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This article investigates the signature of the seventeen multiconnected flat spaces in cosmic microwave
background~CMB! maps. For each such space it recalls a fundamental domain and a set of generating
matrices, and then goes on to find an orthonormal basis for the set of eigenmodes of the Laplace operator on
that space. The basis eigenmodes are expressed as linear combinations of eigenmodes of the simply connected
Euclidean space. A preceding work, which provides a general method for implementing multiconnected to-
pologies in standard CMB codes, is then applied to simulate CMB maps and angular power spectra for each
space. Unlike in the 3-torus, the results in most multiconnected flat spaces depend on the location of the
observer. This effect is discussed in detail. In particular, it is shown that the correlated circles on a CMB map
are generically not back to back, so that negative search of back-to-back circles in the Wilkinson Microwave
Anisotropy Probe data does not exclude a vast majority of flat or nearly flat topologies.
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I. INTRODUCTION

Early pioneers in the field of cosmic topology@1–3# in-
vestigated some properties of multiply connected space
positive, zero or negative curvature. Nevertheless, amon
multiconnected three-dimensional spaces, ‘‘flat space1

have been studied the most extensively in the cosmolog
context. This is due to the computational simplicity of t
simplest compact flat three-manifold, the 3-torus, which
been used extensively in numerical simulations. The m
goal of this article is to provide tools to compute the cosm
microwave background~CMB! properties and produce hig
resolution CMB maps for all seventeen multiconnected
spaces,2 following the general method introduced in our pr
ceding work@4#.

*Electronic address: riazuelo@iap.fr
†Electronic address: weeks@geometrygames.org
‡Electronic address: uzan@iap.fr
§Electronic address: lehoucq@cea.fr
i Electronic address: jean-pierre.luminet@obspm.fr
1In this article, we follow the cosmological use and we call ‘‘fl

spaces’’ the eighteen types of spaces with zero curvature, and
clidean space’’ the simply connected universal coverE3.

2Test maps for these spaces are available on demand.
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Recent measurements show that the density parameteV0

is close to unity and the observable Universe is appro
mately flat. CMB data obtained by the Archeops balloon e
periments@5# and more recently by the Wilkinson Micro
wave Anisotropy Probe~WMAP! @6# place strong constraint
on the curvature. In addition, WMAP@7# and later the Planck
satellite @8# do and will provide full sky maps of CMB
anisotropies, offering an opportunity to probe the topologi
properties of our universe. This observational constraint
the curvature radius of the universe motivates the deta
study of flat spaces even though spherical spaces are
promising candidates@9–14#.

At present, the status of the constraints on the topology
flat spaces is evolving rapidly driven by the release of
WMAP data. Previous analysis, based on the Cosmic Ba
ground Explorer~COBE! data, mainly constrained the topo
ogy of a 3-torus~see Refs.@15–25# and Refs.@26–28# for
reviews of different methods for searching for the topolog!.

The WMAP data@6# possess some anomalies on lar
angular scales that may be explained by a topological st
ture. In particular, the quadrupole is abnormally low, the o
topole is very planar and the alignment between the qua
pole and octopole is also anomalous@29#. Besides many
other potential explanations@30#, it was suggested that a to
roidal universe with a smaller dimension on the order of h

u-
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RIAZUELO et al. PHYSICAL REVIEW D 69, 103518 ~2004!
the horizon scale may explain all these anomalies@29# but it
was later shown, on the basis of a finer statistical analy
that it did not@31#. Another topology was recently propose
to explain some of this anomaly in the case of a sligh
positively curved space, namely the Poincare´ dodecahedra
space@14#.

The first results of the search for the topology through
‘‘circles in the sky’’ method@32# gave negative results fo
back-to-back or almost back-to-back circles@31,33#. While
the first applies only to back-to-back circle with no twist, t
second study includes an arbitrary twist and conclude tha
rules out the possibility that we live in a universe with topo
ogy smaller than 24 Gpc.’’As will be discussed in this pap
back-to-back circles are generic only for homogeneous
pologies such as e.g. 3-tori and a subclass of lens space
non-homogeneous spaces the relative position of the cir
depends on the position of the observer in the fundame
polyhedron.

In conclusion, as demonstrated by these preliminary
sults, only the toroidal spaces have been really constra
@31,33#. In addition, a series of studies have pointed ou
departure of the WMAP data from statistical isotropy. Co
et al. @34# recently argued in particular that they are inco
sistent with an isotropic Gaussian distribution at 98.8% c
fidence level. Previous studies pointed toward a poss
north-south asymmetry of the data@35,36#. Spaces with non-
trivial topology are a class of models in which global iso
ropy ~and possibly global homogeneity! is broken. Simulated
CMB maps of these spaces may help to construct estima
for quantifying the departure of the temperature distribut
from isotropy, and also give a deeper understanding of re
results.

Let us emphasize that in the case where the topolog
scale is slightly larger than the size of the observable u
verse, no matching circles will be observed. This might a
happen for a configuration where the circles would all lie
the direction of the galactic disk where the signal-to-no
ratio might be too low. Contrary to the simply connect

case, the correlation matrix,C,m
,8m8[^a,ma,8m8&, of the co-

efficients of the development of the temperature fluctuati
on spherical harmonics, will not be proportional
d,,8dmm8 . The study of this correlation matrix could offe
the possibility to probe topology~slightly! beyond the hori-

zon. Computing the correlation matrixC,m
,8m8 for different

multiconnected spaces will help design the best strateg
constrain the deviation from the simply connected case,
gives a concrete example of cosmological models in wh
the global homogeneity and isotropy are broken.

As described in detail in our preceding work@4#, what is
needed for any CMB computation are the eigenmodes of
Laplacian

DYk
[G]52k2Yk

[G] , ~1!

with boundary conditions compatible with the given topo
ogy. These eigenmodes can be developed on the basisYk,m
of the ~spherically symmetric! eigenmodes of the universa
covering space as
10351
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jk,m
[G]sYk,m , ~2!

so that all the topological information is encoded in the c
efficientsjk,m

[G]s , wheres labels the various eigenmodes sha
ing the same eigenvalue2k2. Reference@4# computes these
coefficients for the torus and lens spaces and Refs.@10,37#
discuss more general cases.

To summarize, this article aims at several goals. First
will give the complete classification of flat spaces and
exact form of the eigenmodes of the Laplacian for each
them. It will also provide a set of simulated CMB maps f
most of these spaces. Among other effects, it will illustra
the effect of non-compact directions and discuss the in
ence of the position of the observer in the case of n
homogeneous spaces, which has never been discusse
fore. It also explains the structure of the observed CM
spectrum in the case of a very anisotropic~i.e., flattened or
elongated in one direction! fundamental domain.

This article is organized as follows. We start by recalli
the properties of the eighteen flat spaces~Sec. II! as well as
the eigenmodes of the simply connected three-dimensio
Euclidean spaceE3 ~Sec. III!, and in particular how to con-
vert planar waves, which suit the description of topology,
spherical waves, which are more convenient for CMB co
putation. Then, in Sec. IV, we explain how to extract t
modes of a given multiconnected space from the mode
E3. This method is then applied to give the eigenmodes
the ten compact flat spaces~Sec. V!, the five multiconnected
flat spaces with two compact directions~‘‘chimney spaces,’’
Sec. VI! and the two multiconnected flat spaces with on
one compact direction~‘‘slab spaces,’’ Sec. VII!. Applying
the general formalism developed in our previous work@4#,
we produce CMB maps for some of these spaces. With th
exceptions the manifolds are not homogeneous, in the s
that a given manifold does not look the same from all poin
To discuss the implication of the observed CMB and t
genericity of the maps, we detail in Sec. IX the influence
the position of the observer on the form of the eigenmo
and we study its consequences on the observed CMB m
We show in particular that the matched circles are gen
cally not back to back, but their relative position depends
the topology, the precise shape of the fundamental dom
and the position of the observer.

Notation

The local geometry of the universe is described by a
cally Euclidean Friedmann-Lemaıˆtre metric

ds252c2dt21a2~ t !@dx21x2dv2#, ~3!

wherea(t) is the scale factor,t the cosmic time, anddv2

[du21sin2udw2 the infinitesimal solid angle.

II. THE EIGHTEEN FLAT SPACES

Let us start by recalling the list of flat spaces. They a
obtained as the quotientE3/G of three-dimensional Euclid-
8-2
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW D69, 103518 ~2004!
ean spaceE3 by a groupG of symmetries ofE3 that is
discrete and fixed point free. The classification of su
spaces has long been known@38,39#, motivated by the study
of crystallography and completed in 1934@40#. The ten com-
pact flat spaces are quotients of the 3-torus; six are orient
and four are non-orientable. Figure 1 shows fundame
polyhedra. The non-compact spaces form two families,
chimney space and its quotients having two compact di
tions ~Fig. 2! and the slab space and its quotient having o
one compact direction~Fig. 3!. The termsslab spaceand
chimney spacewere coined by Adams and Shapiro in the
beautiful exposition of the flat three-dimensional topolog
@41#. Table I summarizes the properties of the whole fam
of flat spaces.

III. EIGENMODES OF E 3

The eigenmodes of Euclidean spaceE3 admit two differ-
ent bases: a basis of planar waves and a basis of sphe

FIG. 1. Fundamental domains for the compact flat thr
manifolds. The unmarked walls are glued straight across. Cour
of Adam Weeks Marano~first published in Ref.@42#!.
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waves. The former are more convenient when seeking eig
bases for multiconnected spaces, while the latter are m
convenient for simulating CMB maps. This section consid
both bases and the conversion between them, as also de
in the particular case of the torus in Ref.@4#.

A. Planar waves

Each vectork defines a planar wave

Yk~x!5eik•x. ~4!

The defining vectork, called thewave vector, lives in the
dual space, so the dot productk•x is always dimensionless
These modes are indeed not square integrable and are
malized as

-
sy

FIG. 2. The chimney space is made from an infinitely tall re
angular chimney with front and back faces~left and right faces!
glued straight across. The four variations on the chimney space
the front face to the back as indicated by the doors. In all variati
except the last the left and right faces are glued straight acros
the last variation they are glued with a top-to-bottom flip so that
windows match.~Courtesy of Adam Weeks Marano.!

FIG. 3. The slab space is made from an infinitely tall and w
slab of space with its front face glued to its back face strai
across. The variation glues the faces with a flip.~Courtesy of Adam
Weeks Marano.!
8-3
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TABLE I. Classification of the 18 three-dimensional flat spaces.

Symbol Name No. of compact directions Orientab

E1 3-torus 3 Yes
E2 Half turn space 3 Yes
E3 Quarter turn space 3 Yes
E4 Third turn space 3 Yes
E5 Sixth turn space 3 Yes
E6 Hantzsche-Wendt space 3 Yes
E7 Klein space 3 No
E8 Klein space with horizontal flip 3 No
E9 Klein space with vertical flip 3 No
E10 Klein space with half turn 3 No

E11 Chimney space 2 Yes
E12 Chimney space with half turn 2 Yes
E13 Chimney space with vertical flip 2 No
E14 Chimney space with horizontal flip 2 No
E15 Chimney space with half turn and flip 2 No

E16 Slab space 1 Yes
E17 Slab space with flip 1 No

E18 Euclidean space 0 Yes
a

f

en-
m-
be

and

n
m of
E
R3

Yk~x!Yk8
* ~x!

d3x

~2p!3
5dD~k2k8!. ~5!

B. Spherical waves

Each spherical wave factors into a radial part and an
gular part,

Yk,m~x,u,w!5A2

p
~2p!3/2j ,~kx!Y,

m~u,w!, ~6!

where (x,u,w) are the usual spherical coordinates

x5x sinu cosw,

y5x sinu sinw,

z5x cosu. ~7!

The radial factorj ,(kx) is the spherical Bessel function o
index ,, and the angular factorY,

m(u,w) is the standard
spherical harmonic. The modeYk,m is not square integrable
and is normalized according to

E
R3

Yk,mYk8,8m8
*

x2dxd cosudw

~2p!3

5
1

k2
dD~k2k8!d,,8dm m8 , ~8!

which is analogous to the normalization~5! and which deter-

mines the numerical coefficientA2/p.
10351
n-

C. Conversion

Subsequent sections will find explicit bases for the eig
modes of multiconnected flat three-manifolds as linear co
binations of planar waves. The planar waves may easily
converted to spherical waves using Eqs. 5.17.3.14
5.17.2.9 of Ref.@43#:

Yk~x!5eik•x

5 (
,50

`

i , j ,~kuxu!~2,11!P,~cosuk,x!

5 (
,50

`

i , j ,~kuxu!S 4p (
m52,

,

Y,
m~ x̂!Y,

m* ~ k̂!D
5 (

,50

`

(
m52,

,

i ,Y,
m* ~ k̂!@4p j ,~kuxu!Y,

m~ x̂!#

5 (
,50

`

(
m52,

,

~ i ,Y,
m* ~ k̂!!Yklm~x!, ~9!

wherek5uku, k̂[k/uku, and x̂[x/uxu.
In particular, the conversion formula~9! lets one easily

translate a planar waveYk to the framework we developed i
Ref. @4#, which expresses each basis eigenmode as a su
spherical waves,

Yk5Yk,s5 (
,50

`

(
m52,

,

jk,m
s Yk,m , ~10!
8-4
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wheres indexes the differentYk whose wave vectorsk share
the same modulusk. In the Euclidean case the index may
chosen to bes5 k̂. Comparison with Eq.~9! immediately
gives the coefficients

jk,m
k̂ 5 i ,Y,

m* ~ k̂!. ~11!

IV. EIGENMODES OF MULTICONNECTED SPACES

A multiconnected flat three-manifold is the quotientE3/G
of Euclidean spaceE3 under the action of a groupG of
isometries. The groupG is called theholonomy groupand is
always discrete and fixed point free. Each eigenmodeŶ of
the multiconnected spaceE3/G lifts to a G-periodic eigen-
modeY of E3, that is, to an eigenmode ofE3 that is invari-
ant under the action of the holonomy groupG. Common
practice blurs the distinction between eigenmodes ofE3/G
andG-periodic eigenmodes ofE3, and we follow that prac-
tice here. Thus the task of finding the eigenmodes of
multiconnected spaceE3/G becomes the task of finding th
G-periodic eigenmodes ofE3. In this section we investigate
how an isometrygPG acts on the space of eigenmodes. T
two lemmas we obtain will make it easy to determine t
eigenmodes of specific multiconnected spaces in subseq
sections.

Every isometryg of Euclidean spaceE3 factors as a
rotation/reflection followed by a translation. If we write th
rotation/reflection as a 333 matrix M in the orthogonal
group O(3) and write the translation as a vectorT, theng
acts onE3 as

S x

y

z
D °S Mxx Mxy Mxz

M yx M yy M yz

Mzx Mzy Mzz

D S x

y

z
D 1S Tx

Ty

Tz

D . ~12!

This isometry of E3 induces a natural action
Yk(x)°Yk(Mx1T) on the space of eigenmodes.

Lemma1 ~Action Lemma!. The natural action of an isom
etry g of E3 takes a planar eigenmodeYk to another planar
eigenmodeeik•TYkM .

Proof. Keeping in mind thatk is a row vector whilex is a
column vector, the proof is an easy computation:

Yk~x!5eik•x °eik•(Mx1T)5eik•TeikMx

5eik•TYkM~x!. ~13!

j

Lemma2 ~Invariance Lemma!. If g is an isometry ofE3

with matrix partM and translational partT, the modeYk is a
planar wave, andn is the smallest positive integer such th
k5kMn ~typically n is simply the order of the matrixM ),
then the action ofg

~1! preserves then-dimensional space of eigenmod
spanned by$Yk ,YkM , . . . ,YkMn21% as a set, and

~2! fixes a specific element

a0Yk1a1YkM1 . . . 1an21YkMn21, ~14!
10351
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if and only if for eachj ~modn)

aj 115eikM jTaj . ~15!

Proof. Both parts are immediate corollaries of Lemma
Specifically, the action ofg takes a linear combination

a0Yk1a1YkM1 . . . 1an22YkMn221an21YkMn21

~16!

to

a0eikTYkM1a1eikMTYkM21 . . . 1an22eikMn22TYkMn21

1an21eikMn21TYk , ~17!

so it is clear that then-dimensional subspace spanned
$Yk ,YkM , . . . ,YkMn21% is preserved as a set. Equating~16!
to ~17! and comparing coefficients proves the second p

j

V. COMPACT FLAT THREE-MANIFOLDS

We will first find the eigenmodes of the 3-torus, and th
use them to find the eigenmodes of the remaining comp
flat three-manifolds.

A. 3-torus

The 3-torus is the quotient of Euclidean spaceE3 under
the action of three linearly independent translationsT1 , T2
and T3. Its fundamental domain is a parallelepiped.
eigenmodes are the eigenmodes ofE3 invariant under the
translationsT1 , T2 andT3 ~recall from Sec. IV the conven
tion that eigenmodes of the quotient are represented as
odic eigenmodes ofE3). The Invariance Lemma~with n
51) implies that an eigenmodeYk of E3 is invariant under
the translationT1 if and only if eik•T151 which occurs pre-
cisely whenk•T1 is an integer multiple of 2p. Thus geo-
metrically the allowed values of the wave vectork form a
family of parallel planes orthogonal toT1. Similarly, the
eigenmodeYk is invariant under the translationT2 (T3) if
and only ifk lies on a family of parallel planes orthogonal
T2 (T3), defined byk•T2P2pZ (k•T3P2pZ). The eigen-
modeYk is invariant under all three translationsT1 , T2 and
T3 if and only if it lies on all three families of parallel plane
simultaneously. The intersection of the three families form
lattice of discrete points. Figure 4 illustrates the construct
for the 2-torus; the construction for the 3-torus is analogo
This lattice of points defines the standard basis for
eigenspace of a torus.

Definition.The standard basisfor a 3-torusT3 generated
by three linearly independent translationsT1 , T2 and T3 is
the setB5$Ykuk•T iP2pZ for i 51,2,3%.

The most important special case of a 3-torus is therect-
angular 3-torus generated by three mutually orthogon
translations

T15~Lx,0,0!,

T25~0,Ly,0!,
8-5
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T35~0,0,Lz!, ~18!

in which case the allowed wave vectorsk take the form

k52pS nx

Lx
,
ny

Ly
,
nz

Lz
D , ~19!

for integer values ofnx , ny andnz , thus forming a rectan-
gular lattice~Fig. 5 left!.

The second most important special case is thehexagonal
3-torusgenerated by

T15~L,0,0!,

T25S 2
1

2
L,1

A3

2
L,0D ,

T35S 2
1

2
L,2

A3

2
L,0D ,

T45~0,0,Lz!. ~20!

These four generators and their inverses define a fundam
tal domain as a hexagonal prism. The first three genera

FIG. 4. An eigenmodeYk of E2 is invariant under the transla
tion T i if and only if k lies on a family of parallel lines orthogona
to T i , defined byk•T iP2pZ. The modeYk is invariant under both
translationsT1 andT2 if and only if it lies in the lattice of intersec-
tion points of the two families of parallel lines. The construction
three dimensions is similar, but with three families of planes inst
of two families of lines. Strictly speaking we should not draw t
parallel lines in the same space as the translation vectorsT i because
the wave vectorsk live in the dual space@with units of ~length!21]
while theT i live in the primary space~with units of length), but
nevertheless it is visually helpful to do so.

FIG. 5. In a rectangular 3-torus~left! the allowed wave vectors
k form a rectangular lattice. In a hexagonal 3-torus~right! the lattice
is hexagonal within each layer.
10351
n-
rs

are linearly dependent (T11T21T350); eliminating any
one of them suggests an alternative fundamental domain
prism with a rhombic base. Even though the hexagonal
rhombic prisms look different, they define the same ma
fold. Either way, the allowed wave vectorsk form a hexago-
nal lattice~Fig. 5 right! and may be parameterized as

k52pS 2
n1

L
,
2n12n2

A3L
,
n3

Lz
D , ~21!

for integer values ofn1 , n2 andn3.
In the case of a general 3-torus, one writes the translat

T1 , T2 andT3 as the columns of a 333 matrixT and solves
the equationkT52p(n1 ,n2 ,n3) to find the allowable wave
vectorsk52p(n1 ,n2 ,n3)T21 for integersn1 , n2 andn3.

When one wants to simulate CMB maps, one needs
know not only the modes themselves but also how the mo
are paired under complex conjugation. The reason is that
cosmological fields are in fact real-valued stochastic va
ables. Any such field can be decomposed into Fourier mo
as

f~x,t !5E d3k

~2p!3/2
fk~ t !eik•xêk , ~22!

where êk is a complex, usually Gaussian, random varia
satisfying

^êkêk8
* &5dD~k2k8!. ~23!

The evolution equations of the cosmological perturbatio
involve time derivatives and a Laplacian so that the coe
cient fk(t) can be decomposed as

fk~ t !5fk~ t !eiuk, ~24!

whereuk is a phase that is constant throughout the evoluti
By absorbing the phase into the random variable, we
always choosefk to be a real function ofk only, i.e.,fk(t).
Sinceeik•x ande2 ik•x are conjugate in the preceding decom
position, the fact thatf(x,t) is real implies that

êk* 5ê2k . ~25!

This latter constraint may not hold for all the other spac
studied in this article and we will need to give its analog
for each case.

B. Quotients of the 3-torus

For ease of illustration we first explain our gener
method for the two-dimensional Klein bottle. Figure 6 sho
a portion of the Klein bottle’s universal cover, in which a
ternate images of the fundamental domain appear mirror
versed. Half the holonomies are pure translations while
other half are glide reflections. In other words, the holono
groupG contains an index 2 subgroupG8,G comprising the
pure translations. WhileE2/G gives the original Klein bottle,
E2/G8 gives a torus whose fundamental domain is the squ

d

8-6
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formed by the solid lines in Fig. 6~ignoring the dotted lines!.
According to the convention introduced in Sec. IV, the Kle
bottle’s eigenmodes are represented asG-periodic functions
on E2. But every G-periodic function is automatically a
G8-periodic function as well, becauseG8 is a subgroup ofG.
Thus every eigenmode of the Klein bottle isa priori an
eigenmode of the 2-torus. The task in finding the eigensp
of the Klein bottle is to start with the eigenspace of the to
and find the subspace that is invariant under the glide refl
tion ~the one taking the lower half of a square to the up
half!. In practice this is quite simple. A rectangular torus h
holonomy groupG8 generated by the two translations

S x

yD °S x

yD 1S Lx

0 D and S x

yD °S x

yD 1S 0

Ly
D . ~26!

The standard eigenbasis for this torus takes the form~19!,
namely B5$Ykuk52p(nx /Lx ,ny /Ly) for nx ,nyPZ%. To
extend thisG8 to the full holonomy groupG of the Klein
bottle, we add the glide reflection

S x

yD °S 21 0

0 1D S x

yD 1S 0

Ly/2
D , ~27!

and ask which elements of the basisB it preserves. The In-
variance Lemma provides a ready answer: whenkxÞ0 the
two-dimensional subspace$Ykx ,ky

,Y2kx ,ky
% is preserved as a

set ~part 1 of the Invariance Lemma! while the mode
Ykx ,ky

1(21)nyY2kx ,ky
is fixed exactly~part 2 of the Invari-

ance Lemma!. In the exceptional case thatkx50, the one-
dimensional subspace$Y0,ky

% is preserved as a set, whil

Y0,ky
is fixed if and only if ny is even @because whenn

51, part 2 of the Invariance Lemma requiresa05eik•Ta0
which impliesk•T/(2p)5nz/2PZ]. In summary, an ortho-
normal basis for the space of eigenmodes of the Klein bo
is the union of

FIG. 6. The Klein bottle’s holonomy group contains glide r
flections as well as translations. The translations alone form an
dex subgroup defining a torus.
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@Y2p(nx /Lx ,ny /Ly)1~21!nyY2p(2nx /Lx ,ny /Ly)#/A2

for nxPZ1,nyPZ,

Y2p(0,
ny

Ly
) for nyP2Z. ~28!

Let us now apply this same method to each of the n
quotients of the 3-torus.

1. Half turn space

The analysis of the half turn space closely follows that
the Klein bottle given immediately above. The only diffe
ence is that the Klein bottle’s holonomy group contain
translations and glide reflections, while the half turn spac
holonomy group contains translations and corkscrew m
tions. Specifically, we begin with the generators for the h
lonomy groupG8 of a rectangular 3-torus

S x

y

z
D °S x

y

z
D 1S Lx

0

0
D , S x

y

z
D °S x

y

z
D 1S 0

Ly

0
D ,

S x

y

z
D °S x

y

z
D 1S 0

0

Lz

D ~29!

and add a generator for the half-turn corkscrew motion

S x

y

z
D °S 21 0 0

0 21 0

0 0 1
D S x

y

z
D 1S 0

0

Lz/2
D , ~30!

to get the full holonomy groupG of the half turn space. The
Invariance Lemma shows that when (kx ,ky)Þ(0,0) the two-
dimensional subspace$Ykx ,ky ,kz

,Y2kx ,2ky ,kz
% is preserved

as a set~part 1 of the Invariance Lemma! while the mode
Ykx ,ky ,kz

1(21)nzY2kx ,2ky ,kz
is fixed exactly~part 2 of the

Invariance Lemma!. In the exceptional case that (kx ,ky)
5(0,0), the one-dimensional subspace$Y0,0,kz

% is preserved

as a set, whileY0,0,kz
is fixed if and only if nz is even. In

summary, an orthonormal basis for the space of eigenmo
of the half turn space,Ykx ,ky ,kz

[E2] , is the union of

1

A2
@Y2p(nx /Lx ,ny /Ly ,nz /Lz)

1~21!nzY2p(2nx /Lx ,2ny /Ly ,nz /Lz)

for ~nxPZ1,ny ,nzPZ! or ~nx50,nyPZ1,nzPZ!,

Y2p(0,0,nz /Lz)
for nzP2Z.

~31!

In terms of the notations used in Ref.@4#, it leads to the
coefficients

n-
8-7
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jk,m
k̂ 55

i ,

A2
@Y,

m* ~ k̂!1~21!nzY,
m* ~ k̂M !#

for ~nxPZ1,ny ,nzPZ!

or ~nx50,nyPZ1,nzPZ!,

i ,Y,
m* ~ k̂! for ~nx ,ny!5~0,0!, nzP2Z,

~32!

k being given by Eq.~19!. Passing from the expression of th

modes to the coefficientsjk,m
k̂ is straightforward and in the

following we will give only the expressions of the modes
If desired, one could construct a more general half t

space from a right prism with a parallelogram base, inst
of a rectangular box.

To find the analogue of Eq.~25!, one simply needs to
check that

Ykx ,ky ,kz

[E2]* 5~21!nzYkx ,ky ,2kz

[E2] , ~33!

so that it follows that

~1! whenkzÞ0, êk is a complex random variable sati
fying

êkx ,ky ,kz
* 5~21!nzêkx ,ky ,2kz

, ~34!

~2! whenkz50, êk is a real random variable.

2. Quarter turn space

The quarter turn space is similar to the half turn space,
with a quarter turn corkscrew motion

S x

y

z
D °S 0 21 0

1 0 0

0 0 1
D S x

y

z
D 1S 0

0

Lx/4
D . ~35!

In particular this implies thatLx5Ly . The Invariance
Lemma shows that when (kx ,ky)Þ(0,0) the four-
dimensional subspace$Ykx ,ky ,kz

, Yky ,2kx ,kz
, Y2kx ,2ky ,kz

,

Y2ky ,kx ,kz
% is preserved as a set, while the modeYkx ,ky ,kz

1 i nzYky ,2kx ,kz
1(21)nzY2kx ,2ky ,kz

1(2 i )nzY2ky ,kx ,kz
is

fixed exactly. In the exceptional case that (kx ,ky)5(0,0),
the one-dimensional subspace$Y0,0,kz

% is preserved as a se

while Y0,0,kz
is fixed if and only ifnz is a multiple of 4. In

summary, an orthonormal basis for the space of eigenmo
of the quarter turn space,Ykx ,ky ,2kz

[E3] , is the union of

1

2
@Y2p(nx /Lx ,ny /Ly ,nz /Lz)

1 i nzY2p(ny /Ly ,2nx /Lx ,nz /Lz)

1 i 2nzY2p(2nx /Lx ,2ny /Ly ,nz /Lz)

1 i 3nzY2p(2ny /Ly ,nx /Lx ,nz /Lz)
#

for nxPZ1,nyPZ1ø$0%,nzPZ,
10351
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Y2p(0,0,nz /Lz)
for nzP4Z. ~36!

As in the case of the half turn space, one can easily ch
that

Ykx ,ky ,kz

[E3]* 5~21!nzYkx ,ky ,2kz

[E3] , ~37!

so that the analogue of Eq.~25! is given as follows:

~1! whenkzÞ0, êk is a complex random variable satis
fying

êkx ,ky ,kz
* 5~21!nzêkx ,ky ,2kz

; ~38!

~2! whenkz50, êk is a real random variable.

3. Third turn space

The third turn space is a three-fold quotient of a hexa
nal 3-torus, not a rectangular one. To the generators~20! of
the hexagonal 3-torus we add a one-third turn corkscrew
tion

S x

y

z
D °S 2

1

2
2

A3

2
0

A3

2
2

1

2
0

0 0 1

D S x

y

z
D 1S 0

0

Lz/3
D . ~39!

The eigenmodesYk of the hexagonal 3-torus are alread
known from Eq.~21! ~and illustrated in Fig. 5!. Applying the
Invariance Lemma to them with the additional generator~39!
yields the eigenbasis,Ykx ,ky ,kz

[E4] ,

1

A3
@Yk1zn3YkM1z2n3YkM2#

for n1PZ1,n2PZ1ø$0%,n3PZ,

Y2p(0,0,n3 /Lz)
for n3P3Z, ~40!

where z5e2ip/3 is a cube root of unity and it is easil
checked that

k52pS 2n2

L
,
2n12n2

A3L
,
n3

Lz
D ,

kM52pS n1

L
,
2n22n1

A3L
,
n3

Lz
D ,

kM252pS n22n1

L
,
2n12n2

A3L
,
n3

Lz
D . ~41!

One can check that
8-8
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Yn1 ,n2 ,n3
* 5H z2n3Yn2 ,n22n1 ,2n3 when n2.n1 ,

zn3Yn12n2 ,n1 ,2n3 when n1>n2 .
~42!

It follows that the analogue of Eq.~25! is given by

ên1 ,n2 ,n3
* 5H z2n3ên2 ,n22n1 ,2n3

when n2.n1 ,

zn3ên12n2 ,n1 ,2n3
when n1>n2 .

~43!

4. Sixth turn space

The sixth turn space is like the third turn space, but w
a one-sixth turn corkscrew motion

S x

y

z
D °S 1

2
2

A3

2
0

A3

2

1

2
0

0 0 1

D S x

y

z
D 1S 0

0

Lz/6
D . ~44!

The same reasoning as before shows the eigenb
Ykx ,ky ,kz

[E5] , to be

1

A6
@Yk1zn3YkM1z2n3YkM2

1z3n3YkM31z4n3YkM41z5n3YkM5

for n1PZ1,n2PZ1ø$0%,n2,n1 ,n3PZ,

Y2p(0,0,n3 /Lz)
for n3P6Z, ~45!

where z5e2ip/6 is a sixth root of unity and it is easily
checked that

k52pS 2n2

L
,
2n12n2

A3L
,
n3

Lz
D ,

kM52pS n12n2

L
,
n11n2

A3L
,
n3

Lz
D ,

kM252pS n1

L
,
2n22n1

A3L
,
n3

Lz
D ,

kM352pS n2

L
,
n222n1

A3L
,
n3

Lz
D ,

kM452pS n22n1

L
,
2n12n2

A3L
,
n3

Lz
D ,

kM552pS 2n1

L
,
n122n2

A3L
,
n3

Lz
D . ~46!
10351
is,

One can check that

Yn1 ,n2 ,n3
* 5~21!n3Yn1 ,n2 ,2n3

, ~47!

so that whenn3Þ0 an analogous relation exists with th
corresponding complex random variables, and whenn350,
the random variableên1 ,n2,0 is real.

5. Hantzsche-Wendt space

The fundamental polyhedron of the Hantzsche-We
space is a rhombic dodecahedron circumscribed about a
angular box of size (Lx/2,Ly/2,Lz/2). The holonomy group is
generated by the three half-turn corkscrew motions

S x

y

z
D °S 1 0 0

0 21 0

0 0 21
D S x

y

z
D 1S Lx/2

Ly/2

0
D ,

S x

y

z
D °S 21 0 0

0 1 0

0 0 21
D S x

y

z
D 1S 0

Ly/2

Lz/2
D ,

S x

y

z
D °S 21 0 0

0 21 0

0 0 1
D S x

y

z
D 1S Lx/2

0

Lz/2
D . ~48!

The composition of these three generators is the identity
any two suffice to generate the group. Each element of
Hantzsche-Wendt group has a rotational componentM
P$diag(1,1,1), diag(1,21,21), diag(21,1,21), diag
(21,21,1)%. The pure translations~elements with M
5diag(1,1,1)) form a subgroup of index 4; the correspon
ing four-fold cover of the Hantzsche-Wendt space is a re
angular 3-torus of size (Lx ,Ly ,Lz), whose holonomy is gen
erated by the squares of the above corkscrew motions. T
we may begin with the eigenspace for a rectangular 3-to
~19! and ask what subspace remains fixed by the th
Hantzsche-Wendt generators~48!. The Invariance Lemma
shows that all three generators preserve the~typically four-
dimensional! subspace$Ykx ,ky ,kz

,Ykx ,2ky ,2kz
,Y2kx ,ky ,2kz

,

Y2kx ,2ky ,kz
% as a set, and fix the linear combination

Ykx ,ky ,kz
1~21!nx2nyYkx ,2ky ,2kz

1~21!ny2nzY2kx ,ky ,2kz

1~21!nz2nxY2kx ,2ky ,kz
. ~49!

Visualizing the four wave vectors in the subscripts of~49! as
alternate corners of the cube (6kx ,6ky ,6kz)
52p(6nx /Lx ,6ny /Ly ,6nz /Lz), one sees that subspac
will be degenerate if and only if at least two of the indic
$nx ,ny ,nz% are zero. In the degenerate case a tw
dimensional subspace like$Ykx,0,0,Y2kx,0,0% is preserved as
8-9
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a set, while the modeYkx,0,01Y2kx,0,0 is preserved by all

three generators if and only ifnx is even. Thus the
Hantzsche-Wendt’s eigenspace has basis,Ykx ,ky ,kz

[E6] ,

1

2
@Y2p(nx /Lx ,ny /Ly ,nz /Lz)

1~21!nx2nyY2p(nx /Lx ,2ny /Ly ,2nz /Lz)

1~21!ny2nzY2p(2nx /Lx ,ny /Ly ,2nz /Lz)

1~21!nz2nxY2p(2nx /Lx ,2ny /Ly ,nz /Lz)
#

for ~nx ,nyPZ1,nzPZ! or ~nx50,ny ,nzPZ1!

or ~ny50,nx ,nzPZ1!,

1

A2
@Y2p(nx /Lx,0,0)1Y2p(2nx /Lx,0,0)# for nxP2Z1,

1

A2
@Y2p(0,ny /Ly,0)1Y2p(0,2ny /Ly,0)# for nyP2Z1,

1

A2
@Y2p(0,0,nz /Lz)

1Y2p(0,0,2nz /Lz)
# for nzP2Z1.

~50!

One can easily check that

Ykx ,ky ,kz

[E6]* 5~21!nx2nzYkx ,ky ,2kz

[E6] , ~51!

when (nx ,nyPZ1,nzPZ) or (nx50,ny ,nzPZ1) or (ny

50,nx ,nzPZ1) and that otherwiseYkx ,ky ,kz

[E6] is real. It fol-

lows that the analogue of Eq.~25! is given as follows.
~1! Whennx ,nyPZ1 andnzPZ, êk is a complex random

variable satisfying

êkx ,ky ,kz
* 5~21!nx2nzêkx ,ky ,2kz

. ~52!

It is thus a real random variable ifkz50 andnxP2Z and a
purely imaginary random variable ifkz50 andnx¹2Z.

~2! Whennx50 andny ,nzPZ1, êk is a random variable
satisfying

ê0,ky ,kz
* 5~21!nyê0,ky ,kz

, ~53!

so that it is a real random variable whennyP2Z1 and purely
imaginary otherwise.

~3! Whenny50 andnx ,nzPZ1, êk is a random variable
satisfying

êkx,0,kz
* 5~21!nzêkx,0,kz

, ~54!

so that it is a real random variable whennzP2Z1 and purely
imaginary otherwise.
10351
~4! WhennxPZ1, nyPZ1 or nzPZ1, êkx,0,0, ê0,ky,0 and

ê0,0,kz
are real random variables.

6. Klein space

Klein space is generated by two glide reflections

S x

y

z
D °S 1 0 0

0 21 0

0 0 1
D S x

y

z
D 1S Lx/2

Ly/2

0
D ,

S x

y

z
D °S 1 0 0

0 21 0

0 0 1
D S x

y

z
D 1S Lx/2

2Ly/2

0
D , ~55!

along with a simple translation

S x

y

z
D °S x

y

z
D 1S 0

0

Lz

D . ~56!

The first ~second! glide reflection corresponds to the tw
upper~lower! faces of the hexagonal prism in Fig. 1, takin
one to the other so that the small dark-colored~light-colored!
windows match. The simple translation takes the front h
agonal face to the back hexagonal face so that the d
match.

The square of either glide reflection is a horizontal tra
lation T5(Lx,0,0) ~taking the unmarked left wall to the un
marked right wall in Fig. 1!, while the composition of one
glide reflection with the inverse of the other is a vertic
translationT5(0,Ly,0). Thus the Klein space is the two-fol
quotient of a rectangular 3-torus of size (Lx ,Ly ,Lz).

To find the Klein space’s eigenmodes, we begin with t
modes~19! of the rectangular 3-torus and ask which rema
invariant under the glide reflections~55!. The Invariance
Lemma shows that the Klein space’s eigenmodes have
orthonormal basis

1

A2
@Y2p(nx /Lx ,ny /Ly ,nz /Lz)

1~21!nx1nyY2p(nx /Lx ,2ny /Ly ,nz /Lz)

for nyPZ1,nx ,nzPZ,

Y2p(nx /Lx,0,nz /Lz)
for nxP2Z,nzPZ. ~57!

One can easily check that

Ykx ,ky ,kz

[E7]* 5~21!nx1nyY
2kx ,ky ,2kz

[E7] , ~58!

whennyPZ1,nx ,nzPZ and thatYkx ,ky ,kz

[E7] is real otherwise.

It follows that the analogue of Eq.~25! is given as follows:
~1! WhennyPZ1,nx ,nzPZ, êk must satisfy

êkx ,ky ,kz
* 5~21!nx1nyê2kx ,ky ,2kz

. ~59!
8-10
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It is thus a real random variable whenkx5kz50 and ny
P2Z and a purely imaginary random variable whenkx5kz
50 andny¹2Z.

~2! WhennxP2Z, ny50 andnzPZ, êkx,0,kz
is a real ran-

dom variable.

7. Klein space with horizontal flip

The Klein space with horizontal flip is a two-fold quotie
of the plain Klein space. It includes the same two glide
flections~55! as the Klein space, but adds a square root

S x

y

z
D °S 21 0 0

0 1 0

0 0 1
D S x

y

z
D 1S 0

0

Lz/2
D ~60!

of the Klein space’sLz translation~56!. Because the Klein
space with horizontal flip is a quotient of the plain Kle
space, every eigenmode of the former is automatically
eigenmode of the latter~recall the reasoning of the first para
graph of Sec. IV!. Thus our task is to decide which of th
Klein space’s eigenmodes~57! are preserved by the new ge
erator ~60!. The Invariance Lemma shows the orthonorm
basis to be

1

2
@Y2p(nx /Lx ,ny /Ly ,nz /Lz)

1~21!nx1nyY2p(nx /Lx ,2ny /Ly ,nz /Lz)

1~21!nzY2p(2nx /Lx ,ny /Ly ,nz /Lz)

1~21!nx1ny1nzY2p(2nx /Lx ,2ny /Ly ,nz /Lz)

for nx ,nyPZ1,nzPZ,

1

A2
@Y2p(0,ny /Ly ,nz /Lz)

1~21!nyY2p(0,2ny /Ly ,nz /Lz)
#

for nyPZ1,nzP2Z,

1

A2
@Y2p(nx /Lx,0,nz /Lz)

1~21!nzY2p(2nx /Lx,0,nz /Lz)
#

for nxP2Z1,nzPZ,Y2p(0,0,nz /Lz)
for nzP2Z.

~61!

Following the same procedure as before, we obtain
the analogue of Eq.~25! is given as follows.

~1! Whennx ,nyPZ1,nzPZ, êk must satisfy

êkx ,ky ,kz
* 5~21!nx1ny1nzêkx ,ky ,2kz

. ~62!

It is thus a real random variable whennz50 and nx1ny
P2Z and a purely imaginary random variable whennz50
andnx1ny¹2Z.

~2! Whennx50, nyPZ1 andnzPZ, ê0,ky ,kz
must satisfy
10351
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ê0,ky ,kz
* 5~21!nyê0,ky ,2kz

, ~63!

so that it is a real random variable whenkz50 andnyP2Z
and a purely imaginary random variable whennz50 and
ny¹2Z.

~3! WhennxPZ1, ny50 andnzPZ, êkx,0,kz
must satisfy

êkx,0,kz
* 5~21!nzêkx,0,2kz

, ~64!

so that it is a real random variable whenkz50.
~4! WhennzP2Z it has to satisfy

ê0,0,kz
* 5ê0,0,2kz

. ~65!

8. Klein space with vertical flip

The Klein space with vertical flip replaces~60! with

S x

y

z
D °S 1 0 0

0 21 0

0 0 1
D S x

y

z
D 1S 0

0

Lz/2
D , ~66!

whose action interchanges the modesY (kx ,ky ,kz)

↔(21)nzY (kx ,2ky ,kz)
. Consistency with the glide reflec

tions ~55!, whose action interchangesY (kx ,ky ,kz)

↔(21)nx1nyY (kx ,2ky ,kz)
, requires nx1ny[nz ~mod 2).

Thus the orthonormal basis is

1

A2
@Y2p(nx /Lx ,ny /Ly ,nz /Lz)

1~21!nx1nyY2p(nx /Lx ,2ny /Ly ,nz /Lz)
#

for nyPZ1,nx ,nzPZ,nx1ny[nz ~mod 2),

Y2p(nx /Lx,0,nz /Lz)
for nx ,nzP2Z. ~67!

Following the same procedure as before, we obtain t
the analogue of Eq.~25! is given as follows.

~1! When nyPZ1 and nx ,nzPZ with nx1ny

[nz ~mod 2), êk must satisfy

êkx ,ky ,kz
* 5~21!nzê2kx ,ky ,2kz

, ~68!

so that it is a real random variable whenkx5kz50.
~2! Whennx ,nzP2Z, it has to be such that

êkx,0,kz
* 5ê2kx,0,2kz

. ~69!

9. Klein space with half turn

The Klein space with half turn replaces~60! or ~66! with

S x

y

z
D °S 21 0 0

0 21 0

0 0 1
D S x

y

z
D 1S 0

0

Lz/2
D , ~70!
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The orthonormal eigenbasis, which differs only slightly fro
that of the Klein space with horizontal flip~61!, is

1

2
@Y2p(nx /Lx ,ny /Ly ,nz /Lz)

1~21!nx1nyY2p(nx /Lx ,2ny /Ly ,nz /Lz)

1~21!nzY2p(2nx /Lx ,2ny /Ly ,nz /Lz)

1~21!nx1ny1nzY2p(2nx /Lx ,ny /Ly ,nz /Lz)

for nx ,nyPZ1,nzPZ,

1

A2
@Y2p(0,ny /Ly ,nz /Lz)

1~21!nyY2p(0,2ny /Ly ,nz /Lz)
#

for nyPZ1,nzPZ,ny[nz ~mod 2,

1

A2
@Y2p(nx /Lx,0,nz /Lz)

1~21!nzY2p(2nx /Lx,0,nz /Lz)
#

for nxP2Z1,nzPZ,Y2p(0,0,nz /Lz)

for nzP2Z. ~71!

Following the same procedure as before, we obtain
the analogue of Eq.~25! is given as follows.

~1! Whennx ,nyPZ1 andnzPZ, êk must satisfy

êkx ,ky ,kz
* 5~21!nzêkx ,ky ,2kz

, ~72!

so that it is a real random variable whenkz50.
~2! When nyPZ1, nzPZ and ny[nz ~mod 2), êk must

satisfy

ê0,ky ,kz
* 5~21!nyê0,ky ,2kz

, ~73!

so that it is a real random variable whenkz50 andnyP2Z
and a purely imaginary random variable whenkz50 and
ny¹2Z.

~3! WhennxP2Z1 andnzPZ, êk must satisfy

êkx,0,kz
* 5~21!nzêkx,0,2kz

, ~74!

so that it is a real random variable whenkz50
~4! WhennzP2Z, it has to be such that

ê0,0,kz
* 5ê0,0,2kz

. ~75!

VI. DOUBLY PERIODIC SPACES

We will first find the eigenmodes of the chimney spac
and then use them to find the eigenmodes of its quotien

A. Chimney space

Just as a 3-torus is the quotient of Euclidean spaceE3

under the action of three linearly independent translati
T1 , T2 andT3, achimney spaceis the quotient ofE3 by only
10351
at

,
.

s

two linearly independent translationsT1 and T2. Its funda-
mental domain is an infinitely tall chimney whose cross s
tion is a parallelogram~Fig. 2!. And just as the allowable
wave vectorsk for an eigenmodeYk of a 3-torus were de-
fined by the intersection of three families of parallel plan
~Sec. V A!, the allowable wave vectorsk for an eigenmode
Yk of a chimney space are defined by the intersection of
families of parallel planes. Thus the allowable wave vect
form a latticework of parallel lines.

The most important special case is therectangular chim-
ney spacegenerated by two orthogonal translations

T15~Lx,0,0!,

T25~0,Ly,0!, ~76!

in which case the allowed wave vectorsk take the form

k52pS nx

Lx
,
ny

Ly
,r zD ~77!

for integer values ofnx and ny and real values ofr z . The
corresponding orthonormal basis

Y2p(nx /Lx ,ny /Ly ,r z)
for nx ,nyPZ,r zPR ~78!

is continuous, not discrete as for the 3-torus. Neverthel
restricting to a fixed modulusk5uku recovers a finite-
dimensional basis.

The next four spaces are quotients of the chimney sp
so their eigenmodes will form subspaces of those of
chimney space itself.

As in the case of the torus, the random variableêk is a
complex random variable satisfying

êk* 5ê2k . ~79!

B. Quotients of the chimney space

1. Chimney space with half turn

The chimney space with half turn~Fig. 2! is generated by
the rectangular chimney space’sx translationT15(Lx,0,0)
along with

S x

y

z
D °S 21 0 0

0 1 0

0 0 21
D S x

y

z
D 1S 0

0

Ly/2
D . ~80!

Even though the eigenmodes are not discrete, the Invaria
Lemma applies exactly as in the compact case, giving
eigenbasis

1

A2
@Y2p(nx /Lx ,ny /Ly ,r z)

1~21!nyY2p(2nx /Lx ,ny /Ly ,2r z)
#

for ~nxPZ1,r zPR! or ~nx50,r zPR1!,

Y2p(0,ny /Ly,0) for nyP2Z. ~81!
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW D69, 103518 ~2004!
FIG. 7. ~Color online! The last scattering surface seen from outside for a half-turn spaceE2 with Lx5Ly50.64, Lz51.28 in units of the
radius of the last scattering surface. Each row presents the two pairs of matching circles along thez direction, but seen from opposit
directions. The left panels show circles which match with ap rotation while the right panel shows circles which match without rotation.
recover the invariance by a translation ofLz due to the fact that the cubic torus of sizeLz51.28 is the double cover of the half-turn spa
considered here. Only the Sachs-Wolfe contribution has been depicted here.
e

s to

ical

ace
m
ace
This case is analogous to the case of the half turn spac
the analogue of Eq.~25! is given as follows.

~1! When (nxPZ1,r zPR) or (nx50,r zPR1), êk satis-
fies

êkx ,ky ,kz
* 5~21!nyêkx ,2ky ,kz

. ~82!

It is thus a real random variable whenny50 and complex
otherwise.

~2! WhennyP2Z, êk satisfies

ê0,ky,0* 5ê0,2ky,0 . ~83!

2. Chimney space with vertical flip

The chimney space with vertical flip~Fig. 2! is generated
by the translationT15(Lx,0,0) along with
10351
so S x

y

z
D °S 1 0 0

0 1 0

0 0 21
D S x

y

z
D 1S 0

Ly/2

0
D . ~84!

The Invariance Lemma shows the orthonormal eigenbasi
be

1

2
@Y2p(nx /Lx ,ny /Ly ,r z)

1~21!nyY2p(nx /Lx ,ny /Ly ,2r z)
#

for nx ,nyPZ,r zPR1,

Y2p(nx /Lx ,ny /Ly,0) for nxPZ,nyP2Z. ~85!

One might also consider a chimney space with a vert
flip in the x direction as well as they direction. Surprisingly,
such a space turns out to be equivalent to a chimney sp
with a single flip, but with cross section a parallelogra
rather than a rectangle. In other words, the chimney sp
8-13
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RIAZUELO et al. PHYSICAL REVIEW D 69, 103518 ~2004!
FIG. 8. ~Color online! The last scattering surface seen from outside for a quarter-turn spaceE3 with Lx5Ly50.64 andLz51.28. We
present the four pairs of matched circles along thez axis, which match with a twist ofp/2, p, 3p/2 and 2p, respectively. We recover the
invariance by a translation ofLz for the last pair due to the fact that the cubic torus of sizeLz51.28 is the four-fold cover of the quarter-tur
space considered here. Only the Sachs-Wolfe contribution has been depicted here.
ac

th

s to

the
with two flips has the same topology as the chimney sp
with one flip, even though they may differ geometrically.

Concerning the properties of the random variable,
analogue of Eq.~25! is given as follows.

~1! Whennx ,nyPZ and r zPR1, êk satisfies

êkx ,ky ,kz
* 5~21!nyê2kx ,2ky ,kz

; ~86!

it is thus a real random variable whenkx5ky50.
~2! WhennxPZ andnyP2Z, êk satisfies

êkx ,ky,0* 5ê2kx ,2ky,0 . ~87!

3. Chimney space with horizontal flip

The chimney space with horizontal flip~Fig. 2! is gener-
ated by the translationT15(Lx,0,0) along with

S x

y

z
D °S 21 0 0

0 1 0

0 0 1
D S x

y

z
D 1S 0

Ly/2

0
D . ~88!
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The Invariance Lemma shows the orthonormal eigenbasi
be

1

A2
@Y2p(nx /Lx ,ny /Ly ,r z)

1~21!nyY2p(2nx /Lx ,ny /Ly ,r z)
#

for nxPZ1,nyPZ,r zPR,

Y2p(0,
ny

Ly
,r z)

for nyP2Z,r zPR. ~89!

Concerning the properties of the random variable,
analogue of Eq.~25! is given as follows.

~1! WhennxPZ, nyPZ and r zPR, êk satisfies

êkx ,ky ,kz
* 5~21!nyêkx ,2ky ,2kz

. ~90!

It is thus a real random variable whenky5kz50.
~2! WhennyP2Z and r zPR, êk satisfies

ê0,ky,0* 5ê0,2ky,0 . ~91!
8-14



COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW D69, 103518 ~2004!
FIG. 9. ~Color online! The last scattering surface seen from outside for a third-turn spaceE4 with Lx5Ly50.64 andLz51.92 in units
of the last scattering surface. The first column presents the three pairs of circles along thez axis which match after a rotation of 2p/3, 4p/3
and 2p respectively. We recover the invariance by a translation ofLz due to the fact that the cubic torus of sizeLz51.92 is the three-fold
cover of the third-turn space considered here. The second column present the three pairs of circles related by translations in thexy plane.
Only the Sachs-Wolfe contribution has been depicted here.
S x

y

z
D °S 21 0 0

0 1 0

0 0 21
D S x

y

z
D 1S 0

Ly/2

0
D ~92!
4. Chimney space with half turn and flip

The chimney space with half turn and flip~Fig. 2! is gen-
erated by
103518-15



RIAZUELO et al. PHYSICAL REVIEW D 69, 103518 ~2004!
FIG. 10. ~Color online! The last scattering surface seen from outside for a sixth-turn spaceE5 with Lx5Ly50.64 andLz51.92 in units
of the last scattering surface. We present the six pairs of circles along thez axis which match after a rotation ofp/3, 2p/3, . . . ,2p
respectively. We recover the invariance by a translation ofLz due to the fact that the cubic torus of sizeLz51.92 is the six-fold cover of the
sixth-turn space considered here. Only the Sachs-Wolfe contribution has been depicted here.
103518-16
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW D69, 103518 ~2004!
FIG. 11. ~Color online! The last scattering surface seen from outside for a Hantzsche-Wendt spaceE6 with Lx5Ly5Lz50.64 in units of
the last scattering surface. The geometry of the circle pairings corresponds to the geometry of the fundamental polyhedron. Th
matching circles are shown here looking from directions parallel to thex, y, andz axes, respectively. Only the Sachs-Wolfe contribution h
been depicted here.
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S x

y

z
D °S 1 0 0

0 1 0

0 0 21
D S x

y

z
D 1S Lx/2

0

0
D . ~93!
10351
It is a four-fold quotient of the plain chimney space, unlik
the preceding examples, which were two-fold quotients. T
Invariance Lemma gives an orthonormal basis for its eig
modes
8-17
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RIAZUELO et al. PHYSICAL REVIEW D 69, 103518 ~2004!
FIG. 12. ~Color online! The last scattering surface seen from outside for a Klein spaceE7 with Lx5Ly5Lz50.64. We present four pairs
of matched circles. The lower right figure corresponds to the translation along thez axis while the three other plots correspond to t
holonomies acting in thexy plane. Only the Sachs-Wolfe contribution has been depicted here.
hat
1

2
@Y2p(nx /Lx ,ny /Ly ,r z)

1~21!nyY2p(2nx /Lx ,ny /Ly ,2r z)

1~21!nxY2p(nx /Lx ,ny /Ly ,2r z)

1~21!nx1nyY2p(2nx /Lx ,ny /Ly ,r z)

for nxPZ1,nyPZ,r zPR1,

1

A2
@Y2p(0,ny /Ly ,r z)

1Y2p(0,ny /Ly ,2r z)
#

for nyP2Z,r zPR1,

1

A2
@Y2p(nx /Lx ,ny /Ly,0)1~21!nyY2p(2nx /Lx ,ny /Ly,0)#

for nxP2Z1,nyPZ,Y2p(0,ny /Ly,0)

for nyP2Z. ~94!
10351
Following the same procedure as before, we obtain t
the analogue of Eq.~25! is given as follows.

~1! WhennxPZ1, nyPZ and r zPR1, êk must satisfy

êkx ,ky ,kz
* 5~21!nyêkx ,2ky ,kz

, ~95!

so that it is a real random variable whenky50.
~2! WhennyP2Z and r zPR1, êk must satisfy

ê0,ky ,kz
* 5ê0,2ky ,kz

, ~96!

so that it is a real random variable whenky50.
~3! WhennxP2Z1 andnyPZ, êk must satisfy

êkx,0,kz
* 5~21!nyêkx ,2ky,0 , ~97!

so that it is a real random variable whenky50.
~4! WhennyP2Z, it has to be such that

ê0,ky,0* 5ê0,2ky,0 . ~98!
8-18
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW D69, 103518 ~2004!
FIG. 13. ~Color online! The last scattering surface seen from outside for a Klein space with horizontal flipE8 with Lx5Ly5Lz

50.64. We present four pairs of matched circles. The first three are identical to those of Klein space, while the last one correspo
transformation along thez axis ~the upper and lower circles are mirror images of each other!. Only the Sachs-Wolfe contribution has bee
depicted here.
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VII. SINGLY PERIODIC SPACES

We will first find the eigenmodes of the slab space, a
then use them to find the eigenmodes of the slab space
flip.

A. Slab space

Just as a 3-torus is the quotient of Euclidean space u
the action of three linearly independent translations an
chimney space is the quotient by two translations, aslab
spaceis the quotient ofE3 by a single translation. Its funda
mental domain is an infinitely tall and wide slab~Fig. 3!,
with opposite faces identified straight across. The allowa
wave vectorsk for an eigenmodeYk of a slab space define
family of parallel planes.

If we choose coordinates so that the translation takes
form

T5~0,0,Lz!, ~99!

then the allowed wave vectorsk are
10351
d
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e

k52pS r x ,r y ,
nz

Lz
D , ~100!

for real values ofr x and r y and integer values ofnz . The
corresponding orthonormal basis is

Y2p(r x ,r y ,nz /Lz)
for r x ,r yPR,nzPZ. ~101!

Even if we restrict to a fixed modulusk5uku, the eigen-
modes of slab space remain continuous, not discrete.

If desired, one could construct a more general slab sp
by identifying opposite faces with a rotation. Such a spa
would be topologically the same as a standard slab space
geometrically different.

As in the case of the torus and of the chimney space,
random variableêk is a complex random variable satisfyin

êk* 5ê2k . ~102!
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RIAZUELO et al. PHYSICAL REVIEW D 69, 103518 ~2004!
FIG. 14. ~Color online! The last scattering surface seen from outside for a Klein space with vertical flipE9 with Lx5Ly5Lz50.64. We
present the six pairs of matched circles. The first two rows correspond to the same holonomies as for the Klein space, while the
corresponds to the translation plus flip specific to this space. Two different views of the same holonomy are shown.
its
B. Slab space with flip

A slab space with flipis generated by

S x

y

z
D °S 21 0 0

0 1 0

0 0 1
D S x

y

z
D 1S 0

0

Lz/2
D . ~103!
10351
The Invariance Lemma provides the orthonormal basis for
eigenmodes

@Y2p(r x ,r y ,nz /Lz)
1~21!nzY2p(2r x ,r y ,nz /Lz)

#

for r xPR1,r yPR,nzPZ,

Y2p(0,r y ,nz /Lz)
for r yPR,nzP2Z. ~104!
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW D69, 103518 ~2004!
FIG. 15. ~Color online! The last scattering surface seen from outside for a Klein space with half turnE10 with Lx5Ly5Lz50.64. We
present the six pairs of matched circles. The two upper left rows correspond to the same holonomies as for the Klein space, whi
row corresponds to the translation plus half turn holonomy specific to this space. Two different views of the same holonomy are
th

ate
in

ark
Concerning the properties of the random variable,
analogue of Eq.~25! is given as follows.

~1! When r xPR1, r yPR andnzPZ, êk satisfies

êkx ,ky ,kz
* 5~21!nzêkx ,2ky ,2kz

. ~105!

It is thus a real random variable whenky5kz50.
~2! When r yPR andnzP2Z, êk satisfies
10351
e ê0,ky ,kz
* 5ê0,2ky ,2kz

. ~106!

VIII. NUMERICAL SIMULATIONS

We can now compute the correlation matrix and simul
CMB maps for the 17 multi-connected spaces described
the previous sections.

In all the simulations, we have considered a flat cold d
8-21
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RIAZUELO et al. PHYSICAL REVIEW D 69, 103518 ~2004!
FIG. 16. ~Color online! CMB anisotropies in a rectangular torus withLx5Ly and Lz,Lx ~left! or Lz.Lx ~right!. The volume of the
fundamental domain is always the same (0.262RLSS

3 ). The spectra start from a cubic torus andLz varies by a factor of 2 from each spectru
to the next~so that the ratioLz /Lx reaches 6461 for the most anisotropic configurations shown here!. The spectrum is boosted and behav
as,21 of ,22 depending on whether the fundamental domain is flattened or elongated along thez direction. Note that the scale at which th
cutoff in the spectrum occurs increases with max(Lx ,Lz) and that the spikes in the spectrum are less present for largeLz . This is because the
mode spacing decays as min(Lx

21 ,Lz
21) and hence the discreteness of the spectrum is less obvious. This is of course all the more tru

there are two large directions where the mode density is higher~left panel!.
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matter model with a cosmological constant (LCDM model!
with VL50.7, a Hubble parameter H0
[100h km s21 Mpc21 with h50.62, a baryon densityvb
[Vbh

250.019 and a spectral indexnS51. With this the
radius of the last scattering surface isRLSS515.0 Gpc.

We present a series of CMB maps with a resolution o,
5120 for the different spaces. These maps are represe
on a sphere portraying the last scattering surface seen
outside in the universal cover. Images of the last scatte
surface under the action of a holonomy and its inverse
shown and their intersection gives a pair of matched circ
All the plots presented here contain only the Sachs-Wo
contribution and omit both the Doppler and integrated Sac
Wolfe contributions.

For the compact spaces, the characteristics of the fun
mental polyhedra are

Lx5Ly50.64 for all spaces,
Lz51.28 for the half-and quarter-turn spaces~Figs. 7 and

8!,
Lz51.92 for the third-and sixth-turn spaces~Figs. 9 and

10!, and

FIG. 17. The repeating images of the last scattering circle
two-dimensional Klein bottle align in rows if the observer happe
to sit on an axis of glide symmetry~left!, but form a different
pattern if the observer sits elsewhere~right!.
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Lz50.64 for the Hantzsche-Wendt and Klein spac
~Figs. 11 through 15!.

Turning to theC, , let us examine the effects of the to
pology and of the volume of the fundamental domain.

To understand the properties of the angular power sp
trum on large scales, let us develop a simple geometr
argument based on the properties of the eigenmodes o
Laplacian operator~see Ref.@24# for an analogous discussio
and Ref.@13# for the spherical case!. In the simply connected

a
s

FIG. 18. ~Color online! CMB anisotropies in a half-turn spac
with Lx5Ly50.64, Lz51.28 for various positions of the observe
The observer starts from the center of the fundamental domain
moves along thex axis. As the position and size of some of th
matching circles vary, the isotropic part of the angular spectr
also varies. The global structure of the spectrum remains
changed, but the local ‘‘spikes’’ in the spectrum which origina
from the discrete nature of thek spectrum are more or les
smoothed depending on the position of the observer. For be
visibility, each spectrum has been offset by a factor of 2 relative
the preceding one~vertical units are arbitrary!.
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW D69, 103518 ~2004!
FIG. 19. ~Color online! The last scattering surface seen from outside for a half-turn spaceE2 with Lx5Ly50.64, Lz51.28 as in Fig. 7.
The observer starts from position (0,0,0), and slowly moves in thex direction. Due to the non-homogeneity of the space, the CMB m
look different.
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Euclidean spaceE3, the numberNSC of modes betweenk
andk1Dk is simply given byNSC(k)54pk2Dk, whatever
the scale. Now, due to the topology, most modes will dis
pear from the spectrum and we are left with wave numb
of modulus

k52pAS nx

Lx
D 2

1S ny

Ly
D 2

1S nz

Lz
D 2

. ~107!

On very small scales~largek), the Weyl formula@11# allows
us to determine the numberNMC of modes remaining in the
spectrum: asymptotically,NMC(,k);Vk3/6p2 ~see, e.g.,
Fig. 2 of Ref. @4#!. It follows that the number of mode
between k and k1Dk is now given by NMC,`(k)
;Vk2Dk/2p2;VNSC/(2p)3. Thus we may set the overa
normalization on small scales where the effect of the top
ogy reduces to an overall rescaling. But this has implicati
concerning the large scales.

Consider a rectangular torus with a square cross sectio
sizeLx5Ly and with heightLz , and let the relative propor
tions of Lx andLz vary.

WhenLx@Lz , the space looks like a slab space and
modes on large scales~i.e., such that 2p/Lx!k!2p/Lz)
10351
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rs

l-
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e

have a modulusk;(2p/Lx)Anx
21ny

2, so that they approach
a two-dimensional distribution. Since the number of mod

with k,k0 is given by N(,k0)5(
n50
k0

2

r 2(n)5pk0
2

1O(k0), wherer n(p) is the number of representations ofp
by n squares, allowing zeros and distinguishing signs a
order@e.g.,r 2(5)58 andr 3(4)56], we obtain that the num-
ber of modes betweenk and k1Dk is now given by
NMC,0(k);Lx

2kDk/2p. Defining the relative weight as

w~k![
~2p!3

V

NMC,0~k!

NSC~k!
, ~108!

we obtain thatw;(p/kLz)@1 so that the large scale mode
are boosted compared with the mode distribution of the s
ply connected space exactly as if the spectral indexnS were
lowered by 1. In the hypothesis of a scale invariant spectr
nS51, one therefore expects that the,(,11)C, spectrum
will behave as,21 for the relevant scales

WhenLx!Lz , the space looks like a chimney space a
the modes on large scales~i.e., such that 2p/Lz!k
!2p/Lx) have a modulusk;2pnz /Lz so that they ap-
proach a one-dimensional distribution. It follows that t
number of modes betweenk and k1Dk is now given by
8-23
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RIAZUELO et al. PHYSICAL REVIEW D 69, 103518 ~2004!
NMC,0(k);LzDk/p, so thatw(k);(2p/k2Lx
2)@1. Again,

this will imply a relative boost of the spectrum on larg
scales as if the spectral index were lowered by 2.

WhenLx;Lz , as long as we are above the mode cuto
one has a three-dimensional distribution of modes so tha
relative weight of large scale modes isw;1, as in a simply
connected space. The signature of the topology in theC,

exists at sufficiently large scales in the form of small spik
around the expected value in a simply connected space
to the discrete nature of thek spectrum.

These results are summarized in Fig. 16.

IX. LOCATION OF THE OBSERVER

The 3-torus, chimney space, and slab space are ex
tional because they are globally homogeneous. A glob
homogeneous space looks the same to all observers with
that is, a global isometry will take any point to any oth
point. The remaining multiconnected flat spaces, by contr
are not globally homogeneous and may look different to d
ferent observers. For ease of illustration, consider the t
dimensional Klein bottle: the self-intersections of the ‘‘la
scattering circle’’ are different for an observer sitting on
axis of glide symmetry~Fig. 17 left! than for an observe
sitting elsewhere~Fig. 17 right!. Analogously in three dimen
sions, the lattice of images of the last scattering surface m
differ tremendously for observers sitting at different loc
tions within the same space. The power spectrum, the st
tical anisotropies, and the matching circles may all differ

Moving the observer to a new base point would ne
lessly complicate existing computer software for simulat
CMB maps. It is much easier to move the whole univer
leaving the observer fixed. In technical terms, we want
replace an eigenmodeYk(x) with the translated mode
Yk(x1xobs), wherexobs is the desired location for the ob
server. The translated mode is quite easy to compute:

Yk~x!°Yk~x1xobs!5eik•(x1xobs)

5eik•xobseik•x5eik•xobsYk~x!. ~109!

For a simple modeYk(x), the translation produces a pha
shift ~by a factor ofeik•xobs) and nothing more. The full effec
is seen when one considers linear combinations of sim
modes:
y
A.
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a1Yk1
~x!1a2Yk2

~x! ° a1eik1•xobsYk1
~x!

1a2eik2•xobsYk2
~x!. ~110!

Each term undergoes a different phase shift, so the final
may be qualitatively different from the original.

Note that the phase shift~110! induced by the change o
the position of the observer does not influence the proper
of the statistical variableêk , but does influence the way
given mode contributes to a given angular scale. This is
picted in Fig. 18, where the angular power spectrum
shown in a half-turn space for various positions of the o
server. Corresponding examples of maps are shown in
19.

X. CONCLUSIONS

This article has presented the tools required to comp
CMB maps for all multiconnected flat spaces. We gave
each space

the polyhedron and holonomy group,
the eigenmodes of the Laplacian.
We then presented simulated maps for all of the nine co

pact non homogeneous spaces. On the basis of the an
power spectra we compared the effect of different topolog
and different configurations for a given topology. We al
implemented the effect of an arbitrary position of the o
server which yields significant effects for non-homogeneo
spaces. We investigated this effect on both simulated m
and angular power spectra. In particular, the results show
generically matched circles are not back to back and
their relative position depends on the position of the o
server.

All these tools and simulations will be of great help f
extending the conclusions reached on the torus and to in
tigate their genericity as well as for providing test maps
any method wishing to detect~and interpret! the breakdown
of global isotropy.
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