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Abstract: A new method to simulate turbulent phase is investigated
in this paper. The goal of this method is to be able to simulate very long
exposure times as well as time evolving turbulence conditions. But contrary
to existing methods, our method allows to simulate such effects without
using the whole memory space required by the simulated exposure time,
making it particularly suited to the simulation of adaptive optics systems for
very large apertures telescopes.
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1. Introduction

Atmospheric turbulence imposes a fundamental limit to the resolution of ground based tele-
scopes [1, 2]. However it is possible to overcome this limitation thanks to Adaptive Optics
(AO) [3], which allows compensation in real-time for this degradation by using a wavefront
sensor linked to a deformable mirror.

As AO systems are very complex, they require extensive numerical simulation in order to de-
sign the architecture of the system [4]. The simulation of atmospherically distorted wavefronts
is the starting point of all these models. Several methods currently exist to create atmospheric
phase screens: modal techniques [5] or sample based. The latter can be subdivided into two
subcategories: Fast Fourier Transform (FFT) based [6, 7] or covariance based [8].

For computing reasons, it is often preferred to use FFT based methods. These methods can
also be used to study the temporal properties of atmospheric turbulence, thus allowing esti-
mation of the temporal bandwidth of AO systems. This is accomplished by translating the
generated phase screen over the telescope pupil. However, phase screens generated with these
methods generally suffer from periodicity as well as poor representation of low spatial frequen-
cies. A method to overcome this problem has been proposed [9], but is not straightforward to
implement.

Moreover, the FFT methods suffer from two problems. First, because of the finite size of
the computed phase screen, it is only possible to simulate finite exposure times, which become
shorter as the simulated wind velocity increases. This is an acute problem when simulating
very large apertures (more than 20 meters), for which the pupil has to be discretised over a
large number of pixels (typically 512). As an example, if a 30 meter telescope is simulated over
a grid of 1024×1024 pixels, and that we want to simulate a 1 mn exposure time, for a typical
wind velocity of 10 m/s, the resulting phase screen computed with a FFT will have a size of
20480×20480 pixels, resulting in a memory usage of more than 3Gb for 64 bits float precision.
Secondly, the FFT generated phase screens have static statistics, i.e. the Fried parameter r 0 as
well as the outer scale L0 are the same across the entire screen. In fact, for the studies of the
AO systems for next generation of Extremely Large Telescopes (ELTs), applications such as
exoplanet detection or long-exposure spectroscopy will require simulations of non-stationary
turbulence, which are non possible with current methods.

To overcome these problems, we propose in this paper a new method to generate phase
screens for very long exposures as well as for the simulation of non-stationary turbulence ef-
fects. But contrary to the existing methods, we do not need to store in memory the phase screen
for the entire simulation. Indeed the goal is to use already computed phase values to generate
new phase values consistent with the previous ones. Memory storage is required only for the
phase screen needed at the specific simulation iteration.

2. Principle of the method

Let ϕ(u,v) be a square discrete phase screen computed via the FFT based method, with a size
of dp × dp pixels. We have therefore 1 ≤ u,v ≤ d p. Moreover we assume that these d p pixels
correspond to a physical size of D meters. The pixel scale is therefore p S = D/dp meters/pixel.

Now let ϕ the vector storing all the elements of the phase screen, and Z the vector storing
the phase values of the last Ncol columns. Therefore Z has d p ×Ncol elements. Our goal here
is to extend the phase screen, i.e. add a new column to it. Let us then call X the vector storing
these new phase values. We assume the following relation between X and Z:

X = AZ+Bβ (1)

where A and B are two matrices, and β is a random vector with d p independent random
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variables. Moreover, as the turbulent phase is zero mean and has Gaussian statistics [2], we
assume that β is therefore a gaussian vector with zero mean and unit variance: 〈β 〉 = 0, and〈
β β T

〉
is equal to the identity matrix.

We now multiply Eq. 1 by ZT , and then take the average of the resulting equation. As β and
Z are uncorrelated, we find the following relation:

〈
XZT 〉

= A
〈
ZZT 〉

(2)

thus allowing us to compute A:

A =
〈
XZT 〉〈

ZZT 〉−1
(3)

We focus now on the matrices
〈
ZZT

〉
,
〈
XZT

〉
, and

〈
XXT

〉
, which give the covariance of the

phase for the X and Z vectors. We assume in the rest of this paper that atmospheric turbulence
follows the Von-Kármán model, which introduces the wave-front outer scale L 0, and which
agrees with the latest turbulence measurements [10]. The phase structure function then has the
following expression [11]:

Dϕ (r) =
(

L0

r0

)5/3

× 21/6Γ(11/6)
π8/3

[
24
5

Γ
(

6
5

)]5/6

×
[

Γ(5/6)
21/6

−
(

2πr
L0

)5/6

K5/6

(
2πr
L0

)]

(4)
where K5/6(r) is the modified Bessel function of the third kind, or McDonald function, Γ(x)

is the gamma function, and r0 is the Fried parameter [12]. The phase structure function D ϕ(r)
is linked to the phase covariance function Cϕ (r) = 〈ϕ(x)ϕ(x+ r)〉 by the relation Dϕ(r) =
2
[
σ2

ϕ −Cϕ(r)
]
, σ 2

ϕ being the phase variance. We have therefore:

Cϕ (r) =
(

L0

r0

)5/3

× Γ(11/6)
25/6π8/3

[
24
5

Γ
(

6
5

)]5/6

×
(

2πr
L0

)5/6

K5/6

(
2πr
L0

)
(5)

Then, if (ui,vi) and (u j,v j) are the respective coordinates of the points i and j, and if we call

ri j =
[
(u j −ui)2 +(v j − vi)2

]1/2 × ps the physical distance between these two points, then the〈
ZiZT

j

〉
,
〈

XiZT
j

〉
and

〈
XiXT

j

〉
terms will be given by the value of the phase covariance function

Cϕ (r) at the distance ri j.
Equation 1 gives also the following relation:

XXT = AZZT AT +AZβ T BT +BβZT AT +Bββ T BT (6)

By taking the average of this equation, and as β and Z are uncorrelated, we have therefore:
〈
XXT 〉

= A
〈
ZZT 〉

AT +BBT ⇔ BBT =
〈
XXT 〉−A

〈
ZZT 〉

AT (7)

and as
〈
ZZT

〉
is a symmetric matrix, its inverse is also symmetric. Then, we can write

AT =
〈
ZZT 〉−1 〈

ZXT 〉
(8)

and we obtain:

BBT =
〈
XXT 〉−A

〈
ZZT 〉〈

ZZT 〉−1 〈
ZXT 〉

=
〈
XXT 〉−A

〈
ZXT 〉

(9)

We therefore have the expression of the BBT matrix. However we need the B matrix for our
method. As BBT is symmetric, a singular value decomposition [13] allows to write it in the
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form BBT = UWUT , the columns of U being the eigenvectors of BBT and W being a diagonal
matrix with the eigenvalues λi. Moreover, as W is also diagonal, it can be written as W = LLT ,
where L is a diagonal matrix, and whose diagonal values are the square roots of the λ i. We can
then write

BBT = UWUT = ULLT UT = (UL)(ULT ) (10)

thus B = UL.
We therefore know how to compute the A and B matrices, which can then be used to extend

the phase screen. However the dimension of these matrices is directly linked to the number of
previous columns Ncol used to compute new phase values as well as the number of pixels used
to sample the telescope pupil. We therefore focus in the next section on the number of columns
needed in order to optimize the size of these matrices.

3. Maximum distance to take into account

The former section gave the mathematical formalism of our method of phase screen extension.
We focus here on its practical implementation.

Equation 1 shows that our method uses two matrix products to compute the new phase values.
The first matrix product is the multiplication of the A matrix by the Z vector. As Z has d p×Ncol

elements, this implies that A is a dp × (dp ×Ncol) matrix. Therefore, the size of the A matrix
evolves with Ncol , implying an increase of the computation time when new phase values are
computed.

To establish the constrainsts on the value of Ncol , we performed several simulations, for dif-
ferent values of D, L0, and Ncol . We used two methods to check that the phase screens computed
have the correct statistics: the phase structure function as defined by Eq. 4, as well as the projec-
tion of the phase on the Zernike polynomials Zi (2 ≤ i ≤ 66), in order to compute the variance
of their coefficients ai. The latter can be derived from the diagonal of the covariance matrix〈
aia j

〉
, whose analytical expression is given in [14] for a turbulence with finite outer scale.

We started by simulating a D = 8 meter diameter pupil with a number of pixels d p = 64, and
we assumed an outer scale L0 of 16 meters (L0/D = 2). The ratio of (D/r0) was equal to 1, and
was arbitrary as this ratio acts only as a scaling factor for the produced phase screen. The initial
Von-Kármán phase screen was computed via the FFT based method. Then we used Eq. 1 to
add one new column to the right of the phase screen and to remove the first column, so that the
generated phase screen always has a size in memory of d p×dp pixels. This was repeated 15 000
times, so as to add 15 000 new columns and compute 15000 correlated phase screens with a size
of dp×dp pixels. This gave us a sufficient number of samples allowing us to compute the phase
structure function as well as the variance of Zernike polynomial coefficients. Moreover, we
considered three different sizes for the vector Z in Eq. 1, corresponding to the case where this
vector is storing the phase values of the last Ncol columns, Ncol being respectively equal to 1, 2
and 4. The result of these simulations is shown on the Fig. 1, where the theoretical and observed
phase structure functions as well as Zernike polynomials variance are compared. We can see
there that there is a very good agreement between theory and the numerical implementation, as
soon as the last Ncol = 2 columns of the phase screen are used to compute the new phase values.

We conclude therefore that using the last 2 columns is sufficient to compute new phase values
consistent with the already computed ones, allowing us to extend the phase screen as long as
required. To examine any dependence on L 0, we repeated the simulation, this time assuming
an outer scale L0 of 64 meters (L0/D = 8), and considering again two values for Ncol : 2 and
4. The results of this study are shown in Fig. 2. Here again, we can see there that there is a
perfect agreement between the observed and theoretical phase structure functions and Zernike
polynomial variance for Ncol = 2.
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Fig. 1. Phase structure function (left) and variance of the Zernike polynomials coefficients
(right) computed from 15000 generated phase screens using Eq. 1, for several values of
Ncol : 1 (top), 2 (middle), and 4 (bottom). A D = 8 meter pupil was simulated on a square
grid of 64×64 pixels, and the outer scale was equal to L0 = 16 meters. The broken line on
the figures on the left corresponds to the theoretical phase structure function, whereas the
full line corresponds to the computed one. The full line on the figures on the right shows the
theoretical variance of the coefficients of the Zernike polynomials 2 to 66, and the squares
the computed values.

#9969 - $15.00 USD Received 14 December 2005; revised 19 January 2006; accepted 23 January 2006

(C) 2006 OSA 6 February 2006 / Vol. 14,  No. 3 / OPTICS EXPRESS  992



 0  1  2  3  4
0.0

0.2

0.4

0.6

0.8

D=8 m (64 pix), L0/D=8, Ncol=2 (L0/256)

Separation (meters)

P
ha

se
 s

tr
uc

tu
re

 fu
nc

tio
n 

(r
ad

2 )

10.02. 20.5. 50.
10−4

10−3

10−2

10−1

D=8 m (64 pix), L0/D=8, Ncol=2 (L0/256)

Zernike polynomial index
V

ar
ia

nc
e 

(r
ad

2 )

 0  1  2  3  4
0.0

0.2

0.4

0.6

0.8

D=8 m (64 pix), L0/D=8, Ncol=4 (L0/128)

Separation (meters)

P
ha

se
 s

tr
uc

tu
re

 fu
nc

tio
n 

(r
ad

2 )

10.02. 20.5. 50.
10−4

10−3

10−2

10−1

D=8 m (64 pix), L0/D=8, Ncol=4 (L0/128)

Zernike polynomial index

V
ar

ia
nc

e 
(r

ad
2 )

Fig. 2. Phase structure function (left) and variance of the Zernike polynomials coefficients
(right) computed from 15000 generated phase screens using Eq. 1, for two values of Ncol :
2 (top) and 4 (bottom). A D = 8 meter pupil was simulated on a square grid of 64× 64
pixels, and the outer scale was equal to L0 = 64 meters (L0/D = 8).
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This study shows therefore that our method is insensitive to the (D/L 0) ratio: as long as two
columns of the previous phase screen are used to compute a new column in order to extend the
phase screen, meaning that we use phase values up to a distance of 0.25 meters, the newly pro-
duced phase screen has the correct statistical properties, which is confirmed by the comparison
of the phase structure function as well as the Zernike polynomial variance.

Until now, we considered a D = 8 meter pupil simulated on a square grid of d p × dp pixels
(dp = 64), leading to a spatial sampling of ps = 0.125 meters per pixel, and for this spatial
sampling, two columns are sufficient to create a new column, independent of the outer scale
L0. To explore the requirements for finer spatial sampling, we performed new simulations, but
this time considered a D = 4 meters aperture simulated on a grid of 64×64 pixels, leading to a
spatial sampling ps = 0.0625 meters per pixel.

We first considered the same outer scale value as in our previous first simulation case, i.e.
L0 = 16 meters (L0/D = 4), and then used either Ncol = 2 or Ncol = 4 columns to create the
new column of the new phase screen. The comparison of the observed and theoretical phase
structure function as well as Zernike polynomial variance is shown on the Fig. 3. This time we
see that the observed and theoretical phase structure functions for both values of N col do not
match perfectly, especially for distances greater than D/4, but however are in good agreement
with each other. In the case where Ncol = 2, the observed phase structure function is greater than
the theoretical one for high separations, whereas we observe the opposite effect when N col = 4.
This is in fact confirmed by the Zernike polynomial variance for both cases, and especially
for the tip and tilt modes, where the variances are respectively over or underestimated. But the
relative error remains very small (less than 10%), so that the phase screens have the correct
statistics. This was confirmed when we did the same study for the second value of the outer
scale studied previously, i.e. L0 = 64 meters. The results are shown in Fig. 4 and we can see
there that, again, the use of the last Ncol = 2 columns allows us to produce a new column in the
phase screen with the correct statistics, as shown by the phase structure function as well as the
Zernike polynomial variance.

We have focused in this section on the practical implementation of our new phase screen
generation which consists of extending an already computed phase screen by using known
values to produce new values consistent with the previous ones. Here we have studied the
quality of the resulting phase screen for different values of the outer scale L 0, the telescope
diameter D as well as the number of pixels d p used to simulate the pupil, as a function of
Ncol , the number of previous columns of the phase screen used to compute new phase values.
We found that the use of the last 2 columns was sufficient to produce an infinitely long phase
screen with the correct statistics, independent of all the other parameters.

It should be emphasized here that the phase screens always used d p×dp pixels, by removing
the first column before adding a new column at each iteration. However, the method can also be
used to create rectangular phase screens. This requires initially that the memory space needed
by the rectangular array is allocated, before it is filled by extending the initial square phase
screen. In this case the array generated can be stored and subsequently used later and repeatedly.

4. Simulation of non-stationary phase screens

We have shown in the previous section that the last 2 columns of a phase screen can be used
in order to extend it as much as is required, via Eq. 1. We show in this section how the same
equation can be used to extend the phase screen, and at the same time to simulate the evolution
of the atmospheric parameters.

We focus in particular on the simulation of a non-uniform Fried parameter r 0. Equation 3
gives us the definition of the A matrix: A =

〈
XZT

〉〈
ZZT

〉−1
. As discussed in section 2, the

generic term of each matrix
〈
XZT

〉
or

〈
ZZT

〉−1
is given by the phase covariance function
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Fig. 3. Phase structure function (left) and variance of the Zernike polynomials coefficients
(right) computed from 15000 generated phase screens using Eq. 1, for two values of Ncol :
2 (top) and 4 (bottom). A D = 4 meter pupil was simulated on a square grid of 64× 64
pixels, and the outer scale was equal to L0 = 16 meters (L0/D = 4)
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Fig. 4. Phase structure function (left) and variance of the Zernike polynomials coefficients
(right) computed from 15000 generated phase screens using Eq. 1, for two values of Ncol :
2 (top) and 4 (bottom). A D = 4 meter pupil was simulated on a square grid of 64× 64
pixels, and the outer scale was this time equal to L0 = 64 meters (L0/D = 4)
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Cϕ (r), whose expression is:

Cϕ (r) =
(

L0

r0

)5/3

× Γ(11/6)
25/6π8/3

[
24
5

Γ
(

6
5

)]5/6

×
(

2πr
L0

)5/6

K5/6

(
2πr
L0

)
(11)

Therefore, when the matrix product between
〈
XZT

〉
and

〈
ZZT

〉−1
is performed, the terms

(L0/r0)5/3 cancel. This means that if we assume a constant outer scale L0, A is insensitive to
r0.

Let us then focus on the B matrix. From Eq. 9, we have:

BBT =
〈
XXT 〉−A

〈
ZZT 〉〈

ZZT 〉−1 〈
ZXT 〉

=
〈
XXT 〉−A

〈
ZXT 〉

(12)

Therefore, the matrices
〈
XXT

〉
and A

〈
ZXT

〉
make use of the phase covariance function

Cϕ (r), and thus the (L0/r0)5/3 term which can be introduced as a factor in the above equation.
Therefore, if we compute the BBT matrix for (L0/r0) = 1, multiply the resulting B matrix by
the appropriate factor (L0/r0)5/6, and then use this matrix in Eq. 1 to create a new column in
order to extend the phase screen, the turbulence in this column will be characterized by this r 0.
If we repeat this operation and change the r0 at each iteration, then this allows us to create a
phase screen with a different r0 for each column, and thus a non-stationary phase screen.

A numerical simulation was performed to check the validity of this method, in which we
assumed a pupil of 40 cm simulated over 32 pixels, an outer scale L 0 equal to 4 meters (L0/D =
10), and a Fried parameter r0 = 15 cm. We first used the Fourier method to create an initial
phase screen of 800× 800 pixels, which was then cropped to 800× 32 pixels, corresponding
to a physical length of 10 meters. We then updated the last column of this phase screen 37200
times, equivalent to a phase screen 480 meters long, assuming the same r 0 value of 15 cm.
Next we repeated the operation, but now we assumed a sinusoidal r 0 oscillating between 10
and 20 cm, with a spatial period of 240 meters. This was then equivalent to a phase screen with
a virtual length of 960 meters (76000×32 pixels). Moreover, at each iteration where the phase
screen was extended, we projected the phase on the Zernike polynomials 2 to 36, thus providing
us a set of 76000×35 coefficients.

We then used these Zernike coefficients to compute their variance, in order to measure the
Fried parameter r0. Indeed, for a given (D/L0), the Zernike polynomial variance is only propor-
tional to (D/r0)5/3 [14]. Therefore, we first computed the theoretical variance of the Zernike
for (D/r0) = 1. Then we performed a least-square fit of the Zernike coefficient variance to the
theoretical one so as to compute the (D/r0)5/3 scaling factor, and hence r0 at each iteration. The
evolution of r0 as a function of the iteration number is shown in the top panels of Fig. 5, where
we can see that there is an excellent agreement between the theoretical and measured values.
In particular the sinusoidal evolution of r0 is clearly visible on these figures, showing that we
effectively created a non static phase screen. Moreover the error between observation and the-
ory remains very small. Indeed, the histogram of the r 0 error shows that it can be fitted with a
Gaussian distribution, with an average error of 0.34 cm and a standard deviation σ = 0.81 cm.

We argue that this error is mainly due to the finite number of samples used to compute r 0

from the Zernike polynomials variance. Indeed, the bottom panels on the Fig. 5 show the result
of the measure of r0 from Zernike polynomials variance, but this time computed on a phase
screen with the same virtual length than before (960 meters) and with an uniform r 0 = 15 cm.
In particular, if we look again at the histogram of the error, we find that it can also be fitted by
a Gaussian distribution, with properties very similar to the case where r 0 is not static: we find
that the r0 error has an average value equal to 0.40 cm, with a standard deviation σ = 0.75 cm.

We have therefore shown in this section that our method allows simulation of non-stationary
turbulence effects, contrary to traditional methods which assume the same turbulence condi-
tions all over the computed phase screen. In particular we have shown here that the simulation
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Fig. 5. Comparison (left), error (middle), and histogram of the error (right) between the the
theoretical and observed Fried parameter r0. The top panels correspond to a phase screen
where r0 is equal to 15 cm in the first half of the screen and oscillating between 10 and
20 cm in the second half. The bottom panels correspond to a phase screen with constant
r0 = 15 cm. The black line on the left figure shows the expected r0, whereas the red line
shows the r0 value deduced from Zernike polynomials variance, both as a function of the
iteration number. The dashed blue line on the r0 error histogram shows the result of a fit of
the error by a Gaussian distribution

of a phase screen with a spatially non uniform Fried parameter r 0 is straightforward to im-
plement. The simulation of a non-static outer scale L0 can also be implemented via a similar
approach. However it will be more difficult as it requires computation of the A and B matrices
at each simulation iteration, as the phase covariance function Cϕ(r) does not scale linearly with
the outer scale.

5. Conclusion

We have demonstrated in this paper a new method to simulate atmospheric turbulence. The
method permits simulation of arbitrarily long exposure times by extending a given phase screen
by as much as is needed. We have shown that only the last two columns of the phase screen are
required to compute a new column, independent of the outer scale or the spatial sampling. This
implies that the phase screen for the whole simulation does not need to be stored in memory, but
only the phase values required at each simulation iteration for a given array size. This makes the
method particularly suitable for the simulation of Adaptive Optics systems for Extremely Large
Telescopes, where memory management will be a critical issue because of the large number of
points required to simulate the telescope pupil.
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Another key improvement provided by this method is the ability to simulate realistic tur-
bulence conditions, i.e. a turbulent phase with properties evolving as a function of time. In
particular, It is straightforward to simulate with this method a turbulent phase with a non static
Fried parameter r0, which is again well suited to studies of AO systems for Extremely Large
Telescopes. Indeed very long exposures (more than one hour) are very likely to be performed
on such telescopes for applications such as exoplanet detection or the observation of very dis-
tant galaxies. In this case a realistic simulation will be required in order to examine in detail the
sensitivity of the AO system to the variation of atmospheric parameters.

Acknowledgements

The authors acknowledge the UK PPARC for financial support. François Assémat is grateful to
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