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We present a simple method to include the effects of diffraction into the description of a light-atomic
ensemble quantum interface in the context of collective variables. Carrying out a scattering calculation we
single out the purely geometrical effect and apply our method to the experimental relevant case of Gaussian-
shaped atomic samples stored in single beam optical dipole traps probed by a Gaussian beam. We derive simple
scaling relations for the effect of the interaction geometry and compare our findings to the results from
one-dimensional models of light propagation.
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[. INTRODUCTION we are ultimately interested in measuring and manipulating
) ) ) ) quantum states, we find it instructive to solve the underlying
Coupling collective variables of atomic ensembles toc|assical scattering problem first to single out the purely geo-
propagating modes of the electromagnetic field has beeetric effects, and we try to avoid hiding useful practical
identified as an efficient tool to engineer the states of atomgformation behind the much more intricate mathematical
and light at the quantum level. Several proposals for spifformalism needed to solve the full quantum problem. Our
squeezing, mapping of quantum states between light and a&pproach delivers valuable information for designing experi-
oms, i.e., quantum memory operations, creation of macromental configurations, provides intuitive pictures, and may
scopic entanglement, and teleportation of atomic states havserve as a starting point for a more elaborate quantum theo-
been publishedl1—8]. A number of these proposals have ac-retical treatment.
tually been verified experimentally using atomic samples The remainder of the paper is organized as follows. In
stored in vapor cells as well as in magneto-optical traps>ec. Il we present briefly the main results of a quantum
[9-12. The efficiency of the coupling is often discussed re-description of two modes of light coupled coherently to at-
sorting to effective one-dimension&lD) models for the OMS in terms of pollec_tlve var_lables and introduce typical
light propagating through a homogeneous sample and th%xperlmental cor_1f|gurat|0ns.W|th the quantum mode_l we de_z-
optical depth is found to be the essential parameter determiflveé an expression for the achievable signal-to-noise ratio
ing the coupling strength. This naturally suggests the use O\{a/hen measuring collective atomic variables. After doing so

cold and trapped atomic samples, where long coherenc\ge analyze the experimental configurations again in semi-

. ) . . . . _Classical terms and use this framework to point out the co-
times for colleqtlve variables are pqsgble, with a shapg mlm'herently scattered power by the atomic sample as the rel-
icking a 1D string of atoms to maximize column density for

. . ' evant quantity to optimize for good quantum coupling.
a given number of atoms. However, while the effective 1Dsection Il presents our model for calculating the scattering

) . X X : ‘ Thode and the scattering efficiency of the atomic sample for

the question of light diffraction from small, inherently inho- yifferent geometries together with some remarks on the as-

mogeneous samples and its impact on coupling efficienck,mptions made and the range of validity of the model. In

immediately arises when cold and trapped atomic samplegec, IV we apply this model to atoms stored in a single beam

are used13]. In a recent worK14], aspects of spatial inho- optical dipole trap. In Sec. V we provide a comparison be-

mogeneity have been addressed via the introduction of diftween our classical calculation and the results from effective

ferent asymmetric collective variables. 1D models. Section VI summarizes our results and points out
The purpose of the present paper is twofold. We present possible extensions of our model.

simple and effective semianalytic method to identify the spa-

tial light mode that the atomic sample couples to, to quantify IIl. COLLECTIVE LIGHT-ATOM COUPLING

the strength of the coupling, and we use this method to find The Hermitian part of the interaction of a pulse of off-

optimum shapes for atomic samples. In addition we deriveesonant light with an ensemble of atoms with two ground

simple scaling parameters describing the effect of the shapgtates residing in a container with cross-sectional Araad

of the atomic sample which allow us to make a direct com-engthL can be described by an effective Hamiltonian of the

parison with the established 1D quantum models and quarform (see, e.g., Ref§7,15-17)

tify the effect of diffraction on the coupling strength. Albeit R 200( T L .
Ho=h—| = 5,(z1)j,(zt)dz 1
. A(ZA)L S,20izY (1)
*Electronic address: muller@nbi.dk The factor in front of the integral describing the strength of
TURL: http://quantop.nbi.dk/index.html the coupling of the collective variables contains the single-
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. — e - the input modes. This is a good approximation for atomic
Epn ha ensembles and light fields transversally much wider than an
N . optical wavelength and not too long samples. In addition,
E. = 4 | since the operator nature of atomic position is suppressed,
4 D2 - T the spatial density distribution of the atoms is not changed by
— > the interaction with the radiation in this model.
The dynamics generated by EG) at the level of expec-
(@) - 1> b 11> 12> tation values describes differential phase shifts of the light

modes due to coherent forward scattering by the atoms in the
FIG. 1. (Color onling Mach-Zehnder and polarization interfer- two ground states and differential shifts of the atomic energy

ometry setups for quantum coupling of collective variables of coldlevels due to the intensity difference of the two light modes.
atomic samples to light. The local interaction energy is proportionalThis dynamics can be conveniently visualized with the help
to a]a,(|2)(2|-|1)(1)) in () and toalay|1)(1|+a}a,[2)(2] in (b). of coupled Bloch spheres for light and atom variables. Of

particular interest for practical quantum state engineering is
atom reactive response to radiation characterized by the restire case of initial conditions Witﬁixn and :Q.i;‘ large and clas-
nant cross sectiomg, the detuningA in units of the natural sical, i.e., uncorrelated coherent states with expectation val-
linewidth I', and the cross-sectional area of the light modeues on the order of half the total number of atoms and pho-
governing the electric-field strength per photon occupyingons, respectively. In this case the dynamical evolution of the
the mode. In Eq(1) operators for the photon flux of liglt  system is driven entirely by the fluctuations of light and
and ground-state polarization of atofnare introduced. For ~atomic variables. In the experimental setup sketched in Fig.
light we can writed in terms of continuous mode creation 1(b) this corresponds to linearly polarized input light and all
and annihilation operators with boson commutation rules@toms in a balanced coherent superposition of the two
§=5(a}a,+ala,), §,=5(ala -alay), 5,=5(ala,-4ala,). For ground states, such that there is a macroscopic magnetic po-
simplicity of notation the time and spatial dependence of thdarization in the plane orthogonal to the direction of propa-
operators has been suppressed. The mode index can specition. For the setup advertised in Figalithis amounts to a
for instance two fields propagating in the two legs of abalanced coherent superposition of atomic It_avels 1and 2 and
Mach-Zehnder interferometéFig. 1(a)] or left and right cir-  90-50 beam splitters at entrance and exit of the Mach-
cular polarized modes of a single laser bedig. 1(b)]. The ~ Z€hnder interferometer. Linearizing the spectrum of the op-
operators§ are normalized to describe the photon flux erators around the_|r expectation values and integrating the
through a cross section of the light beams at locatiatong ~ dynamics, to leading order, input-output relations can be
their path of propagatiofil8]. Integrating the photon fluxes written for the fluctuations qf t_he collective operators or-
over the duration of a pulse we can define dimensionlestlogonal to the coherent excitati¢®0,21]:

collective operatoré to describe a pulse as one entity. By ~ n 20 T A A
. . &Out:&]m___<\] >§Szn
construction the collective operators follow the usual com- y Y T A 2A K ,
mutator algebra for vector operators.
In the case of atoms we restrict ourselves, for simplicity, fout_ <Bin
to the case of two ground states only. We define in analogy: oJ, =43,

Ti= (162 25 J(120(1] + 12, o en 200T o
65"= o8 - =0 (S)all,
iy = (W52 2 (w2 (|2)¢1 - [112)),
@ut: 5§an
jz:(l/&)zta{(z)%(|2>|<2| -1, The superscripin (out) refers for atomic variables to
times beforgafter passage of the pulse through the sample
where the sum extends over the number of atdiy&) re-  4nq for light variables to observation planes in front(oé-
siding in a thin slice of the interaction volume at position  hind) the sample. From these relations we can calculate the
[19]. A continuum limit is taken by shrinking the thickness yariance of a set of measurements on identically prepared
oz of the slices to zero. The three operat@rslescribe the systems. A set of measurement recordéﬁbﬂ‘ will show a
coarse grained linear density of Bloch-vector components for cout _ . .
the two-level system formed by the two ground states. Agair{nean value(Sﬁ )=0 and a variance:
we can choose to describe the atomic sample as a whole by . n 200 T N \2N
integrating over the length of the atomic sample defining Var($“t):—m+ (Toﬂ_lzm) f

collective atomic operator3. 4

Inherent in this description are the assumptions that thélere the first term on the right-hand side reflects the noise of
transverse-mode function of the light field is a frozen vari-the coherent input state of light, witly, the total number of
able, hence the 1D integration over the Hamilton density irphotons in a pulse, while the second term describes the ex-
Eqg. (1), and that the atoms scatter light coherently only intocess fluctuations imprinted onto the light by the fluctuations
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of the atomic variabld and amplified by the large coherent the light is deposited in the coherence between the atomic
amplitude ofS,. From the measurement record we can inferlevels. To assess the sensitivity of a measurement of the
a value for the atomic variabﬁ*{n i.e., the population differ- atomic population dlfference.we look at the _S|gnal by the
ence with a confidence interval limited by the first term, i.e”balar)ced homodyne 'detecl((wnh quantgm efficiency) on

with a signal-to-noise rati¢S/N) of the right upon detection of a pulse of ligtitequencyw) of

durationr. The detector signé,, i.e., the photocurrent in
S\2 0(2) r\2 units of the elementary chargeintegrated over the pulse
(N) = KzNatnph<£> . (2)  duration, in the presence of atoms is given by

1D

T CSO

.

Projection of the atomic state by the destructive measure- 33=f I—Sdtzs——
. . . . . N e ho 2

ment on light, will leave the collective atomic variallg in 0

a state with fluctuations reduced below the standard quantum

limit if the signal-to-noise ratio is finite and if added noise + 2|Eprobd |Ered] MprobeNlrefdA)- (4)

due to spontaneous emission is small eno&#. In practi- Ap

cal terms this means that repeateq measurements on_the'sap]@(e Eprobe (Erer) denotes the initial field in the prolfeef-

atomic system will show a covariance below the projectiongrencg arm. The integrals over the detector area describe the

noise[23]. To the extent the measurement is nondestructivegyerjap of the transverse mode functivis,, M probes Mref in

this fact can be exploited to write, store, and retrieve quanthe detector plane and contain also the oscillatory depen-

tum information to and from the atomic variablé2,24.  gence on the path length difference of the interferometer. We

Instead of measuring destructively the light pulse after &eparate explicitly the field scattered by the atdegsfrom

single pass through the atomic ensemble one can allow fGhe probe fieldE, e Since in general it will not be in the

multiple interaction together with appropriate switching of same spatial mode and have a different phase. We can adjust

the coupling Hamiltonian between consecutive passes. Thigye path length difference such to make the second integral in

way unconditional quantum state preparation is possible anflq (4) vanish—this corresponds to the preparation of a large

the measurement serves merely as a verification of successf, - . .
state preparatiofi8,22,23. In this more general setting the &Q and a measurement °$V>.W'.th the detector in the Ia_m—
guage of the quantum description. We note that for disper-

above defined signal-to-noise ratio plays the role of a cou?. o .
l 2. sive scattering in the far field, the probe wave and the scat-
pling strengthx=: S
tered wave are nearly7#/2 out of phasdwhere the sign is
r\2 determined by the atomic sublevel involyedo the first
NaNpn oA =7 (3 term in Eq.(4) will take its maximum value whenever the
second term vanishes. The detector signal stems then from
which can be conveniently expressed as the product of intghe interference of the reference wave with the scattered
grated spontaneous emission ra;tenph(gO/A)(1“/2A)2 and wave only. The atomic contribution and consequently the
the optical depth or column density=N,(0o/A), explain-  sensitivity of the measurement will thus be a monotonic
ing the use of the optical depth as a figure of merit for col-function of both the_coherently scattered power by the atoms
lective variable light-atom couplinf5]. The interaction ge- and of the geometric overlap of the wave fronts of scattered
ometry, of course, stays the same, so diffraction of lightvave and reference wave. Carrying out the overlap integral
discussed in the following has the same impact on the cou@ssuming perfect matching of the reference wave to the scat-

<2|Esc||Eref| MSCM refdA
Ap

2_ 9

K=

pling strength in these schemes. tered wave, we write for the detector signal povgér
After this brief review of the 1D quantum model, we look 7 \2
again at the experimental configuration in Figa)1[26], 52:282<%> PscPret-

seeking this time a description in purely classical terms and

pointing out where we go beyond the 1D model. A cloud ofThe noise will be limited from below by the shot noise of the

cold atoms residing in one arm of the interferometer iSqetected photon$27]. We write the corresponding noise
loaded into a far-off-resonant dipole trap created by a fopowerN? as

cused Gaussian beam. Probe light with a wave vektor

=2m/\ enters the interferometer from the left and passes N2= ETop

through the atomic sample. The light experiences a phase o™ "

shift caused by the refractive index of the sample, which is . . . .
determined by both the atomic density distribution and byV\_/Ith this we arrive at an gquwalent expression for the
the population difference of the two sublevel,=N,—-N,. Signal-to-noise ratio or coupling strength as

For simplicity we assume here equal strength of the transi- ) (S)Z er .
K= =

tions connecting the two ground states to the excited states N h_Psc: Nph- 5
and equal and opposite detuning as indicated in Fg). 1

Given an atomic density distribution the light carries thus Here the coupling strength is expressed in terms of the—
information about the level populations after passage throughdmittedly artificial quantitysee Sec. Y—total coherently
the sample. In turn, the atomic energy levels are shifted difscattered power. We conclude that optimizing the sensitivity

ferentially during the interaction and thus information aboutis equivalent to maximizing the scattering efficiency and
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adapting the reference wave front to the scattered wave x x
Trivially the scattered power can be increased by increasing d
the input power to the interferometer. But here upper limits y / ¥
are set by saturation of the detectors and the requirement fa ; 4 o .

low spontaneous emission rate. We choose therefore to pel
form the search for optimal shapes of the atomic samples ani P
of the probe beam in the next section under conditions of
constant probe power. Given a maximum pulse energy the Mpe 33 ME'y'z)
detectors can withstand, the integrated spontaneous emission

rate can be set to a desired value by choosing the single atom FIG. 2. Huygens-Fresnel propagation used in the model.
scattering cross section via the detuning. In the next section

we calculate the scattering efficiency and the scattered wave

front for selected geometries. f |f|2dQ = 00;21
. <2A>
1+ —
ll. SCATTERING MODEL r
In order to calculate the stationary diffracted field by the A2
atomic density distribution we model the sample as an en- 0=,
semble of fixed(i.e., infinitely heavy point scatterers and 2m
make use of a Born approximati$¢@8,29. Assuming fixed
positions we neglect Doppler and recaoil shifts. Since we ex- [ 2A
pect coherent diffraction to occur mainly close to the forward 3 1+i <?>
direction and we are interested in samples at ultralow tem- f=- s
peratures, Doppler shifts will play a negligible role. On time 8’ 1+ (%)
scales short compared to the recoil time—the time needed r

for an atom to travel a distance of an optical wavelength at

one recoil velocity—we can assume that spatial correlation¥Ve remark here that this classical treatment includes the full

are frozen, i.e., neglecting the recoil to the atom during scatresponse of the atom to the incident field, i.e., also the cou-

tering is valid[30]. In the first Born approximation we ne- pling to all empty modes of the electromagnetic field. There

glect multiple-scattering events and calculate the total scais no distinction between spontaneous and induced emission

tered field as the sum of the fields scattered by independeand the only assumption made is that the response of the

single scatterers out of the probe field. This approach is jusatom is linear in the incident field, i.e., the atomic transition

tified as long as the contribution from all other scatterers tds not saturated. Naturally, since we treat the field as a clas-

the local field seen by an individual scatterer is small com-sical variable, the statistical properties of the field, e.g., also

pared to the probe field which demands, e.g., negligible akthe frequency spectrum of detected scattered light, are not

sorption. This condition is also helped by destructive inter-described correctly. However, in the experimentally relevant

ference of scattered waves for the case of balanced subleveise of large detuning and low intensity scattering is almost

populations in the experimental configuration introduced inentirely elastid32] and in the first Born approximation these

the previous section. The condition of independent scattereghortcomings do not enter the problem, since exchange of

can only be met for not too high atomic density,,<k®  photons between the atoms, i.e., multiple scattering, is ne-

otherwise resonant dipole-dipole interaction can change thglected.

single atom scattering properties appreciably. The total scattered wave is the sum of the waves scattered

by individual scatterer$ (j=1...N,) and can be expressed
o in terms of electromagnetic field vector in complex notation
A. Scattering integral as(Fig. 2)
As the first ingredient we need the scattering amplittide

for a single atom. In our calculations we replace fheave Lo N exp(—ik|r’ - rj-|)

scattering amplitude by an isotropic amplitudleequal in Eod1') = 2 Eprond 1) fj—— =~

magnitude to the true forward-scattering amplitude. This as- j=1 r' - rj|

sumption greatly simplifies analytic calculations and will be  Atoms in different internal states contribute with opposite

justified a posterioriby the observation that constructive in- gigng tg the scattered field. We thus write the weighed spatial
terference occurs only close to the forward direction. Inteyjistribution of scatterers as

grating |f|> over the solid angle renders the scattering cross

section at a given detuning of the probe laser from the N, N;
atomic resonancg31]. For the experimentally relevant case M) = 8(F—r) — > 8F—r)
of alkali atoms our choice for the scattering cross section is k=1 1=1

valid for any sublevel of the ground state probed by linearly
polarized light provided the detuniny is large compared to with natural normalization condition giving the population
the excited-state hyperfine splitting: difference in the atomic sample:
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5 zation to arbitrary transverse distributions by expansion into
ONgy = der an(r). Hermite polynomials is possible though analytically cumber-
some.

In the f0||owing we use a continuous density distribution The atomic density distribution in the transverse direction
according to a smooth probability distribution to find a par-has a radiusv,, which depends om due to the weaker con-
ticle in a small volume element, again suitably normalized tofinement by the dipole trap laser beamavelengthA ;)
the population difererence. This averaging procedure elimiaway from its minimal beam waist. In the longitudinal direc-
nates large-angle scattering off the microscopic density fluction (along the propagation axis of the probe bgatis
tuations, which is equivalent to the single-particle Rayleighdescribed by a le-length parametet,,

scattering background for a discrete distribution of scatterers, 2.2

. o . at XX+y? 7
i.e., spontaneous emission at low saturation parani2&r N(X,Yy,2) = —5 - - —2>,
Equally Bragg scattering of light from a regular distribution 7LWA(2) Wi L3

of atoms on the wavelength scale is lost by the coarse grain-

ing. The scattered field at some observation poimutside 2
the sample in integral form becomes Wa(2) =Wa\ /1 + 2a0)
|
L o>
- - exp(—ik|r" =)
Es(r) :f dxd f dz ron(NHf—————-. WS
sc 2 y o EPfObe( |r’ —F] Zgip = )\d'a. (7)
ip

6
© Finally, the scattered wave field can be evaluated by solv-

In the paraxial domair(small angles to the optical axjs ing the integral

where we expect constructive interference of scattering am- L

plitudes to be concentrated, we can approximate the s_pherl— E ") = dxdyf dZEprobe(F)gn(F)qur, -f). (8)
cal wave propagator in E@6) by using a Fresnel expansion R? -L

formula for the distancé” -1, Here the integration overis to be taken only over the length

1 effectively occupied by the sample, but cannot be extended
" =f=2z-z+- - beyond the observation plane. We evaluate the scattered field
2 z-z distribution in some distant observation plaihé’ in Fig. 2)

by carrying out the integration over the transverse coordi-
nates of the sample analytically and integrating numerically
over the length of the sample. Using standard software on a
desktop PC a scattered field profile can be calculated in sev-

eral seconds allowing for fast interactive optimization of pa-
- ik—; rameters. Not surprisingly for our model assumptions and the

(Z' -2 z -z choice of the density distribution, we find the scattered mode
X2y L X'24yr2 profile to be very close to Gaussian in all of the studied cases

xXexp) — |k2 o (exp ik (- and we can extract parameters like width and radius of cur-

(z' -2 2(zZ -2 o ) )
vature by fitting to the corresponding mode profile. The scat-

Since we want to describe free diffraction of probe light andt€ring efficiency is evaluated by calculating the total scat-
scattered light on an equal footing, we choose the inciden€®d Power in the observation plane.

probe beam not as a plane wave but rather as Gaussian with

parametersw(z),R(z),®(z) being the beam radius, wave- B. Qualitative considerations

front radius and Guoy phase, respectively,

X12+y/2+x2+y2_ %K — zyyr

in the phase factor, while we us€ —r|=2z'-z in the less
critical denominator. Inserting this we can write the propa-
gator in Eq.(6) as

k(P - ) = exp[—ik(z’—z)]ex _ xx’+yy’}

Before presenting results of the numerical calculations
some qualitative considerations are at hand to train our intu-

EprobdX,Y,2) ition for the results to be expected. First, the total scattered

- w(0) N X2 +y? X2 +y? power is strictly proportional to the square of the population
=E,——— —i - — —i . . . ..

e ifkz—®(2)] o “Rro difference for a fixed geometry of the sample. This is a

simple consequence of our continuum approximation for the
As a realistic model for the density distribution of the density distribution and may at first sight seem disturbing,
trapped sample we choose a Gaussian function. This corréut is of course natural for coherent scattering, where con-
sponds to the equilibrium shape of a thermal distribution ofstructive interference of single scattering amplitudes occurs
atoms residing inside a harmonic oscillator potential. For lowin phase-matched directions. Second, far enough away from
enough temperature with respect to the trap depth this is the sample all scattered waves will interfere constructively in
good description for a dipole trapped sample. In particularthe strict forward direction, so the on-axis scattered intensity
for the transverse dimensions, where we carry out the intefor a wide probe beam will be independent of the exact ge-
gration of the scattering integral analytically, this choice sim-ometry of the sample. This implies that scattering efficiency
plifies the mathematics. We note in passing that a generalis determined effectively by the opening angle of the scatter-
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2
=

Za= (12)
For atomic samples of length, comparable or longer than
Z.., Scattered waves from different sections along the propa-
gation direction will be mismatched in phase and the total
scattering cross section will be significantly reduced with
respect to a short sample with the same number of atoms.
- We can construct an approximate expression for the total
\ scattered power combining the above arguments in order to
\ cast the influence of the experimental parameters sample
width, sample length, and beam diameter into a compact
L formula. Neglecting for a moment the change of transverse
spread over the length of the sample, the scattered intensity
FIG. 3. Top: Diffraction limited scattering cone for Gaussian On the optical axis far away from the sample where all atoms
pancake-shaped sample; bottom: diffraction limited scattering con@re phase matched is approximately
for Gaussian pencil-shaped sample.

1
——p e ————
)
I
1

30(6Ny)? 2P A
|SC(0,0,Z’)2 0'( at) probe 0

ing cone around the forward direction. Simple scaling argu- 4az'? ™ (vv§+w§)2’
ments can be derived for this opening angle by looking at

Fraunhofer diffraction from transversally and longitudinally as can .b? \1_er|_1;|e9ll_ e?sgyﬂ?y t'n;[ef]rat'?tn Ofd H@) in the
extended samples. appropriate limit. To fin e total scattered power we re-

Let us first look at the diffraction cone of a short homo- pl_ace the infegration over the ?’O"d ang_le by a mu]tiplication
geneous sample of widthwg (Fig. 3. To find the angle with (7/2)'9‘29”’ where the effective opening anglgy is cho-
where interference of scattered waves ceases to be constrten With the help of the Fraunhofer diffraction considerations
tive we divide the sample in two halves. For a path length rom above. Th_e extra _factor of 1/2 takes care of the very
difference of half a wavelength between the ends of a haIka_)Se to Gaussian profile of _the _scattered wave. We expect
destructive interference will occur, giving a limit to the open- this to be an excellent approximation whenever the scattering
ing angle of the scattering cone. In analogy to the far fielgcone is narrow. In order to model the tradeoff between trans-

diffraction angle of a Gaussian beam we find for a Gaussiar\‘{ersal a}nd longitudinal limitation we have to design a func-
source distribution an opening ange of tion which takes the value of the smaller of the two angles

whenever they are grossly different. We take

) . L 0292 1/2
vy = tan v, = — 9 Octr = <(0—4}+T—HI‘_L‘)1’2)

(12

Narrow samples scatter thus more efficiently than widewith
samples and integrating the angular distribution of scattered

intensity predicts a ]vl/(f1 dependence on the transverse width R = )\Z(Wi’“ WS) (13)
of the sample. T g

Next we consider a pencil-shaped atomic sample. For this o _ . .
sampleL,>w,. By dividing the atomic sample again into Here the transverse limit angle takes into account diffraction
two parts(Fig. 3 we can estimate the angle at which the both due to the sample width as well as due to the probe
longitudinal extent of the cloud causes destructive interferbeam width. There is a great deal of freedom in the choice of
ence. Introducing the path length differengausing a small-  fetr @and different definitions will lead to different functional
angle approximation and taking into account the Gaussiafependencies of the scattering efficiency on the length of the

apodization we can estimate the opening ayles follows: ~ sample. Our specific choice fof; is motivated by the
crossover we observe in our numerical calculations for wide

R\ probe beams presented below. Inserting the above formula
85=Ly(1-cosh,) = |_0—L =—, we arrive after some straightforward algebra at a compact
2 2w expression for the scattered power as

3o\? 1 1
A\ M2 Psc= Pprobd MNa)? : :
GL:(I> . (10) sc probe( at 4773\N(2)W5211+W§/Wg \‘”1+(L0/2ra)2
0

14
Equating the two expressions for the opening angle we (9
can define a characteristic length, the atomic Rayleigh Here we introduce@,,, the modified atomic Rayleigh range,
range, to compare the influence of the transverse and thay using the definition of; from Eg. (13) and the relation
longitudinal extent: Za=N (762).
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FIG. 4. (Color online (a) Power of the scattered waysymbols vs the characteristic transverse radius of atomic sample of ldpgth
=1 um for constant number of atoms and a wide probe begm1000 xm together with the analytic prediction from Ed4) (solid line).
(b) Full width at half maximum of the intensity distribution in the observation plane for the same parameters.

C. Numerical solutions of the diffraction integral of z,. The rather good agreement with the simple function
Armed with the intuitive arguments and E@.4) for the ~ Was our motivation to design the expression figy; accord-
scattering efficiency we can now proceed to present some dfgly. We define the geometric factgy as the function de-
our numerical results. We choose parameters for théile ~ Scribing the length dependence:
of atomic Cs in our calculation® =852 nnj and keep probe

power, detuning and number of atoms fixed for all results =P (L)/P(0) = — 15
presented in this section. Figuréalt shows the total scat- 9= PsdLo)/Ps0) V1 +(Lo/Z.n)? (19
tered power in the observation plane for short samples of

varying transverse size. In Fig. 5(b) we repeat the calculation over a larger range of

The samples are probed by a witg,=1000um) probe scaled length for various transverse sizes of the sample for
beam. The scattering efficiency drops dramatically with in-wide [open squares in Fig.(B)] and narrowfopen circles in
creasing sample size as expected. A comparison with thEig. 5(b)] probe beam. The length of atomic sample is scaled
(1/w§)[1/(vv§+w§)] dependence from our analytical estimate here in units 0z, and the scattered power is normalized to
shows perfect agreement. The full width at half maximumits value at infinitesimally short sample length.

(FWHM) of the intensity distribution in the observation  The estimate with our simple analytical formula is reason-
plane [Fig. 4(b)] reflects the interplay of source size and able also over this larger range showing quantitative agree-
diffraction in the propagation of the scattered wave. In factment at the level of 20% for scaled sample length up to
our observation plane is not located in the true far field for(Lo/Z,)=8. The fact that scaled data for a large probe beam
all source sizes and the observed dependence is equivalentd@meter agree among each other much better than with data
the behavior of the spread of varying size Gaussian beams &pbm a small beam diameter is understandable from the way
a fixed finite distance from their minimum waist position.  EQ.(14) was derived, i.e., neglecting explicitly the change of

We investigate now how the scattered power changes witthe probe beam geometry over the length of the sample. To
the length of the sample. In Fig(® we show the result for understand the effects of changing probe geometry we con-
a narrow sample probed by a wide beam together with thesider the sample cut into thin slices. We can identify each
analytical prediction as a function of sample length in unitsslice as a source for a Gaussian beam wavelet, which initially
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.-E 0.8 1 o e
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FIG. 5. (Color onling (a) Scattered power vs the characteristic length of the atomic sample with atomic waistwgdi28 um probed
by a beamwy=1000 xm. Numerical datdsymbolg and analytic prediction from Eq14) (solid line) are shown togethetb) Same as irfa)
for sample widthw,=3,5,10,20um (squaresand for a narrow probe beamy=w,=20 um (circles with the length scaled {@,.
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inherits the phase profile of the probe beam and developsnce of the ratio of beam size to sample sizgw, on the
wave-front curvature upon propagation. Scattered waveample scattering efficiency as

fronts from the back end and the front end of the sample will

thus have different curvature limiting the overlap to small Gr = 1 (16)
angles around the forward direction. Our analytic formula 1 +w§/w§'

works well for a plane probe wave front, but fails to take into o ) S
account the positive effect of a focused probe beam, which For the polarization interferometric setup in Figblit is
imprints wave-front curvature of the right sign to enhancenot possible to adapt the reference wave front to the scattered
wave-front overlap. For this reason the scaled scattering efvave front separately, so instead of maximizing the scatter-
ficiency is slightly higher for narrow probe beams and inter-ing efficiency only, one needs to choose the input beam size
mediate sample length than the model predicts. For verguch that the scattered mode has also good overlap with the
elongated samples we see a systematic deviation of the an&pPut mode. For short samples it is easy to see that this can
lytical model from the numerical result and going to ex- be achieved only with a probe size much smaller than the
tremely elongated geometries we observe a different powegample width, since in this limit the probe traverses a homo-
law of the decay than suggested by the simple analytic modé&leneous region of the sample. For longer samples the scat-
(see the Appendix We refrain here from further tuning of tering cone narrows and one can achieve good overlap also
the analytic model, since this limiting case is of little interestfor a probe size comparable to the sample width. Equating
for couplingall atoms of a realistic sample efficiently to the the far-field diffraction angle of the input beam with the ef-
light field and accurate quantitative data can be obtained eafective diffraction angle for light scattered off the sample, we
ily numerically whenever needed, anyway. can derive an expression for the sample length which ap-

The third important parameter which can be varied in aProximately matches input and output modes:

real experiment is the probe beam size. A probe beam size wa\2]2

very much larger than the sample size will not be optimum. 5 4{1 + (—0> } 1

While the sample is illuminated homogeneously the field (ﬂ) - (%) Wa 17)
strength experienced by the atoms is rather low. The depen- Za a 0\ 12

dence with decreasing probe diameter predicted by(E4). 1+ \,Ta

is the result of a subtle interplay of increased single atom ) ] _ ) _ )
scattering at higher intensities, increased coherent scattering!€ interesting region for the ratieo/w, is values bigger
efficiency for the subset of atoms which is inside the volumeihan 1, i.e., probe sizes comparable or bigger than the sample
covered by the probe beam and decrease of the number 8%€. The predictions of the above equation are shown
scatterers contributing effectively to the scattered field. Indraphically in Fig. 6b). The values obtained from the ana-
Fig. 6(a) we show the scattered power as a function of probdytical formula provide good starting values for a numerical
beam size for various sample length. Again we find that thé@ptimization of this mode-matching problem.

transverse probe beam size dependence is described veryWith our numerical calculations we explored the range of
well by the analytic formula for the case of a short sample validity of a simple analytical estimate for the scattering ef-
For short samples it is advantageous to use a probe beam si#@ency from samples of different size and found quantita-
as small as possible. For longer samples both the numericlve agreement at the 20% level over a large range of param-
calculation as well as the analytical estimate predict a finiteters.

probe beam diameter for optimum scattering efficiency. For
reasons already discussed in the context of Filg. the ana-
lytical estimate starts to deviate from the numerical result for
probe diameters comparable or less than the sample diam- The formula and numerical calculation suggest that a glo-
eter, but works very well already for ratios as small as 2. Webal optimum for the scattering efficiency exists for any
separate the trivial dependence on probe intensity and degreample, which simply consists in placing all scatterers in one
of transverse Iocalizationocwgzwgz) from the observed be- point in space. This optimum is, alas, unphysical, because
havior and define a geometric factgy describing the influ-  dipole-dipole interaction in that case dominates the scattering

IV. APPLICATION TO A DIPOLE TRAPPED SAMPLE
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physics and, more pragmatically, a trapped sample is subjeatoms and integrating over the pulse tirfeee Appendix,

to density limitations because of collision induced heatingSec. I). In Fig. 7(b) we show the same data rescaled to a
and losses. In the following we study the case of atomsrobe laser detuning, such thg&0.1 for every point, to-
trapped in a single Gaussian beam dipole trap. In thermajether with the detuning needed to satisfy the constraint on
equilibrium the shape of the atomic sample in a single beam,

dipole trap is determined by the focal parameter of the beam |ncjuding the condition of equal level of destructiveness
[33,34. We take parameters for Cs atoms trapped by lasefastores the advantage of bigger samples over small samples.
radiation athyj;=1030 nm at a constant trap depth 0)  \ye note that the absolute numbers for the coupling strength
=kgx 1 mK and fixed sample temperature ©=100uK. 4t fixed 5 cannot be changed by simultaneous variation of
Specifying the dipole trap laser power determines then thene getuning and the number of incident photons, since the
focal parameter negded to achieve the trap depth, gnd th‘d%upling strength andy depend in the same way on these
also the thermal radius, and |en92t|1-0_%f the sample. Lim- o quantities. For the elongated samples probed by a nar-
iting the peak density toe,=10'2 cm® specifies then the 1oy heam the losses are distributed quite unevenly over the

number of atomdN,. From Fig. &a) we infer that for long sample due to the rather inhomogeneous illumination.
samples a probe beam size equal to the sample size will be

close to optimum and choose this for the calculation. Restor- V. RELATION TO EFFECTIVE 1D MODELS

ing all prefactors and choosing a number of incident probe At the start of our scattering calculation we expressed the

photonsn,,= 10° at a detuningA/I'=100 we can then nu- . . )
merically determine the achievable signal-to-noise ratioCOUpIIng strength or achievable SNR in terms of a number of

(SNR) according to Eq(5) at unity quantum efficiency as a coherently scattered photons. This number, although conve-
function of the power of the dipole trap laser. In Figajiwe nient to calculate, is not a directly measurable quantity, since
show the achievable SNR in this configuratic;n together with'© cannot distinguish coherently scattered photons from the

e number of rappea toms. We observe that for bggeCOSTL B I prneine and ol el erferere
samples the SNR approaches a constant value. With the cop- L Iy P : o
express this artificial scattered power in terms of the inci-

straints we placed on temperature and density, the benefit ot power and the interaction geometry. This also makes a

having more atoms is reduced by the increasingly unfavore irect comparison to the expression for the coupling strength

able elongated geometry. It turns out that while the aspecg . ) .
ratio of the sample increases with increasing size of the di erived from the 1D quantum model possible. Introducing

i .
pole trap, the scaled length and hence the Fresnel numbége triansverse be;T,zaré@h as_m/vg and egunf/]alelt'ntly ﬂ;e
remains constant af,/Lo=1/14[35]. With this observation, sample ared, as mw, we rewrite Eq.(14) in the limit o
the higher number of atoms is outweighed exactly by theIarge detuning a$38]
increasing transverse dimensions of sample and probe beam. 3 ,00 0 T 2
A realistic model for coherent light-atom coupling effi- Psczi(mat) A~ A \2A 919 Pinc-

. . . h/M\at
ciency will have to take into account also the losses due to P
spontaneous emission. In fact, a measurement on atoms with Using Eq.(5) and(6NZ)=N,./2 [39] we obtain the SNR
a spontaneous emission probability approaching 1 can hardlyssuming unit quantum efficiency detection as
be considered nondestructive for the collective variable. The 5 2 )
result from the 1D quantum model in E) predicts actu- 2= <§> = g0 30p Non (L)
ally that the achievable SNR and the level of destructiveness N Ry WA P\ oA )
are coupled, i.e., the achievable SNR is directly proportional
to the integrated single atom spontaneous emission #ate
(see also Refs[36,37)). Since the transverse size of the
trapped sample changes with the invested dipole trap power, 0% I \2
7 is not the same for the data points in Figa)7 In order to K> = ENatnph(ﬂ) ; (19
make a fair comparison we thus calculate for each of the data
points the number of spontaneously emitted photons pewe see how diffraction effects modify the coupling strength
atom by evaluating the average intensity experienced by theith respect to the predictions from the 1D model. The two

(18

Comparing this to the expression obtained from an effec-
tive 1D model in Sec. Il, viz. Eq(2),
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expressions give the same values for the case of a sampbaly. A classical point scatterer calculation can be used con-
with effective Fresnel number close to 1 and equal probe andeniently also to model experimental imperfections, e.g.,
sample diametef40]. For our choice of Gaussian sample alignment errors, where the analytical integration over the
and probe the modification of coupling strength can be quantransverse distribution would become much more involved.
titatively accounted for by the geometrical factors. We be- The assumption of infinitely heavy scatterers, i.e., the ne-
lieve that the asymptotic scaling of the geometrical factorglect of photon recoil, needs closer attention, when the fluc-
will be independent of the specific choice of the functiontuations of collective variables are studied. In fact, when
describing the shape of the sample. We can look at the caseorking with collective atomic variables one usually as-
of a very elongated sampl@g.,>7,) probed by a narrow sumes that internal and external degrees of freedom of the
beam of the same size as the sample by expanding the geatomic sample are decoupled. Already without multiple scat-
metric factors accordingly and find in this limit for the cou- tering the change of momentum due to scattering introduces

pling strength, correlations between internal and external variajke4].
3 3 Also, a focused probe beam with inhomogeneous intensity
T A r\2 atrib It ;
KZ:—(—) Noeal h(_) _ (20) distribution across the sample exerts a dipole force on the
8 \27/) PPN 2A sample leading to contraction or expansion depending on the

. : . sublevel populations for the setup in Figall This leads to
The achievable coupling strength becomes mdependent_ %#n effective decay mechanism for the macroscopic coherence

the sample size in this "”.“t and is I|r_1ear in the peak ator.mcbetween the sublevels. Similar effects occur naturally also at
der!snynpeak instead of being propor.tlonal to column den_sny the level of quantum fluctuations. Ultimately, a proper quan-
as in the 1D modej41]. The numerically observed scaling tum model will have to take into account the scattering in-

with the length of the sampksee the Appendpreduces the duced dynamics of the density correlation function of the

coupling even more for extremely elongated samples. sample, which determines the structure factor for light scat-
tering [45,46. Prominent examples for the key importance

of the photon recaoil for collective scattering are the observa-

VI. CONCLUSION tion of super-radiant Rayleigh and Raman scattering in Bose-

In this paper we have outlined an efficient method to in-Einstein condensatest7,48, cavity cooling[49,50, and
clude diffraction effects in the coupling of light to collective collective motion in high-finesse caviti¢S1].
variables of atomic samples and applied it to an experimen-
tally relevant case of atomic ensembles stored in single beam ACKNOWLEDGMENTS
dipole traps. The use of Gaussian light fields is well adapted
to real experimental geometries and allows for a largely ana- J.H.M. thanks K. Mglmer and A. Sgrensen for stimulating
lytical treatment. Tayloring the sample and beam geometrydiscussions. We acknowledge support for this work by the
such that probe mode and scattered mode coincide is poEU-network CAUAC and Dansk Grundforskningsfond.
sible and will be useful for polarization interferometry or
multipass experiments.

Several approximations have been made, mainly to keep
the model as transparent as possible, and some of them can 1. Improved geometrical factor g,
be lifted in future extensions of the model. The leading-order
effect of multiple scattering and particle statistics on the re

APPENDIX

The analytical estimate for the total scattered power given
in Eqg. (14) is seen to fail for very elongated samples. This

fr_active index_, which we are effectively calculating in a can be traced back to the assumption of homogeneous illu-
single scattering approximation, can be accounted for by @ynation in the calculation of the on-axis intensity of the

cor.rectic.m term depending on the local density of Scatterer aitered field. A simple way to arrive at an improved esti-
which will allow us to calculate the geometry of the scatteredy, 41 is to introduce an axial average of the incident intensity

moge alsoCIolr _hlgr?er c_ienls!tIQQZ]. but th . in order to take into account the diffractive spreading of the
dulr mo ; IS cgsslma In nalture, ut the point Scatte_rslincident beam over the sample length. Since the scattering
model can be used also to analyze quantum noise Contriblzsiency depends quadratically on atom number, the aver-

tions and their dependence on geometry. Giving up the cong,q i harformed over the squared density distribution and to

tinuous density distribution one can determine numericallySimplify the math the Gaussian atomic density distribution is

the scattering efficiency from randomly distributed sampleq,emaced by a rectangular distribution of same peak height
and this way statistically analyze the noise introduced ont

. . . nd area
the scattered wave front by density fluctuations on different o
length scales. This models spontaneous emission noise as | lo f\ﬂ'/ZLo 1 .
L . . _ . H=T— z
well as nontrivial effects like the inherent mode-matching e 2L, o 1+(zz)?

noise discussed in Ref13]. There are already studies using
a wave function Monte Carlo technique to address the effects _ z
of spontaneous emission in a quantum descriptid@] =lo (/2

. \ T LO
adapted for our case of trapped inhomogeneous samples, but
the extremely fast increase of the dimensionality of HilbertHere z,:wwél)\ denotes the Rayleigh range of the laser
space limits the treatment to very small numbers of atom$eam. The inhomogeneous axial illumination changes also

arctari\m/2Loz ). (A1)
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the effective length of the sample entering the estimate for , & 2P, .. y1 1 “ exp(-2)
the opening angle of the diffraction cone. Incorporating this = %—p—ﬂvz [1 + 2Awy/wo)“] J T+ @
effect we find empirically an improved expression for the 0 w

longitudinal geometrical factdisee Eq(15)], with

2 1/2 L21 + L“’ ~2\2 | 1/2 2\ 1/2

g = (_é) arcta Lo ( Ozrf_Z{ 2) a= ﬁ(l + 2(wa/Wo) )
Lo 27 1+(LoZ, Lo 3
X[1+(LgZZ, 712 (A2)  and
which fits our numerical data at the level of 20% for Fresnel o 1 ) 5
numbers of the atomic sample up to 1/80. f mexp(— z°)dz=am expa’)Erfc(a)
2. Spontaneous emission rate where Erf¢a) denotes the complementary error function.

Within the framework of the point scatterer model the The separation of the expression for the coupling strength

distinction between spontaneous and induced emission § INto integrated spontaneous emissigrand an effective

blurred and with the approximation of a microscopically OPtical deptha as in the 1D description can be done in
continuous density distribution for the point scatterers sponPrinciple, but does not lead to simple analytical expressions.
taneous emission is completely lost. Introducing implicitly IN fact, such a separation is also not very meaningful when
microscopic density fluctuations and assuming that singléone globally, since the time-integrated spontaneous emis-
atom spontaneous emission happens independently of tHPN rate can have substantiatal variations due to the in-

presence of the neighboring scatterers the spontaneouél’&Qmogeneous illumination. In addition, the co_ntribution of a
emitted power per atom can be calculated as central volume element to the total scattered field and thus to

the scattering efficiency is much bigger than for a volume
7 Pspon o element on the rim of the density distribution. This means

- :<ﬁwNat> = %JRg linc(F)N(H)AV. (A3)  thata spontaneous emission or optical pumping event in the

center of the sample leads to a more pronounced change in

Setting for simplicity the wavelength of the dipole trap laser,the scattering efficiency. In a quantum description the spatial
which determines the change in transverse dimensions of tiehomogeneity of both light and atom variables naturally
atomic sample, equal to the wavelength of the incident radiasuggests importance sampling and leads to a concept of col-
tion, the single atom spontaneous emission rate can be writective variables which are no longer fully symmetric with
ten in the form respect to exchange of single-particle labél4].

[1] A. Kuzmich, K. Mglmer, and E. S. Polzik, Phys. Rev. L€?®, [13] L. M. Duan, J. I. Cirac, and P. Zoller, Phys. Rev.6%, 023818

4782(1997). (2002.

[2] A. Kuzmich, N. P. Bigelow, and L. Mandel, Europhys. Lett. [14] A. Kuzmich and T. A. B. Kennedy, Phys. Rev. Let82,
42, 481(1998. 030407(2004).

[3] L. M. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik, Phys. Rev.[15] W. Happer and B. S. Mathur, Phys. Rev. Lett8 577
Lett. 85, 5643(2000. (1967).

[4] A. Kuzmich and E. S. Polzik, Phys. Rev. Let85 5639 [16] A. Kuzmich, L. Mandel, J. Janis, Y. E. Young, R. Ejnisman,
(2000. and N. P. Bigelow, Phys. Rev. &0, 2346(1999.

[5] A. E. Kozhekin, K. Mglmer, and E. Polzik, Phys. Rev. @2, [17] In writing this Hamiltonian we drop terms which depend on
033809(2000. the total number of atoms and photons and are unimportant for

[6] L. K. Thomsen, S. Mancini, and H. M. Wiseman, Phys. Rev. A the dynamics.
65, 061801(2002. [18] Strictly speaking the operators contain the retarded Fourier

[7] B. Kraus, K. Hammerer, G. Giedke, and J. I. Cirac, Phys. Rev. transforms of thecrosg spectral densities of the electric field
A 67, 042314(2003. components. For a more rigorous treatment of the propagating

[8] J. Fiurasek, Phys. Rev. &8, 022304(2003. field modes we refer to Ref3].

[9] J. Hald, J. L. Sgrensen, C. Schori, and E. S. Polzik, Phys. Rey19] Spatial correlations due to the indistinguishability of the par-
Lett. 83, 1319(1999. ticles are neglected here.

[10] A. Kuzmich, N. P. Bigelow, and P. Mandel, Phys. Rev. Lett. [20] This procedure is valid for Gaussian input states like coherent
85, 1594(2000. or squeezed states.

[11] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Natdrendon [21] A. Sinatra, J. F. Roch, K. Vigneron, P. Grelu, J.-P. Poizat, K.
413 400(20012). Wang, and P. Grangier, Phys. Rev.5¥, 2980(1998.

[12] C. Schori, B. Julsgaard, J. L. Sgrensen, and E. S. Polzik, Phy$22] K. Hammerer, K. Mglmer, E. S. Polzik, and J. I. Cirac, Phys.
Rev. Lett. 89, 057903(2002. Rev. A 70, 044304(2004).

033803-11



MULLER et al. PHYSICAL REVIEW A 71, 033803(2005

[23] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen,[38] The scattering cross section as an atomic property enters our

Phys. Rev. A50, 67 (1994). calculation only once, consequentlif/4A2 appears linearly
[24] B. Julsgaard, J. Sherson, J. I. Cirac, J. FiurdSek, and E. S.  here.
Polzik, Nature(London 432, 482 (2004. [39] This value corresponds to the variance in the population dif-

[25] A. Kuzmich and E. S. Polzik, irQuantum Information with
Continuous Variablgsedited by S. L. Braunstein and A. K.
g;;(ilz((ls(éuwer Academic. Publishers, Dordrecht, 200 p. [40] M. G. Raymer and J. Mostowski, Phys. Rev. 24, 1980

[26] D. Oblak, J. K. Mikkelsen, W. Tittel, A. K. Vershovski, J. L. (198). ,
Sgrensen. P. G. Petrov. C. L. Garrido Alzar. and E. S. Polzik[4l] The density in units ofA/27)° has to be smaller than 1 for the

ference for a sample dfl,; independent atoms residing with
equal probability in two internal states.

e-print quant-ph/0312165, Phys. Rev(ta be publishey model to be valid, otherwise the neglect of multiple scattering
[27] Here we reintroduce implicitly the noise due to quantum fluc- is not possible.

tuations. [42] O. Morice, Y. Castin, and J. Dalibard, Phys. Rev.54, 3896
[28] P. de Vries, D. V. van Coevorden, and A. Lagendijk, Rev. Mod. (1995.

Phys. 70, 447 (1998. [43] I. Bouchoule and K. Mglmer, Phys. Rev.#6, 043811(2002.
[29] M. Born and E. Wolf Principles of Optics7th ed.(Cambridge  [44] A. V. Rau, J. A. Dunningham, and K. Burnett, Scien8@l,

University Press, Cambridge, England, 1999hap. XIlI. 1081(2003.

[30] For Cs atoms probed on the, line the recoil time is 0.3 ms. [45] To lowest order in a multiple-scattering expansion the dynam-
[31] Since we treat the scattered wave as a scalar the phase of the ics of the density correlation function can be just described by

scattering amplitude has to be chosen with care. recoil heating.

[32] B. R. Mollow, Phys. Rev. A12, 1919(1975. [46] H. D. Politzer, Phys. Rev. 465, 1140(1997).

[33] R. Grimm, M. Weidemidiller, and Y. B. Ovchinnikov, Adv. At., [47] S. Inouye, A. Chikkatur, D. Stamper-Kurn, J. Stenger, D. Prit-
Mol., Opt. Phys.42, 95 (2000. chard, and W. Ketterle, Scienc@85, 571 (1999.

[34] Here we neglect other potentials, like gravity, for simplicity. [48] D. Schneble, G. K. Campbell, E. W. Streed, M. Boyd, D. E.
[35] Our simple analytical estimate at this length is already wrong Pritchard, and W. Ketterle, Phys. Rev. 89, 041601(2004).

by about a factor of 2. [49] P. Horak, G. Hechenblaikner, K. M. Gheri, H. Stecher, and H.
[36] G. Smith, S. Chaudhury, and P. S. Jessen, J. Opt. B: Quantum  Ritsch, Phys. Rev. Lett79, 4974(1997.
Semiclassical Opt5, 323 (2003. [50] V. Vuletic and S. Chu, Phys. Rev. Lei84, 3787(2000.
[37] J. E. Lye, J. J. Hope, and J. D. Close, Phys. Re®70043609  [51] B. Nagorny, T. Elsasser, and A. Hemmerich, Phys. Rev. Lett.
(2003. 91, 153003(2003.

033803-12



