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It was recently demonstrated that wire-guide roughness can be suppressed by modulating the wire currents
so that the atoms experience a time-averaged potential without roughness �Trebbia et al., Phys. Rev. Lett. 98,
263201 �2007��. In this paper, we theoretically study the limitations of this technique. At low modulation
frequency, we show that the longitudinal potential modulation produces heating of the cloud, and we compute
the heating rate. We also give a quantum derivation of the rough conservative potential associated with the
micromotion of the atoms. At large modulation frequency, we compute the loss rate due to nonadiabatic spin
flip and show that it presents resonances at multiple modulation frequencies. These studies show that the
modulation technique works for a wide range of experimental parameters. We also give conditions to realize
radio-frequency evaporative cooling in such a modulated trap.

DOI: 10.1103/PhysRevA.77.023624 PACS number�s�: 03.75.Be, 37.10.De

I. INTRODUCTION

Atom chips are a very promising tool for cooling and
manipulating cold atoms �1�. Diverse potentials, varying on
the micrometer scale, can be realized, and very high trans-
verse confinements are possible. Applications envisioned
range from integrated guided atomic interferometry �2–4� to
the study of low-dimensional gases �5–7�. To benefit from
the atom-chip technology, the atoms should be brought close
to the current-carrying wires. But the atoms then experience
a rough potential due to wire imperfections �8,9� and this
used to constitute an important limitation of the atom-chip
technology. However, a method to overcome this roughness
problem, based on modulated currents, was recently demon-
strated �10�. Due to the important envisioned applications of
this method, a study of its limitations is crucial.

The method to suppress atomic wire-guide roughness
consists in a fast modulation of the wire current around zero
so that the atoms, as in a time-orbiting potential �TOP� trap
�11�, experience the time-averaged potential. Since the lon-
gitudinal potential roughness is proportional to the wire cur-
rent �12�, the time-averaged potential is exempt from rough-
ness. The modulation frequency � must be large enough so
that the atomic motion cannot follow the instantaneous po-
tential. On the other hand, � should be small enough to
prevent losses due to spin-flip transitions �13�. In this paper,
we present an analysis that goes beyond the time-averaged
potential approach, and we identify the limitations of this
method, for both small and large �. We also investigate the
possibility of using the radio-frequency evaporative cooling
method in such a modulated trap.

In Sec. II, we present the considered situation. In Sec. III,
we investigate the limitations of the method that arise at
small modulation frequency. Using a Floquet analysis, we
show that the atomic cloud is submitted to a heating that we
study quantitatively. Within this formalism, we also recover
the well-known adiabatic potential experienced by atoms in
rapidly modulated fields. In our case, it amounts to a residual
roughness. In Sec. IV, we compute the expected spin-flip
losses due to the time modulation of the magnetic field ori-
entation that arise at large �. Finally, the last section gives

some insights into the possibility of realizing radio-
frequency evaporative cooling in the modulated guide.

II. WIRE GUIDE

A wire guide can be obtained by combining a transverse
quadrupolar field and a homogeneous longitudinal magnetic
field B0. The quadrupolar field can be realized using, for
example, three current-carrying wires as shown in Fig. 1.
Because of wire deformations �9,14�, the current density in-
side the wires acquires nonzero transverse components. This
produces a longitudinal rough magnetic field bz proportional
to the wire current, much smaller than the external field B0.
The method to effectively remove the roughness consists in
modulating the currents at a frequency � while the longitu-
dinal field B0 is kept constant.

III. EFFECT OF THE MODULATION ON THE
LONGITUDINAL MOTION

Let us first assume that the modulation frequency of the
wire currents is small enough so that the atomic spin orien-
tation can follow the magnetic field orientation adiabatically.
The atoms are then subjected to the instantaneous potential
��B�, where � is the atomic magnetic dipole moment. For B0
much larger than E /�, where E is the typical transverse
atomic energy, the instantaneous transverse potential is har-
monic and proportional to the instantaneous wire currents.
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FIG. 1. �Color online� A wire guide produced by three current-
carrying wires. Geometrical deformation of the wire produces a
longitudinal potential roughness �of correlation length lc� propor-
tional to the wire current as depicted in the figure.
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Since the oscillation frequency of this potential is modulated
in time, the transverse classical dynamics is described by a
Mathieu equation, which predicts stable motion as long as
��0.87��, where �� is the maximum instantaneous trans-
verse oscillation frequency. This classical criterion is also
predicted by quantum mechanics since the Wigner function
evolves as a classical phase space distribution for a harmonic
potential �15�. In this paper, we assume this stability condi-
tion is satisfied. We also assume that the longitudinal dynam-
ics is decoupled from the transverse one and we focus on the
longitudinal motion. The longitudinal instantaneous potential

V�z,t� = u�z�cos��t� , �1�

where u�z�=�bz�z�, sketched in Fig. 1, is produced by wire
deformations. The idea of the method to smooth the rough-
ness is that the longitudinal motion of the atoms does not
have time to follow the time evolution of the potential. The
atomic motion is then well described by the effect of the
conservative potential �V�z , t��, where the time average is
done over a modulation period. Since �V�z , t��=0, the atoms
do not experience any roughness. We study below the con-
ditions on the modulation frequency � for such an approach
to be valid.

As the Hamiltonian experienced by the atoms is periodic
in time, we use the well-known Floquet representation �16�,
briefly presented below for the situation considered here. A
new quantum number nF is introduced, which gives the rela-
tive number of modulation energy quanta. The Hamiltonian
in this representation is time independent and contains two
contributions. The first one,

H0 = �
nF=−�

�

�p2/�2m� + ��nF��nF��nF� , �2�

does not couple different Floquet subspaces. The second one,

H1 = �
nF=−�

�

u�z�/2��nF��nF + 1� + �nF + 1��nF�� , �3�

couples adjacent Floquet subspaces. If the state of the system
in the Floquet representation is �nF

��nF
��t��nF�, where

��nF
��t� gives the state of the system in the manifold of Flo-

quet number nF, then the state of the system in the bare
representation is �nF

��nF
��t�e−inF�t. Expectation values of ob-

servables contain cross terms involving different Floquet
numbers. However, as long as evolution on time scales much
larger than 1 /� is considered, such cross terms �interference
terms� average to zero, and the different Floquet states can
be interpreted as physically different states. A given state has
an infinite number of Floquet expansions. In particular, it is
possible to assume that the initial state is in the Floquet
manifold of Floquet number nF=0.

Let us consider a state �p0 ,nF=0� of momentum p0 in the
Floquet manifold nF=0. The modulated rough potential u is
responsible for two different phenomena. First, it induces an
exchange energy rate of the atomic energy. This irreversible
evolution is due to the continuous nature of the rough-
potential Fourier decomposition: the state �p0 ,nF=0� is
coupled to a continuum of momentum states of the adjacent

Floquet subspaces nF= �1 and this coupling to a continuum
induces a departure rate from the initial state associated with
the rate of kinetic energy change. Second, the modulated
potential is responsible for the well-known adiabatic poten-
tial experienced by atoms in rapidly modulated fields �17�.
We show that this adiabatic potential is due to processes of
order 2 in u that couple the state �p0 ,nF=0� to the states
�p1 ,nF=0� via the virtually populated intermediate states
�q ,nF= �1�.

In the first section, we investigate the first phenomenon
and compute the associated heating rate for a cloud at ther-
mal quasiequilibrium. In the second section, we derive the
adiabatic potential experienced by the atoms. In both sec-
tions, we emphasize the case where the potential roughness
is that obtained at large distances from a flat wire having
white noise border fluctuations.

A. Heating of the atomic cloud

Let us suppose the atom is initially in the state �p0 ,nF� of
momentum p0 in the Floquet manifold nF=0. As shown in
Fig. 2, this state is coupled by u to the continuum of momen-
tum states in the Floquet manifold nF= �1, which leads to a
decay of the initial state population. The momenta of the
final states that satisfy energy conservation in the Floquet
subspace nF=−1 are ��q+, where q+=	k0

2+2m� /�, k0
= p0 /� being the initial atomic wave vector. Decay toward
these states involves the Fourier component �q+−k0 of u
and increases the kinetic energy of the atom by ��. If k0

2

�2m� /�, there exist states in the Floquet subspace nF=1
that have the same energy as the initial state. The momenta
of those final states are ��q− where q−=	k0

2−2m� /�, and
decay toward these states decreases the kinetic energy of the
atom by ��. A perturbative calculation, identical to the one
used to derive Fermi golden rule, gives an energy exchange
rate

dE

dt
=

��m

2�2 
�S�− k0 + q+� + S�− k0 − q+��/q+

− 	��k0� − 	2m�/���S�− k0 + q−� + S�− k0 − q−��/q−� ,

�4�

where S�q�= �1 /2���eiqz�u�0�u�z��dz is the spectral density

h̄ω

nF = 0

nF = −1

nF = 1

h̄ω

�h̄q+� p0

H0

h̄q−

FIG. 2. Transitions responsible for a heating of the atomic
cloud. The parabolas give the energy H0, given in Eq. �2�, versus
the momentum p for different Floquet manifolds nF. The state of
momentum p0 in the Floquet manifold nF=0 is coupled to different
momentum states of the Floquet manifolds nF= �1 by the rough
potential u�z�.
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of u, characterized by the correlation length lc, and 	�x� is
the Heaviside function, which is zero for x
0 and 1 for x
�0. The derivation of Eq. �4� is detailed in Appendix A. As
pointed out in the appendix, Eq. �4� is not valid for an initial
momentum very close to 	2m��. However, the range of k0
for which the formula is not valid is in general very small
and we ignore this in the following.

Apart from the rms amplitude of the roughness, which
accounts only for a multiplicative factor in the rate of the
energy change, three energies are relevant: E�=�� is the
energy quantum corresponding to the modulation frequency,
Em=mlc

2�2 is about the kinetic energy of an atom that would
travel over lc during an oscillation period, and Ec= p0

2 / �2m�
is the atomic kinetic energy. In the following, we consider
two different limits for which we give simplified expressions
for the energy change rate: the classical limit and the quan-
tum low-energy limit.

Let us first assume that E� /	EmEc�1 and
E�Em

1/2 /Ec
3/2�1. We show below that these two conditions

ensure the validity of the classical behavior. These two con-
ditions ensure that E� /Ec�1 so that q+ and q− are close to
k0 and one can expand the quantity q� /k0 in powers of
m� / ��k0

2�. Since the wave vectors −k0−q� and −k0+q� are
separated by about 2k0, the first condition ensures that the
spectral components S�−k0−q�� are negligible compared to
the two others. The second condition ensures that the latter
are well approximated using a Taylor expansion of S. Finally,
the energy exchange rate is written as

dE

dt
= − �2�2/v0

3S��/v0� + S���/v0��3/v0
4��/�2m� , �5�

where v0=�k0 /m is the atomic velocity. This energy ex-
change rate does not depend on � and is thus a classical
result. It is obtained through a classical calculation of kinetic
energy exchange computed after expanding the atomic tra-
jectory to second order in u. Note that, using the classical
expression Ec=mv0

2 /2, the two conditions E� /	EcEm�1
and E�Em

1/2 /Ec
3/2�1 are verified in the limit where � goes to

zero, as expected for the validity of classical physics.
Let us now consider the limit E� /Ec�1 and

EcEm
1/2 /E�

3/2�1, which we denote the quantum low-energy
limit. The first inequality ensures that the Heaviside function
in Eq. �4� is zero and that q+ can be replaced by 	2�� in the
denominator. The second inequality ensures that this replace-
ment is also valid for the argument of the S function. Then
the energy exchange rate given by Eq. �4� reduces to

dE

dt
=

�	m�

	2�3
�S�− k0 + 	2m�/�� + S�k0 + 	2m�/��� . �6�

This is a quantum result, sensitive to the fact that energy
exchange between the atom and the oscillating potential in-
volves the energy quanta ��. In the limit where Ec�E�

2 /Em
�k0�1 / lc�, it converges toward a finite value

dE

dt
=

�	2m�

	�3
S�	2m�/�� �7�

that does not depends on the initial momentum �k0 /m.

Let us now consider a cloud initially at thermal equilib-
rium with a velocity distribution n�v0�. The heating rate, ob-
tained after averaging Eq. �4� over n�v0�, is

kB
dT

dt
= 2

0

�

n�v0�
dE

dt
dv0, �8�

where kB is the Boltzmann factor. Although the heating rate
depends on the precise shape of the spectral density S, some
general properties can be derived.

First, although the energy exchange rate may be negative
for some velocities, we show below that dT /dt is always
positive. For a longitudinally homogeneous gas, this positiv-
ity ensures the increase of the entropy, as required by the
second law of thermodynamics in the absence of heat ex-
change with the cloud and without gaining information on
the system. To demonstrate that dT /dt�0, we perform a
change of variables in the four integrals obtained by substi-
tuting Eq. �4� into Eq. �8� to find

kB
dT

dt
= ���m/���

0

Q0 dq

q
S�q��n��/q − �q/2m�

− n��/q + �q/2m��

+ 
Q0

� dq

q
S�q��n��q/2m − �/q�

− n��/q + �q/2m��� , �9�

where Q0=	2m� /�. For a thermal equilibrium distribution,
n�v� is a decreasing function of �v�. Furthermore, the spectral
density is a positive function. We thus find that dT /dt�0 so
that the effect of the potential roughness is always a heating
of the cloud. Equation �9� also shows that the heating rate
goes to zero at very large temperatures, since n is then about
flat over the explored velocities.

Second, for large enough temperatures one expects to re-
cover the classical result and the heating rate should not de-
pend on �. Then the heating rate depends only on the four
independent quantities �u2�, Em, �, and kBT. Since �u2� enters
only as a multiplicative factor in the heating rate, using di-
mensional analysis we show that kBdT /dt is the product of
�u2� / �m�lc

2� and a function of kBT /Em. As a consequence, if
the function giving the heating rate versus T is known for a
given value of � and Em, then the heating rate is known for
any value of T, Em, and �.

Finally, at low enough temperatures, the heating rate is
well estimated by substituting Eq. �6� into Eq. �8�. One ex-
pects that the heating rate converges toward Eq. �7� when the
temperature becomes much smaller than �� and �2 / �mlc

2�.
In the following, we give quantitative results in the case

of a potential roughness obtained at large distances d from a
flat wire whose borders have white noise fluctuations of
spectral density Jf. In this condition, the spectral density of u
is given by �8,9�
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S�k� = Jf
��0�I�2

4�2 k4K1�kd�2, �10�

where K1 is the modified Bessel function of the first kind.
The typical correlation length of u is the distance above the
wire d so that Em=m�2d2. The mean square of the rough
potential is �u2��0.044���0I�2Jf /d5. In the following we
use �u2� as a parameter instead of Jf. The spectral density of
u is then

S�k� = ��u2�d�kd�4K1�kd�2, �11�

where ��23.
We first study the heating rate predicted by classical phys-

ics. This classical heating rate is plotted in Fig. 3�a� as a
dashed line. The temperature and heating rate are scaled to
Em and ��u2� /Em, respectively, so that the curves corre-
sponding to the classical predictions are independent of the
problem parameters. We observe the expected decrease to
zero of the heating rate at high temperatures. We also ob-
serve a rapid decrease of the heating rate as the temperature
decreases, for temperatures much smaller than Em. The maxi-
mum heating rate is about 2.1�u2� / �m�d2� and is obtained
for the temperature kBTM �0.07Em. For d=5 �m and
� / �2��=50 kHz, which are parameters similar to those of
the experiment presented in �10�, TM =1.8 mK. Typical cold
atom temperatures are much smaller than this value, and it is
thus of experimental interest to investigate in more detail the
regime T�TM.

The decrease of the heating rate for T�TM is expected
since, in this case, the atoms move over a distance much
smaller than the correlation length of the rough potential
during a modulation period. The atoms are then locally sub-
jected to an oscillating force almost independent of z, and the
atomic motion can be decomposed into a fast micromotion in
counterphase with the modulation and a slow motion. Since
the micromotion is almost in counterphase with the excita-
tion force, almost no energy exchange between the atom and
the potential arises on a time scale larger than the modulation
period. More quantitatively, we can derive an analytical ex-

pression for the heating rate in the regime where T�TM,
which shows the decrease of the heating rate as temperature
decreases. For such low temperatures, as shown a posteriori
below, wave vectors in S that contribute to the heating rate
are much larger than 1 /d so that we can replace the Bessel
function K1�x� in Eq. �11� by its asymptotic value at large x.
We then find that the integrand in Eq. �8� is peaked around
v0=21/3�kBT	Em�1/3 /m and the Laplace method gives the fol-
lowing approximation for the heating rate:

kBdT

dt
= �

��u2�
Em

� Em

kBT
�7/3

e−3�Em/2kBT�1/3
, �12�

where ��0.36. This asymptotic function is plotted in Fig.
3�a� �solid line�. It coincides with the exact classical result
within 20% as long as kBT
0.002EM. The above expression
of v0 and Eq. �5� validate the expansion at large x of the
Bessel function K1�x� for T�TM.

The limit of validity of the classical results described
above is given by E� /	EcEm�1 and E�Em

1/2 /Ec
3/2�1, where

Ec�mv0
2, v0 being the typical velocity involved in the heat-

ing process. Using the above value for v0, the condition of
validity of the classical regime is reduced, for E��Em, to
kBT�E�. For � /2�=50 kHz, we find that the classical re-
gime fails for temperatures T�2 �K. At lower tempera-
tures, quantum analysis is required to estimate the heating
rate.

For the above parameters �d=5 �m and � /2�=50 kHz�,
Em /E�=104 and the heating rate is exponentially small at
temperatures smaller than 1 �K, where classical physics
fails �the term e−3�Em / 2kBT�1/3

in Eq. �12� is 310−31 for T
=1 �K�. Thus, in order to investigate the heating rate be-
yond the classical approximation, we consider a different
situation for which Em /E� is only equal to 200. This would
correspond, for the same distance d=5 �m, to a modulation
frequency of only 1 kHz. The exact heating rate, which is
computed by substituting Eq. �4� into Eq. �8�, is plotted in
Fig. 3�b�. This calculation shows that the classical result is
valid up to a factor of 2 as long as kBT�0.2E�. At lower
temperatures, the classical result underestimates the heating
rate. At temperatures much smaller than E�

3/2 /	Em, the heat-
ing rate is well approximated by the predictions in the low-
energy quantum limit where Eq. �6� is valid. This prediction
is represented as a dotted line in the graph. At temperatures
much smaller than E�

2 /Em �i.e., for kBT��2 /md2�, the heat-
ing rate converges toward Eq. �7�. Assuming Em /E��1,
then the expansion of S at large wave vector can be used and
Eq. �7� gives

kBdT/dt = ��u2�/��m�d2/��2e−2	m�d2/� �13�

where ��4.0. This asymptotic value is plotted in Fig. 3 as
dash-dotted lines. The heating rate is equal to this limit up to
a factor of 2 as soon as kBT
0.2E�

2 /Em.
The heating of the atomic cloud can easily be made small

enough experimentally to have no noticeable effects. Let us
for example consider the situation, similar to the experiment
in �10�, where d=5 �m and 	�u2�=50 nK. If the modula-
tion frequency is as low as 1 kHz, then the maximum heating
rate is 3 �K /s and is obtained for a temperature of 700 nK.

(a)

kBT [mω2d2]
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/
d
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2
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10110010−110−210−310−4
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10−4

10−6

10−8

10−10

10−12

(b)

kBT [mω2d2]
10010−110−210−310−410−510−6

FIG. 3. Heating rate of a cloud as a function of its temperature,
for a modulated rough potential whose spectral density is given by
Eq. �11�. �a� Classical predictions �dashed lines� and asymptotic
behavior at low temperature given by Eq. �12� �solid line�. �b� Exact
result for � / �2��=200� / �md2� �solid line� compared with the
quantum low-energy prediction �dotted line�, the asymptotic predic-
tion of Eq. �13� �dash-dotted line�, and the classical result �dashed
line�.
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Thus, for such a low modulation frequency, the heating may
be a problem in experiments using the modulation technique.
However, as soon as the modulation frequency is increased
to 50 kHz, as in �10�, the maximum heating rate is only 64
nK/s and is obtained at a large temperature of 1.8 mK. At
lower temperatures, the exponential decrease of the heating
rate shown in Eq. �12� rapidly decreases the heating rate to
completely negligible values.

B. Effective remaining potential

In this section, we show that Raman processes �of second
order in u�, in which adjacent Floquet states are virtually
populated, are responsible for an effective potential

Vad = ��u/�z�2/4m�2. �14�

This potential is a well-known classical result �17� that cor-
responds to the kinetic energy of the micromotion of a
trapped particle. The micromotion has been seen, for ex-
ample, in Paul traps �18,19� and in TOP traps �20,21�. In our
situation, at large oscillation frequency, the micromotion has
an amplitude ��−��u /�z� / �m�2�cos��t� much smaller than
the correlation length of u. It is in counterphase with the
excitation force and has a kinetic energy Vad. In this limit,
since the micromotion is in counterphase with the excitation
force, the energy transfer between the atom and the potential,
averaged over a modulation period, vanishes. Energy conser-
vation then shows that the slow motion of the atom is sub-
jected to an effective rough potential Vad. It is well known
that this effective potential, due to the fast atomic micromo-
tion, is responsible for the confinement in rapidly modulated
Paul traps. A quantum derivation of Vad has already been
done in �15� using a secular approximation. Here we give an
alternative derivation based on the Floquet representation.

Let us compute the effective coupling between the states
�k0� and �k1� of momenta �k0 and �k1, respectively, both
being in the Floquet subspace nF=0. For this purpose, we
first investigate the effect of a given pair of Fourier compo-
nents of u that couple the two previous states. Their wave
vectors are q and q�=k1−k0−q. Four processes are involved
in the effective coupling between �k0� and �k1�, as sketched in
Fig. 4, and the effective coupling is the sum of the four

amplitudes. The precise effective coupling between two
“ground” states coupled via an intermediate level has been
investigated in �22�. The authors show that the effective cou-
pling is V1V2 /�, where V1 and V2 are the coupling to the
intermediate state and � is the difference between the energy
of the intermediate state and the mean energy of the two
ground states. Using this result, we find that the effective
coupling associated with each process is

veff = uquq�/
4��2�k0 + ��2�/�2m� � �� − E0� , �15�

where � is q or q� depending on the process and E0=�2�k0
2

+k1
2� /4m. Adding the four amplitudes, we find

Veff =
uquq�

4
� �2�k0 + q�2/m − 2E0

��2�k0 + q�2/�2m� − E0�2 − �2�2

+
�2�k0 + q��2/m − 2E0

��2�k0 + q��2/�2m� − E0�2 − �2�2� . �16�

Assuming that the kinetic energies of the final, initial, and
intermediate states are all much smaller than ��, the de-
nominator can be simplified to −�2�2, and we obtain

Veff =
uquq�qq�

2m�2 . �17�

Doing the sum over the pairs �q ,q��, we find that the cou-
pling between the momentum states is that realized by the
potential of Eq. �14�.

An alternative way to derive the adiabatic potential is to
use a dressed Floquet representation. As shown in Appendix
B, the calculations are more straightforward in this represen-
tation. In addition, no detailed knowledge of the effective
coupling corresponding to a transition through a virtually
populated state is required.

The residual roughness given in Eq. �14� constitutes a
limitation of the modulation method. It scales as
�u2� / �mlc

2�2�, where lc is the typical correlation length of u.
Thus it is much smaller than the initial roughness amplitude
as soon as 	�u2��mlc

2�2. In the case where the roughness
potential spectral density is that obtained at large distances
from a wire having white noise border fluctuations of spec-
tral density Jf, we obtain a mean value

�Veff� = 0.048Jf
��0�I�2

m�2d7 = 1.1�u2�/�m�2d2� . �18�

If the wire edge deformations have a Gaussian probability
distribution, then the roughness of the remaining potential is
simply 	�Veff

2 �− �Veff�2=	2�Veff�. For d=5 �m, � / �2��
=50 kHz, and 	�u2� /kB=500 nK, the roughness of the ef-
fective remaining potential is as small as 0.09 nK.

IV. LOSSES DUE TO SPIN-FLIP TRANSITIONS

All the previous analysis assumes that the atomic spin can
adiabatically follow the direction of the instantaneous field
when the current is modulated. In this section, we investigate
the conditions on the modulation frequency for this adiabatic
following requirement to be valid. Nonadiabaticity induces

�h̄k0 h̄k1

h̄ω

h̄ω

H0

�

nF = −1

nF = 0

nF = 1

FIG. 4. Raman transitions responsible for the adiabatic potential
of Eq. �14�. The second-order coupling between two momentum
states of wave vector k0 and k1 is sketched. The coupling produced
by two Fourier components of u of wave vector q and q�=k1−q
−k0 are represented as dashed and solid arrows, respectively.
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losses via spin-flip transitions to the untrapped states. Intu-
itively, we expect that the losses are small for a modulation
frequency much smaller than the Larmor frequency. In the
following, we compute this loss rate, following calculations
done in �23� for the dc case.

Let us consider a spin-1 atom in the modulated guide
described in Sec. II with ����. We choose a coordinate
system whose origin is at the quadrupole field center and
with axes x and y at 45° to the quadrupole axis as depicted in
Fig. 1. We assume the atomic magnetic moment is �J /�
where J is the atomic spin angular momentum of compo-
nents Jx, Jy, and Jz along x, y, and z, respectively. We denote
by ��1� and �0� the eigenstates of Jz of eigenvalues �� and
0, respectively.

The magnetic field direction depends on position and on
time. We apply a space- and time-dependent spin rotation
R�t ,x ,y� so that R�1� points along the instantaneous local
magnetic field direction. In such a representation, the Hamil-
tonian is

H = R−1 p2

2m
R + UJz/� + i�

dR−1

dt
R �19�

where

U = �B0 + m��
2 cos2��t��x2 + y2�/2. �20�

Here we assume m��
2 �x2+y2���B0, so that the harmonic

approximation is valid. We also neglect the effect of gravity.
This latter assumption is relevant as long as g� l���

2 , where
l�=	� / �m��� is the harmonic oscillator length. This condi-
tion ensures that the time-averaged potential is barely af-
fected by the gravity and that the acceleration of the atoms
over the spatial extension of the trapped state has a negli-
gible effect.

We choose the rotation R as a product of a rotation along
x and a rotation along y. To first order in x and y, R is

R = 1 + i�xJx/� + i�yJy/� , �21�

where the angles of the rotations along x and y are �x=
−b�x cos��t� /B0 and �y =b�y cos��t� /B0, respectively. Here
b�=��

	2mB0 /� is the quadrupole gradient at maximum
current. Calculation to first order in �x ,�y gives

R−1 p2

2m
R =

p2

2m
+ Vk �22�

where

Vk =
	2�b� cos��t�

mB0
�px − ipy��0��1� + H.c. �23�

and H.c. stands for Hermitian conjugate. Here, we ignore the
state �−1�, which is relevant for low enough coupling �see
below�. The term Vk, due to the fact that R depends on the
position, is responsible for spin-flip losses in time-
independent Ioffe magnetic traps �23�. Within the approxi-
mations made here, the position dependence of R has no
effect on the Hamiltonian within the spin state �1� manifold:
the Coriolis coupling analyzed in �24�, which corresponds to

a rotation frequency proportional to b�2, is not seen in this
calculation.

Similar calculations give

i�
dR−1

dt
R =

��b�
	2B0

sin��t��x − iy��0��1� + H.c. �24�

This term, due to the time modulation of the local spin ori-
entation, may also produce spin-flip losses in modulated
traps. The condition ���� ensures that the term of Eq. �24�
has an effect much larger than that of Eq. �23�, and we ne-
glect the latter in the following.

As in the previous section, we use the Floquet represen-
tation. The Hamiltonian H in the manifold of spin state �1� is
decomposed into the term

H0 = �
nF=−�

�

�p2/2m + m��
2 �x2 + y2�/4 + nF����1,nF��1,nF�

�25�

and the term

H2 = m��
2 �x2 + y2�/4� �

nF=−�

�

�1,nF + 2��1,nF� + H.c.�
�26�

that couples the Floquet nF state to the Floquet states nF�2.
Here, �1,nF� is the state vector of an atom in the spin state �1�
with the Floquet number nF. The term H2 is due to the part of
Eq. �19� that is proportional to cos�2�t�. Since we assumed
����, the effect of H2 is weak and can be treated pertur-
batively.

We will compute the loss rate of an atom initially in the
spin state �1� of Floquet number nF=0 and in the ground
state �0 of H0. The term of Eq. �24� couples this trapped
state to the untrapped spin states �0� of Floquet numbers nF
= �1. The energy spectrum of the spin state �0�, which is
unaffected by the magnetic field, is a continuum. Coupling to
this continuum leads to a departure rate from the initial state,
provided the Markov approximation is satisfied �25�. This
approximation also ensures that the state �−1� can be ne-
glected. We will show below that losses to the Floquet mani-
fold nF= +1 are much larger than losses to the Floquet mani-
fold nF=−1. Thus, we consider in the following the final
states in the manifold nF= +1. Since i��dR−1 /dt�R does not
affect the longitudinal motion, we concentrate on the trans-
verse degrees of freedom and normalize �0 as /dx dy��0�2
=1. In addition, because i��dR−1 /dt�R�0 is, up to a phase
factor ei�, invariant under a rotation of angle � in the xy
plane, the losses to spin 0 states are isotropic in the xy plane.
It is thus sufficient to compute the departure rate toward a
plane wave traveling in the x direction. The final state wave
vector is

kf = 	2m��B0 + ���/	2 − ���/� , �27�

and the Fermi golden rule gives the departure rate
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�0 = 	2�
�2

m�B0��

�kf
2e−	2�kf

2/�m���. �28�

The departure rate decreases exponentially with increasing
bias field B0, as for a usual time-independent Ioffe trap �23�.
However, in the modulated trap, an additional exponential
factor in � /�� reflects the fact that the Floquet level is in-
creased by 1 while the spin is flipped. This transition is as-
sociated with the “emission” of a quantum of energy ��,
given to the oscillating magnetic field. Equation �28� also
shows that the departure rate goes to zero for a modulation
frequency very close to the frequency �B0 /�+�� /	2, i.e.,
for vanishing kf. This cancellation is due to the fact that the
coupling term of Eq. �24� is odd in x whereas the initial state
is even and the final state, whose wave vector is vanishing, is
flat. The departure rate toward the Floquet state nF=−1 is
identical to Eq. �28�, � being replaced by −�. Since we
assumed ����, the loss rate toward the Floquet state nF
=−1 is negligible compared to Eq. �28�.

The condition ���� and Eq. �28� show that the loss rate
is exponentially small when � reaches �1= ��B0 /�
+�� /	2� /3, the value for which the initial state has the same
energy as the untrapped state of Floquet number nF=3 and of
vanishing momentum. For modulation frequencies smaller
than �1, second-order processes resonantly couple the initial
state to the untrapped state �0� of Floquet number nF=3. In
these processes, represented in Fig. 5, the term H2 of Eq.
�26� first transfers the atoms into the virtually populated in-
termediate trapped state �1� of Floquet number nF=2 before
the term i��dR−1 /dt�R realizes the transfer to the untrapped

state �0� of Floquet number nF=3. Although H2 is weak, the
loss rate associated with the second-order processes is much
larger than the exponentially small �0.

More generally, for a given modulation frequency, losses
are dominated by transitions toward untrapped states of Flo-
quet number nF=2n+1 where n=E(��B0 /�+�� /	2� / �2��
−1 /2), the function E�x� being the integer part of x. Those
transitions correspond to processes where the atom is first
brought to the intermediate state �1� of Floquet number nF
=2n by n transitions produced by the term H2 and is then
transferred to the untrapped state �0� of Floquet number nF
=2n+1 by the term i� dR−1 /dt R of Eq. �24�. Perturbation
theory gives an effective coupling between the state �1� of
Floquet number nF=0 and the states �0� of Floquet number
nF=2n+1 which is

Un = − i
��b��x − iy�

n ! 2	2B0

�m��
2 �x2 + y2�/�16����n. �29�

The eigenstates of H0 in the virtual intermediate states do not
appear because, since we assumed ����, the energy dif-
ference between the intermediate states is negligible and a
resummation is possible.

The departure rate from the initial state toward the Flo-
quet state nF=2n+1 is computed from Un using the Fermi
golden rule. As for the calculation of �0, it is sufficient to
compute the departure rate in the x direction, and we obtain

�n =
m�2b�2

8�B0
2

�m��
2 �2n

n!2�16���2n�/ dx dy�x − iy�eikfx�0�x,y�

�x2 + y2�n�2

, �30�

where kf =	2m��B0+��� /	2− �2n+1���� /� is the wave
vector of the final state. Using the Gaussian expression for
the ground state �0�x ,y� in Eq. �30�, we can show that �n is
the product of a polynomial in kf and of the exponential

factor e−	2�kf
2/�m���. The minima of the polynomial corre-

spond to destructive interferences between the probability
amplitudes of paths having different intermediate vibrational
states. Since �kf

2 /m is reduced by 4� when n is increased by
1 and since we assumed ����, the exponential factor en-
sures, as stated above, that the total loss rate is dominated by
the departure toward the highest Floquet subspace.

Figure 6 gives the departure rate of the trapped ground
state as a function of � for �B0=50���. We observe several
peaks that reflect the resonance behavior at integer values of
��B0+�� /	2−�� / �2��. The height of the resonances goes
down with increasing integer n as expected since the order of
the transition increases with n. We verify that the loss rate is
dominated by the losses toward the Floquet state of highest
odd Floquet number, as expected. Between two resonances,
we observe the expected exponential decrease of the loss
rate. We observe a structure in the loss rate for losses to
Floquet state larger than 1, as expected.

The lifetime of a thermal Maxwell-Boltzmann distribution
is obtained after averaging the loss rate over the thermal
distribution. In this calculation, �0 in Eq. �30� is replaced by
the eigenstate �i�x�� j�y�, where i and j denote the vibra-

µB0

nF = 1
nF = 0

nF = −1

h̄ω

nF = 0

nF = 1

nF = 2
nF = 3x

� � � � � � � � � |0〉� � � � � � � � � |1〉
nF = 2

� � 	 
 �

FIG. 5. Transitions responsible for spin-flip losses. For the spin
state �1�, the potential energy term of Eq. �25� is represented as well
as the energy of the ground state in the nF=0 manifold. For the spin
state �0�, we represented, for each Floquet manifold nF, the whole
energy spectrum, which is a semicontinuum starting at an energy
nF��. The transitions induced by the term of Eq. �24� are shown as
dotted arrows, whereas transitions due to the term H2 of Eq. �26�
are shown as solid lines. The initial state is the spin state �1� of
Floquet number nF=0. For the two final Floquet states nF=1 and 3,
only the dominant processes are sketched, whose amplitudes are U0

and U1, respectively, where Un is given in Eq. �29�. In this picture,
the odd Floquet state of �0� that is closest to resonance corresponds
to nF=3, and losses are dominated by �1, where �n is given in Eq.
�30�.
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tional level. Neglecting changes of the final energy
�2kf

2 / �2m� across the thermal distribution, we can compute
the departure rate �0 for a Maxwell-Boltzmann distribution.
More precisely, writing Eq. �30� as a fourth integral and us-
ing properties of Wigner functions we find, for temperatures
kBT����,

�0 =
�3

2
��

�3���2

�kBT�3 e−��B0−���/�kBT�. �31�

Because of the crude approximation that the final energy
does not depend on the initial state, this result is valid only
up to a factor of the order of unity.

Experimentally, spin-flip losses can easily be avoided by
properly choosing the modulation frequency. For example,
let us assume that the transverse oscillation frequency of the
instantaneous trap at maximum current is �� / �2��
=50 kHz and the longitudinal magnetic field satisfies B0
=50��� /�. If �=�B where �B is the Bohr magneton, this
corresponds to B0=1.8 G and the Larmor frequency �B0 /�
is 2.5 MHz. In these conditions, the loss rate is dominated by
the term �0 of Eq. �28� as long as the modulation frequency
is larger than 0.84 MHz and, in this frequency range, it is
smaller than 1 s−1 as soon as �
2.2 MHz. For �

0.84 MHz, losses become dominated by transitions to-
ward states of higher Floquet numbers, and the loss rate is
peaked at modulation frequencies close to integer values of
�B0 / �2���+�� / �2	2��−1 /2. In particular, the loss rate
goes up to about 25 s−1 for a modulation frequency close to
0.8 MHz. Thus, the vicinity of this resonance should be
avoided experimentally. Resonances of higher order are less
problematic since the maximum loss rate they induce is
smaller than 0.1 s−1.

V. RADIO-FREQUENCY EVAPORATION IN THE
MODULATED GUIDE

In this section we present general considerations on
forced evaporation in a modulated guide. Since evaporative
cooling is most efficiently realized in a three-dimensional
�3D� trap, longitudinal confinement is required. A 3D trap
can be obtained from the modulated guide of Sec. II by ap-
plying a z-dependent constant longitudinal field B0�z�. Here,

we consider evaporation in the transverse plane �xy� at a
given z position and denote as B0 the longitudinal magnetic
field. For this purpose, in addition to the previous trapping
potential, we apply a weak radio-frequency magnetic field
polarized in the x direction, of frequency �rf and of ampli-
tude Brf. We consider here an atom of magnetic moment
�J /�, where J is the atomic spin angular momentum.

Let us first give simple predictions, which rely only on the
fact that, because of the modulation at 2� of the trapping
potential, the atomic Larmor frequency is modulated in time.
The modulation amplitude �� increases, in the transverse
plane, with the distance r from the trap center, according to
��=�b�2r2 / �4�B0�. Considering only the internal atomic
dynamics at a given position, the modulation of the Larmor
frequency is equivalent, within the rotating-wave approxima-
tion, to a frequency modulation of the radio-frequency field.
In this picture, the radio-frequency spectrum consists of a
carrier at the frequency �rf and sidebands spaced by 2�, the
relative amplitude of the nth sideband with respect to the
carrier being Jn���b�r�2 / �8B0����, where Jn is the Bessel
function of the first kind. Thus, for a given frequency of the
applied rf field, the coupling to the untrapped state is reso-
nant for the positions rn such that

�rf = �B0/� + �b�2rn
2/�4�B0� − 2n� , �32�

where n is an integer. The coupling between the spin states
close to a resonance position rn is

Vn = V0Jn���b�r�2/�8B0���� �33�

where V0 is the coupling produced by the radio-frequency
field in the absence of modulation. Such a shell structure of
the spin-flip transition resonances is characteristic of ac mag-
netic traps. For example, the same behavior is expected in
TOP traps �26�, where the Larmor frequency is also modu-
lated in time.

In the following, we verify the statements made above by
a more rigorous derivation. As in the previous section, we
consider the representation in which the spin-up state points
along the local instantaneous magnetic field. The rf field pro-
duces a term in the Hamiltonian experienced by the atoms
which is, to first order in the angles �x=−b�x cos��t� /B0 and
�y =b�y cos��t� /B0,

Hrf = �Brf cos��rft�Jx − �Brfb�y/B0 cos��mt�cos��rft�Jz.

�34�

The right-hand side is divided into two terms. The first term
corresponds to the usual coupling between the spin states in
the presence of the rf field. The second term appears due to
the time dependence of R. As in the previous section, in the
following we consider the case of a spin-1 state and we re-
strict ourselves to the two spin states �1� and �0�. We then
have Hrf1

=Hrf1
+Hrf2

, where

Hrf1
= �Brf cos��rft���1��0� + �0��1��/	2 �35�

and
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FIG. 6. Loss rate from the vibrational ground state versus the
modulation frequency. The longitudinal magnetic field and the
quadrupole gradient are chosen so that �B0 / �����=50.
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Hrf2
= −

�Brfb�y

B0
cos��mt�cos��rft��1��1� . �36�

To analyze the effects of the rf field, we use the Floquet
representation where two quantum numbers are used: the
Floquet number nF associated with the modulation frequency
� and Nrf, the number of radio-frequency photons. We con-
sider an atom in the trapped spin �1� state, with Nrf radio-
frequency �rf� photons. Because Brf is weak, we consider
only transitions involving a single rf photon, and only those
to the quasiresonant states where the spin is 0 and the num-
ber of rf photons is �Nrf+1�.

Let us suppose the initial trapped state is in the nF=0
manifold. The term Hrf1

couples the initial state to the spin 0
state in the manifold �Nrf+1 ,nF=0�. This transition is reso-
nant for the position r0 given by Eq. �32� and the coupling to
the spin-0 state is �Brf /	2. The initial state can also be trans-
ferred to the spin-0 state in the �Nrf+1 ,nF= �2� manifolds
by higher-order processes. These transitions, resonant for the
position r�1 given by Eq. �32�, can occur via two kinds of
process, represented in Fig. 7 in the case where the final state
lies in the manifold nF=2. In the first process, H2 of Eq. �26�
couples the initial state to the spin-1 state in the manifold
�Nrf ,nF= �2�, which is then transferred by the term Hrf1

to
the spin-0 final state �process �a��. In the second kind of
process �process �b��, the transfer from the spin state 1 to the
spin state 0 is ensured by the term i��dR−1 /dt�R of the
Hamiltonian �see Eq. �24��, and the term Hrf2

of the radio-
frequency coupling is involved. In the case where
���B0 /�, the process �b� has a negligible amplitude and
only the process �a� is important.

In a more general way, the initial state can be transferred
to the final state of odd Floquet number nF=2n, the transi-
tions being resonant at the positions rn given by Eq. �32�.
The dominant processes involve the first term Hrf given in
Eq. �32� and the term H2 to order n. The effective coupling
between the trapped state and the spin-0 state of Floquet
number 2n, computed to lowest order in H2, is

Vn,eff =
�− 1�n

n!
� �b�2r2

16B0��
��n��Brf

	2
. �37�

We recover here the result of Eq. �33�, in the limit considered
here where ����b�2r2 / �8B0�. Thus the simple description

in terms of frequency modulation of the Larmor frequency is
sufficient to describe the physics.

In conclusion, we have shown that the radio-frequency
field is resonant for different trap locations, whose potential
energies differ by 2�� /kB. For a modulation frequency of 50
kHz, the potential energy difference between two resonances
is 3 �K. For a temperature of the order of 3 �K or higher,
some resonances are present inside the atomic cloud and in-
duce spin-flip losses. To overcome this problem, a precooling
stage in a static trap down to temperatures smaller than
3 �K is required. For clouds whose temperature is smaller
than 3 �K, the evaporation process in the modulated guide
involves only one radio-frequency knife, so that the evapo-
rative cooling is similar to that realized in a trap made by dc
currents. Choosing the frequency of the radio-frequency field
so that the transition involved in the cooling process is the
transition that does not change the Floquet number is inter-
esting for two reasons. First, as shown in Eq. �37�, the cou-
pling between the trapped and the untrapped state of this
transition is larger than that of higher-order transitions that
change the Floquet number. Second, this coupling is homo-
geneous and is thus constant when �rf is chirped.

VI. CONCLUSION

The careful studies of the limitations of the modulation
technique to smooth wire-guide roughness performed in this
paper show that this technique is very robust and accepts a
wide range of modulation frequencies. More precisely, on
one side, we have shown that the unwanted effects of the
modulation on the longitudinal motion are negligible for re-
alistic parameters as long as modulation frequency is larger
than 10 kHz: both the heating of the cloud and the remaining
effective roughness are very small. On the other side, the
calculation of the losses due to spin-flip transitions shows
that, for realistic parameters, these losses are negligible as
soon as the modulation frequency is smaller than a few hun-
dreds of kilohertz. The modulation technique is thus a very
promising tool that should enable atom-chip devices to be
used to full advantage. In particular, the study of one-
dimensional gases in the strongly interacting regime �27–29�
on an atom chip can be considered.

The smoothing technique studied in this paper may be
used in any situation where a rough potential is proportional
to a quantity that can be modulated, so that the calculations
developed in Sec. III may apply to other physical systems.
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APPENDIX A: DERIVATION OF THE ENERGY
EXCHANGE RATE

The derivation of the heating rate follows that of the
Fermi golden rule. For the calculation, we assume a quanti-
fication box of size L and periodic boundary conditions. We

|0,nF = 2>

Processes (a) : Processes (b) :

NRF +1NRF

|1, nF = 2>

|1, nF = 1>

|1, nF = 0>

Energy

NRF +1NRF

|1, nF = 0>

|1, nF = 2>
|1, nF = 1>
|1, nF = 0>
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FIG. 7. �Color online� Processes involved in the transition from
the trapped state �1,nF=0,Nrf� to the untrapped state �0,nF=2,Nrf

−1�. The process �a� involves the Hamiltonian H2 of Eq. �26� �solid
line� and the term Hrf1

of Eq. �35� �dashed line�. The process �b�
involves the term Hrf2

of Eq. �36� �dashed line� and the term
i� �R−1 /�t R of Eq. �24� �solid line�. For ���B0, the process �a�
is dominant.
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assume the atom is initially in the state of momentum p0 in
the Floquet subspace nF=0. For simplicity we consider only
the transitions toward the Floquet state nF=−1. After a time
t much smaller than the departure rate, the change in kinetic
energy �E can be deduced from perturbation theory, and we
obtain

�E = �
q

�uq�2f�q,t� . �A1�

Here uq=�dz u�z�eiqz /L is the Fourier component of wave
vector q of u�z� and

f�q,t� = �� − ���
sin2��t/2�

�2 , �A2�

where �=��+�2q2 / �2m�+�p0q /m is the energy change as-
sociated with the transition involving the Fourier component
of u of wave vector q. The terms uq are uncorrelated com-
plex random numbers of mean square value ��uq�2�
=S�q�L / �2��, where S�q�= �1 /2���dz eiqz�u�z�u�0�� is the
spectral density of u. For a large enough quantification box,
the term f�q� barely changes between adjacent Fourier com-
ponents and one can replace �q�uq�2f�q� by �dq S�q�f�q� in
Eq. �A1�. For a time t large enough so that the function
��−���S(q���) is about constant on the interval
�� �−� / t ,� / t�, the term sin2��t /2� /�2 can be replaced by the
distribution t����� /2. We then recover the first term of Eq.
�4�. The previous condition on t and the condition that t is
much smaller than the departure rate � can be satisfied si-
multaneously only if the function ��−���S(q���) is about
constant on the interval �� �−�� ,���. This is the condition
of the Markovian approximation. This condition is satisfied
provided that both S�q� and its correlation length are small
enough.

The calculation is similar for losses toward the Floquet
manifold nF=1, and one finally recovers Eq. �4�. The Mar-
kovian condition for the transition toward the Floquet mani-
fold nF=1 is not satisfied for initial momentum very close to
	2m�� since the atoms are then sensitive to the fact that the
continuum is not infinite for �
0. Similar non-Markovian
situations have been studied, for example, in photonic band
gap materials �30�, and oscillatory behavior and decay to-
ward a nonvanishing population of the initial state are ex-
pected.

APPENDIX B: ADIABATIC POTENTIAL IN THE
DRESSED STATE REPRESENTATION

In this appendix, we rederive the adiabatic potential given
in Eq. �14� using a dressed representation, where a local
z-dependent unitary transformation O�z� is applied to the
Floquet states so that the resulting dressed states �n��z� are
eigenstates of the potential energy part of the Floquet Hamil-
tonian �the term ��nF of H0 given in Eq. �2� and the term H2
of Eq. �3��. By symmetry, the energy of the dressed states
�n��z� is n��, like that of the bare Floquet states. Using the
properties of the Bessel functions �Jk+1�x�+Jk−1�x��x / �2k�
=Jk�x� and �nJn�x�2=1, we show that the decomposition of
�n��z� in the undressed Floquet basis ��k�0� is

�n��z� = �
k=−�

�

Jk�u�z�/���n + k�0 = O�z��n�0. �B1�

This well-known result has been used in several other situa-
tions �31�. In the dressed state representation, the state of the
system is �̃=O−1�0, where �0 is the state of the system in
the undressed representation and the momentum operator,
p̃=O−1pO, is

p̃ = p − �
n,k

�k,z�i��z�n,z��k��n� �B2�

where p=−i��z is the momentum operator that preserves the
Floquet number and �z is a shorthand notation for � /�z. Thus,
in the dressed state representation, the Hamiltonian is de-
composed into three terms:

H̃0 = p2/2m − nF�� , �B3�

which does not couple different Floquet states,

H̃1 = − ��/2m��p�n1,n2
�n1��n1�i�z�n2��n2�

+ �n1,n2
�n1��n1�i�z�n2��n2�p� , �B4�

and

H̃2 = − ��2/2m� �
n1,n2,n3

�n1��n2��n1��z�n3��n3��z�n2� . �B5�

Since Jk�= �Jk−1−Jk+1� /2 and �kJkJk+n=�n, H̃1 couples adja-
cent Floquet states. This term is responsible for the heating

of the cloud. On the other hand, H̃2 contains a term H̃2,ad that
does not change the Floquet number. Using the above prop-

erties of the Bessel function, we find that H̃2,ad is just the
adiabatic potential of Eq. �14�.

�1� R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C.
Henkel, Adv. At., Mol., Opt. Phys. 48, 263 �2002�, and refer-
ences therein.

�2� Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q.
Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal,
and S. Wu, Phys. Rev. Lett. 94, 090405 �2005�.

�3� T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth,

S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, Nat.
Phys. 1, 57 �2005�.

�4� A. Gunther, S. Kraft, C. Zimmermann, and J. Fortagh, Phys.
Rev. Lett. 98, 140403 �2007�.

�5� J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C. I. West-
brook, and I. Bouchoule, Phys. Rev. Lett. 96, 130403 �2006�.

�6� J.-B. Trebbia, J. Esteve, C. I. Westbrook, and I. Bouchoule,

BOUCHOULE, TREBBIA, AND GARRIDO ALZAR PHYSICAL REVIEW A 77, 023624 �2008�

023624-10



Phys. Rev. Lett. 97, 250403 �2006�.
�7� J. Reichel and J. H. Thywissen, J. Phys. IV 116, 265 �2004�.
�8� D. W. Wang, M. D. Lukin, and E. Demler, Phys. Rev. Lett. 92,

076802 �2004�.
�9� J. Estève, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bou-

choule, C. I. Westbrook, and A. Aspect, Phys. Rev. A 70,
043629 �2004�.

�10� J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I. West-
brook, and I. Bouchoule, Phys. Rev. Lett. 98, 263201 �2007�.

�11� W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell,
Phys. Rev. Lett. 74, 3352 �1995�.

�12� S. Kraft, A. Günther, H. Ott, D. Wharam, C. Zimmermann,
and J. Fortàgh, J. Phys. B 35, L469 �2002�.

�13� These two requirements are also needed for the TOP trap to
work.

�14� T. Schumm, J. Esteve, C. Figl, J. Trebbia, C. Aussibal, D.
Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, Eur. Phys.
J. D 32, 171 �2005�.

�15� R. J. Cook, D. G. Shankland, and A. L. Wells, Phys. Rev. A
31, 564 �1985�.

�16� J. H. Shirley, Phys. Rev. 138, B979 �1965�.
�17� E. Landau and E. Lifschitz, Mechanics �Mir, Moscow, 1980�,

Chap. 5.
�18� R. F. Wuerker, H. Shelton, and R. V. Langmir, J. Appl. Phys.

30, 342 �1959�.
�19� D. Leibfried et al., Rev. Mod. Phys. 75, 281 �2003�.
�20� R. Geursen, N. R. Thomas, and A. C. Wilson, Phys. Rev. A 68,

043611 �2003�.
�21� J. H. Müller, O. Morsch, D. Ciampinin, M. Anderlini, R. Man-

nella, and E. Arimondo, Phys. Rev. Lett. 85, 4454 �2000�.
�22� E. Brion, L. H. Pedersen, and K. Mølmer, e-print arXiv:quant-

ph/0610056.
�23� C. V. Sukumar and D. M. Brink, Phys. Rev. A 56, 2451

�1997�.
�24� T.-L. Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 2595 �1996�.
�25� G. M. Moy, J. J. Hope, and C. M. Savage, Phys. Rev. A 59,

667 �1999�.
�26� J. L. Martin et al., J. Phys. B 33, 3919 �2000�.
�27� B. Laburthe Tolra, K. M. O’Hara, J. H. Huckans, W. D. Phil-

lips, S. L. Rolston, and J. V. Porto, Phys. Rev. Lett. 92, 190401
�2004�.

�28� B. Paredes et al., Nature �London� 429, 277 �2004�.
�29� T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125

�2004�.
�30� S. John and T. Quang, Phys. Rev. A 50, 1764 �1994�.
�31� A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, Phys.

Rev. Lett. 95, 200401 �2005�; S. Haroche et al., ibid. 24, 861
�1970�.

LIMITATIONS OF THE MODULATION METHOD TO… PHYSICAL REVIEW A 77, 023624 �2008�

023624-11


