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Abstract 

In order to progress towards more energy efficient buildings, vertical ground coupled heat pumps are a 

promising solution. Optimisation of both the design and operation of boreholes heat exchangers is a 

key factor to reduce energy consumption of such systems. This requires a fast evaluation of the 

thermal response factor of the ground heat exchanger, particularly if it contains numerous boreholes 

and operates for multiple years. To overcome this challenge, this article reports a new global model 

combining the finite line source (FLS) model, the two-dimensional (2D) heat conduction equation, and 

a newly developed three-points method. The borehole field is sorted in increasing distance categories, 

each being simulated with varying timesteps. The 2D heat conduction equation is used to determine: 

1) when the detailed calculation needs to be performed; and 2) the growth of the timestep. A three-

points method avoiding double integration of the temperature profiles is proposed to evaluate the 

borehole wall temperature. The global model calculation time and accuracy were evaluated. The 

thermal response factor calculation for a square field of 26   26 boreholes for 1 simulated year took 

4 seconds, showing a calculation time reduction factor of around 1 000 000, and relative errors smaller 

than 2 % compared to the original FLS model with superposition principle. For 20 simulated years, the 

proposed model took only 1 minute. It is appropriate for various boreholes configurations. Its features 

such as accuracy, speed and load-independency are essential for its integration into building energy 

simulation tools. 

Keywords: geothermal boreholes; ground heat exchanger; thermal response factor; finite line source; 

two-dimensional heat equation; calculation time reduction 

1 . Introduction 

Vertical ground coupled heat pump (GCHP) systems have been more and more widely used in the 

buildings sector in China because of their energy efficiency [1] and environmental friendliness [2]. A 

vertical GCHP system mainly consists of a vertical ground heat exchanger (GHE), heat pumps and 

distribution units. The vertical GHE exchanges heat with the ground that serves as a heat source or 

heat sink, respectively in winter and summer. Buildings might be equipped with large-scale boreholes 

GHEs which may contain hundreds of boreholes due to their high energy loads [3]. The optimisation 

of the design and control of GCHP systems can yield more energy efficient buildings [4]. A building 

energy simulation (BES) tool integrated with a vertical GCHP model is helpful for building designers 

to achieve this goal. However, it is difficult and time costing due to the large amount of calculations 

required for a large-scale boreholes GHE.  

The simulation of a GHE mainly aims at predicting its returning fluid temperature and the ground 

temperature in the borehole field [5]. Fast and accurate calculation of these temperatures is essential 

for the long-term evaluation of the GCHP performance and the proper design of the system [6,7]. The 

temperature variation of a point in the ground can be represented in a dimensionless form by 

introducing a proper thermal response factor (also called temperature response factor in some 

references [8–10]), which gives the relation between the temperature variation and the overall heat 

extraction rate in the borehole field. The most utilised method to analyse a vertical GHE consisting of 

large-scale boreholes is firstly to use a heat transfer model of a single borehole to obtain the thermal 

response factor of one borehole, and secondly to apply Duhamel's superposition principle [11] to 

evaluate the temperature responses caused by all the boreholes in the field [12].  

The energy analysis models for one borehole can be divided into analytical models and numerical 

models. Although the numerical models [13–19] might take into account all the elements (including 

U-pipe, grout and ground) and offer more accurate results compared to analytical models using 



simplifying assumptions [20], they are very complex and they cannot be easily integrated into BES 

tools. Many analytical models have been proposed [21] such as the infinite line source model [22], the 

finite line source (FLS) model [23], the infinite cylinder source model [24], the infinite composite-

medium line source method [25], the full scale model [26], and the transient quasi-3D entire time scale 

line source model [27]. These analytical models are more easily implemented in BES tools. The FLS 

model is widely employed in GHE simulation for its simple mathematical form and relatively good 

accuracy in long operation time simulation, therefore this study is based on this model. Some studies 

improved the FLS model by considering more elements, such as multilayer [28], heat fluxes at the 

ground surface [29], buried depth [30], advection of vertical water flow [31] and more complex initial 

and boundary conditions [32]. As a first step and in order to present our model more easily and clearly, 

this article focuses on the original FLS model. These improvements could be integrated in future 

work. 

The borehole wall temperature is an essential parameter in the borehole analytical model. The outlet 

fluid temperature of a borehole could be derived if the borehole wall temperature is known, and thus 

the outlet fluid temperature of the whole borehole field. In Zeng et al.’s study [23], it is indicated that 

the middle-point temperature (called the middle-point method in this paper) and the integral mean 

temperature (called the double-integration method in this paper) could be two representative borehole 

wall temperatures in the FLS model, and that the middle-point temperature is more often chosen for its 

convenience. However, there are two main problems for the application of this method. The first 

problem is the conflict between accuracy and calculation speed of the FLS model. If the middle-point 

temperature is used to represent the borehole wall temperature, the accuracy can be low when the 

operation time is long (section 3.2) [33]. If the integral mean temperature is used, the double-

integration form of the model (see equation (2) in section 2.1) increases the calculation complexity 

[34]. The second problem is that the calculation load is massive when a large-scale borehole field 

operates over a long time (e. g. a 26   26 borehole field during 20 years) under dynamic loads. Long 

time scales (larger amount of data), varying loads (thermal history) and multiple boreholes (thermal 

interactions) are the three major challenges to obtain the optimal design of GHEs based on the 

operating performance simulation of GCHPs [35]. The intensive computation makes this method not 

suited to be integrated into BES tools.  

A few studies have been conducted to simplify the calculation for a large-scale boreholes GHE 

operating for a long period. Yavuzturk and Spitler [36] proposed the load-aggregation algorithm to 

lump the hourly loads on GHEs into larger blocks of time. Cullin and Spitler [37] proposed a 

computationally efficient hybrid time-step methodology for simulation of GHEs by setting a 

reasonable peak load and peak load duration according to the daily load profiles. Bernier et al. [38] 

presented a multiple load aggregation algorithm to perform annual hourly energy simulations, by 

subdividing the past thermal history into four time intervals. Claesson and Javed [39] proposed a new 

load-aggregation scheme to perform multi-year simulations of GHEs using a step-response function. 

Mitchell and Spitler [40] investigated the different parameters in the developed load aggregation 

methods and claimed a 73-fold reduction in simulation time when compared to non-aggregated 

simulations. However, the computed hourly temperature is not exactly that corresponding to the heat 

load history obtained by the load-aggregation algorithm [35]. The reshaping of load history does not 

simulate the interactions between the ground temperature and the heat pump efficiency at each 

timestep which is an important feature for the integration in the BES tools. Lamarche and Beauchamp 

[41] presented a history-independent mathematical algorithm to calculate ground dynamic thermal 

response by applying Green function to solve heat conduction problem of the infinite cylinder source 

model. It can be applied in GHEs under any kind of step response [42]. Zhang et al. [43] used the fast 

Fourier transform (FFT) method to reduce computational complexity but did not provide a detailed 

description. Marcotte and Pasquier [44] proposed a method to reduce the computing time by sub-

sampling the analytical function at a few selected times with a geometric sequence using the cubic 

spline interpolant, and based on FFT. Katsura et al. [44] presented a high-speed algorithm to calculate 

the ground temperature of multiple GHEs, reducing the computation time by about a factor 135. 

Zhang [46] indicated that a representative boreholes matrix of 3   3 can be employed to substitute the 

large-scale boreholes GHEs based on his study for a GHE operating for dozens of days. However this 

representative boreholes matrix is not appropriate for longer operation time. Chen et al. [6] combined 



a δ-function (a thermal response factor to unit rectangular heat pulse) with FFT; it took only less than 

1.5 minutes for a 30-years hourly simulation of 5   8 boreholes. Some researchers [47,48] used 

monthly loads to simulate long term operation to avoid long calculation time. Beck et al. [49] divided 

a rectangle borehole field into four mirror symmetric quadrants so the calculation time can be reduced 

to one fourth, but even a single month by month load for a period of 30 years still required a 

calculation time of several minutes. Yu et al. [12] indicated that a representative boreholes matrix can 

replace the original large-scale ground heat exchanger for heat transfer analysis and proposed the 

method to determine the number of the representative boreholes matrix from the thermal influence 

radius of a single borehole. This method indeed reduces calculation complexity by using geometric 

simplification but still cannot solve the difficulty of the large computing resources needed when the 

operation time is long. Cimmino and Bernier [50] introduced a new methodology for the generation of 

thermal response factors of geothermal borehole fields. They proposed to divide boreholes into 

segments to consider the variation of the heat extraction rates along the length of the boreholes. 

However this method will increase the calculation time. Then, Cimmino [7] introduced a similarity 

identification method and a load history reconstruction method for fast calculation. The similarity 

identification method identifies the pairs of boreholes that have the same FLS calculation value, and 

the load history reconstruction method evaluates the thermal response factors at non-uniform 

timesteps. The calculation time for the g-function of a rectangular field of 12 × 12 boreholes is reduced 

by a factor 300. 

It can be inferred from the literature review that although some efforts have been made on reducing 

the computation load, there is still a lack of a global, convenient and fast model to simulate the large-

scale boreholes GHE, especially one which can be easily linked with GCHP models and integrated 

into a BES tool without reshaping the load history. This article presents a new global model, which is 

different from the existing methods, that overcomes the abovementioned issues. The main goal of this 

work is to propose a fast calculation method for the thermal response factor based on the FLS model. 

Firstly, the GHE model is introduced by using the FLS model and the superposition method. Secondly, 

a novel method (the three-points method) to evaluate the borehole wall temperature is presented. 

Thirdly, a new model to quickly calculate the thermal response factor of the large-scale boreholes 

GHE is proposed, combining the FLS model, the two-dimensional (2D) heat equation and the three-

points method, and then applied to a case study. Finally, the model is validated against the original 

FLS model, and the results are presented and discussed. It should be noted that in this paper, if not 

particularly indicated, the time refers to the operation time of a borehole or a GHE from initial 

conditions where the ground temperature is uniform. 

2 . GHE heat transfer model 

2.1 Finite line source model  

In the FLS model, the ground is regarded as a homogeneous semi-infinite medium with constant 

thermophysical properties and a uniform initial temperature. The effects of underground water, air 

temperature variations and solar radiation are not taken into consideration. The radial dimension of the 

borehole is neglected so that it may be approximated as a line-source stretching from the ground 

surface to the borehole depth. 

Considering the effects of one borehole exchanging heat with the ground at a constant heat load q 

(positive values when a GHE extracts heat from the ground), the ground temperature T at any point at 

time t, as shown in Figure 1, is given by the FLS model [23]: 
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where r is the radial distance to the borehole centre line; z is the vertical coordinate; T0 is the initial 

ground temperature; λs and αs are respectively the thermal conductivity and thermal diffusivity of the 



ground; H is the borehole depth; h is an integral variable along borehole depth; G is the thermal 

response factor; and erfc denotes the complementary error function.  

 

Figure 1: Temperature in the ground under the effect of one borehole  

The integral mean temperature along the borehole length is considered to be a reasonable proxy to 

represent the borehole temperature [23], which can be obtained by the double-integration method. 

Thus, considering the heat interaction between two boreholes, the borehole wall temperature Tb of a 

borehole at time t under the effect of the other borehole located at radial distance r with constant heat 

load q is given by: 
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where G2i(r,t) is the thermal response factor of a borehole wall temperature under the other borehole’s 

effect using the double-integration method. Considering a special case for the self-effect of one 

borehole, the borehole wall temperature response under the effect of its own heat load can be 

calculated by setting r = rb, where rb is the borehole radius.  

2.2 Superposition principle 

In the BES model COMFIE developed by Peuportier’s research group [51], the time-varying heating 

and cooling loads are step-wise constant values. Even though some studies (e.g. [52]) suggest 

considering the non-uniform distribution of the energy load of the building to each borehole, here  a 

uniform distribution is assumed. It corresponds to the first type of boundary condition defined in [50] 

and it is a common assumption adopted for multiple borehole heat exchangers [12,53–55]. This 

assumption is made because this work mainly aims at fast calculation of G2i, which is a dimensionless 

response factor independent from the energy load. The uniform distribution could help simplify the 

mathematics regarding the temperature. This will be discussed in more detail in section 4.5. However 

the non-uniform distribution of the heating load for each borehole could be an improvement of this 

method. Therefore, the heat loads of all boreholes during a timestep are identical: 

                            
       

    
 (3) 

qi,m is the lineic heat load of i
th
 boreheole in a GHE consisting of Nb identical boreholes at timestep m; 

qm is the lineic heat load of a single borehole; and QGHE(m) is the heat load of the GHE field at 

timestep m. 
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The borehole wall temperature in a large-scale boreholes GHE could be evaluated by employing the 

superposition principle to the FLS model. The superposition principle consists of the temporal 

superposition and spatial superposition. The time-varying heating and cooling loads are step-wise 

constant values in this study, as shown in Figure 2 (a). In fact, the heat load has an effect on both the 

current time and the future, as shown in Figure 2 (b). For one borehole without the effects of other 

boreholes, its borehole wall temperature at timestep m is determined by employing temporal 

superposition to equation (2): 
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(a) (b) 

Figure 2: Temporal superposition principle for the timesteps of one borehole heat load: (a) the step-

wise heat load and (b) heat load increment for various time intervals 

The spatial superposition considers the effects of other boreholes on the calculated borehole, as shown 

in Figure 3. The borehole wall temperature of the j
th
 borehole at timestep m can be determined by 

applying the spatial superposition to equation (4):  
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where i is the i
th

 borehole in the borehole field; k is the k
th
 timestep; qk is the heat load of each 

boreheole at timestep k; ri,j is the radial distance between borehole centre lines of i
th
 boreheole and j

th
 

boreheole, and ri,j = rb when i = j; tm is the time at timestep m. 
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Figure 3: A square borehole field consisting Nb boreholes and the spatial superposition principle 

2.3 Modelling challenges for large-scale boreholes GHE 

Equation (5) shows that the calculation of one borehole wall temperature can be costly due to three 

challenges: (1) its double-integration form, (2) the interactions with a large number of boreholes Nb, 

and (3) the calculation of G for a large number of timesteps m. Besides, the calculation load of the 

GHE needs to be multiplied by a factor of Nb because this calculation needs to be performed for each 

borehole, which brings the final challenge: (4) to model the large-scale boreholes GHE in the BES 

tools. Thus, a global model is presented in the following section to solve these issues. 

3 . Global model for fast calculation of thermal response factor 

3.1 Case description 

To illustrate the proposed model, a case study is introduced in Table 1, assuming that the ground is 

siliceous rock [56]. For the sake of simplificity for the presentation of the methods, a constant heat 

flux q of 10 W/m is assumed, considering a yearly unbalanced heating and cooling load [23]. In the 

BES tools, the load is variable and therefore the temporal superposition should be considered. The 

default duration of one timestep is 1 hour, but it can be changed as needed. 

Table 1: Main parameters of the case study  

Component Parameter Value Unit 

GHE Layout 26   26  
 Number of total boreholes Nb 676  
 Borehole spacing B 4 m 
 Borehole length H 133 m 
 Radius for the borehole rb 0.11 m 

Ground Ground thermal conductivity λs 2.635 W/m.K 
 Ground thermal diffusivity αs 1.23   10

-6
 m

2
/s 

 Intial ground temperature T0 19 °C 
Building load Heat flux q 10 W/m 

3.2 Three-points method 

By using the middle-point method, the borehole wall temperature Tb of a borehole at time t under the 

effect of the other borehole located at radial distance r with constant heat load q is given by: 
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where Gm(r,t) is the thermal response factor of a borehole wall temperature under the other borehole’s 

effect using the middle-point method. 

However, we found that the difference between the middle-point temperature and the integral mean 

temperature due to the heat flux can be non-negligible. For two typical boreholes with parameters in 

Table 1, the considered borehole wall temperature differences between the middle-point method and 

the double-integration method (as reference) under the effect of the other borehole at different radial 

distances and times are shown in Figure 4 (a). For the self-effect of the borehole (r = rb = 0.11 m), the 

absolute temperature difference is over 0.1°C when t ≥ 5 years. It increases with time and can reach 

over 0.2 °C after 25 years. This difference increases with the number of boreholes. Considering the 

effects of all boreholes, the wall temperature of the borehole located at the corner and in the centre 

with different sizes of borehole fields is shown in Figure 4 (b) and (c) respectively. It is found that the 

absolute temperature difference increases with the field size. The difference could reach over 12 °C for 

the corner borehole and 36 °C for the centre borehole when t = 25 years for a 26   26 field, which is 

not acceptable for the fluid temperature calculation. The middle-point method is not appropriate for 

large borehole fields for long operation time. This non negligible difference was also observed in [33]. 
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Figure 4: (a) The borehole wall temperature differences under the effect of a single borehole located 

at radial distance r and the borehole wall temperature difference (b) for the corner borehole and (c) 

for the centre borehole in a field with different sizes between the middle-point method and the double-

integration method (as reference) 

The borehole wall temperature evolution under the self-effect with depth at different times is shown in 

Figure 5 (a). The borehole wall temperature tends to remain constant around the middle. However, it 

varies sharply at the top and bottom of the borehole due to the finite length of the borehole. Only using 

the middle-point temperature cannot represent the borehole wall temperature, especially when time is 

long (beyond 1 year), because it does not consider the top and bottom parts. If the integral mean 

temperature is used, the single integration will become double integration (see equation (2)) in the 



calculation, which will sharply increase the computational time. Thus, a method that gives a good 

calculation accuracy and keeps the single-integration form is needed. 

In the proposed method, three typical points (Ptop, Pmiddle and Pbottom) are chosen instead of only one 

middle point, as shown in Figure 5 (b), and the average temperature of these three points is used to 

represent the borehole wall temperature. The three points are the middle point and two points 

symmetrical to the middle point located in the top and bottom areas, so the effects of the borehole top, 

middle and bottom can be all taken into consideration. This method is called the three-points method 

for the borehole wall temperature calculation in this paper. 

 

Figure 5: (a) Borehole wall temperature evolution under the self-effect with depth at different times 

(b) the three-points method to calculate a borehole wall temperature under the other’s effect 

The top and bottom points are located at Htop and Hbottom respectively. Although the borehole wall 

temperature Tb at time t under the effect of another borehole at radial distance r varies with depth, 

assuming a constant heat load q is a necessary approximation to apply the FLS model. This leads to 

the following equation:  
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where Htop = xdisH, Hbottom = (1 - xdis)H; xdis is the location factor of the top point; and G3p(r,t) is the 

thermal response factor of a borehole wall temperature under the other borehole’s effect using the 

three-points method. It should be noted that the top and bottom points are assumed to be symmetrical 

in order to keep equation (7) simple. In perspective, these two points could be non-symmetrically 

located to improve the accuracy. 

In order to apply this method, it is essential to determine the location factor xdis. Firstly, we identified 

the optimal xdis for different radial distances r (0.11 m to 200 m), time t (30 minutes to 25 years) and 

borehole depths H (20 m to 200 m). Then we assumed that xdis is an exponential function of these three 

parameters:  
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The coefficients a1 to a8 were finally obtained by using an exponential regression method (a1 = 0.056, 

a2 = 0.0425, a3 = 8.39   10
-9

, a4 = 0.0443, a5 = 0.105, a6 = - 0.03, a7 = 118.5). Moreover, xdis was 

constrained to a minimum (a8 = 0.052). The identification process of these parameters is shown in 

Appendix A. It should be noted that equation (8) is based on the soil parameters in Table 1. A more 

general equation covering a larger scale of the parameters should be developed. 
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Using the three-points method and considering the superposition method, Tb,j(m) is given by the 

single-integration equation below, which solves challenge (1): 
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3.3 Distance category simplification 

For a borehole in a square field of Nb boreholes at a certain timestep as shown in Figure 3, the 

interactions with other boreholes are calculated based on the radial distance. This requires Nb 

evaluations of G3p, as shown in equation (9). If it is used to calculate the outlet fluid temperature of the 

GHE at a certain timestep, G3p will be calculated Nb   Nb times. However the calculation of G3p at a 

certain timestep is only a function of the radial distance ri,j between boreholes i and j. Identical radial 

distances will bring unnecessary repetition of calculation of G3p: for the same ri,j, G3p only needs to be 

calculate once. 

Thus, the idea of distance category simplification is to identify all the possibilities of ri,j (entitled 

distance category in the following, each distance category corresponds to a specific radial distance), 

and calculate the corresponding G3p. Then, in order to calculate each borehole’s wall temperature, only 

the number of times each distance category occurs needs to be identified (that is the number of times 

other boreholes located at the radial distance from the considered borehole are found); afterwards the 

accumulation needs to be performed to determine G3p for each distance category. For a square field of 

Nb boreholes, there exist Nd radial distance possibilities in total. The number of times G3p evaluated is 

reduced by a factor 
       

  
, which is a significant calculation time reduction. A similar idea is also 

found in other references e.g. [57]. 

An example of a square 3   3 borehole field is shown in Figure 6. There exist 5 radial distance 

possibilities between a pair of boreholes: B,    , 2B,     and    . Considering the radial distances 

between borehole 1 and the other boreholes, B occurs twice: from 1 to 2 and from 1 to 3;     occurs 

once: from 1 to 5; 2B occurs twice: from 1 to 3 and from 1 to 7;     occurs twice: from 1 to 6 and 

from 1to 8;     occurs once: from 1 to 9. Combining the self-effect, the borehole wall temperature of 

borehole 1 under all boreholes’ effects at timestep m is given by: 

             
       
    

                                 
 

   

                                                      

                   

(10) 

Similarly, other boreholes’ temperatures can be derived from the number of times each radial distance 

occurs. 



 

Figure 6: Radial distance possibilities between boreholes in a square 3   3 borehole field 

For a square field, the radial distances between borehole 1 and the other boreholes contain all possible 

radial distances between any pair of boreholes in the field. The first step of this distance category 

simplification method is to calculate r1,j from j = 1 to j = Nb, and identify and sort them into Nd 

categories of increasing radial distances. Then for the calculated borehole j, all the boreholes in the 

field can be converted to Nd categories, as shown in Figure 7, where rn is the radial distance of the n
th

 

distance category, Nj,n is the number of times the distance category n occurs for borehole j. The next 

step is to count Nj,n from j = 1 to j = Nb and from n = 1 to n = Nd. 

  

Figure 7: Borehole field converted to distance categories from borehole j 

By knowing all Nj,n, equation (9) can be converted to the following equation, which helps in solving 

challenge (2): 

             
       
    

                     

  

   

 

   
 

(11) 

  
       
    

                       
 

   
 

where G3p,borehole(j,tm – tk - 1) is the thermal response factor of j
th
 borehole’s wall temperature under all 

boreholes’ effects at time tm – tk - 1 using the three-points method.  

3.4 Thermal response factor of the GHE 

The thermal response factor of the whole GHE at timestep m using the three-points method is given 

by: 

            
 

  
                   

  

   

 (12) 

Similarly, the thermal response factors of the j
th
 borehole’s wall temperature under all boreholes’ 

effects and the whole GHE at timestep m using the middle-point method and double-integration 

method are: 
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3.5 Initial effect simplification 

The next step is to consider how to simplify the calculation of G3p for numerous timesteps. The 

evolution of G3p with time is presented in Figure 8 for different radial distances during one year. There 

are two potential methods to reduce the computational complexity: the initial effect simplification 

(IES) and the time averaging simplification (TAS).  
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Figure 8: G3p vs t for different r 

According to Figure 8, at a certain time, t, the larger r is the smaller G3p is. This means that for one 

borehole, the closer the other boreholes, the larger influence they have. Before t = 500 h, G3p is nearly 

0 when r equals to 4 m, 8 m and 12 m. Only the borehole itself (r = rb = 0.11 m) has an effect on its 

wall temperature. That is to say the effects of other boreholes do not reach the considered borehole 

wall before this time. The further the other borehole, the later it starts to affect the considered 

borehole. The G3p calculations concerning all the other boreholes are not necessary because they are 

negligible. As time goes on, more and more boreholes need to be taken into consideration.  

For a field converted to distance categories as presented above, other boreholes located at distance 

category n start to have a non-negligible effect on borehole j from timestep mIES(j,n) onwards. mIES(j,n) 

is the first timestep that fulfils the following condition: 

                        
 
   

                        
  
   

        (17) 

where εIES is the tolerance of the IES method, which is set at 0.5 % in this article. For borehole j, 

before timestep mIES(j,n), the effects of distance categories 1 to n - 1 contribute to over 1 - εIES 

(99.5 %) of the total effect of all distance categories. Figure 7 illustrates how the IES fits into distance 

categories. 



For different boreholes, mIES(j,n) is different due to the different distance category distribution. In 

order to simplify the calculations, the minimal mIES(j,n) among all boreholes is chosen to represent the 

mIES for distance category n (this conservative approach ensures that the tolerance is respected for all 

boreholes): 

           
      

          (18) 

In fact, only approximately 1/8 of the total boreholes (in total Nb,sym) need to be considered due to the 

symmetry of the squared field, as shown in Figure 9. The idea of symmetry can help in solving 

challenge (4). Equation (18) can then be converted to: 

           
          

          (19) 

 

Figure 9: The calculated part (in red) of a square borehole filed after symmetry simplification 

Before this timestep G3p(rn,t) is negligible, and is therefore set at 0. This method is entitled initial 

effect simplification method and it can be expressed in the flowing equation: 

           
 

         
                

                
   (20) 

where          is the time at timestep mIES(n). 

The IES method solves challenge (2) regarding the interactions between boreholes. It determines from 

which timestep a borehole at a certain distance starts to influence the calculated borehole; no 

calculation is needed before this timestep, thus much computing effort is avoided. It should be noted 

that the determination of mIES requires knowing the values of G3p, which is contrary to our goal to 

calculate G3p. This problem will be solved by the simplified method to determine mIES presented in 

section 3.7. 

3.6  Time averaging simplification 

Figure 8 shows that G3p increases sharply in the beginning and tends to stay stable as time goes. It can 

be inferred that the closer to the beginning of the operation, the more detailed calculation is needed. 

Therefore, it is possible to divide the whole timespan into several periods (called averaging periods). 

In each averaging period, G3p only needs to be calculated once every certain number of steps (called 

averaging ranges), because its variation for a specific radial distance during that time is negligible. For 

an averaging period p, its corresponding averaging range is lp. The whole timespan is divided into pmax 

averaging periods. For example, the time averaging simplification of G3p at the radius of a borehole 

during one year is shown in Figure 10. This method is named the time averaging simplification 

method.  
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Figure 10: Time averaging simplification method at radial distance r1 

In averaging period 1 (p = 1), G3p is calculated at each timestep (l1 = 1); in averaging period 2 (p = 2), 

the averaging range l2 is 2, is calculated every 2 timesteps; in the last averaging period (averaging 

period pmax), the curve slope is small, so G3p only needs to be calculate every lpmax timesteps. In this 

paper, the correspondence between p and lp is set as shown in Figure 11, in which lpmax = 1060, 

Pmax = 141. 
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Figure 11: The correspondence between p and lp 

mTAS(p,n) is the timestep at the end of averaging period p for the n
th
 distance category. It is determined 

by the following three steps: 

1. Based on the distance category itself, G3p is used to determine mTAS,dc(p,n) which is the first 
timestep that fulfils the following condition: 

                                              

                                                  
      (21) 

where εTAS is the tolerance of the time averaging simplification method, which is set at 0.5 % in this 

study. This equation means that the difference of G3p between the beginning (timestep mTAS,dc(p,n)) 

and the end (timestep mTAS,dc(p,n) + lp) of an averaging range (lp) within averaging period p is 

negligible (smaller than 0.5 %). It is used to find mTAS,dc(p,n); G3p only needs to be calculated once 

every lp in this averaging period p. 



Equation (21) indicates that unlike mIES(j,n) that depends on the position of the borehole, mTAS,dc(p,n) 

is not related to Nj,n, thus it only needs to be applied to the first borehole which includes all the 

distance categories. 

2. Based on the total effects of all distance categories for one borehole, G3p,borehole is used to determine 
mTAS,bh(p,j) which is the first timestep that fulfils the following condition: 

                                                              

                                                                  
      (22) 

Using the symmetry of the square field, the maximal mTAS,bh(p,j) among all Nb,sym boreholes is chosen 

to represent mTAS for distance category n (this is conservative to ensure mTAS,bh(p,n) can cover all the 

boreholes): 

                
          

                          (23) 

3. mTAS(p,n) is the smallest value between mTAS,dc(p,n) and mTAS,bh(p,n) (this conservative approach 
ensures that enough calculations will be done), as shown below: 

                                          (24) 

The TAS method solves challenge (3) regarding the numerous calculations of G for long-term 

simulation by updating its value only when significant change is expected, therefore much calculation 

time is saved. Similar to mIES, the determination of mTAS also requires knowing the values of G3p. The 

flowing section 3.7 illustrates how to solve this problem. 

3.7 Two-dimensional heat equation 

Based on these two simplification methods, G3p does not need to be calculated for each distance 

category at each timestep. The computation time can be drastically saved. If we want to use the two 

simplification methods above, the timesteps for simplification (mTAS and mIES) have to be determined 

before the calculation of G3p. Using equation (17), (21) and (22) to calculate mTAS and mIES requires to 

firstly calculate G3p, which is contrary to our aim. Therefore, another method is needed to replace G3p 

in these equations to identify mTAS and mIES. 

The 2D heat equation describes how the distribution of heat evolves over time in a solid medium in 

two dimensions. Considering the axial symmetry, the temperature variation at radial distance r and at 

time t from uniform initial conditions under a line heat source input at r = 0 and t = 0 (also called 

Dirac delta function) is given by [58]: 

         
      

  

    
 

     
 

(25) 

Equation (25) gives the heat propagation under an infinite line source of Dirac delta function, with a 

simple mathematic form. It represents the theoretical heat propagation speed. Although in this study 

the borehole is regarded as a finite line source under a step-wise heating load, it can reasonably be 

represented by equation (25) which in reality, is a conservative approach. 

The heat propagation of Dirac delta distribution under different times and radial distances is shown in 

Figure 12. It takes a certain time for the heat to propagate to a certain radial distance, which is similar 

to the heat transfer process from a borehole to the other in this study. Accounting for the similarity, the 

simplicity and the conservativeness, it is possible to use     calculated by the 2D heat equation instead 

of G3p in equation (17), (21) and (22) to evaluate mTAS and mIES. 
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Figure 12: The heat propagation calculated by the 2D heat equation 

As abovementioned, the heat transfer process of a borehole is under a constant heat flux q during each 

timestep. Using the 2D heat equation, the wall temperature variation of borehole j considering all the 

effects of the boreholes (each borehole under a line heat source of a constant initial unit of heat flux) 

located at distance category n and timestep m can be calculated by: 

              
      

  
 

     
 

      

 

   

      (26) 

Combining equation (17) with equation (26), mIES(j,n) is the first timestep that satisfies the following 

condition: 

                     
 
   

                     
  
   

        (27) 

Then mIES(n) can be determined by equation (19). 

As explained in the TAS method, mTAS(p,n) is determined by the following steps: 

1. Determine mTAS,dc(p,n) by: 

                                                  

                                                      
      (28) 

2. Determine mTAS,bh(p,n) by the following equation and equation (23): 

                           
  
                            

  
   

                            
  
                            

  
      

      (29) 

3. Determine mTAS(p,n) by equation (24). 
Using mTAS and mIES calculated by equation (27), (28) and (29), G3p is calculated sooner and more often 

than needed, ensuring accuracy. 

Equation (26) can be easily solved due to its simple mathematical form. Thus, the proposed method 

can quickly calculate mTAS and mIES, and afterwards the calculation time of G3p will be largely reduced. 

3.8 Summary of the proposed model 

The fast calculation model for the thermal response factor of a large-scale boreholes GHE is shown in 

Figure 13. It contains four main steps: 

1. Convert the field into distance categories 



The Nd distance categories and their radial distances rn (n varying from 1 to Nd) are identified from the 

position of borehole 1 (top left borehole). The number of times each distance category Nj,n occurs is 

then evaluated for each borehole in the field. 

2. Calculate the 2D heat equation  

      is calculated for each distance category and all timesteps by applying equation (26) to all 

boreholes. 

3. Determine the simplification timesteps mTAS and mIES 
According to the results of step 2, equations (19) and (27) are used to obtain mIES(n) for all Nn distance 

categories. Equations (24), (28) and (29) are used to obtain mTAS(p,n) for each averaging period p and 

each distance category n. 

4. Calculate the thermal response factor 
xdis is firstly calculated by equation (8) to be used in the three-points method. Based on the results of 

step 3, G3p, G3p,borehole and G3p,GHE are calculated by equations (9), (11) and (12), respectively, for all 

distance categories and all timesteps. 

 

Figure 13: The flow chat of the global model for fast calculation of the thermal response factors  

4 . Results and discussion 

4.1 Case study 

In order to deal with the long-time operation of 20 years, one year in this paper contains 8 766 hours 

((365   3 + 366)    24 / 4), considering the leap year. The total number of timesteps is 175 320.  

The 676 boreholes contribute to 294 distance categories as shown in Figure 14. Distance category 1 

has the smallest radial distance r = rb = 0.11 m, and the largest radial distance r294 is between the first 

and last borehole (the diagonal of the square field) which equals to                       m. 

Then Nj,n is evaluated for all Nb boreholes.  
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Figure 14: The distance categories and their radial distances 

Four representative boreholes are chosen: top left corner borehole (borehole 1), top right corner 

borehole (borehole 13), bottom right corner borehole (borehole 325) and centre borehole (borehole 

163) of the left top 1/4 field, as presented in Figure 15. The numbers of boreholes at different radial 

distance for these four boreholes are shown in Figure 16. 

 

Figure 15: Four representative boreholes in the 26   26 square borehole field 
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Figure 16: Number distribution of boreholes at a certain radial distance for borehole 1, 13, 163 and 

325 

mIES for each distance category is calculated and shown in Figure 17. It can be inferred that distance 

category 1 starts to have an effect from the first timestep. mIES increases with the radial distance. When 

distance category is 210 (r210 = 98.06 m), mIES is 174 809, which means that the effect of the boreholes 

at distance category 210 only need to be considered from timestep 174 809 onwards. It should be 

noted that the total number of timesteps for 20 years is 175 320; all the boreholes at distance 

categories from 211 to the last distance category 294 have negligible effects on the calculated 

borehole, so the thermal response factor of this part does not need to be evaluated, and calculation time 

can be massively saved.  
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Figure 17: mIES of different radial distances for 20 years operation 

Figure 18 shows mTAS for different distance categories. For r1, from timestep 1 to mTAS(1,1) = 53 , G3p 

is calculated every timestep; from timestep mTAS(1,1) + 1 = 54 to mTAS(2,1) = 93, G3p is evaluated 

every 2 timesteps. From timestep mTAS(141,1) = 21 377 to the last timestep 175 320, G3p only needs to 

be determined every lp = 1 060 timesteps (around 44 days). For a certain averaging range, mTAS 

increases with the radial distance. For the largest distance category 294, the largest mTAS is 172 955 for 

p = 135, and the corresponding lp equals to 976. This means from timestep 172 955 to the last timestep 

175 320, G3p is calculated every 976 timesteps (around 40.6 days). 
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Figure 18: mTAS of each averaging range at distance category 1, 2, 10 and 294 

4.2 Three-points method validation 

The three-points method is validated by comparing the results from the double-integration method. It 

focuses on the accuracy of the three-points method and does not incorporate abovementioned 

simplifications. The relative differences of G between the three-points and the double-integration 

methods (i.e. (G3p-G2i)/G2i) for different radial distances r are shown in Figure 19 (a) for short periods 

(below one year) and Figure 19 (b) for long periods (above one year), as well as those of the middle-

point method (i.e. (Gm-G2i)/G2i). It can be inferred that both methods are accurate for short periods, 

with a maximal relative difference under 6%. However the three-points method shows a better 

accuracy for long periods. The maximal relative difference is maintained under 4 % by the three-



points method, instead of 34 % by the middle-point method. The three-points method shows good 

accuracy in the calculation of G. Figure 20 (a) indicates the borehole wall temperature difference 

under the effect of another borehole between using the three-points method and the double-integration 

method (as reference). All the absolute temperature differences remain below 0.03 °C, which is an 

improvement compared to over 0.2 °C for t = 25 years by the middle-point method in Figure 4 (a). For 

large-scale boreholes fields, this improvement is more significant. The wall temperature differences of 

the corner borehole and the centre borehole in different fields between two methods are shown in 

Figure 20 (b) and Figure 20 (c) respectively. The absolute difference increases with the size of the 

borehole field and are all below 0.6 °C for the corner borehole and 1.5°C for the centre borehole for 

different times. This is a significant improvement compared to over 12.5 °C by the middle-point 

method in Figure 4 (b) and over 36 °C in Figure 4 (c). The small differences prove that the three-

points method is a valid method to replace the double-integration method, meanwhile its single-

integration form makes it very fast and easily computed. 
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Figure 19: Relative difference of G between the three-points/middle-point method and the double-

integration method for (a) short periods (below one year) (b) long periods (above one year) 
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Figure 20: (a) The borehole wall temperature difference under the effect of a single borehole located 

at radial distance r and the borehole wall temperature difference (b) for the corner borehole and (c) 

for the centre borehole in a field with different sizes between the three-points method and the double-

integration method (as reference)  

4.3 Model validation 

This subsection aims at validating the proposed model including all the simplifications. This study 

focuses on multi-year simulation, however it is very difficult to obtain experimental data for such a 

long duration. Therefore, this paper compares the thermal response factors calculated by the proposed 

model with the original FLS model (validated by another study [59] for long operation time) with 

double integration not involving any simplification, which is considered as an accurate reference. 

More exactly, the three thermal response factors G3p, G3p,borehole and G3p,GHE of the case study were 

compared to G2i, G2i,borehole and G2i,GHE. As abovementioned, G3p gives the thermal response of one 

borehole wall caused by another borehole located at a certain radial distance at a certain time, 

G3p,borehole gives the thermal response of one borehole wall caused by all boreholes in the field at a 

certain time, and G3p,GHE gives the thermal response of the whole GHE at a certain time. 

The differences of the borehole wall temperature caused by G3p and G2i (as reference) for distance 

categories 1, 2, 10, and 100 during 20 years of operation are shown in Figure 21 every 

5 000 timesteps. The absolute differences are all under 0.03 °C, at the borehole radius (r = rb = 0.11 m) 

during during 20 years of operation. The differences reduce with the radial distance. For r = 4 m, 

r = 16 m and r = 64.5 m, the absolute differences are smaller than 0.009 °C, 0.003 °C and 0.002 °C, 

respectively. Therefore, the proposed method shows an excellent accuracy for the evaluation of G. The 

relative differences of G3p,borehole (i.e. (G3p,borehole-G2i,borehole)/G2i,borehole) for borehole 1, 13, 163 and 325 

are shown in Figure 22 every 500 timesteps. All absolute relative differences are below 2 %, so it can 

be inferred that the proposed global model can give an accurate result for the temperature response of 

each borehole considering all the effects of the boreholes in the GHE field. Regarding the thermal 



response factor of the whole GHE, the relative differences (i.e. (G3p,GHE-G2i,GHE)/G2i,GHE and (Gm,GHE-

G2i,GHE)/G2i,GHE)every 500 timesteps are shown in Figure 23. The relative difference between Gm,GHE 

and G2i,GHE reaches 23 %. However the relative difference of G3p,GHE is smaller than 1.5 %, indicating 

that the proposed model shows a better accuracy to predict the thermal response of the whole GHE as 

well.  
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Figure 21: Temperature differences of the borehole wall caused by G3p and G2i (as reference) for 

distance category 1, 2, 10, and 100 during 20 years of operation 
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Figure 22: Relative differences of G3p,borehole for borehole 1, 13, 163 and 325 during 20 years of 

operation compared to G2i,borehole 
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Figure 23: Relative differences of G3p ,GHE and Gm,GHE during 20 years of operation compared to 

G2i,GHE 

4.4 Calculation speed  

The calculation time of the proposed model was compared to different calculation methods to analyse 

the calculation time reduction ability for the three main steps: distance category simplification, the 

three-points method and the initial effect simplification/time averaging simplification. The double-

integration method without distance categories uses equation (5). The double-integration method with 

distance categories uses the form of equation (11) in which G3p is replaced by G2i. The three-points 

method with distance categories uses equation (11), without the initial effect/time averaging 

simplification. The proposed global model includes all the simplification methods. The calculation 

time of different methods is shown in Table 2. All methods were calculated in Matlab using a 

computer with an Intel i7-6700 CPU and 16 GB RAM. In the proposed model, the parallel computing 

with 4 computer threads were used. This could be adjusted based on the computer characteristics and 

the limit set by Matlab. Its simulation time with and without parallel computing was also investigated. 

It should be noted that the values of εIES and εTAS, which are set to 0.5 % in this paper, influence the 

calculation time. The larger they are, the faster the calculation is, with the sacrifice of the accuracy. 

Considering that the double-integration method without distance categories method is heavily time 

consuming, it is only possible to measure the calculation time for short simulated periods. It cost 

1.4 hours in Matlab to simulate 10 hours of operation. Since the calculation time is linear to the 

simulated period for this double-integration method, it was estimated that it would take almost 50 days 

to simulate 1 year. By applying distance category simplification to this method, the calculation time 

was significantly reduced to 1.7 hours, showing a calculation time reduction factor (CTRF) of 

approximately 700. The three-points method with distance categories cost 0.68 hour for 1 year 

simulated period, and it contributed to a CTRF of 2.5 compared to the double-integration method with 

distance categories. The proposed global model only cost 4 seconds without parallel computing for 

1 year simulated period, which meant the initial effect simplification and time averaging simplification 

gave a CTRF of 600. The parallel computing gave a CTRF of around 2. For 1 year simulated period, 

the overall CTRF of the proposed model with parallel computing was around 1 000 000 compared to 

the double-integration method without distance categories, which was a huge improvement. Only 4 

seconds of calculation time for a large-scale field of 26   26 boreholes for 1 year of operation makes it 

appropriate to simulate GHE systems in BES tools, especially in the design phase for buildings or 

vertical ground source heat pumps. Moreover, considering a long operation time of a GHE can be 

interesting. The proposed model cost about 1 minute with parallel computing and 2 minutes without 

parallel computing to simulate 20 years of operation, compared to nearly 1 000 days by the double-

integration method without distance categories, corresponding to a CTRF of around 1 600 000 and 

760 000, respectively. 



The calculation time of the proposed model using double-integration instead of the three-points 

method was also investigated. It cost 1.5 minutes and almost 4 minutes to simulate 1 year and 20 years 

respectively. It shows that by applying the three-points method in the initial effect simplification/time 

averaging simplification can give higher CTRFs, which are 24 for one year, 8.9 for 10 years and 4.4 

for 20 years simulated period. Thus, the three-points method can further increase the calculation 

ability, and maintain high accuracy at the same time. 

Table 2: Calculation time reduction of the proposed model for a 26   26 borehole field 

Simulated 

period 

 Calculation time  

Double-

integration 

method 

without 

distance 

categories 

(estimated) 

Double-

integration 

method 

with 

distance 

categories 

Three-

points 

method 

with 

distance 

categories 

Proposed 

method 

with 

parallel 

computing 

using 

double-

integration 

method 

Proposed 

model 

without 

parallel 

computing 

(3P method) 

Proposed 

model 

with 

parallel 

computing 

(3P 

method) 

1 year 50 days 1.7 hours 0.68 hours 96 seconds 4 seconds 4 seconds 

5 years 250 days 8.4 hours 3.4 hours 
150 

seconds 
18 seconds 11 seconds 

10 years 500 days 16.8 hours 6.9 hours 
204 

seconds 
40 seconds 23 seconds 

20 years 1000 days 33.5 hours 12.9 hours 
230 

seconds 
114 seconds 53 seconds 

It should be noted that, although the proposed model is presented with a square field configuration, it 

is also suitable for other configurations such as L-shaped, box-shaped, U-shaped and even irregular. 

The distance category simplification can be applied to other configurations but the CTRF will vary 

depending on the shape of the field. The initial effect simplification/time averaging simplification only 

considers the distance categories, thus it can still simplify the calculation after the various 

configurations are converted into distance categories. The proposed model can be therefore widely 

adapted to engineering cases and BES tools.  

4.5 Discussion 

The three-points method is an effective method to reduce the calculation time, since it can provide a 

CTRF of around 2.5 in this case study. It should be noted that our proposed model could still provide 

fast calculation even if it is replaced by the double-integration method. 

The idea of using the 2D heat conduction equation to simplify the calculation has several advantages:  

 It is an analytical approach that can easily be integrated in a BES tool. 

 It is load-independent. It focuses on the evaluation of the thermal response factor (G), 

therefore it avoids the presence of the heating load. The calculation can be done in a stand-

alone tool (Matlab in this study). Besides, the heating load signal is fully respected in our 

model, avoiding the reshaping procedure presented in the load-aggregation algorithm [36] 

which might lead to inaccuracy. This is very important and convenient for the integration in 

the BES tool, which gives the building load at every timestep (one hour or smaller). 

 The values of G can be used as an input table to the BES tool. When dealing with the 

temperature calculation, e.g. equation (11), the varying load and thermal interactions could be 

evaluated by reading this table. The coupling between varying load and G becomes a basic 

computation, which is rather straightforward and fast for most tools. 

 This simplification is easy, accurate and fast, avoiding complex mathematical algorithms, such 

as the FFT method [43]. 

This article focuses on the uniform heating load distribution to each borehole, which can help to 

reduce the mathematic complexity. As abovementioned, the proposed model could also be applied to 



non-uniform distribution, because the core of the simplification based on the 2D heat conduction is 

load-independent. However this would require some adjustments such as in equation (11) in which, 

due to the non-uniform distribution, there will be different weighting factors determined by different 

loads for each G3p, instead of identical ones in the uniform distribution. 

This study did not consider the simplification of the temporal superposition (load history), because 

normally it is easy and fast for a tool to deal with this mathematical problem, if G of the whole field is 

known. Besides, it is much easier to integrate the GHE model in the BES tools which directly 

generates the loads. 

One limit of this study is that it focuses on the uniform heating load distribution to each borehole, 

which can help to reduce the mathematic complexity. However, as abovementioned, the proposed 

model could also be applied to non-uniform distribution, because the core of the simplification based 

on the 2D heat conduction is load-independent. This would require some adjustments such as in Eq. 

(11) in which, due to the non-uniform distribution, there will be different weighting factors determined 

by different loads for each G3p, instead of identical ones in the uniform distribution. Since this work is 

based on the original FLS model, they share some common limits e.g. a constant heat flux along the 

depth of the borehole and the neglect of ground water movement. Homogeneous layer with constant 

thermophysical properties is another limit which can be refined by considering multi-layers with 

different properties. Integrating the improvements on these limits with our model is another 

perspective. 

5 . Conclusion 

The optimisation of the design and operation of large-scale boreholes heat exchangers for long 

operation time brings massive calculation regarding the thermal response factor G of the GHE field. 

middle-point temperature. This article presents a global model to quickly and accurately evaluate G, 

combining the FLS model, the 2D heat conduction equation, and a newly developed three-points 

method. 

The three-points method is introduced to determine the representative borehole wall temperature. It 

considers three points located at the top, middle and bottom of the borehole and uses the average of 

these three points to represent the borehole wall temperature, avoiding the non-negligible errors of 

using the borehole middle-point temperature for long operation time. The results show that the relative 

differences of G between the proposed method and the double-integration method are below 5 % for 

all cases. The absolute wall temperature difference of the corner borehole of a 26   26 field is below 

0.4 °C compared to over 12.5 °C by the middle-point method for a simulated time of 25 years. Besides 

its good accuracy, this method remains in the form of a single integration to keep a reasonable 

computation time. In addition, the position determination equation can be applied to different borehole 

configurations due to its universality. 

In the global model, the first step is to sort the large number of boreholes in increasing distance 

categories. In the second step, the 2D heat conduction equation determines when interactions between 

boreholes are negligible and when detailed calculations are needed. In the third step, the 2D heat 

conduction equation evaluates how often the interactions have to be recalculated. In the last step, the 

thermal response factors are computed by the three-points method. An example of a 26   26 square 

borehole matrix is studied in this paper. The results show that the proposed model can give accurate 

results for G3p (smaller than 5 %), G3p,borehole and G3p,GHE (smaller than 2 %), meanwhile the calculation 

time for one simulated year decreases by a factor of around 1 000 000 to only 4 seconds comparing to 

the double-integration method without any simplification. In this case, simulating 20 years of 

operation only requires 1 minute. The proposed model is suitable not only for a square borehole 

configuration, but also for other configurations such as L-shaped, box-shaped, U-shaped and even 

irregular. Its universality, accuracy, load-independency and calculation speed facilitate its integration 

into building energy simulation tools to optimise the design and operation of GCHP systems. 
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Nomenclature 

List of abbreviations   

2D Two-dimensional mTAS,dc Averaging simplification timestep 

determined by the distance category  

BES Building energy simulation mTAS,bh Averaging simplification timestep 

determined by the borehole 

COP Coefficient of performance n Distance category 

CTRF Calculation time reduction factor Nb Number of boreholes in GHE  

FFT Fast Fourier transform Nb,sym Number of boreholes after symmetry 

FLS Finite line source Nd Number of total distance categories 

GCHP Ground coupled heat pump Nj,n Number of times distance category n 

occurs for borehole j 

GHE Ground heat exchanger p Averaging range 

List of symbols pmax Maximal averaging range 

a1 ~ a8 Location factor parameter q Heat load per meter, W/m 

G Thermal response factor qi,m Heat load per meter of i
th
 boreheole 

at timestep m, W/m 

G2i Thermal response factor of a 

borehole wall temperature under 

the other borehole’s effect using 

the double-integration method 

qk Heat load per meter of each 

boreheole at timestep k, W/m 

G2i,borehole Thermal response factor of a 

certain borehole wall temperature 

under all boreholes’ effect using 

the double-integration method 

QGHE Heat load of GHE, W 

G2i,GHE Thermal response factor of GHE 

using the double-integration 

method 

r Radial distance to the borehole 

centre line, m 

Gm Thermal response factor of a 

borehole wall temperature under 

the other borehole’s effect using 

the middle-point method 

rb Borehole radius, m 

Gm,borehole Thermal response factor of a 

certain borehole wall temperature 

under all boreholes’ effect using 

the middle-point method 

ri,j Radial distance between i
th
 boreheole 

and j
th
 boreheole 

Gm,GHE Thermal response factor of the 

GHE using the middle-point 

method 

rn Radial distance of n
th
 distance 

category, m 

G3p Thermal response factor of a 

borehole wall temperature under 

the other borehole’s effect using 

the three-points method 

t Time, s 

G3p,borehole Thermal response factor of a 

certain borehole wall temperature 

under all boreholes’ effect using 

the three-points method 

tm Time at timestep m, s 

G3p,GHE Thermal response factor of GHE 

using the three-points method 

T Temperature, °C  



h Integral variable along borehole 

depth 

T0 Initial ground temperature, °C 

H Borehole depth, m Tb Borehole wall temperature, °C 

Hbottom Borehole depth of bottom point in 

three-points method, m 

Tb,j Borehole wall temperature of the j
th
 

boreheole, °C 

Htop Borehole depth of top point in 

three-points method, m 

xdis Location factor  

i The i
th
 boreheole z Vertical coordinate of borehole, m 

j The j
th
 boreheole   

k The k
th
 timestep List of Greek letters 

lp Averaging range for averaging 

period p 

αs Thermal diffusivity of ground, m
2
/s 

lpmax Averaging range for maximal 

averaging period pmax 

εIES Tolerance of initial effect 

simplification  

m Timestep εTAS Tolerance of time averaging 

simplification  

mend End of timestep θhe Temperature variation by heat 

equation, °C 

mIES  Initial effect simplification timestep θhe,j Temperature variation of j
th
 borehole 

wall by heat equation, °C 

mTAS Averaging simplification timestep λs Thermal conductivity of ground, 

W/m.°C 

 


