. Images of the last scatteringnd Ref[13] for the spherical cageln the simply connected
surface under the action of a holonomy and its inverse are
shown and their intersection gives a pair of matched circles.

All the plots presented here contain only the Sachs-Wolfe 1000
contribution and omit both the Doppler and integrated Sachs-
Wolfe contributions.

For the compact spaces, the characteristics of the funda
mental polyhedra are

Ly=L,=0.64 for all spaces,

L,=1.28 for the half-and quarter-turn spa¢éggs. 7 and

/2n

I(1+1) C,

8) 10

L,=1.92 for the third-and sixth-turn spacésigs. 9 and
10), and

Observer at the center
Observer off center

10 100
|

FIG. 18. (Color online CMB anisotropies in a half-turn space
with L,=L,=0.64, L,=1.28 for various positions of the observer.
The observer starts from the center of the fundamental domain and
moves along thex axis. As the position and size of some of the
matching circles vary, the isotropic part of the angular spectrum
also varies. The global structure of the spectrum remains un-
changed, but the local “spikes” in the spectrum which originate

FIG. 17. The repeating images of the last scattering circle in grom the discrete nature of th& spectrum are more or less
two-dimensional Klein bottle align in rows if the observer happenssmoothed depending on the position of the observer. For better
to sit on an axis of glide symmetrgieft), but form a different visibility, each spectrum has been offset by a factor of 2 relative to
pattern if the observer sits elsewhédright). the preceding onévertical units are arbitrajy

Q0000
3
GG

Q0000
0000
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FIG. 19. (Color onling The last scattering surface seen from outside for a half-turn dpaeéth L,=L,=0.64,L,=1.28 as in Fig. 7.
The observer starts from position (0,0,0), and slowly moves inxttgection. Due to the non-homogeneity of the space, the CMB maps
look different.

Euclidean spac&®, the numberNsc of modes betweelk  have a modulug~ (2m/L,) VnZ+nZ, so that they approach
andk+ Ak is simply given byNsd(k)=4mk?Ak, whatever g two-dimensional distribution. Since the number of modes
the scale. Now, due to the topology, most modes will disap- . . . oK >
pear from the spectrum and we are left with wave number ith k<ko is given by N(<ko)=Z22 ,r5(n) =k

of modulus +O(kg), wherer ,(p) is the number of representations of
by n squares, allowing zeros and distinguishing signs and
A2 2 2 order[e.g.,r,(5)=8 andr3(4)=6], we obtain that the num-
kZZW\/(—X I (_Z) (107) ber of modes betweelk and k+Ak is now given by
Ly Ly L, NMC,O(k)~L§kAk/27r. Defining the relative weight as

_ (27)% Ny o(k)

On very small scaleflargek), the Weyl formulg 11] allows
wWK)=———<—"1
V. Ngdk)

us to determine the numbét,c of modes remaining in the
spectrum: asymptoticallyNyc(<k)~Vk®6m? (see, e.g.,
Fig. 2 of Ref.[4]). It follows that the number of modes we obtain thativ~ (#/kL,)>1 so that the large scale modes
between k and k+Ak is now given by Nyc (k) are boosted compared with the mode distribution of the sim-
~VK2Ak/27%2~VNgc/ (27)3. Thus we may set the overall ply connected space exactly as if the spectral indgwere
normalization on small scales where the effect of the topoldowered by 1. In the hypothesis of a scale invariant spectrum
ogy reduces to an overall rescaling. But this has implication®is=1, one therefore expects that théf +1)C, spectrum
concerning the large scales. will behave ast ! for the relevant scales

Consider a rectangular torus with a square cross section of WhenL,<L,, the space looks like a chimney space and
sizeL,=L, and with height_,, and let the relative propor- the modes on large scale§.e., such that z/L,<k
tions of L, andL, vary. <2m/L,) have a moduluk~2mn,/L, so that they ap-

WhenL,>L,, the space looks like a slab space and theproach a one-dimensional distribution. It follows that the
modes on large scalg$.e., such that z/L,<k<2x/L,) number of modes betweehn and k+ Ak is now given by

(108
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Nuco(k)~L,Ak/7, so thatw(k)~(2m/k?LZ)>1. Again, arY i, () + @Y, (x) — agelonsy (x)
this will imply a relative boost of the spectrum on large "
scales as if the spectral index were lowered by 2. +a,e' 2 %obsY (x). (110

WhenL,~L,, as long as we are above the mode cutoff, ) ) ]
one has a three-dimensional distribution of modes so that the&ch term undergoes a different phase shift, so the final sum
relative weight of large scale modesvis-1, as in a simply ~May be qualitatively different from the original.
connected space. The signature of the topology inGhe Note that the phase shift10) induced by the change of
exists at sufficiently large scales in the form of small spikesthe position of the observer does not influence the properties

around the expected value in a simply connected space d@é the statistical variable,, but does influence the way a

to the discrete nature of tHespectrum. given mode contributes to a given angular scale. This is de-
These results are summarized in Fig. 16. picted in Fig. 18, where the angular power spectrum is
shown in a half-turn space for various positions of the ob-
IX. LOCATION OF THE OBSERVER server. Corresponding examples of maps are shown in Fig.
19.
The 3-torus, chimney space, and slab space are excep-
tional because they are globally homogeneous. A globally X. CONCLUSIONS

homogeneous space looks the same to all observers within it; ) )
that is, a global isometry will take any point to any other This article has pres_ented the tools required to compute
point. The remaining multiconnected flat spaces, by contras:MB maps for all multiconnected flat spaces. We gave for
are not globally homogeneous and may look different to dif-€ach space
ferent observers. For ease of illustration, consider the two- the pplyhedron and hoIonomy.group,
dimensional Klein bottle: the self-intersections of the “last ~ the eigenmodes of the Laplacian. _
scattering circle” are different for an observer sitting on an e then presented simulated maps for all of the nine com-
axis of glide symmetry(Fig. 17 lefy than for an observer pact non homogeneous spaces. On the b_a3|s of the ang_ular
sitting elsewheréFig. 17 righd. Analogously in three dimen- POWer spectra we compared the effect of different topologies
sions, the lattice of images of the last scattering surface ma§nd different configurations for a given topology. We also
differ tremendously for observers sitting at different loca-implemented the effect of an arbitrary position of the ob-
tions within the same space. The power spectrum, the stati§€rver which yields significant effects for non-homogeneous
tical anisotropies, and the matching circles may all differ. Spaces. We investigated this effect on both simulated maps
Moving the observer to a new base point would need-&nd angular power spectra. In particular, the results show that
lessly complicate existing computer software for simulatingdenerically matched circles are not back to back and that
CMB maps. It is much easier to move the whole universef[he'r relative position depends on the position of the ob-
leaving the observer fixed. In technical terms, we want tg>€rver.

replace an eigenmod®,(x) with the translated mode All these tools and simulations will be of great help for
Y ((X+ Xopd, Wherexqys is the desired location for the ob- €xtending the conclusions reached on the torus and to inves-

server. The translated mode is quite easy to compute: tigate their genericity as well as for providing test maps for
_ any method wishing to dete¢and interpretthe breakdown
Y ()Y (X + Xgpo) = €K XFXobd of global isotropy.
=gl Xobsglk X gl XabeY (x).  (109) ACKNOWLEDGMENTS
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