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[1] Although the analysis of observational data indicates that quasi-separatrix layers
(QSLs) of magnetic configurations have to play an important role in solar flares, the
corresponding theory is only at an initial stage so far. In particular, there is still a need of a
proper definition of QSLs based on a comprehensive mathematical description of
magnetic connectivity. Such a definition is given here by analyzing the mapping produced
by the field lines which connect photospheric areas of positive and negative magnetic
polarities. It is shown that magnetic configurations may have regions, where cross sections
of magnetic flux tubes are strongly squashed by this mapping. These are the geometrical
features that can be identified as the QSLs. The theory is applied to quadrupole
configuration to demonstrate that it may contain two QSLs combined in a special structure
called hyperbolic flux tube (HFT). Both theoretical and observational arguments indicate
that the HFT is a preferred site for magnetic reconnection processes in solar
flares. INDEX TERMS: 7519 Solar Physics, Astrophysics, and Astronomy: Flares; 7524 Solar Physics,

Astrophysics, and Astronomy: Magnetic fields; 7835 Space Plasma Physics: Magnetic reconnection;

KEYWORDS: quasi-separatrix layer, current sheet, magnetic reconnection, solar flare

1. Introduction

[2] Investigations of coronal magnetic fields extrapolated
from photospheric magnetograms show a systematic spatial
correlation between the locations of energy release in solar
flares and the regions of strong variation of the field line
connectivity [Mandrini et al., 1995; Démoulin et al., 1997].
Such regions, called quasi-separatrix layers (QSLs), are
thought to be the plausible places for the magnetic recon-
nection process [Longcope and Strauss, 1994; Priest and
Démoulin, 1995].
[3] In most of the coronal volume the quasi-static con-

ditions are fulfilled, so that the magnetic field evolves
through a sequence of force-free equilibriums. These con-
ditions, however, may easily break down in QSLs, where
due to a strong variation of the field line connectivity the
rearrangement of the field lines during the evolution of the
configuration may occur faster than in other places. This in
turn implies a locally large acceleration of plasma and hence
a locally unbalanced Lorentz force, which requires the
corresponding enhancement of the current density in QSLs.
The importance of inertia in the current layers at the QSLs
also follows from exact solutions of linearized MHD
equations describing a quasi-static evolution of inhomoge-
neous magnetic fields [Inverarity and Titov, 1997].
[4] The paper is organized as follows. In section 2 the

difference between separatrix surfaces and QSLs is dis-
cussed together with a first definition of QSLs. Section 3
describes local geometrical properties of the magnetic con-

nectivity and gives the correct definition of QSL. Section 4
illustrates the developed theory by applying it to quadrupole
magnetic configuration relevant to solar flares. The con-
clusions are summarized in section 5.

2. Field Line Mapping

[5] The magnetic field lines in solar active regions nor-
mally connect domains of positive and negative polarity of
the photospheric plane. Choose the coordinate system, so that
this plane is given by z = 0. The location of field line
footpoints on the photosphere can be represented depending
on the polarity by the radius-vector r+ = (x+, y+) or r� = (x�,
y�). The connections of the footpoints by field lines determine
two mutually inverse mappings �þ�

: r+ 7! r� and ��þ
: r� 7! r+

(Figure 1). We shall simply use � if we refer to aspects valid
for both mappings. Also the representation in coordinates
�
þ�ðrþÞ � ðX�ðrþÞ; Y�ðrþÞÞ and ��þðr�Þ � ðXþðr�Þ; Yþðr�ÞÞ
will be used for the mappings further on.
[6] The mapping � is discontinuous at the footpoints of

the field lines threading magnetic nulls in the corona or
touching the photosphere, since the magnetic flux tubes
enclosing such field lines are split at the nulls or at the so-
called ‘bald patches’ [Seehafer, 1986; Titov et al., 1993].
The latter are segments of the photospheric inversion line,
where coronal field lines touch the photosphere. The corre-
sponding discontinuities serve as indicators for the separa-
trix field lines and surfaces. It is worth to emphasize that the
coordinates (x±, y±) in this case need not to be Cartesian
because the discontinuities are revealed in any system of
coordinates irrespective of the metric.
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[7] However, with the help of the metric or Cartesian
coordinates one can determine not only the genuine sepa-
ratrices but also the QSLs. The integrity of the flux tubes is
preserved within the QSLs and so the mapping � remains
continuous at the corresponding footpoints, but the shape of
their cross sections strongly changes along the flux tubes.
Thus, instead of true discontinuities in � at the intersection
of the genuine separatrices with the photosphere, there are
continuous but rapid variations in � at the photospheric
cross sections of QSLs. These variations can be detected
with the help of the metric only, which enables us to
measure and compare the distances between the footpoints
in one polarity and corresponding footpoints in the other
polarity. In this respect QSLs and separatrices are qualita-
tively different objects. Indeed, ignoring the above metrical
information about � and using a proper continuous change
of coordinates, it is possible to eliminate the rapid variations
in � and thereby the QSLs themselves, while discontinuities
of � and hence the corresponding separatrices are not
removable in this way. However, as we will see the
discontinuities can be considered as degenerated cases of
QSLs which suggests that such QSLs must be as important
as genuine separatrix surfaces.
[8] For the determination of the QSLs Priest and Démou-

lin [1995] proposed to use the function (called ‘the norm’)
N(r+) or N(r�), which in Cartesian coordinates are

Nðr�Þ¼
@X

@x�

� �2

þ @X

@y�

� �2

þ @Y

@x�

� �2

þ @Y

@y�

� �2
" #1=2

� N�:

ð1Þ

It was proposed thatN(r±)�1 defines field lines belonging to
QSLs. Yet this norm in application to different footpoints of
the same field line yields generally different values N+ and
N�, which leads to an ambiguity in the determination of
QSLs. This disadvantage of the norm indicates that the
adequate measure for QSLs must be invariant to the choice of
the mapping �þ�

or ��þ
. In the next section we find such a

measure by analyzing geometrical properties of the field line
connectivity.

3. Geometrical Description of Magnetic
Connectivity

3.1. Diagonalization of the Jacobian Matrix

[9] The mapping �þ�
or ��þ

is locally described by its
differential d�þ�

or d��þ
, respectively, which is a linear mapping

from the plane tangent to the photosphere at one footpoint to

a similar plane at the other footpoint. These differentials are
represented by the corresponding, mutually inverse, Jacobian
matrices

D
þ�

¼
@X�
@xþ

@X�
@yþ

@Y�
@xþ

@Y�
@yþ

 !
� a b

c d

� �
ð2Þ

and

D
�þ

¼
@Xþ
@x�

@Xþ
@y�

@Yþ
@x�

@Yþ
@y�

 !
¼ ��1

þ
d �b

�c a

� �
; ð3Þ

�þ ¼ ad � bc � det D
þ�

: ð4Þ

We assume hereafter that (x±, y±) are measured in one
Cartesian system of coordinates covering the whole photo-
spheric plane. Equations (2) and (3) show that it is sufficient
to have only one of these matrices for a local description of
the magnetic connectivity.
[10] The determinant �+ is always negative in the

chosen coordinate system. This can easily be seen for
the simplest arcade-like magnetic configuration, which is
symmetric about its photospheric inversion line y = 0
separating positive and negative polarities at the upper
(y > 0) and lower (y < 0) half planes, respectively. Due to
the assumed symmetry X�(x+, y+) � x+ and Y�(x+, y+) �
�y+, so that a = 1, b = 0, c = 0 and d = �1, which in
turn yields �+ = �1. Any other configuration with the
same trivial topology can be obtained from the considered
one by using a suitable smooth deformation. Such a
deformation generally changes the absolute value of �+,
but preserves its sign, so that �+ always has to be
negative.
[11] The negative sign of �+ is related with the reversing

of the orientation of the vector basis by the d�þ�
mapping.

Indeed, let us take in the tangent plane at some footpoint r+
an orthonormal vector basis (û+, v̂+) having a right-handed
orientation, which means that û+  v̂+ � ẑ = 1, where ẑ is a
unit vector along z-axis. This basis is generally mapped by
d�þ�

into a nonorthonormal basis (u�, v�) in the correspond-
ing tangent plane at �þ�

(r+) by giving u�  v� � z = �+ < 0.
Thus the basis (u�, v�) must have the left-handed orienta-
tion (Figure 2a).
[12] The angle between u� and v� depends not only on

the matrix D
þ�

but also on the orientation of the orthonormal
basis (û+, v̂+). It turns out that by rotating the latter one can
yield an orthogonal pair (u�, v�) (Figure 2b). To show this
we use angles g+ and g� which determine the directions of
û+ and u� with respect to the x-axis and corresponding
matrices of rotations of these vectors Rgþ and Rg� . Regard-
ing now the vectors as appropriate columns of coordi-
nates and denoting x̂ ¼ ð1 0ÞT and ŷ = (0 1)T, we obtain
from Figure 2b that ûþ ¼ Rgþ x̂ and u� ¼ l1Rg� x̂, where
l1 � |u�|. By definition, however, u� ¼ D

þ�
ûþ and there-

fore R�1
g� D

þ�
Rgþ x̂ ¼ l1 x̂.

[13] Similarly, v̂þ ¼ Rgþ ŷ and v� ¼ D
þ�

v̂þ, result in
v� ¼ D

þ�
Rgþ ŷ. To satisfy the condition u� ? v� we have

to require v� ¼ l2 Rg� ŷ, where l2 � �|v�| is negative
because d�

þ�
reverses the orientation of the basis. Thus both

Figure 1. The photospheric plane and magnetic field lines
connecting positive and negative polarities, which are
separated by the inversion line (IL).
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ŷ and x̂ are eigenvectors of the same matrix R�1
g�

D
þ�

Rgþ .
Summarizing all these calculations as

R�1
g� D

þ�
Rgþ ¼ diagðl1;l2Þ � �; ð5Þ

we see that the condition u� ? v� requires that the two
nondiagonal elements of R�1

g�
Dþ� Rgþ must vanish. For a

given matrix Dþ� these requirements determine the angles g+
and g�. The calculation of the angles is facilitated signifi-
cantly if we introduce the following complex variables
ði ¼

ffiffiffiffiffiffiffi
�1

p
Þ

x ¼ aþ d þ i ðb� cÞ; ð6Þ

z ¼ a� d þ i ðbþ cÞ: ð7Þ

Expressing a, b, c, and d from equations (6) and (7) in terms
of |x|, arg x, |z|, arg z, and then substituting them into
equation (5), one obtains after some transformations

� ¼
jxjcosaþjzjcosb

2
� jxjsinaþjzjsinb

2
jxjsina�jzjsinb

2

jxjcosa�jzjcosb
2

 !
; ð8Þ

where

a ¼ gþ � g� � arg x; ð9Þ

b ¼ gþ þ g� � arg z: ð10Þ

[14] The matrix � is diagonal and hence the basis (u�, v�)
is orthogonal if a = b = 0, which yields

gþ ¼ ðarg xþ arg zÞ=2; ð11Þ

g� ¼ ðarg z� arg xÞ=2: ð12Þ

The diagonal elements of equation (8) in this case simply
become

l1 ¼ ðj x j þ j z jÞ=2; ð13Þ

l2 ¼ ðj x j � j z jÞ=2: ð14Þ

Other solutions with a = p and/or b = p are also possible
but not of interest, since they are the result of mirror
reflections about the directions given by equations (11) and
(12).
[15] By using equations (13) and (14) together with

equations (7), (6), (1), and (2) one obtains

j u� þ v� j¼ ða2 þ b2 þ c2 þ d2Þ1=2 � Nþ: ð15Þ

Thus the norm N+ determines simply the length of the
diagonal in the rectangle constructed on the orthogonal
vectors u� and v� (Figure 2b).

3.2. The Degree of Squashing

[16] Let us determine similar characteristics for the
reverse differential d�

�þ
at r� ¼ �

þ�
ðrþÞ. The simplest way

to do this is just to change in equations (11)–(14) the
superscripts ± on 
 and the elements of D

þ�
(equation (2)) to

the corresponding elements of D
�þ

(equation (3)). Then we
obtain for the complex values similar to equations (6) and
(7)

~x ¼ ½d þ a� i ðb� cÞ�=�þ � �x=�þ; ð16Þ

~z ¼ ½d � a� i ðbþ cÞ�=�þ � �z=�þ; ð17Þ

yielding the following angles:

~gþ ¼ ðarg xþ arg zþ pÞ=2 ¼ gþ þ p=2; ð18Þ

~g� ¼ ðarg z� arg xþ pÞ=2 ¼ g� þ p=2: ð19Þ

They show that the orthonormal basis (û�, v̂�) correspond-
ing to this solution is rotated by p/2 with respect to the basis
(u�, v�) and the same is valid for (u+, v+) and (û+, v̂+)
(Figures 2b and 2c). Defining ~l1 and ~l2 in analogy to
equations (13) and (14) and using �+ = l1l2 together with
equations (16) and (17) we obtain

~l1 ¼ �1=l2; ð20Þ

~l2 ¼ �1=l1: ð21Þ

Figure 2. The mapping of an orthonormal basis (û+, v̂+) by
the differential d�

þ�
(a,b): the basis (u�, v�) is in general

nonorthonormal (a), but it is orthogonal for a special
orientation of (û+, v̂+) (b) when |u� + v�| determines the
norm N(r+). The inverse differential d�

�þ
maps the

orthonormal basis (û�, v̂�), rotated with respect to (u�,
v�) on p/2, into the orthogonal basis (u+, v+) (c), so that |u+|/
|v+| = |u�|/|v�| but |u+ + v+| = N(�

þ�
(r+)) 6¼ N(r+). The shaded

areas show how these properties of the mappings manifest in
the corresponding cross sections of thin flux tubes.
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So the norm in the negative polarity at the footpoint
r� ¼ �

þ�
ðrþÞ is

N� � �
þ�

¼ Nþ= j �þ j; ð22Þ

hereafter the symbol 6 stands for the composition of the
corresponding functions.
[17] This consideration shows that the determination of

QSLs by means of the norms N+ and N� must really lead to
different results if |�+| 6¼ 1. For example, consider the
potential configuration, in which a small photospheric area
of concentrated positive flux is surrounded by a large
negative polarity with the same absolute value of the flux.
This configuration can be modeled by fictive positive and
negative charges, which are equal in absolute value and
placed below the photosphere on different depths l and L,
respectively, such that l � L. Field lines ‘‘fountain’’ here
from the positive to the negative polarity, so that N+ � 1
and N� � 1. Thus we have a contradictory case, where
being applied to different polarities the norm yields different
results.
[18] One could try to avoid this ambiguity by requiring

that both conditions N+ � 1 and N� � 1 should be satisfied
in QSLs. According to equation (22) this would actually be
equivalent to finding regions in the positive polarity, where
both N+ � 1 and N+ / |�+| � 1 are fulfilled. In principle,
nothing is wrong here accept that the description of QSLs
simultaneously by two different functions does not look like
a well-founded approach.
[19] Alternatively, one could sacrifice the symmetry of

the QSL definition with respect to the ‘‘positive’’ and
‘‘negative’’ footpoints by requiring that N+ or N� must be
large in QSLs. Then the configurations like the one in the
above example would be identified as QSLs. However, they
show no connection to any true separatrix surface in what-
soever limiting case, thus such a criterion of QSL should
also be discarded.
[20] The described difficulty may be resolved in the

following way. Notice first that the mapping � can locally
be described by l1, l2, g+ and g�. Here only l1 and l2
determine the value of footpoint displacements, while g+
and g� define their directions. So it would be natural if the
required characteristic is a function of l1 and l2 only. Let us
show that this is actually the ratio |l1/l2|. According to
equations (20) and (21) (see also Figures 2b and 2c) it
coincides with the ratio j ~l1=~l2 j and thereby characterizes
the magnetic connectivity itself rather than one of the
mappings �

þ�
or �

�þ
. If we define the elemental flux tubes

(EFTs) as tubes with infinitesimal cross sections, then
|l1/l2| determines the degree of squashing of the EFTs at
their photospheric ends (see shaded regions in Figures 2b
and 2c). Normally this quantity has to be of the order of
unity and only in special regions it may become extremely
large. By using equations (6)–(14) one can derive that

j l1=l2 j¼ Q=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=4� 1

p
; ð23Þ

Q ¼ N 2
þ= j �þ j; ð24Þ

which shows that |l1/l2| � Q for Q � 1. Q can be
interpreted geometrically with the help of the rectangle built

on the vectors u� and v� (see Figure 2b) as the ratio of its
diagonal squared to its area, because |�+| = |u�| |v�|. This
means also thatQ = (l1

2 + l2
2)/|l1l2| and so minQ = 2 at |l1| =

|l2|. The expression for Q has an elegant form, invariant to
interchanging of + and�, and simpler than equation (23), so
it is reasonable to define that the QSL is a layer-like flux tube
consisting of magnetic field lines with Q � 2. Bearing in
mind the above mentioned properties of Q, one can call this
quantity QSL-squashing degree. Equation (24) implies that
the QSLs defined with the help of Q or N+ have to be
essentially different if the determinant �+ varies in the
photospheric plane as strong as N+.
[21] Here it is worth mentioning a related quantity,

namely the so-called differential flux volume

V ðrþÞ ¼
Z �

þ�
ðrþÞ

rþ

dl

B
� V ð�

þ�
ðrþÞÞ; ð25Þ

in which the integration is carried out along the correspond-
ing field line. It defines the ratio of volume and magnetic
flux of an elemental flux tube enclosing a given field line,
since

V ðrþÞ ¼
Z �

þ�
ðrþÞ

rþ

dS
d�

dl ¼ 1

d�

Z �
þ�

ðrþÞ

rþ

dS dl;

where dS and d� � BdS are the cross section of that tube and
magnetic flux in it, respectively. This value has appeared in
the analysis of current sheet formations along separatrix
surfaces in quasi-static evolutions of 2 1

2
D magnetic config-

urations [Zwingmann et al., 1985; Low and Wolfson, 1988;
Vekstein et al., 1991; Vekstein and Priest, 1992]. It has also
been used (under the name ‘‘delay function’’) for studying
3-D magnetic topology caused by the presence of null points
[Lau, 1993]. Recently Schindler and Birn [1999] have
shown that strong spatial variations of V may cause a similar
formation of current layers in 3-D magnetic fields. So at first
sight it seems natural to use this value for characterizing
QSLs. However, one can see from the definition of V that it
depends not only on the field line connections of the points
in different polarities but also on the field line properties in
the coronal volume. Therefore V is not a measure for the
field line connectivity alone. For example, if one fixes the
foot points of the field lines in a given configuration and
exposes the coronal volume to a smooth deformation, then V
will change in response to such a deformation, while the
field line connectivity will remain the same. Thus V cannot
be used as a measure of the connectivity, which does not
reduce, however, its value in understanding the process of
current sheet formation, because this process may depend
not only on the connectivity but on other factors as well (see
also section 4.3).

3.3. Expansion-Contraction Degree

[22] The QSL-squashing degree Q provides the most
important information about the magnetic connectivity.
However, it is only a part of the whole information provided
by the Jacobian matrix, which has four independent param-
eters. The second characteristic of the connectivity can be
obtained as follows. Since �

þ�
and �

�þ
are mutually inverse

mappings (see also equations (3) and (4)), the quantities

SSH 3 - 4 TITOV ET AL.: THE THEORY OF MAGNETIC CONNECTIVITY



|�+| and |��|
�1 (� |det D

�þ
|�1) have the same value if they

are evaluated at the corresponding footpoints of a given
field line. In other words,

K � lg j �þ j� �lg j �� � �
þ�

j ð26Þ

and so |K| is invariant to an interchange of + and �.
Therefore |K| can be used as a second independent charac-
teristic of the magnetic connectivity.
[23] However, the sign of K yields an extra information,

which shows whether an EFT (elemental flux tube) starting
at the point of the evaluation expands (K > 0) or contracts
(K < 0) toward its other footpoint. If one plots the distribu-
tion of K together with the photospheric inversion line
separating positive and negative polarities, it will show
not only the degree of expansion of EFTs, but also the
direction in which this expansion occurs. Thus, for charac-
terizing magnetic connectivity it is better to use the value K
than its modulus. K will be further called the expansion-
contraction degree of EFTs.
[24] The conservation of magnetic flux in flux tubes

enables us to express K in terms of the normal component
of the photospheric magnetic field. Indeed, let an EFT
have the cross section |dx+dy+| in the positive polarity,
then the equality of magnetic flux at the ends of the EFT
means that |Bz+ dx+dy+| = |Bz� 6 �

þ�
�+ dx+dy+|, where

Bz+ � Bz(x+,y+,0) and Bz� � Bz (x�,y�,0) are normal
components of the magnetic field in the corresponding
polarities. Therefore, for the positive polarity we have

K ¼ lg
Bzþ

Bz���
þ�














; ð27Þ

while the interchange of plus and minus in this formula
determines K for the negative polarity. Here we used that
Jacobian of the field line mapping coincides with the ratio
of Bz components at the ends of field lines. This ratio is
much easier to compute than the Jacobian, so that
formula (27) is more valuable for application than equa-
tion (26). Also it is a bit more convenient to plot this ratio
in a logarithmic scale rather than K itself.

3.4. Orthogonal Parquet

[25] One can see from equations (18) and (19) that g+ �
g� and any p-periodic function of g+ + g� are also invariant
with respect to the direction of mapping �. Being independ-
ent on Q and K, these invariants could additionally be used
for characterizing magnetic connectivity. Unfortunately,
their plots are not much meaningful for the interpretation
compared to Q and K. This motivated us to use these angles
for obtaining a more transparent graphical representation.
[26] Remember that (see section 3.1) g+ and g� deter-

mine at the footpoints of a given field line the orientations at
which the orthogonal vector bases are mapped into each
other. This defines two mutually orthogonal vector fields on
the photosphere. The integral lines of both fields intersect
each other orthogonally and thus form what we call the
orthogonal parquet. In the positive polarity the lines with
tangents inclined at the angles g+ correspond to the dilation
coefficient l1, while the lines orthogonal to them corre-
spond to l2. In the negative polarity the lines with tangents

inclined at the angles g� correspond to the dilation coef-
ficient ~l1, while the lines orthogonal to them correspond to
~l2. The corresponding tiles of the parquet are intercon-
nected by �, so that equations (20) and (21) are fulfilled.
Thus such a parquet visualizes the properties of magnetic
connectivity described by g+ and g�. In fact, the properties
determined by Q and K or l1 and l2 can also be incorpo-
rated in the parquet if one chooses properly sizes of the tiles
or, in other words, the proper parameterization of the
integral lines.
[27] Indeed, we can regard the whole magnetic config-

uration in the corona as a collection of EFTs with infin-
itesimal photospheric cross sections � d2. Given the
rectangles (l1�1/2d)  (|l2|

�1/2 d) in the positive polarity
with the first side inclined at angles g+ (cf. Figure 2), it
follows then from equation (5) rewritten as

D
þ�

¼ Rg� �R�1
gþ

ð28Þ

that the corresponding cross sections in the negative polarity
are also rectangles but of the size (l1

1/2 d)  (|l2|
1/2 d) with

the first side inclined at angles g�.
[28] This is actually nothing more than a construction of

the orthogonal parquet in the limit of vanishing rectangular
tiles (d ! 0). To describe the parquet with tiles of finite size
(curvilinear rectangles now), assume that the parquet lines
corresponding to l1 and l2 are determined in positive
polarity by (x+1(s1), y+1(s1)) and (x+2(s2), y+2(s2)). Choose
the parameters s1 and s2 so that their infinitesimal incre-
ments ds1 and ds2 correspond to d in the above discussion,
then the parquet lines have to satisfy

dxþ1

ds1
¼ cosgþffiffiffiffiffi

l1

p ; ð29Þ

dyþ1

ds1
¼ singþffiffiffiffiffi

l1

p ; ð30Þ

dxþ2

ds2
¼ � singþffiffiffiffiffiffiffiffi

j l2

p
j
; ð31Þ

dyþ2

ds2
¼ cosgþffiffiffiffiffiffiffiffi

j l2

p
j
: ð32Þ

The equations for the parquet in the negative polarity are
obtained similarly. Hereafter the integral lines of systems
(29)–(30) and (31)–(32), respectively, will be called l1 and
l2 lines.
[29] To construct the orthogonal parquet, it is necessary

first to take an origin O+ as an initial point for integrating
equations (29)– (30) and compute the l1 line passing
through this point. Then the points belonging to this line
can be used as initial points for equations (31)–(32) to
compute the corresponding set of l2 lines. The l2 line
passing through O+ yields in turn initial points for (29)–
(30), whose integration gives the corresponding set of l1
lines. If the initial points in this procedure are chosen
equidistantly in parameter space, namely �s1 = d and
�s2 = d, with a sufficiently small step d, then the aspect
ratio of the parquet tiles will be �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1= j l2

p
j and, in
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particular, �
ffiffiffiffi
Q

p
at QSLs. Doing the same in the negative

polarity with the origin O� mapped from O+ by �
þ�, one can

reproduce the parquet in the whole photosphere. The ratio
of tile areas interconnected by field lines will approximately
coincide in this case with the corresponding local values of
the Jacobian. So the orthogonal parquet gives a complete
and convenient representation of magnetic connectivity.

3.5. Critical Points of the Parquet

[30] The present construction of the parquet is well
defined everywhere except for the points, where

x ¼ 0: ð33Þ

At these points arg x and hence g+ and g� are not defined,
so they are critical for equations (29)–(32). One can see
from equations (13) and (14) that first l1 = �l2 and hence
Q attains there its absolute minimum value 2 (see
equation (23)). Secondly, vanishing of z is impossible,
since it would mean that l1 = l2, which contradicts to that
l1l2 = �+ < 0. Thus the critical points are defined by
equation (33) only. The behavior of the parquet in their
vicinity requires a special consideration. It is sufficient to do
this for l1 lines, since the properties of l2 lines are similar.
It happens that in this case

t � tangþ

is more convenient for parameterizing l1 lines than s1.
Using this notation and equation (11), one can rewrite tan
2g+ as

2t
1� t2

¼ tanðarg xÞ þ tanðarg zÞ
1� tanðarg xÞtanðarg zÞ : ð34Þ

From here we are now going to derive an approximate
analytic form of the l1 lines in the vicinity of critical points.
Note first that according to equations (6) and (33)

d ¼ �a; ð35Þ

c ¼ b ð36Þ

at such points, so (7) yields

tanðarg zÞ � b=a: ð37Þ

Keeping also the first-order terms in Taylor expansion of
equation (6) at a given critical point, we have

tanðarg xÞ �
xIx xþ xIy y
xRx xþ xRy y

; ð38Þ

where the indices I and R stand for the imaginary and real
parts of x, respectively, and the indices x and y denote the
corresponding derivatives at the critical point - for example,
xIx ¼ @=ðxÞ=@x ¼ @b=@x� @c=@x.
[31] By substituting equations (37) and (38) into equation

(34) and making some transformations one can obtain

y=x ¼ P1ðtÞ=P2ðtÞ; ð39Þ

where

P1ðtÞ ¼ ðaxIx þ bxRxÞð1�t2Þ � 2ðaxRx � bxIxÞt; ð40Þ

P2ðtÞ ¼ ðaxIy þ bxRyÞðt2�1Þ þ 2ðaxRy � bxIyÞt: ð41Þ

Since on l1 lines dy/dx = t, the differentiation of
equation (39) yields the following equation for x(t)

d ln x

dt
¼ P0

1ðtÞP2ðtÞ � P1ðtÞP0
2ðtÞ

P2ðtÞðtP2ðtÞ � P1ðtÞÞ
; ð42Þ

which can be integrated to give

x

x0
¼ P2ðtÞ

P2ðt0Þ
Y3
i¼1

t� ti
t0 � ti











ki�1

: ð43Þ

Here the index 0 denotes the corresponding initial values,
while ti are the roots of the cubic equation P3(t) = 0 such that

P3ðtÞ ¼ tP2ðtÞ � P1ðtÞ ð44Þ

and

ki ¼ P2ðtiÞ=P0
3ðtiÞ ð45Þ

with the prime standing for the derivative to ti.
[32] Equation (43) corresponds to the case, where all the

roots ti are real. However, if only one of the roots, say, t3 is
real, then the solution is

x

x0
¼ P2ðtÞ

P2ðt0Þ
t� t3
t0 � t3











k3�1 ðt� t1Þðt� �t1Þ

ðt0 � t1Þðt0 � �t1Þ

� <ðk1Þ�1

exp 2=ðk1Þ½argðt1 � t0Þ � argðt1 � tÞ�f g: ð46Þ

This expression actually follows from equation (43) if one
omits there the modulus at i = 1, 2.
[33] Thus the l1 lines in the vicinity of a critical point of

the parquet are described in general either by equations (43)
and (39) or by equations (46) and (39). In the first case,
there are separatrices emanating from the critical point in
the directions with tangents t1, t2 and t3 (Figure 3a). In the
second case there is a single separatrix and its tangent
equals t3 (Figure 3b). The characteristic structure of l1
lines suggests to classify the critical points in I or Y type
depending on the number of separatrices (one or three,
respectively) they have. A similar analysis of l2 lines shows
that their local structure at a critical point is the same as for
l1 lines but rotated on 180	 around this point (Figure 3).
[34] The structure of the orthogonal parquet breaks down

at the critical points in the following way. Any Y point is a
vertex for six adjoint tetragons (Figure 3a), while a normal
point is a vertex for four adjoint rectangles. Any I point
belongs to a common side of two adjoint triangles rather
than rectangles in the normal case. The consideration of
particular examples shows also that the separatrices ema-
nating from these points connect the points or go to infinity.
In the result the whole photospheric plane is uniquely
divided by separatrices in several domains, whose corners
are the critical points. Each of these domains is smoothly
covered by the orthogonal parquet, while its ‘‘defects’’ are

SSH 3 - 6 TITOV ET AL.: THE THEORY OF MAGNETIC CONNECTIVITY



localized at the critical points in the above mentioned way.
Thus the critical points of the parquet describe a global
geometrical complexity of topologically simple magnetic
configurations. A more detailed investigation of the orthog-
onal parquet is certainly required, but it goes far beyond the
scope of the present work and so we restrict ourselves here
by an illustrative example (see section 4.5).

4. Application of the Theory
to a Quadrupole Configuration

[35] Let us see what the above formulated theory yields
for the configuration formed by two bipolar groups of
sunspots. Such a configuration is considered for a long time
as a basic model for solar prominence [Kippenhahn and

Schlüter, 1957] and flares [Sweet, 1969] and it is quite
instructive for our purposes. In an idealized form the
corresponding sunspots can be modeled by point-like sour-
ces e1,. . ., e4 of potential magnetic flux. The configuration
has a nontrivial topological structure due to the presence of
null points in the field. This means that all separatrix surfaces
here are formed by field lines emanating from the nulls. For a
wide range of positions and strengths of the sources there are
only two nulls N1 and N2 with the separatrices intersecting
along a special field line called ‘‘separator’’ (Figure 4)
[Baum and Bratenahl, 1980]. The same is also true for a
bit more general configuration with the sources spread on the
photosphere in finite regions, outside of which the vertical
component of the field vanishes [Sweet, 1969]. The neigh-
borhood of the separator here has to be favorable for the
development of a current sheet and a magnetic reconnection
process. This follows from the tendency of the highly
conducting solar plasma to preserve the magnetic topology
of the configuration during its evolution. Therefore the
presence of the nulls in the field is a crucial argument for
the current sheet formation in this configuration.

4.1. Distributed Versus Concentrated Sources

[36] In reality, however, the vertical magnetic field is
distributed on the whole photospheric plane. To incorporate
this fact, Gorbachev and Somov [1988] modified the
idealized configuration by placing the sources below the
photosphere. The sources here become fictive in the sense
that they determine a physically meaningful field only in the
corona and on the photosphere but not below it, where the
magnetic field is certainly not potential. This trick signifi-
cantly facilitates the calculation of a potential coronal field
corresponding to a rather complicated effective magneto-
gram (Figure 5), since the resulting field here is just a
superposition of the fields produced by the fictive sources.
However, such an ‘‘innocent’’ modification of the model
leads to serious topological consequences: the nulls deter-
mining the separator disappear from the photosphere
together with the sources. This means that the separator in
the form as defined above does not exist anymore. There-

Figure 4. The separator in the configuration with four
point-like sources is a field line (the thickest solid line)
connecting two nulls N1 and N2 (cf. Figure 10 of [Sweet,
1969]). The light grey semicircles represent the separatrix
fan surfaces near these nulls; the separatrix spine lines are
perpendicular to the fans.

Figure 3. The local structure of l1 (solid) and l2 lines
(dashed) in the vicinity of critical points of Y (a) and I types
(b) (see section 3.5). The thick lines represent the
corresponding separatrices.

TITOV ET AL.: THE THEORY OF MAGNETIC CONNECTIVITY SSH 3 - 7



fore it is inconsistent to introduce the separator into the
above realistic configuration by simply identifying it with
the separator of the fictive source system, as suggested by
Gorbachev and Somov [1988] (see Figure 6).
[37] In fact, the coronal magnetic topology in such a case

may be nontrivial only due to the field lines starting at bald
patches [Seehafer, 1986; Titov et al., 1993], and indeed,
there is a substantial range of parameters for the above
configuration, where this situation is realized [Titov et al.,
1993]. It gives the generalized separator field line [Bungey
et al., 1996], which is a limiting case of the normal one
[Titov, 1999]. However, one can prove that for the particular
example shown in Figure 5 the coronal nulls and bald
patches are absent and so the configuration is topologically
as simple as an arcade-like field. Thus the self-consistent
topological approach does not reveal in this case any site
preferable for the reconnection process.
[38] This negative but mathematically strict conclusion

contradicts an intuitive feeling that both the idealized and
realistic configurations must have similar physical proper-
ties. The discrepancy becomes even stronger if one takes
into account the success of the Gorbachev-Somov model
in explaining some observed features of solar flares (see
section 4.4). This successful part of the model has been
confirmed and developed later by other authors ([Démou-
lin et al., 1997] and references therein). Nevertheless, the
above discrepancy remained unresolved in these works,
since they followed the erroneous paradigm that a strong
variation of magnetic connectivity can be interpreted
exclusively as a topological effect.

4.2. A Hyperbolic Flux Tube (HFT)

[39] The above discrepancy can be resolved only in the
framework of a geometrical approach, which describes

equally good both topological and geometrical features of
magnetic connectivity [Titov and Hornig, 2002]. Indeed, the
computation of Q distribution for the above topologically
simple field (Figure 5) reveals on the photosphere two very
narrow strips with extremely high values of Q attaining
�106 in maximum (see Figure 7a). The distribution of |�| =
|l1 l2| � 10K represented in logarithmic scale (Figure 7b)
has a very large gradient at these strips, because they
separate two extended areas (elongated light grey regions)
of small |�| with the minimums�10�2 and end up in smaller
areas (compact dark grey regions) of large |�| with the
maximums �102.
[40] The strips here correspond to the photospheric cross

sections of a magnetic flux tube which according to our
definition could be identified as a QSL. A more detailed
consideration below, however, shows that it is actually
worth to distinguish two QSLs in this tube. The way they
appear here suggests to call such a tube a hyperbolic flux
tube (HFT) and its photospheric cross sections HFT traces.
The structure of the HFT becomes clear if one computes
the magnetic flux surface forming its boundary. It is
natural to determine such a surface by the condition Q =
const � 2, in which we have chosen Q = 100 for the HFT
under study. Other choices of Q are also possible, but they
define a similar larger or smaller surface depending on
whether the new Q is smaller or larger as the old one,
respectively.
[41] Figure 8 shows a rather nontrivial structure of the

HFT: it starts first at each of the above mentioned strips
on the photosphere as a thin layer and then quickly
transforms in the corona into a tube with an X-type cross
section in the middle (see Figure 9). The behavior of the
field lines on the boundary of the HFT helps to under-

Figure 5. The photospheric distribution of the vertical
magnetic field for the point sources e1 = �e2 = 0.6 and e3 =
�e4 = 0.4 placed below the photosphere (z = 0) on the plane
z = �0.1 (cf. Figure 1c of [Gorbachev and Somov, 1988]).
The IL is a thick solid line.

Figure 6. The separator in the model of Gorbachev and
Somov [1988]. The dashed lines passing through the fictive
charges and nulls N1 and N2 are intersections of the fictive
separatrix surfaces with the plane of the charges, while the
neighboring solid lines are the corresponding intersections
with the photosphere.
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stand its basic properties. Notice first that this boundary
surface intersects the photosphere at the two very
stretched ovals of crescent shape. The field lines starting
at the ends of one of the crescents form a narrow bunch,
which diverges hyperbolically in the corona and ends up
at one side of the other crescent. This remains valid for
the flux surfaces characterized by larger boundary values
of Q, so that such a hyperbolic structure of magnetic flux
recurs inside the HFT on smaller scales. The latter seems
to be a characteristic feature of the HFT motivating its
name. The relationship between the HFT and QSLs will
be clarified in the next subsection, where the limiting
transition of the HFT to the genuine separatrices is
considered.
4.2.1. Degenerate case of the HFT
[42] Consider now what happens in our example when the

fictive subphotospheric sources appear on the photosphere.
This implies that the depth of the sources d ! 0 and the
magnetic flux distributed over the whole photosphere is
concentrating in point-like sources. At each nonvanishing
d the configuration has a simple arcade-like magnetic

topology, while at d = 0 it acquires a nontrivial topological
structure shown in Figure 4. To understand how the HFT
evolves in this limiting process, determine the HFT-
boundary with the help of Q = Qmax/2, where Qmax is the
corresponding maximal value of Q on the photosphere at a
fixed d. It is clear that Qmax ! 1 at d ! 0, since in the
limiting configuration null points appear on the photosphere.
As was mentioned above, all HFTs irrespective of the
boundary value of Q have a similar form shown in Figure 8.
[43] Figure 8 shows that the HFT can be considered as

formed by two intersecting layers of variable thickness and
width. Their cross sections continuously transform along the
HFT as follows

//////////
////////// �! //////////

//////////nnnnnn �! //////////
//////////nnnnnnnnnnnnnnnnnnnn �! nnnnnnnnnnnnnnnnnnnn//////////// �! nnnnnnnnnnnnnnnnnnnn :

That is the width of the intersecting layers starts from a
relatively large value (compared to the thickness) at one

Figure 9. The half of magnetic flux surface Q = 100
enclosing the hyperbolic flux tube. The cross section is
made at the half-length of the field lines belonging to this
surface. In the photospheric plane z = 0 the distribution of
|�| is shown superimposed with the magnetogram from
Figure 7b.

Figure 8. Magnetic flux surface Q = 100 enclosing the
hyperbolic flux tube. In the photospheric plane z = 0 the
distribution of |�| is shown superimposed with the same
magnetogram is shown as in Figure 7b.

Figure 7. The photospheric distributions of Q (a) and |�| (b) superimposed with the corresponding
magnetogram (Figure 5); the dots and pluses trace the vertical projection of the four interacting flux tubes
on the photosphere.
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of the photospheric polarities, it grows farther in the
corona and shrinks abruptly to a small value at the other
polarity, where it corresponds to the thickness of the other
layer. Within one cross section the thickness of the layers
has in general a maximal value in the middle of the HFT
and decreases monotonically towards the edges of the
layers.
[44] For d ! 0 the width of the layers is increasing while

the thickness is continuously decreasing, so that for d = 0
they form two genuine separatrix surfaces intersecting along
the separator field line (Figure 4). Thus the separatrix
surfaces present in the d = 0 case have to be considered
as a result of a degenerated HFT.
[45] Since the above layers collapse to the genuine

separatrix surfaces in such a limiting transition, they
should be identified with QSLs. This fits very well to
our general definition of a QSL as a flux tube with Q � 2.
Note, however, that such a flux tube has the shape of a
layer only in the major part of the volume, while near one
of the photospheric polarity the high width/thickness ratio
decreases abruptly (see in Figure 8 the region of strong
divergence of the field lines in the HFT). One can also
conclude from the considered example that the magnetic
surface Q = const � 2 may inclose not one but two QSLs
simultaneously.
[46] Finally, this example motivates also the following

definition: the quasi-separator is a field line of the HFT, on
which Q attains a maximum. The quasi-separator turns into
the genuine separator when the corresponding null points
appear at the photosphere or in the corona.

4.3. HFTs as a Favorable Site for Magnetic
Reconnection

[47] Although intersecting separatrix surfaces are the
limiting case of an HFT, the topological argument on the
current sheet formations along these surfaces and especially
at the separator is no longer applicable to the HFT because
of its topologically trivial structure. This does not exclude,
however, that the quasi-separator plays a similar role in
reconnection process as the genuine separator. It is simply
necessary to find other arguments not based on magnetic
topology. Below we propose two such arguments which
rely only on geometrical and physical properties of the
HFT.
[48] First, we have computed for our example the photo-

spheric distribution of the differential flux volume V
(equation (25)). This distribution demonstrates (Figure 10)
that V has a very large gradient across the HFT traces.
According to Schindler and Birn [1999], this should be a
sufficient condition for the development of current layers at
the HFT during a general quasi-static evolution of the
configuration.
[49] However, quasi-static conditions may break down in

the solar corona due to a special structure of the HFT. So it is
worth to improve this approach by taking into account the
dynamics. Notice first that the Jacobian |�| has mutually
inverse values at the ends of a given field line. Therefore the
corresponding areas of minimums and maximums of |�| are
always connected to each other. Thus the |�| distribution
identifies two pairs of short and long magnetic flux tubes
whose projection on the photosphere are approximately
traced in Figure 7b by dots and pluses. These tubes are

actually a sort of ribs for the HFT as it is seen from Figures 8
and 9, where the boundary of the HFT and the |�| distribu-
tion are shown together. They are rooted with one end in the
regions of strong magnetic field and therefore are qualita-
tively distinct structural elements of the configuration. Due
to photospheric motion these tubes must somehow interact
with each other in the HFT. The character of such an
interaction can be appraised for the particular evolution in
which the ideal plasma flow only ‘‘shuffles’’ the field lines in
configuration without temporal variation of the field itself.
One can see from Figures 7b, 8, and 9 that such an evolution
would have the following peculiarity: if a field line passes
from one of the above mentioned tubes to another, so that
one of its footpoints crosses slowly the narrow HFT trace,
then its other footpoint will sweep along the HFT trace in the
other polarity. Figures 5 and 7b also show that the HFT
traces connect the modelled sunspots, so that they serve as
channels through which the field lines have an opportunity to
switch from one sunspot to another, both of the same
polarity. The aspect ratio of the HFT traces in the considered
example is of the order of

ffiffiffiffi
Q

p
�103. A crossing of the HFT

trace by a field line with a footpoint velocity v � 1 km/s
would require for its sweeping at the other end v� 103 km/s,
a value comparable with the Alfvén speed in the solar active
regions. This demonstrates that the violation of the quasi-
static conditions for such regions is reached foremost in
HFTs, which in turn implies a current accumulation there
and possible magnetic reconnection as well.

4.4. Observable Manifestations

[50] The transverse magnetic field in the middle part of
the HFT has a pronounced hyperbolic structure (Figure 9),
which is a characteristic feature of reconnection models

Figure 10. Photospheric distribution of differential flux
volume V superimposed with the corresponding magneto-
gram (Figure 5).
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[Priest and Forbes, 1992; Hornig, G. and L. Rastätter,
1998]. MHD simulations for the magnetic field with such a
structure show a good correspondence between the loca-
tions of developing current layers and the QSLs determined
by N [Milano et al. 1999]. This suggests that the favorable
place for the development of a strong current layer and
hence for the magnetic reconnection process is the middle
part of the HFT. The energy released at this place is
channelled to the photosphere by the corresponding field
lines to produce there brightenings in Ha line. Therefore the
HFT traces can be identified with the Ha ribbons of solar
flares, a fact that Gorbachev and Somov [1988, 1989]
explained by the presence of the separator in the config-
uration. From our approach, however, it is clear that for the
configurations with the distributed photospheric field only
the hyperbolic geometry has a real meaning, while the
indicated separator is no more than an artefact originated
by the auxiliary subphotospheric point sources.
[51] The flux tubes at the ‘‘ribs’’ of the HFT contract

towards the ends of the HFT traces, which is reflected in the
photospheric distribution of the Jacobian |�| as well as in the
3-D structure of field lines (Figures 7 and 8). This suggests a
natural explanation of the bright ‘‘kernels’’ at the ends of
flare ribbons: the contraction of the flux tubes at the ends of
the HFT traces has to concentrate the released energy in
these regions and so to form such kernels. Gorbachev and
Somov [1989] came to the same conclusion, although their
analysis of the global field line structure was erroneous.
They claimed that the kernels are connected to each other by
field lines; this is impossible. As was shown above the
contraction of the flux tubes at one end of the HFT is always
accompanied by their expansion at the other end, otherwise
the flux tubes in the HFT would not be squashed so much.
[52] The degree of squashing depends on how the mag-

netic flux is distributed on the photosphere. It must be
higher for the configurations with well-concentrated sources
and lower in the opposite case. Due to this dependence, the
Ha brightenings of flares have to be stronger in the kernels
or ribbons, respectively. This property of magnetic connec-
tivity naturally explains the observed morphological differ-
ence between compact and two-ribbon flares.
[53] Thus we have demonstrated in the simplest potential

approximation that the existence of the ribbons is due to the
special geometrical structure of the HFT. Moreover, the
previous investigations based both on the norm N [Démou-
lin et al., 1996] and on the squashing degree Q [Titov et al.,
1999] suggest that nonpotential magnetic configurations
have similar properties.

4.5. The Orthogonal Parquet in a Quadrupole
Configuration

[54] The distributions of Q and |�| yield the most
important but not the full information about the magnetic
connectivity in a given configuration. In particular, Q and
|�| do not show how the elemental flux tubes are arranged
around the HFT to provide its continuous embedding in the
whole quadrupole configuration. This information can be
obtained by computing the orthogonal parquet according to
the above formulated theory. The result for the example
from Figure 5 is shown in Figure 11.
[55] The resulting pattern of orthogonal u and v field

lines (called also l1 and l2 lines) has several critical points

where the (u, v) pair is not uniquely determined. These are
three pairs of I points and two pairs of Y points. Due to the
mapping of field lines from the region of positive to the
region of negative polarity each critical point has its
counterpart in the other polarity, denoted by upper indices
plus or minus, depending on the polarity they locate in.
[56] The separatrix l lines emanating from critical points

devide the plane in several regions, each of which has its
counterpart in the opposite polarity. The corresponding
regions are shaded in the same grey halftones and for the
corresponding separatrices the same line style is used, so
that dashed (solid) lines are mapped onto dashed (solid)
ones. As was shown in section 3.4, a pair of separatrix l1
and l2 lines emanates from an I point in opposite directions
to meet the other I point (see the points I2

± and I3
± in Figure 11)

or to intersect the other separatrice (see the points I1
± and I3

±).
For Y points there are all together six separatrices, three of
both types. They intersect other separatrices or the polarity
inversion line to divide the whole plane on several domains
with a simple orthogonal parquet inside. To reduce the
number of such domains, each separatrice has been termi-
nated just after the first intersection with the other.
[57] One can see from Figure 11 that the division of the

photospheric plane in such domains is in itself rather
involved. To avoid an excessive complexity of the figure,
the l lines of the parquet are reproduced only in the most
interesting domains, i.e., those which inclose the HFT
traces. In these domains the Q distribution presented earlier
in Figure 7a is shown as well to indicate the exact location
of the HFT traces. Everywhere else crosses indicate the
directions of the vectors u and v. The l lines mapped onto
each other are shown in different polarities in the same
style. This helps to see that the long l lines parallel to the
HFT traces are mapped to the short l lines perpendicular to
the HFT traces, exactly as it follows from the above
discussed |�| distribution.
[58] Comparing pairs of appropriate domains, one can

clearly see how the combination of stretching, contraction
and expansion of the flux tubes around the HFT provides a
continuous transition from this geometrically complex
object to a more simple surrounding field structure. Thus
the described technique is rather helpful for analyzing
magnetic configurations.

4.6. Concentrated Versus Distributed Sources

[59] A careful investigation of magnetic connectivity as
described above is a rather laborious matter. So it is useful to
have a simpler method for an ‘‘express analysis’’ of the
coronal field structure. The point source model provides such
a method for the case, where a magnetogram under study has
well pronounced extremums of the vertical magnetic field. In
this case one can aggregate magnetic flux nearby these
extremums in the corresponding photospheric point sources
and investigate the structure of the field produced by these
sources. As a matter of fact such a simplified configuration
has a nontrivial magnetic topology due the presence of
several null points.Most of the nulls, however, will be located
on the photosphere and so they will disappear in a more
accurate model with a distributed photospheric field as it is
clear from the previously considered example. The remaining
nulls may shift to the corona, while some of the disappearing
nulls give birth to bald patches, thereby determining the
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topological skeleton of the configuration [Bungey et al.,
1996]. The rest of the nulls disappearing in this transition
from one model to the other give actually rise to geo-
metrical features. In particular, if a pair of the disappearing
nulls belongs to a separator as in our example, it will
produce an HFT. The separatrix spine lines and fan
surfaces of the nulls (in more detail about spines and fans
see [Priest and Titov, 1996]) helps here to anticipate the
structure of the HFT in the model with distributed mag-
netic flux. Our example shows that the HFT traces are
approximately located along the spine lines of the source
model; these are the separatrix lines approaching the nulls
perpendicularly to the fan surfaces (cf. Figures 4–8). The
fan surfaces themselves do not leave features at the places,
where such a disappearance of the nulls occur. Only with
these reservations the source models may be useful for
investigating the structure of the coronal magnetic field.

5. Conclusions

[60] We have shown that the complete description of the
magnetic connectivity is given by the four metrical quanti-

ties invariant with respect to the direction of the field line
mapping. Two of them are squashing and contraction-
expansion degrees of the elemental magnetic flux tubes.
The second pair of quantities determine the directions of the
corresponding dilations of the tubes on the photosphere. All
four characteristics can be combined in one geometrical
object called orthogonal parquet. This is a global photo-
spheric network with curvilinear rectangular cells represent-
ing the cross sections of the respective flux tubes at their
ends.
[61] The singularities and discontinuities in the photo-

spheric distributions of the first two values correspond to
the topological features of the coronal field. They reveal the
genuine separatrix surfaces associated with magnetic nulls
and bald patches. The topologically trivial regions are
characterized by smooth distributions of the above values.
Nevertheless, they may contain geometrical features,
namely the strongly squashed flux tubes called quasi-
separatrix layers (QSLs).
[62] The considered example of the topologically simple

quadrupole configuration has illustrated this approach ‘‘in
action’’ by demonstrating its high efficiency in analyzing

Figure 11. The division of the photospheric plane in domains of a simple orthogonal parquet for the
configuration from Figure 5 by l lines emanating from the critical Y and I points (see Figure 3 and
sections 3.4 and 4.5). The linked domains are shaded in the same grey halftones. The l1 lines are dashed
in the positive polarity and mapped onto dashed l2 lines in the negative polarity, and vice versa for the
solid l lines. l lines of the orthogonal parquet are plotted in the domains enclosing the HFT traces. The
separatrix l lines are shown of larger thickness than the normal ones. The crosses represent the directions
of the corresponding u and v fields.
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the structure of coronal magnetic fields. We have shown that
this configuration may have a geometrical feature called
hyperbolic flux tube (HFT), which is a special combination
of two QSLs. The theoretical and observational arguments
are given in support of the HFT as a favorable site for
magnetic reconnection in solar flares.
[63] The geometrical and topological properties of mag-

netic connectivity, that is those which are based on the
metric or are independent of it, are often confused in
astrophysics. This is a source of misleading concepts and
results rather than only a question of terminology. In our
approach the borderline between the geometrical and topo-
logical descriptions is clearly defined, which helps to see an
urgent need in revising the present mechanisms of current
sheet formation in the solar corona.
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