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Abstract. Effects of rotational mode coupling on photometric parameters of stellar oscillations are studied. At moderate
rotation rates, a strong coupling between modes of spherical harmonic degree, `, differing by 2 and of the same azimuthal
order, m, takes place if the frequencies are close. This is a common situation amongst main sequence pulsators. Numerical
results for a sequence of β Cephei star models are reported for the two- and three-mode couplings.
One consequence of mode coupling is that modes of higher degree should be considered in photometric mode identification.
Modes with nominal degree ` > 2 acquire substantial ` ≤ 2 components and therefore are more likely to reach detectable
amplitudes. Coupled mode positions in the amplitude ratio – phase difference diagrams, based on multicolour photometry,
become both aspect- and m-dependent. Examples of the mode path in the diagram with varying aspect are given. The diagrams
remain a useful tool for mode identification in rotating stars but the tool must be used with care.
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1. Introduction

Mode identification, that is, determination of the radial order
and spherical harmonic, is an essential step in asteroseismol-
ogy. The task is not easy in the case of the oscillation frequency
spectra in β Cep and δ Sct stars, which are most often lacking
equidistant patterns. The photometric diagnostic diagrams, i.e.,
the amplitude ratio vs. phase difference dependencies in differ-
ent passbands, are the most popular tools for mode identifica-
tion in pulsating stars. Following pioneering works (Balona &
Stobie 1979; Stamford & Watson 1981) these tools have been
applied mainly to β Cep and δ Sct variables.

Theoretical diagnostic diagrams are based on linear nonadi-
abatic calculations of stellar oscillations and on models of static
plane-parallel atmospheres. In the early works an arbitrary
parametrization has been used instead of linear nonadiabatic
calculations. This approach has been followed even in some
recent studies (e.g. Garrido 2000). The nonadiabatic calcula-
tions were first included explicitly by Cugier et al. (1994) and
subsequently by Balona & Evers (1999), Cugier & Daszyńska
(2001), Balona et al. (2001) and also by Townsend (2002), who
applied them to SPB stars.

Send offprint requests to: J. Daszyńska-Daszkiewicz,
e-mail: daszynsk@camk.edu.pl

Up to now, the amplitudes and phases, which we – follow-
ing Cugier et al. (1994) – call photometric nonadiabatic observ-
ables, were calculated in the framework of linear nonadiabatic
theory, ignoring effects of rotation. However, amongst β Cep
and δ Sct stars slow rotators, for which such an approxima-
tion is adequate, are more an exception than a rule. Here we
examine effects of moderate rotation on theoretical diagnostic
diagrams. By moderate we mean so slow that perturbational
treatment of rotation is adequate. Specifically, we rely on the
third order formalism of Soufi et al. (1998).

The most important effect of rotation in the context of di-
agnostic diagrams is coupling between close frequency modes
of spherical harmonic degree, `, differing by 2. The effect was
discussed in some detail by Soufi et al. (1998). The essential
formulae are recalled in the next section of this paper.

Numerical results presented later concern one selected se-
quence of β Cep models. On a qualitative level the results are
applicable to all stars of this type. Our choice of β Cep stars is
motivated not only by the abundance of the observational data
but also by the fact that we have credible results from linear
nonadiabatic calculations. This is not true for δ Sct stars where
there are serious uncertainties related to the treatment of con-
vection.

Properties of unstable modes in the selected sequence of
models are reviewed in Sect. 3. Also in this section we discuss
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the occurence of near resonances between two and three modes
as well as certain consequences of mode coupling.

In Sect. 4 we discuss the visibility in various passbands of
modes described by a single spherical harmonic over a wide
range of `. Examples of diagnostic diagrams for coupled modes
are given in Sect. 5.

2. Rotational mode coupling

Chandrasekhar & Lebovitz (1962) were the first to notice that
rotation, even at its slow rate, significantly influences mode
properties if there is a small frequency distance between modes
with the same azimuthal order, m, and spherical harmonic de-
gree, `, differing by 2. In this case, each of the coupled modes
must be represented by a certain superposition of spherical har-
monics of the two modes involved. The effect was invoked to
explain the nonradial character of pulsation in β Cep stars. The
effect of mode coupling has been subsequently discussed in
a number of papers (e.g. Dziembowski & Goode 1992; Soufi
et al. 1998).

In the present paper we assume uniform rotation. Although
our calculations were carried out to cubic order in the ratio of
rotation to pulsation frequency, Ω/ω, for the purposes of this
discussion and for the sake of simplicity, we will write for-
mulae which are accurate only to (Ω/ω)2. This is enough to
capture the effects we want to review here.

In general, there may be more than two coupled
modes. Then the displacement eigenfunction of an individual
mode must be given as a sum

ξ =
∑

k

akξ0k, (1)

where ξ0k stands for the eigenfunctions in the spherical model.
We choose the normalization in such a way that the radial com-
ponent of the vector ξ0k is given by

ξ0,r = RYm
l e−iωt. (2)

The orthogonality condition is expressed in the form∫
d3xρξ0 j · ξ0k = δ jkIk, (3)

where Ik is called mode inertia. The eigenfuncions and eigen-
values for coupled modes are calculated as a solution of the
matrix equation,

(B − ω2E)a = 0, (4)

where E is a unit matrix and a = (a1, a2, ...) (see e.g. Soufi
et al. 1998). The nondiagonal elements, B jk, are of the order of
Ω2 and are non-zero for the modes satisfying conditions ` j =

`k ± 2 and m j = mk. With our normalization these elements are
not symmetric. The following relation is fulfilled:

Bk j

B jk
=

I j

Ik
· (5)

The diagonal elements are given by

Bkk = (ω0k + mCkΩ)2 + O(Ω2), (6)

where ω0k is the frequency in the spherically symmetric model
and Ck is the Ledoux constant. The O(Ω2) term arises from
quadratic effect of the Coriolis force and from the centrifugal
distortion. The latter effect dominates for nonradial p-modes,
as well as for g-modes of low orders.

Here we limit ourselves to couplings which involve up to
three modes. The solution in the case of two-mode coupling is

ω2
± =

B11 + B22 ±
√

(B11 − B22)2 + 4BC

2
, (7)

where BC = B12B21, and(
a1

a2

)
±
=

B12

B11 − ω2±
· (8)

The coupling strength, which is measured by BC, depends on
mode properties. Coupling between acoustic modes is stronger
than that involving one or more gravity modes. This is so be-
cause the effect of the centrifugal distortion is only important
in the acoustic cavity and it increases with the mode frequency.

For an exact resonance, that is when B11 = B22, we get
(
a1

a2

)
±
= ∓sign(B12)

√
I2

I1
, (9)

and, regardless of the coupling strength, we have strong mode
mixing. Then, the relative amplitudes are determined by
mode inertiae. Therefore, for instance, an ` = 2 mode trapped
in the interior thus having a large inertia may manifest itself
as a radial mode. A close doublet of “radial” modes may be
detected in this case.

Now we consider three-mode interaction, adopting `2 =
`1 + 2 and `3 = `2 + 2. An interesting situation arises when
the closest resonance occurs between modes with ` differing
by 4. Since we have B13 = B31 = 0, the interaction takes place
through the `2 mode. Let us consider a simple limiting case
when B11 = B33. Then, one solution is

ω2 = B11 = B33, a2 = 0,
a1

a3
= −B23

B21
· (10)

The remaining two solutions are the same as in the case of two
mode coupling, except that BC = B12B21 + B23B32. The highest
degree mode, say ` = 4 or 5, which is normally undetectable,
acquires a large ` = 0 or, respectively, ` = 1 component. This
means that some higher degree modes may become detectable
by means of ground-based photometry.

3. Close frequencies in a sequence of β Cephei
star models

As an illustration we consider the evolutionary sequence of
12 M� star models in the β Cep instability strip. We adopted the
standard chemical composition (X = 0.7, Z = 0.02). Models
were calculated not allowing for convective overshooting from
the core. In these models we took into account the average
effect of centrifugal force, assumed uniform rotation with an
equatorial velocity of 100 km s−1 on the ZAMS, and imposed
global angular momentum conservation during evolution. The
adopted value of rotational velocity may be regarded typical for
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Fig. 1. Unstable low degree modes in a sequence of β Cephei star models with mass of 12 M�. The models cover only the expansion phase
of the main sequence evolution. In the left panel note that the ` = 0, p1 and ` = 2, g1 modes have close frequencies in the extended range of
log Teff . At lower log Teff the ` = 2, g2 mode comes to a near resonance with the same radial mode. We see also the proximity of the nonradial
` = 2 and 4 modes at σ ≈ 1.6−1.8. In the right panel, note a near resonance between the ` = 1, g1 mode and, first, the ` = 3, g2 and, later, the
g3. The proximity of three modes occurs only occasionally.

β Cep stars. The coupling strength is proportional to the square
of the velocity, but the result depends also on the frequency
difference. Thus, we have no simple scaling of the effect of ro-
tational mode coupling.

Figure 1 shows the frequency evolution in unstable low-
degree modes which are designated in accordance with the
avoided-crossing principle. The physical nature of the modes,
that is, the relative proportion of the contribution from acous-
tic and gravity propagation zones to mode’s energy, is reflected
in the slope of the σ(log Teff) function. Slow and rapid rises
correspond to dominant acoustic and gravity mode characters,
respectively. The latter implies larger mode inertia.

We have to worry about mode coupling when the frequency
distance between the modes becomes comparable to the rota-
tional frequency. With our choice of rotation rate we have di-
mensionless rotational frequency σrot ≡ Ω/

√
4πG <ρ> ≈ 0.1.

Thus, we can see that in many instances the coupling may be
significant.

Examples of coupled mode solutions are given in Table 1,
where only zonal modes (m = 0) are included. The values of `′
were assigned using again the avoided crossing principle, that
is, the ordering of modes in frequencies was kept unchanged.
The relevant frequency is νNC, which corresponds to Bkk. In
most cases the value of `′ identifies the dominant component
in the surface amplitude. The exceptions occur for modes with
drastically different inertiae.

The cases of exceptionally close two-mode resonances are
1, 3, 4, 7, 8, 9 and 11. There are differences between these
cases, which reflect not only the differences in the proximity
of the resonance but also in the nature of the coupled modes.
As we have already discussed in Sect. 2, the coupling involv-
ing modes of gravity character is weaker than that involving
only modes of the acoustic character. Weak coupling is re-
flected in the low values of ∆νC in cases 1 and 11. However,
the mixing of the modes is usually strong, except for `′ = 1
mode in case 11, which remains essentially pure ` = 1. This
has to do with the disparity of inertiae for the coupled modes.
In cases 3 and 4 both modes have p-mode character and the
correction due to coupling is larger. Still, the frequency shift of
∼0.015 d−1 is significant only for data obtained with observa-
tions lasting longer than 2 months. In general, we find rather
small rotation induced frequency changes, even in those cases
when the coupling is large.

In some of the listed cases, like 2, 10 and 12, the coupling
appears quite weak. Nonetheless, as we will see later in Sect. 5,
the diagnostic diagrams may be significantly perturbed.

Among the three-mode couplings, case 9A most closely
corresponds to the situation described in Sect. 2. With the accu-
racy adopted, the modes ` = 1 and 5 are in the exact resonance
and the ` = 3 mode is not far away. Also in cases 3A and 7A,
the three-mode coupling is important. In the latter case we see
that `′ = 4 mode acquires a large ` = 0 component. In case
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Table 1. Selected cases of rotational mode coupling. σ0 is the dimensionless oscillation frequency in the spherical models, ν0 = 2πω0 is the
corresponding cyclic frequency in d−1; νNC takes into account effects of rotation except for mode coupling; ∆νC is a frequency correction due
to coupling, whereas ∆νT is a total frequency change relative to the spherical model; ak are amplitudes of the involved eigenmode components.

Case log Teff coupling σ0 ν0 νNC ∆νC ∆νT coupled a1 a2 a3

modes

1 4.374 `1 = 2, g2 1.611 3.836 3.849 0.002 0.014 `′ = 2 0.88 −0.47
`2 = 4, g4 1.610 3.834 3.846 −0.002 0.011 `′ = 4 0.62 0.78

2 4.406 `1 = 0, p1 1.875 6.438 6.457 0.002 0.022 `′ = 0 1.00 −0.07
`2 = 2, g1 1.801 6.182 6.215 −0.002 0.031 `′ = 2 0.14 0.99

3 4.388 `1 = 0, p1 1.913 5.265 5.282 0.013 0.030 `′ = 0 0.91 −0.42
`2 = 2, g1 1.894 5.214 5.248 −0.013 0.021 `′ = 2 0.51 0.86

3A 4.388 `1 = 0, p1 1.913 5.265 5.282 0.011 0.028 `′ = 0 0.92 0.36 −0.15
`2 = 2, g1 1.894 5.214 5.248 −0.014 0.020 `′ = 2 0.50 −0.86 0.05
`3 = 4, g2 1.921 5.288 5.303 0.003 0.019 `′ = 4 0.59 0.51 0.63

4 4.374 `1 = 0, p1 1.932 4.600 4.615 −0.015 0.000 `′ = 0 0.85 0.53
`2 = 2, g1 1.934 4.605 4.636 0.015 0.046 `′ = 2 0.58 −0.82

5 4.392 `1 = 0, p2 2.462 7.096 7.110 0.008 0.022 `′ = 0 0.99 −0.16
`2 = 2, p0 2.385 6.877 6.913 −0.008 0.028 `′ = 2 0.24 0.97

6 4.376 `1 = 0, p2 2.496 6.064 6.076 0.015 0.027 `′ = 0 0.95 −0.30

`2 = 2, p0 2.445 5.939 5.976 −0.015 0.022 `′ = 2 0.39 0.92

6A 4.376 `1 = 0, p2 2.496 6.064 6.076 0.015 0.027 `′ = 0 0.95 0.30 0.00
`2 = 2, p0 2.445 5.939 5.976 −0.015 0.022 `′ = 2 0.39 −0.92 0.00
`3 = 4, g1 2.491 6.050 6.058 0.000 0.009 `′ = 4 0.17 −0.06 −0.98

7 4.354 `1 = 0, p2 2.508 4.875 4.886 −0.019 −0.009 `′ = 0 0.91 0.41
`2 = 2, p0 2.521 4.899 4.925 0.019 0.046 `′ = 2 0.59 −0.81

7A 4.354 `1 = 0, p2 2.508 4.875 4.886 −0.020 −0.009 `′ = 0 0.91 −0.42 0.00
`2 = 2, p0 2.521 4.899 4.925 0.020 0.046 `′ = 2 0.59 0.81 0.01
`3 = 4, g2 2.518 4.895 4.902 −0.000 0.007 `′ = 4 0.71 0.27 −0.64

8 4.370 `1 = 1, g1 1.981 4.532 4.566 −0.023 0.011 `′ = 1 0.73 0.68
`2 = 3, g2 1.983 4.537 4.571 0.023 0.057 `′ = 3 0.67 −0.75

8A 4.370 `1 = 1, g1 1.981 4.532 4.566 −0.018 0.016 `′ = 1 0.79 −0.60 −0.12
`2 = 3, g2 1.983 4.537 4.571 0.027 0.061 `′ = 3 0.61 0.79 0.10
`3 = 5, g4 1.940 4.439 4.456 −0.009 0.009 `′ = 5 0.09 −0.42 0.90

9 4.360 `1 = 1, g1 2.006 4.144 4.180 0.022 0.058 `′ = 1 0.75 −0.66
`2 = 3, g2 2.008 4.148 4.178 −0.022 0.007 `′ = 3 0.72 0.70

9A 4.360 `1 = 1, g1 2.006 4.144 4.180 0.000 0.036 `′ = 1 0.87 0.00 −0.49
`2 = 3, g2 2.008 4.148 4.178 −0.044 −0.014 `′ = 3 0.38 −0.71 0.59
`3 = 5, g4 2.006 4.143 4.180 0.044 0.081 `′ = 5 0.39 0.69 0.61

10 4.406 `1 = 1, p1 2.021 6.938 6.988 0.004 0.055 `′ = 1 1.00 −0.08
`2 = 3, g1 1.927 6.616 6.663 −0.004 0.043 `′ = 3 0.15 0.99

10A 4.406 `1 = 1, p1 2.021 6.938 6.988 0.002 0.053 `′ = 1 0.97 0.05 −0.25
`2 = 3, g1 1.927 6.616 6.663 −0.013 0.034 `′ = 3 0.14 −0.96 0.23
`3 = 5, g1 2.022 6.940 7.007 0.011 0.077 `′ = 5 0.21 0.12 0.97

11 4.372 `1 = 1, p1 2.230 5.205 5.224 0.000 0.019 `′ = 1 1.00 0.05
`2 = 3, g1 2.231 5.208 5.218 −0.000 0.009 `′ = 3 0.66 −0.75

12 4.380 `1 = 1, p2 2.690 6.795 6.858 0.009 0.072 `′ = 1 0.99 −0.13
`2 = 3, p0 2.584 6.528 6.572 −0.009 0.035 `′ = 3 0.21 0.98

12A 4.380 `1 = 1, p2 2.690 6.795 6.858 0.009 0.072 `′ = 1 0.99 0.13 0.00
`2 = 3, p0 2.584 6.528 6.572 −0.009 0.035 `′ = 3 0.21 −0.98 0.00
`3 = 5, g2 2.659 6.717 6.726 0.000 0.008 `′ = 5 0.08 −0.17 −0.98
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10A the frequency distance between ` = 1 and 5 is small, but
because the distance to ` = 3 is relatively large, the coupling
is essentially inconsequential. Also in case 6A, the coupling to
the third mode is without significant consequences. Here the
reason is the gravity character of ` = 4 mode.

Coming to tesseral modes (m , 0), we first note that the
coupling occurs if m = ±1 and, for even ` modes, also if
m = ±2. In general, coupling conditions between prograde and
retrograde mode pairs are not the same. The asymmetry is due
to the difference in the Ledoux constant for the coupled modes.
The only systematic difference relative to the m = 0 modes is a
somewhat weaker coupling due to smaller value of the angular
integrals entering expressions for B jk.

The near degeneracy of rotationally coupled modes occurs
also in wide ranges of δ Sct star models. For high order p-
modes the effect is systematic, as implied by the asymptotic
relation ωn,`+2 ≈ ωn−1,`. Since the coupling strength increases
with frequency, in the high order p-mode pulsators the effect
begins to be significant at lower rotation rates than in β Cep
stars. Frequency changes caused by rotational mode coupling
in δ Sct stars and in solar type pulsators have been discussed
by Goupil et al. (2000) and by Dziembowski & Goupil (1998),
respectively.

4. Photometric diagnostic diagrams for single
spherical harmonic modes

Our approach follows that of Cugier et al. (1994), except
for correcting an error in the expression for perturbed grav-
ity, which fortunately has negligible consequences (Cugier &
Daszyńska 2001). Here we outline the main steps. In our con-
struction of theoretical diagnostic diagrams we rely on the lin-
ear nonadiabatic description of oscillations. Normalization of
eigenfunctions is fixed in Eq. (2). With that, the local displace-
ment of the photosphere in the stellar reference frame may be
written as follows

δr(R, θ, ϕ) = εRRe{Ym
` e−iωt}, (11)

where ε is a small quantity, which is determined by data. This
equation implies that the phase zero corresponds to the maxi-
mum of displacement. The use of −iωt in the exponential time
dependence, which is now the most common choice, instead of
+iωt used by Cugier et al. (1994), results in the opposite signs
for the phase differences between calculated observables. For a
comparison of calculated and measured values it is important
to check the sign convention adopted in the data analysis. With
the sign convention adopted in the present work, the phase dif-
ference φa − φb > 0 means that the maximum of a occurs after
the maximum of b.

The corresponding changes of the effective temperature and
gravity during the pulsation cycle are given by

δTeff

T 0
eff

= ε
1
4

Re{ f Ym
` e−iωt}, (12)

and

δgeff

g0
eff

= −
(
2 +

3ω2

4πG <ρ>

)
δr
R
, (13)
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1E-3
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Fig. 2. The absolute values of the disc averaging factor plotted for
bolometric and for twelve passbands as a function of `. The passbands
include u, v, b, y and U, B,V,R, I, J,H,K filters.

respectively, where f is the complex quantity determined from
linear nonadiabatic calculations, < ρ > is the mean density of
the star and G is the gravitational constant.

Further, we assume static plane-parallel atmosphere, and
we write the monochromatic flux variation caused by the oscil-
lation mode with ` degree in the following form:

∆Fλ
F 0
λ

= εYm
` (i, 0)bλ`Re{[Dλ1,` + D2,` + Dλ3,`]e

−iωt}, (14)

Dλ1,` =
1
4

f
∂ log(Fλ|bλ` |)
∂ log Teff

, (15a)

D2,` = (2 + `)(1 − `), (15b)

Dλ3,` = −
(

3ω2

4πG <ρ>
+ 2

)
∂ log(Fλ|bλ` |)
∂ log g0

eff

(15c)

and

bλ` =
∫ 1

0
h0
λ(µ)µP`(µ)dµ. (16)

In this formula, the Dλ1,` term describes the temperature effects,
whereas the influence of the gravity changes is contained in the
Dλ3,` term. Both include the perturbation of the limb-darkening.
In our calculation we relied on Claret’s (2000) analytical fit
to Kurucz’s (1998) tabular data. The `-dependence of D1 and
D3 arises from the nonlinearity of the adopted limb-darkening
law. The D2,` term stands for the geometrical effects. The effect
of orientation with respect to the observer is described by the
spherical harmonic Ym

` (i, 0).
In Fig. 2 we show the dependence of the disc averaging fac-

tor, bλ
`
, on mode degree, `, for different passbands. For compar-

ison, the bolometric values are also shown. These are similar to
those calculated by Dziembowski (1977) with the Eddington’s
limb darkening law. In contrast, large differences are seen for
individual passbands. Stronger averaging of odd-`modes gives
rise to a pronounced oscillatory dependence on `, which is su-
perimposed on the decreasing trend. The amplitude is larger
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Fig. 3. Theoretical diagnostic diagram with the Strömgren passbands
u and y for unstable low degree modes in the β Cep star models with
M = 12 M�. In the sequences for the ` = 0 modes the most negative
values of the phase difference correspond to the coolest models.

than for the bolometric flux due to the flatter limb-darkening
law. Note that in the case of uniform brightness disc, the odd-`
modes beginning with ` = 3 are completely averaged out.

The decreasing trend does not properly reflect the ` depen-
dence of the expected amplitudes. This would be true only if
the temperature term dominates. For modes of low radial or-
ders the geometrical term D2 becomes dominant around ` = 6.
Then owing to the (` + 2)(` − 1) factor the decline with ` is
slower than implied by Fig. 2.

For calculating diagnostic diagrams it is convenient to use
the amplitude of the monochromatic flux variation in the fol-
lowing complex form

Aλ(i) = εYm
` (i, 0)bλ` (D

λ
1,` + D2,` + Dλ3,`), (17)

which is equivalent to Eq. (14). From this expression we can
directly obtain the amplitude ratio and phase difference in any
selected pair of passbands. Our choice is u and y Strömgren
filters. For modes described by a single Ym

` , these photometric
observables are independent of the aspect angle and azimuthal
order, m.

The diagnostic diagram for unstable modes in our model
sequence is presented in Fig. 3. Modes up to ` = 6 are included.
We can see that, in contrast to the radial modes, the nonradial
modes are crowded in small areas. Two aspects of this plot call
for an explanation. Firstly, why it is that the amplitude ratios
and phase differences of radial modes are particularly depen-
dent on frequency and model temperature? Secondly, what is
the origin of the grouping of nonradial modes?

The main reason for this distinctive behavior of radial
modes is a comparable but opposite contribution of the tem-
perature and the geometrical terms to luminosity variation. The
sum of the real part of Dλ1 and D2 varies significantly with tem-
perature and it is strongly frequency dependent. For ` = 1, we
have D2 = 0 and the only reason for the spread of the mode

positions is a weak dependence of bλ
`

on the passbands. The
role of the geometrical term for ` = 2 modes is comparable to
that of Dλ1. However, the two terms add, which results in much
smaller spread of their positions. The near overlap of ` = 1 and
3 modes is coincidencial. At still higher `, when geometrical ef-
fect dominates, the even and odd degree modes are gathered in
two small separate domains, determined solely by the bλ` factor
(see Fig. 2). The phase difference is always close to zero owing
to the small role of the only complex term, Dλ1.

5. Photometric diagrams for coupled modes

The complex amplitude of the monochromatic flux variation
for a coupled mode may be expressed in the form

Aλ(i) =
∑

k

akAλ,k(i), (18)

where ak are solutions of Eq. (4) and Aλ(i) is given in Eq. (17).
The quantities ak describe contributions of the `k-modes to the
coupled mode `′. Selected values of ak are given in Table 1.
The quantity f appearing in Eq. (17) is only weakly dependent
on `. Its relatively strong dependence on frequency is irrele-
vant in view of very small frequency spread of the mode in-
volved. In contrast to the amplitude ratio and phase difference
for the pure modes, these quantities now depend on the incli-
nation angle, i, and the azimuthal order, m. We will show here
few representative examples of the photometric diagnostic dia-
grams in the case of two and three mode coupling and we will
discuss the consequence for the mode identification.

Naively, one could expect that the coupled mode appears
in the diagnostic diagrams between positions corresponding to
its components associated with individual spherical harmonics.
We will see that this is not true.

As our first illustrative example, we chose the case when the
` = 0 and 2 modes are in close resonance (case 4 in Table 1).
In Fig. 4 we show how positions of the coupled modes move in
the diagnostic diagram with varying aspects. A comparison of
plots in the upper and lower panels reveals that the movement is
strongly mode-dependent. Let us focus first on the case of mode
dominated by the radial component, shown in the upper panel.
Due to close resonance, contamination with the ` = 2 compo-
nent is significant. The amplitudes of the ` = 0 and 2 com-
ponents are 0.85 and 0.53, respectively. An observer from the
polar direction will identify this mode as ` = 1. This is so, be-
cause the main role of the ` = 2 component is a cancellation
of the geometrical term in the expression for the flux variation
(see Eq. (14)). When the observer moves away toward the equa-
torial direction, he will see the mode as a pure ` = 0, at the an-
gle corresponding to the node of Y0

2 (i, 0), and subsequently he
will get mode characteristics which do not correspond to any of
single-` modes. Note that such an appearance has a significant
probability, as measured by the density of dots.

Figure 5 helps us to understand the cause of the described
behaviour. Here we show complex, arbitrarily normalized, am-
plitudes in the two selected passbands. To make the amplitudes
realistic one should divide them by a factor between 10 to 100.
We see an increasing phase difference between two passbands
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Fig. 4. The diagnostic diagrams with Strömgren photometry pass-
bands u and y, showing positions for coupled ` = 0, p1 and ` = 2, g1

modes (case 4 in Table 1) in the model at log Teff = 4.3741 (see Fig. 1).
This model corresponds to the smallest frequency distance between
these two modes. The upper panel refers to the solution dominated
by the ` = 0 component, while the lower one refers to the solution
dominated by ` = 2 component. Arrows correspond to observations
from the polar direction. Spacing between consecutive dots is 0.02 in
cos i. Note that the density of dots reflects probability of observing the
modes in various parts of that diagram. Circles indicate positions of
single ` modes with ` = 0, 1, 2, 3, 4.
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mark amplitudes seen from the polar direction.
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Fig. 6. The same as in Fig. 4 but the coupling between modes ` = 0
and 2 is much weaker (case 2 in Table 1).

when we move from polar to equatorial direction. This is pre-
dominantly due to a decrease of the real part of the complex
amplitude in y passband. Why does the argument for the y
passband change much more rapidly with aspect than that for u
passband? This is due to a smaller absolute value of D1, hence
the greater role of D2. Only in this colour does Re(A) pass
through zero. This happens at cos i = 0.32. Note, however, that
when the phase difference is large, the pulsation amplitude is
rather small. So that the situation may not be easily observable.

The very different pattern of the `′ = 2 mode behaviour,
shown in lower panel of Fig. 4, is due to the fact that now the
real part of the amplitude in both colours changes sign. This is
caused by the greater contribution from the ` = 2 component.
Here the equatorial position of the mode is not so distant from
the polar one. Surprisingly, the mode is often seen as either
` = 1 or ` > 3.

Figure 6 illustrates case 2, when as we have noted the cou-
pling is rather weak. Whereas for the `′ = 0 root the effect of
the coupling is marginal, for `′ = 2 it is quite significant. In
spite of the fact that the mode is dominated by ` = 2 compo-
nent, it has a fairly high chance to be identified as ` = 1 or
` > 3.

The cases of ` = 1 and 3 coupling never lead to a large
departure of the `′ = 1 modes from the ` = 1 position.
Since mode `′ = 3 acquires a substantial ` = 1 component,
it is mostly seen through this component and hence would be
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Fig. 7. An example of the diagnostic diagrams for the three mode
coupling (case 3A).

identified as ` = 1. It is interesting that many different modes
in rotating stars may be identified as ` = 1 by means of the
diagnostic diagram method, if effects of rotation are ignored.

Figure 7 illustrates an interesting case (case 3A in Table 1)
of the three-mode coupling. The `′ = 0 mode is most often seen
close to the ` = 0 position, but there is also a fair probability
to see this mode close the ` = 1 position. The path for the
`′ = 2 mode is very similar to that shown in the lower panel of
Fig. 5. The `′ = 4 mode is most often seen between ` = 0 and
` = 1 positions. However, seen from the equatorial direction it
is quite far from any position of a single ` mode.
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Fig. 8. Multiplets of coupled `′ = 0, 2, 4 modes for case 3A.
Amplitudes in the u band were calculated assuming common normal-
ization, ε = 1 in Eq. (17). Numbers above the symbols give most
likely identification upon neglecting effects of rotation. Lack of num-
bers means that mode can not be identified with any `.

For other modes of the same multiplets the coupling ef-
fects are less spectacular. In all the cases from m = −2 to
m = +2, the `′ = 2 modes hardly move from the ` = 2 position.
As expected, the effect for the `′ = 4 mode is more significant.
The mode stays predominantly between the ` = 1 and ` = 4
positions.

Figure 8 shows how mode-coupling of the multiplets would
be identified if rotation is neglected. In this figure we plotted
the observed amplitudes assuming that the intrinsic mode am-
plitudes are the same. Note that the indicated amplitudes should
be divided by a factor between 10 and 100 to correspond to re-
ality. Identifications were based on the diagram in Fig. 3.

6. Conclusions

We have seen that even at moderate rotation, mode coupling
leads to complications in the diagnostic diagrams used for
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photometric mode identification. Modes of degrees ` > 2,
which are often ignored in identification of peaks in oscillation
spectra, may acquire substantial low ` components, and are
more easily detected. Unlike modes described by a single
spherical harmonic, the positions of coupled modes in the diag-
nostic diagrams depend on the aspect and on the azimuthal or-
der. The positions may be quite confusing, for instance, a mode
composed of the ` = 0 and ` = 2 components may appear for a
range of aspect angles at the ` = 1 position.

All this is not good news for the photometric mode iden-
tification procedure. The problems are not confined to a few
cases, but occur at the typical rotation rates encountered in β
Cep and δ Sct stars. Close frequencies of rotationally coupled
modes occur over wide ranges of the instability strips. The im-
plication is that we must be careful in using the diagnostic di-
agrams for inferring the ` values. The diagrams remain useful.
After all, they do provide observational constrains on stars and
their oscillations. However, mode identification may be done
only simultaneously with determination of stellar parameters
and inclination of rotational axis.
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