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We present a simple method to include the effects of diffraction into the description of a light-atomic
ensemble quantum interface in the context of collective variables. Carrying out a scattering calculation we
single out the purely geometrical effect and apply our method to the experimental relevant case of Gaussian-
shaped atomic samples stored in single beam optical dipole traps probed by a Gaussian beam. We derive simple
scaling relations for the effect of the interaction geometry and compare our findings to the results from
one-dimensional models of light propagation.

DOI: 10.1103/PhysRevA.71.033803 PACS numberssd: 42.50.Ct, 42.25.Fx, 32.80.Qk

I. INTRODUCTION

Coupling collective variables of atomic ensembles to
propagating modes of the electromagnetic field has been
identified as an efficient tool to engineer the states of atoms
and light at the quantum level. Several proposals for spin
squeezing, mapping of quantum states between light and at-
oms, i.e., quantum memory operations, creation of macro-
scopic entanglement, and teleportation of atomic states have
been publishedf1–8g. A number of these proposals have ac-
tually been verified experimentally using atomic samples
stored in vapor cells as well as in magneto-optical traps
f9–12g. The efficiency of the coupling is often discussed re-
sorting to effective one-dimensionals1Dd models for the
light propagating through a homogeneous sample and the
optical depth is found to be the essential parameter determin-
ing the coupling strength. This naturally suggests the use of
cold and trapped atomic samples, where long coherence
times for collective variables are possible, with a shape mim-
icking a 1D string of atoms to maximize column density for
a given number of atoms. However, while the effective 1D
models work well for wide and nearly homogeneous samples
the question of light diffraction from small, inherently inho-
mogeneous samples and its impact on coupling efficiency
immediately arises when cold and trapped atomic samples
are usedf13g. In a recent workf14g, aspects of spatial inho-
mogeneity have been addressed via the introduction of dif-
ferent asymmetric collective variables.

The purpose of the present paper is twofold. We present a
simple and effective semianalytic method to identify the spa-
tial light mode that the atomic sample couples to, to quantify
the strength of the coupling, and we use this method to find
optimum shapes for atomic samples. In addition we derive
simple scaling parameters describing the effect of the shape
of the atomic sample which allow us to make a direct com-
parison with the established 1D quantum models and quan-
tify the effect of diffraction on the coupling strength. Albeit

we are ultimately interested in measuring and manipulating
quantum states, we find it instructive to solve the underlying
classical scattering problem first to single out the purely geo-
metric effects, and we try to avoid hiding useful practical
information behind the much more intricate mathematical
formalism needed to solve the full quantum problem. Our
approach delivers valuable information for designing experi-
mental configurations, provides intuitive pictures, and may
serve as a starting point for a more elaborate quantum theo-
retical treatment.

The remainder of the paper is organized as follows. In
Sec. II we present briefly the main results of a quantum
description of two modes of light coupled coherently to at-
oms in terms of collective variables and introduce typical
experimental configurations. With the quantum model we de-
rive an expression for the achievable signal-to-noise ratio
when measuring collective atomic variables. After doing so
we analyze the experimental configurations again in semi-
classical terms and use this framework to point out the co-
herently scattered power by the atomic sample as the rel-
evant quantity to optimize for good quantum coupling.
Section III presents our model for calculating the scattering
mode and the scattering efficiency of the atomic sample for
different geometries together with some remarks on the as-
sumptions made and the range of validity of the model. In
Sec. IV we apply this model to atoms stored in a single beam
optical dipole trap. In Sec. V we provide a comparison be-
tween our classical calculation and the results from effective
1D models. Section VI summarizes our results and points out
possible extensions of our model.

II. COLLECTIVE LIGHT-ATOM COUPLING

The Hermitian part of the interaction of a pulse of off-
resonant light with an ensemble of atoms with two ground
states residing in a container with cross-sectional areaA and
lengthL can be described by an effective Hamiltonian of the
form ssee, e.g., Refs.f7,15–17gd

Ĥc = "
2s0

A
S G

2D
DE

0

L

ŝzsz,td ĵ zsz,tddz. s1d

The factor in front of the integral describing the strength of
the coupling of the collective variables contains the single-
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atom reactive response to radiation characterized by the reso-
nant cross sections0, the detuningD in units of the natural
linewidth G, and the cross-sectional area of the light mode
governing the electric-field strength per photon occupying
the mode. In Eq.s1d operators for the photon flux of lightŝ
and ground-state polarization of atomsĵ are introduced. For
light we can writeŝ in terms of continuous mode creation
and annihilation operators with boson commutation rules:
ŝx= 1

2sâ2
†â1+ â1

†â2d, ŝy= 1
2i sâ2

†â1− â1
†â2d, ŝz=

1
2sâ2

†â2− â1
†â1d. For

simplicity of notation the time and spatial dependence of the
operators has been suppressed. The mode index can specify
for instance two fields propagating in the two legs of a
Mach-Zehnder interferometerfFig. 1sadg or left and right cir-
cular polarized modes of a single laser beamfFig. 1sbdg. The
operators ŝ are normalized to describe the photon flux
through a cross section of the light beams at locationz along
their path of propagationf18g. Integrating the photon fluxes
over the duration of a pulse we can define dimensionless

collective operatorsŜ to describe a pulse as one entity. By
construction the collective operators follow the usual com-
mutator algebra for vector operators.

In the case of atoms we restrict ourselves, for simplicity,
to the case of two ground states only. We define in analogy:

ĵ x = s1/dzdol=1

Natszd 1
2su2llk1u + u1llk2ud,

ĵ y = s1/dzdol=1

Natszd
s1/2idsu2llk1u − u1llk2ud,

ĵ z = s1/dzdol=1

Natszd 1
2su2llk2u − u1llk1ud,

where the sum extends over the number of atomsNatszd re-
siding in a thin slice of the interaction volume at positionz
f19g. A continuum limit is taken by shrinking the thickness
dz of the slices to zero. The three operatorsĵ i describe the
coarse grained linear density of Bloch-vector components for
the two-level system formed by the two ground states. Again
we can choose to describe the atomic sample as a whole by
integrating over the length of the atomic sample defining

collective atomic operatorsĴ.
Inherent in this description are the assumptions that the

transverse-mode function of the light field is a frozen vari-
able, hence the 1D integration over the Hamilton density in
Eq. s1d, and that the atoms scatter light coherently only into

the input modes. This is a good approximation for atomic
ensembles and light fields transversally much wider than an
optical wavelength and not too long samples. In addition,
since the operator nature of atomic position is suppressed,
the spatial density distribution of the atoms is not changed by
the interaction with the radiation in this model.

The dynamics generated by Eq.s1d at the level of expec-
tation values describes differential phase shifts of the light
modes due to coherent forward scattering by the atoms in the
two ground states and differential shifts of the atomic energy
levels due to the intensity difference of the two light modes.
This dynamics can be conveniently visualized with the help
of coupled Bloch spheres for light and atom variables. Of
particular interest for practical quantum state engineering is

the case of initial conditions withĴx
in and Ŝx

in large and clas-
sical, i.e., uncorrelated coherent states with expectation val-
ues on the order of half the total number of atoms and pho-
tons, respectively. In this case the dynamical evolution of the
system is driven entirely by the fluctuations of light and
atomic variables. In the experimental setup sketched in Fig.
1sbd this corresponds to linearly polarized input light and all
atoms in a balanced coherent superposition of the two
ground states, such that there is a macroscopic magnetic po-
larization in the plane orthogonal to the direction of propa-
gation. For the setup advertised in Fig. 1sad this amounts to a
balanced coherent superposition of atomic levels 1 and 2 and
50-50 beam splitters at entrance and exit of the Mach-
Zehnder interferometer. Linearizing the spectrum of the op-
erators around their expectation values and integrating the
dynamics, to leading order, input-output relations can be
written for the fluctuations of the collective operators or-
thogonal to the coherent excitationf20,21g:

dĴy
out = dĴy

in −
2s0

A

G

2D
kĴxldŜz

in,

dĴz
out = dĴz

in,

dŜy
out = dŜy

in −
2s0

A

G

2D
kŜxldĴz

in,

dŜz
out = dŜz

in.

The superscriptin soutd refers for atomic variables to
times beforesafterd passage of the pulse through the sample
and for light variables to observation planes in front ofsbe-
hindd the sample. From these relations we can calculate the
variance of a set of measurements on identically prepared

systems. A set of measurement records ofŜy
out will show a

mean valuekŜy
outl=0 and a variance:

VarsŜy
outd =

nph

4
+ S2s0

A

G

2D

nph

2
D2Na

4
.

Here the first term on the right-hand side reflects the noise of
the coherent input state of light, withnph the total number of
photons in a pulse, while the second term describes the ex-
cess fluctuations imprinted onto the light by the fluctuations

FIG. 1. sColor onlined Mach-Zehnder and polarization interfer-
ometry setups for quantum coupling of collective variables of cold
atomic samples to light. The local interaction energy is proportional
to â1

†â1su2lk2u− u1lk1ud in sad and toâ1
†â1u1lk1u+ â2

†â2u2lk2u in sbd.
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of the atomic variableĴz
in and amplified by the large coherent

amplitude ofSx. From the measurement record we can infer

a value for the atomic variableĴz
in, i.e., the population differ-

ence with a confidence interval limited by the first term, i.e.,
with a signal-to-noise ratiosS/Nd of

S S

N
D

1D

2

=
s0

2

A2NatnphS G

2D
D2

. s2d

Projection of the atomic state by the destructive measure-

ment on light, will leave the collective atomic variableĴz
in in

a state with fluctuations reduced below the standard quantum
limit if the signal-to-noise ratio is finite and if added noise
due to spontaneous emission is small enoughf22g. In practi-
cal terms this means that repeated measurements on the same
atomic system will show a covariance below the projection
noisef23g. To the extent the measurement is nondestructive,
this fact can be exploited to write, store, and retrieve quan-
tum information to and from the atomic variablef12,24g.
Instead of measuring destructively the light pulse after a
single pass through the atomic ensemble one can allow for
multiple interaction together with appropriate switching of
the coupling Hamiltonian between consecutive passes. This
way unconditional quantum state preparation is possible and
the measurement serves merely as a verification of successful
state preparationf8,22,25g. In this more general setting the
above defined signal-to-noise ratio plays the role of a cou-
pling strengthk2:

k2 =
s0

2

A2NatnphS G

2D
D2

=a0h s3d

which can be conveniently expressed as the product of inte-
grated spontaneous emission rateh=nphss0/AdsG /2Dd2 and
the optical depth or column densitya0=Natss0/Ad, explain-
ing the use of the optical depth as a figure of merit for col-
lective variable light-atom couplingf25g. The interaction ge-
ometry, of course, stays the same, so diffraction of light
discussed in the following has the same impact on the cou-
pling strength in these schemes.

After this brief review of the 1D quantum model, we look
again at the experimental configuration in Fig. 1sad f26g,
seeking this time a description in purely classical terms and
pointing out where we go beyond the 1D model. A cloud of
cold atoms residing in one arm of the interferometer is
loaded into a far-off-resonant dipole trap created by a fo-
cused Gaussian beam. Probe light with a wave vectork
=2p /l enters the interferometer from the left and passes
through the atomic sample. The light experiences a phase
shift caused by the refractive index of the sample, which is
determined by both the atomic density distribution and by
the population difference of the two sublevelsdNat=N2−N1.
For simplicity we assume here equal strength of the transi-
tions connecting the two ground states to the excited states
and equal and opposite detuning as indicated in Fig. 1sad.
Given an atomic density distribution the light carries thus
information about the level populations after passage through
the sample. In turn, the atomic energy levels are shifted dif-
ferentially during the interaction and thus information about

the light is deposited in the coherence between the atomic
levels. To assess the sensitivity of a measurement of the
atomic population difference we look at the signal by the
balanced homodyne detectorswith quantum efficiency«d on
the right upon detection of a pulse of lightsfrequencyvd of
durationt. The detector signalSD, i.e., the photocurrentis in
units of the elementary chargee integrated over the pulse
duration, in the presence of atoms is given by

SD =E
0

t is
e

dt = «
t

"v

c«0

2 S2uEscuuErefuE
AD

MscMrefdA

+ 2uEprobeuuErefuE
AD

MprobeMrefdAD . s4d

Here Eprobe sErefd denotes the initial field in the probesref-
erenced arm. The integrals over the detector area describe the
overlap of the transverse mode functionsMsc,Mprobe,Mref in
the detector plane and contain also the oscillatory depen-
dence on the path length difference of the interferometer. We
separate explicitly the field scattered by the atomsEsc from
the probe fieldEprobe, since in general it will not be in the
same spatial mode and have a different phase. We can adjust
the path length difference such to make the second integral in
Eq. s4d vanish—this corresponds to the preparation of a large

kŜxl and a measurement ofkŜyl with the detector in the lan-
guage of the quantum description. We note that for disper-
sive scattering in the far field, the probe wave and the scat-
tered wave are nearly ±p /2 out of phaseswhere the sign is
determined by the atomic sublevel involvedd, so the first
term in Eq.s4d will take its maximum value whenever the
second term vanishes. The detector signal stems then from
the interference of the reference wave with the scattered
wave only. The atomic contribution and consequently the
sensitivity of the measurement will thus be a monotonic
function of both the coherently scattered power by the atoms
and of the geometric overlap of the wave fronts of scattered
wave and reference wave. Carrying out the overlap integral
assuming perfect matching of the reference wave to the scat-
tered wave, we write for the detector signal powerS2:

S2 = 2«2S t

"v
D2

PscPref.

The noise will be limited from below by the shot noise of the
detected photonsf27g. We write the corresponding noise
powerN2 as

N2 =
«t

"v
2Pref.

With this we arrive at an equivalent expression for the
signal-to-noise ratio or coupling strength as

k2 = S S

N
D2

=
«t

"v
Psc= «nph

sc . s5d

Here the coupling strength is expressed in terms of the—
admittedly artificial quantityssee Sec. Vd—total coherently
scattered power. We conclude that optimizing the sensitivity
is equivalent to maximizing the scattering efficiency and
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adapting the reference wave front to the scattered wave.
Trivially the scattered power can be increased by increasing
the input power to the interferometer. But here upper limits
are set by saturation of the detectors and the requirement for
low spontaneous emission rate. We choose therefore to per-
form the search for optimal shapes of the atomic samples and
of the probe beam in the next section under conditions of
constant probe power. Given a maximum pulse energy the
detectors can withstand, the integrated spontaneous emission
rate can be set to a desired value by choosing the single atom
scattering cross section via the detuning. In the next section
we calculate the scattering efficiency and the scattered wave
front for selected geometries.

III. SCATTERING MODEL

In order to calculate the stationary diffracted field by the
atomic density distribution we model the sample as an en-
semble of fixedsi.e., infinitely heavyd point scatterers and
make use of a Born approximationf28,29g. Assuming fixed
positions we neglect Doppler and recoil shifts. Since we ex-
pect coherent diffraction to occur mainly close to the forward
direction and we are interested in samples at ultralow tem-
peratures, Doppler shifts will play a negligible role. On time
scales short compared to the recoil time—the time needed
for an atom to travel a distance of an optical wavelength at
one recoil velocity—we can assume that spatial correlations
are frozen, i.e., neglecting the recoil to the atom during scat-
tering is validf30g. In the first Born approximation we ne-
glect multiple-scattering events and calculate the total scat-
tered field as the sum of the fields scattered by independent
single scatterers out of the probe field. This approach is jus-
tified as long as the contribution from all other scatterers to
the local field seen by an individual scatterer is small com-
pared to the probe field which demands, e.g., negligible ab-
sorption. This condition is also helped by destructive inter-
ference of scattered waves for the case of balanced sublevel
populations in the experimental configuration introduced in
the previous section. The condition of independent scatterers
can only be met for not too high atomic densitysnat,k3d
otherwise resonant dipole-dipole interaction can change the
single atom scattering properties appreciably.

A. Scattering integral

As the first ingredient we need the scattering amplitudef
for a single atom. In our calculations we replace thep-wave
scattering amplitude by an isotropic amplitudef equal in
magnitude to the true forward-scattering amplitude. This as-
sumption greatly simplifies analytic calculations and will be
justified a posterioriby the observation that constructive in-
terference occurs only close to the forward direction. Inte-
grating uf u2 over the solid angle renders the scattering cross
section at a given detuningD of the probe laser from the
atomic resonancef31g. For the experimentally relevant case
of alkali atoms our choice for the scattering cross section is
valid for any sublevel of the ground state probed by linearly
polarized light provided the detuningD is large compared to
the excited-state hyperfine splitting:

E
4p

uf u2dV = s0
1

1 +S2D

G
D2 ,

s0 =
l2

2p
,

f = − lÎ 3

8p2

1 + iS2D

G
D

1 +S2D

G
D2 .

We remark here that this classical treatment includes the full
response of the atom to the incident field, i.e., also the cou-
pling to all empty modes of the electromagnetic field. There
is no distinction between spontaneous and induced emission
and the only assumption made is that the response of the
atom is linear in the incident field, i.e., the atomic transition
is not saturated. Naturally, since we treat the field as a clas-
sical variable, the statistical properties of the field, e.g., also
the frequency spectrum of detected scattered light, are not
described correctly. However, in the experimentally relevant
case of large detuning and low intensity scattering is almost
entirely elasticf32g and in the first Born approximation these
shortcomings do not enter the problem, since exchange of
photons between the atoms, i.e., multiple scattering, is ne-
glected.

The total scattered wave is the sum of the waves scattered
by individual scatterersj s j =1. . .Natd and can be expressed
in terms of electromagnetic field vector in complex notation
as sFig. 2d

EW scsr8W d = o
j=1

Nat

EW probesr jdf j

exps− ikur8W − r j
W ud

ur8W − r j
W u

.

Atoms in different internal states contribute with opposite
signs to the scattered field. We thus write the weighed spatial
distribution of scatterers as

dnsrWd = o
k=1

N2

dsrW − rk
W d − o

l=1

N1

dsrW − r l
W d

with natural normalization condition giving the population
difference in the atomic sample:

FIG. 2. Huygens-Fresnel propagation used in the model.
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dNat =E
R3

dr3dnsrWd.

In the following we use a continuous density distribution
according to a smooth probability distribution to find a par-
ticle in a small volume element, again suitably normalized to
the population difererence. This averaging procedure elimi-
nates large-angle scattering off the microscopic density fluc-
tuations, which is equivalent to the single-particle Rayleigh
scattering background for a discrete distribution of scatterers,
i.e., spontaneous emission at low saturation parameterf28g.
Equally Bragg scattering of light from a regular distribution
of atoms on the wavelength scale is lost by the coarse grain-
ing. The scattered field at some observation pointrW8 outside
the sample in integral form becomes

EW scsrW8d =E
R2

dxdyE
−L

L

dzEW probesrWddnsrWdf
exps− ikurW8 − rWud

urW8 − rWu
.

s6d

In the paraxial domainssmall angles to the optical axisd,
where we expect constructive interference of scattering am-
plitudes to be concentrated, we can approximate the spheri-
cal wave propagator in Eq.s6d by using a Fresnel expansion
formula for the distanceurW8−rWu,

urW8 − rWu . z8 − z+
1

2

x82 + y82 + x2 + y2 − 2xx8 − 2yy8

z8 − z
,

in the phase factor, while we useurW8−rWu.z8−z in the less
critical denominator. Inserting this we can write the propa-
gator in Eq.s6d as

KsurW8 − rWud .
expf− iksz8 − zdg

sz8 − zd
expHik

xx8 + yy8

z8 − z
J

3expH− ik
x2 + y2

2sz8 − zdJexpH− ik
x82 + y82

2sz8 − zdJ .

Since we want to describe free diffraction of probe light and
scattered light on an equal footing, we choose the incident
probe beam not as a plane wave but rather as Gaussian with
parameterswszd ,Rszd ,Fszd being the beam radius, wave-
front radius and Guoy phase, respectively,

EW probesx,y,zd

= EW 0
ws0d
wszd

expH− ifkz− Fszdg −
x2 + y2

w2szd
− ik

x2 + y2

2Rszd J .

As a realistic model for the density distribution of the
trapped sample we choose a Gaussian function. This corre-
sponds to the equilibrium shape of a thermal distribution of
atoms residing inside a harmonic oscillator potential. For low
enough temperature with respect to the trap depth this is a
good description for a dipole trapped sample. In particular,
for the transverse dimensions, where we carry out the inte-
gration of the scattering integral analytically, this choice sim-
plifies the mathematics. We note in passing that a generali-

zation to arbitrary transverse distributions by expansion into
Hermite polynomials is possible though analytically cumber-
some.

The atomic density distribution in the transverse direction
has a radiuswa, which depends onz due to the weaker con-
finement by the dipole trap laser beamswavelengthldipd
away from its minimal beam waist. In the longitudinal direc-
tion salong the propagation axis of the probe beamd it is
described by a 1/e-length parameterL0,

dnsx,y,zd =
dNat

p3/2L0wa
2szd

expS−
x2 + y2

wa
2szd

−
z2

L0
2D ,

waszd = waÎ1 +S z

zdip
D2

,

zdip =
pwa

2

ldip
. s7d

Finally, the scattered wave field can be evaluated by solv-
ing the integral

EW scsrW8d =E
R2

dxdyE
−L

L

dzEW probesrWddnsrWdfKsurW8 − rWud. s8d

Here the integration overz is to be taken only over the length
effectively occupied by the sample, but cannot be extended
beyond the observation plane. We evaluate the scattered field
distribution in some distant observation planesM8 in Fig. 2d
by carrying out the integration over the transverse coordi-
nates of the sample analytically and integrating numerically
over the length of the sample. Using standard software on a
desktop PC a scattered field profile can be calculated in sev-
eral seconds allowing for fast interactive optimization of pa-
rameters. Not surprisingly for our model assumptions and the
choice of the density distribution, we find the scattered mode
profile to be very close to Gaussian in all of the studied cases
and we can extract parameters like width and radius of cur-
vature by fitting to the corresponding mode profile. The scat-
tering efficiency is evaluated by calculating the total scat-
tered power in the observation plane.

B. Qualitative considerations

Before presenting results of the numerical calculations
some qualitative considerations are at hand to train our intu-
ition for the results to be expected. First, the total scattered
power is strictly proportional to the square of the population
difference for a fixed geometry of the sample. This is a
simple consequence of our continuum approximation for the
density distribution and may at first sight seem disturbing,
but is of course natural for coherent scattering, where con-
structive interference of single scattering amplitudes occurs
in phase-matched directions. Second, far enough away from
the sample all scattered waves will interfere constructively in
the strict forward direction, so the on-axis scattered intensity
for a wide probe beam will be independent of the exact ge-
ometry of the sample. This implies that scattering efficiency
is determined effectively by the opening angle of the scatter-
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ing cone around the forward direction. Simple scaling argu-
ments can be derived for this opening angle by looking at
Fraunhofer diffraction from transversally and longitudinally
extended samples.

Let us first look at the diffraction cone of a short homo-
geneous sample of width 2wa sFig. 3d. To find the angle
where interference of scattered waves ceases to be construc-
tive we divide the sample in two halves. For a path length
difference of half a wavelength between the ends of a half,
destructive interference will occur, giving a limit to the open-
ing angle of the scattering cone. In analogy to the far field
diffraction angle of a Gaussian beam we find for a Gaussian
source distribution an opening anglentr of

ntr < tan ntr =
l

pwa
. s9d

Narrow samples scatter thus more efficiently than wide
samples and integrating the angular distribution of scattered
intensity predicts a 1/wa

2 dependence on the transverse width
of the sample.

Next we consider a pencil-shaped atomic sample. For this
sampleL0@wa. By dividing the atomic sample again into
two partssFig. 3d we can estimate the angle at which the
longitudinal extent of the cloud causes destructive interfer-
ence. Introducing the path length differenced, using a small-
angle approximation and taking into account the Gaussian
apodization we can estimate the opening angleuL as follows:

d = L0s1 − cosuLd < L0
uL

2

2
=

l

2p
,

uL = S l

pL0
D1/2

. s10d

Equating the two expressions for the opening angle we
can define a characteristic lengthzra, the atomic Rayleigh
range, to compare the influence of the transverse and the
longitudinal extent:

zra =
pwa

2

l
. s11d

For atomic samples of lengthL0 comparable or longer than
zra, scattered waves from different sections along the propa-
gation direction will be mismatched in phase and the total
scattering cross section will be significantly reduced with
respect to a short sample with the same number of atoms.

We can construct an approximate expression for the total
scattered power combining the above arguments in order to
cast the influence of the experimental parameters sample
width, sample length, and beam diameter into a compact
formula. Neglecting for a moment the change of transverse
spread over the length of the sample, the scattered intensity
on the optical axis far away from the sample where all atoms
are phase matched is approximately

Iscs0,0,z8d .
3ssdNatd2

4pz82

2Pprobe

p

w0
2

swa
2 + w0

2d2 , s12d

as can be verified easily by integration of Eq.s8d in the
appropriate limit. To find the total scattered power we re-
place the integration over the solid angle by a multiplication
with sp /2duef f

2 , where the effective opening angleuef f is cho-
sen with the help of the Fraunhofer diffraction considerations
from above. The extra factor of 1/2 takes care of the very
close to Gaussian profile of the scattered wave. We expect
this to be an excellent approximation whenever the scattering
cone is narrow. In order to model the tradeoff between trans-
versal and longitudinal limitation we have to design a func-
tion which takes the value of the smaller of the two angles
whenever they are grossly different. We take

uef f = S uT
2uL

2

suT
4 + uL

4d1/2D1/2

with

uT
2 =

l2swa
2 + w0

2d
p2w0

2wa
2 . s13d

Here the transverse limit angle takes into account diffraction
both due to the sample width as well as due to the probe
beam width. There is a great deal of freedom in the choice of
uef f and different definitions will lead to different functional
dependencies of the scattering efficiency on the length of the
sample. Our specific choice foruef f is motivated by the
crossover we observe in our numerical calculations for wide
probe beams presented below. Inserting the above formula
we arrive after some straightforward algebra at a compact
expression for the scattered power as

Psc. PprobesdNatd2 3sl2

4p3w0
2wa

2

1

1 + wa
2/w0

2

1

Î1 + sL0/z̃rad2
.

s14d

Here we introducedz̃ra, the modified atomic Rayleigh range,
by using the definition ofuT from Eq. s13d and the relation
z̃ra=l / spuT

2d.

FIG. 3. Top: Diffraction limited scattering cone for Gaussian
pancake-shaped sample; bottom: diffraction limited scattering cone
for Gaussian pencil-shaped sample.
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C. Numerical solutions of the diffraction integral

Armed with the intuitive arguments and Eq.s14d for the
scattering efficiency we can now proceed to present some of
our numerical results. We choose parameters for the D2 line
of atomic Cs in our calculationssl=852 nmd and keep probe
power, detuning and number of atoms fixed for all results
presented in this section. Figure 4sad shows the total scat-
tered power in the observation plane for short samples of
varying transverse size.

The samples are probed by a widesw0=1000mmd probe
beam. The scattering efficiency drops dramatically with in-
creasing sample size as expected. A comparison with the
s1/wa

2df1/swa
2+w0

2dg dependence from our analytical estimate
shows perfect agreement. The full width at half maximum
sFWHMd of the intensity distribution in the observation
plane fFig. 4sbdg reflects the interplay of source size and
diffraction in the propagation of the scattered wave. In fact,
our observation plane is not located in the true far field for
all source sizes and the observed dependence is equivalent to
the behavior of the spread of varying size Gaussian beams at
a fixed finite distance from their minimum waist position.

We investigate now how the scattered power changes with
the length of the sample. In Fig. 5sad we show the result for
a narrow sample probed by a wide beam together with the
analytical prediction as a function of sample length in units

of zra. The rather good agreement with the simple function
was our motivation to design the expression foruef f accord-
ingly. We define the geometric factorgL as the function de-
scribing the length dependence:

gL = PscsL0d/Pscs0d .
1

Î1 + sL0/z̃rad2
. s15d

In Fig. 5sbd we repeat the calculation over a larger range of
scaled length for various transverse sizes of the sample for
wide fopen squares in Fig. 5sbdg and narrowfopen circles in
Fig. 5sbdg probe beam. The length of atomic sample is scaled
here in units ofz̃ra and the scattered power is normalized to
its value at infinitesimally short sample length.

The estimate with our simple analytical formula is reason-
able also over this larger range showing quantitative agree-
ment at the level of 20% for scaled sample length up to
sL0/ z̃rad=8. The fact that scaled data for a large probe beam
diameter agree among each other much better than with data
from a small beam diameter is understandable from the way
Eq. s14d was derived, i.e., neglecting explicitly the change of
the probe beam geometry over the length of the sample. To
understand the effects of changing probe geometry we con-
sider the sample cut into thin slices. We can identify each
slice as a source for a Gaussian beam wavelet, which initially

FIG. 4. sColor onlined sad Power of the scattered wavessymbolsd vs the characteristic transverse radius of atomic sample of lengthL0

=1 mm for constant number of atoms and a wide probe beamw0=1000mm together with the analytic prediction from Eq.s14d ssolid lined.
sbd Full width at half maximum of the intensity distribution in the observation plane for the same parameters.

FIG. 5. sColor onlined sad Scattered power vs the characteristic length of the atomic sample with atomic waist radiuswa=20 mm probed
by a beamw0=1000mm. Numerical datassymbolsd and analytic prediction from Eq.s14d ssolid lined are shown together.sbd Same as insad
for sample widthwa=3,5,10,20mm ssquaresd and for a narrow probe beamw0=wa=20 mm scirclesd with the length scaled toz̃ra.
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inherits the phase profile of the probe beam and develops
wave-front curvature upon propagation. Scattered wave
fronts from the back end and the front end of the sample will
thus have different curvature limiting the overlap to small
angles around the forward direction. Our analytic formula
works well for a plane probe wave front, but fails to take into
account the positive effect of a focused probe beam, which
imprints wave-front curvature of the right sign to enhance
wave-front overlap. For this reason the scaled scattering ef-
ficiency is slightly higher for narrow probe beams and inter-
mediate sample length than the model predicts. For very
elongated samples we see a systematic deviation of the ana-
lytical model from the numerical result and going to ex-
tremely elongated geometries we observe a different power
law of the decay than suggested by the simple analytic model
ssee the Appendixd. We refrain here from further tuning of
the analytic model, since this limiting case is of little interest
for couplingall atoms of a realistic sample efficiently to the
light field and accurate quantitative data can be obtained eas-
ily numerically whenever needed, anyway.

The third important parameter which can be varied in a
real experiment is the probe beam size. A probe beam size
very much larger than the sample size will not be optimum.
While the sample is illuminated homogeneously the field
strength experienced by the atoms is rather low. The depen-
dence with decreasing probe diameter predicted by Eq.s14d
is the result of a subtle interplay of increased single atom
scattering at higher intensities, increased coherent scattering
efficiency for the subset of atoms which is inside the volume
covered by the probe beam and decrease of the number of
scatterers contributing effectively to the scattered field. In
Fig. 6sad we show the scattered power as a function of probe
beam size for various sample length. Again we find that the
transverse probe beam size dependence is described very
well by the analytic formula for the case of a short sample.
For short samples it is advantageous to use a probe beam size
as small as possible. For longer samples both the numerical
calculation as well as the analytical estimate predict a finite
probe beam diameter for optimum scattering efficiency. For
reasons already discussed in the context of Fig. 5sbd the ana-
lytical estimate starts to deviate from the numerical result for
probe diameters comparable or less than the sample diam-
eter, but works very well already for ratios as small as 2. We
separate the trivial dependence on probe intensity and degree
of transverse localizations~w0

−2wa
−2d from the observed be-

havior and define a geometric factorgT describing the influ-

ence of the ratio of beam size to sample sizew0/wa on the
sample scattering efficiency as

gT =
1

1 + wa
2/w0

2 . s16d

For the polarization interferometric setup in Fig. 1sbd it is
not possible to adapt the reference wave front to the scattered
wave front separately, so instead of maximizing the scatter-
ing efficiency only, one needs to choose the input beam size
such that the scattered mode has also good overlap with the
input mode. For short samples it is easy to see that this can
be achieved only with a probe size much smaller than the
sample width, since in this limit the probe traverses a homo-
geneous region of the sample. For longer samples the scat-
tering cone narrows and one can achieve good overlap also
for a probe size comparable to the sample width. Equating
the far-field diffraction angle of the input beam with the ef-
fective diffraction angle for light scattered off the sample, we
can derive an expression for the sample length which ap-
proximately matches input and output modes:

S L0

zra
D2

= Sw0

wa
D4F1 +Sw0

wa
D2G2

− 1

F1 +Sw0

wa
D2G2 . s17d

The interesting region for the ratiow0/wa is values bigger
than 1, i.e., probe sizes comparable or bigger than the sample
size. The predictions of the above equation are shown
graphically in Fig. 6sbd. The values obtained from the ana-
lytical formula provide good starting values for a numerical
optimization of this mode-matching problem.

With our numerical calculations we explored the range of
validity of a simple analytical estimate for the scattering ef-
ficiency from samples of different size and found quantita-
tive agreement at the 20% level over a large range of param-
eters.

IV. APPLICATION TO A DIPOLE TRAPPED SAMPLE

The formula and numerical calculation suggest that a glo-
bal optimum for the scattering efficiency exists for any
sample, which simply consists in placing all scatterers in one
point in space. This optimum is, alas, unphysical, because
dipole-dipole interaction in that case dominates the scattering

FIG. 6. sColor onlined sad
Scattered power vs relative size of
sample and probe beam for
samples swa=10 mmd of length
L0=1,400,738,1000mm sdia-
monds, squares, stars, trianglesd
together with the analytic predic-
tion from Eq.s14d ssolid linesd in
scaled units;sbd predicted probe
beam size to match input and scat-
tered wave as a function of sample
length in scaled units.

MÜLLER et al. PHYSICAL REVIEW A 71, 033803s2005d

033803-8



physics and, more pragmatically, a trapped sample is subject
to density limitations because of collision induced heating
and losses. In the following we study the case of atoms
trapped in a single Gaussian beam dipole trap. In thermal
equilibrium the shape of the atomic sample in a single beam
dipole trap is determined by the focal parameter of the beam
f33,34g. We take parameters for Cs atoms trapped by laser
radiation atldip=1030 nm at a constant trap depth ofU0
=kB31 mK and fixed sample temperature ofT=100mK.
Specifying the dipole trap laser power determines then the
focal parameter needed to achieve the trap depth, and thus
also the thermal radiuswa and lengthL0 of the sample. Lim-
iting the peak density tonpeak=1012 cm−3 specifies then the
number of atomsNat. From Fig. 6sad we infer that for long
samples a probe beam size equal to the sample size will be
close to optimum and choose this for the calculation. Restor-
ing all prefactors and choosing a number of incident probe
photonsnph=108 at a detuningD /G=100 we can then nu-
merically determine the achievable signal-to-noise ratio
sSNRd according to Eq.s5d at unity quantum efficiency as a
function of the power of the dipole trap laser. In Fig. 7sad we
show the achievable SNR in this configuration, together with
the number of trapped atoms. We observe that for bigger
samples the SNR approaches a constant value. With the con-
straints we placed on temperature and density, the benefit of
having more atoms is reduced by the increasingly unfavor-
able elongated geometry. It turns out that while the aspect
ratio of the sample increases with increasing size of the di-
pole trap, the scaled length and hence the Fresnel number,
remains constant atz̃ra /L0=1/14f35g. With this observation,
the higher number of atoms is outweighed exactly by the
increasing transverse dimensions of sample and probe beam.

A realistic model for coherent light-atom coupling effi-
ciency will have to take into account also the losses due to
spontaneous emission. In fact, a measurement on atoms with
a spontaneous emission probability approaching 1 can hardly
be considered nondestructive for the collective variable. The
result from the 1D quantum model in Eq.s2d predicts actu-
ally that the achievable SNR and the level of destructiveness
are coupled, i.e., the achievable SNR is directly proportional
to the integrated single atom spontaneous emission rateh
ssee also Refs.f36,37gd. Since the transverse size of the
trapped sample changes with the invested dipole trap power,
h is not the same for the data points in Fig. 7sad. In order to
make a fair comparison we thus calculate for each of the data
points the number of spontaneously emitted photons per
atom by evaluating the average intensity experienced by the

atoms and integrating over the pulse timessee Appendix,
Sec. IId. In Fig. 7sbd we show the same data rescaled to a
probe laser detuning, such thath=0.1 for every point, to-
gether with the detuning needed to satisfy the constraint on
h.

Including the condition of equal level of destructiveness
restores the advantage of bigger samples over small samples.
We note that the absolute numbers for the coupling strength
at fixed h cannot be changed by simultaneous variation of
the detuning and the number of incident photons, since the
coupling strength andh depend in the same way on these
two quantities. For the elongated samples probed by a nar-
row beam the losses are distributed quite unevenly over the
sample due to the rather inhomogeneous illumination.

V. RELATION TO EFFECTIVE 1D MODELS

At the start of our scattering calculation we expressed the
coupling strength or achievable SNR in terms of a number of
coherently scattered photons. This number, although conve-
nient to calculate, is not a directly measurable quantity, since
we cannot distinguish coherently scattered photons from the
incident photons in principle and only their interference is
observable. The results from the previous sections allow us
to express this artificial scattered power in terms of the inci-
dent power and the interaction geometry. This also makes a
direct comparison to the expression for the coupling strength
derived from the 1D quantum model possible. Introducing
the transverse beam areaAph as pw0

2 and equivalently the
sample areaAat as pwa

2 we rewrite Eq.s14d in the limit of
large detuning asf38g

Psc=
3

2
sdNatd2 s0

Aph

s0

Aat
S G

2D
D2

gTgLPinc.

Using Eq.s5d and kdNat
2 l=Nat/2 f39g we obtain the SNR

assuming unit quantum efficiency detection as

k2 = S S

N
D2

= gTgL

3s0
2

AatAph
NatnphS G

2D
D2

. s18d

Comparing this to the expression obtained from an effec-
tive 1D model in Sec. II, viz. Eq.s2d,

k2 =
s0

2

A2NatnphS G

2D
D2

, s19d

we see how diffraction effects modify the coupling strength
with respect to the predictions from the 1D model. The two

FIG. 7. sColor onlined sad
achievable coupling strength
sfilled symbols, left axisd and
number of trapped atomssopen
symbols, right axisd as a function
of invested dipole trap power;sbd
achievable coupling strength
sfilled symbols, left axisd and
probe detuning sopen symbols,
right axisd needed to satisfyh
=0.1 ssee text for detailsd.
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expressions give the same values for the case of a sample
with effective Fresnel number close to 1 and equal probe and
sample diameterf40g. For our choice of Gaussian sample
and probe the modification of coupling strength can be quan-
titatively accounted for by the geometrical factors. We be-
lieve that the asymptotic scaling of the geometrical factors
will be independent of the specific choice of the function
describing the shape of the sample. We can look at the case
of a very elongated samplesL0@ z̃rad probed by a narrow
beam of the same size as the sample by expanding the geo-
metric factors accordingly and find in this limit for the cou-
pling strength,

k2 =
p3/2

8
S l

2p
D3

npeaknphS G

2D
D2

. s20d

The achievable coupling strength becomes independent of
the sample size in this limit and is linear in the peak atomic
densitynpeak, instead of being proportional to column density
as in the 1D modelf41g. The numerically observed scaling
with the length of the samplessee the Appendixd reduces the
coupling even more for extremely elongated samples.

VI. CONCLUSION

In this paper we have outlined an efficient method to in-
clude diffraction effects in the coupling of light to collective
variables of atomic samples and applied it to an experimen-
tally relevant case of atomic ensembles stored in single beam
dipole traps. The use of Gaussian light fields is well adapted
to real experimental geometries and allows for a largely ana-
lytical treatment. Tayloring the sample and beam geometry,
such that probe mode and scattered mode coincide is pos-
sible and will be useful for polarization interferometry or
multipass experiments.

Several approximations have been made, mainly to keep
the model as transparent as possible, and some of them can
be lifted in future extensions of the model. The leading-order
effect of multiple scattering and particle statistics on the re-
fractive index, which we are effectively calculating in a
single scattering approximation, can be accounted for by a
correction term depending on the local density of scatterers
which will allow us to calculate the geometry of the scattered
mode also for higher densitiesf42g.

Our model is classical in nature, but the point scatterer
model can be used also to analyze quantum noise contribu-
tions and their dependence on geometry. Giving up the con-
tinuous density distribution one can determine numerically
the scattering efficiency from randomly distributed samples
and this way statistically analyze the noise introduced onto
the scattered wave front by density fluctuations on different
length scales. This models spontaneous emission noise as
well as nontrivial effects like the inherent mode-matching
noise discussed in Ref.f13g. There are already studies using
a wave function Monte Carlo technique to address the effects
of spontaneous emission in a quantum descriptionf43g
adapted for our case of trapped inhomogeneous samples, but
the extremely fast increase of the dimensionality of Hilbert
space limits the treatment to very small numbers of atoms

only. A classical point scatterer calculation can be used con-
veniently also to model experimental imperfections, e.g.,
alignment errors, where the analytical integration over the
transverse distribution would become much more involved.

The assumption of infinitely heavy scatterers, i.e., the ne-
glect of photon recoil, needs closer attention, when the fluc-
tuations of collective variables are studied. In fact, when
working with collective atomic variables one usually as-
sumes that internal and external degrees of freedom of the
atomic sample are decoupled. Already without multiple scat-
tering the change of momentum due to scattering introduces
correlations between internal and external variablesf44g.
Also, a focused probe beam with inhomogeneous intensity
distribution across the sample exerts a dipole force on the
sample leading to contraction or expansion depending on the
sublevel populations for the setup in Fig. 1sad. This leads to
an effective decay mechanism for the macroscopic coherence
between the sublevels. Similar effects occur naturally also at
the level of quantum fluctuations. Ultimately, a proper quan-
tum model will have to take into account the scattering in-
duced dynamics of the density correlation function of the
sample, which determines the structure factor for light scat-
tering f45,46g. Prominent examples for the key importance
of the photon recoil for collective scattering are the observa-
tion of super-radiant Rayleigh and Raman scattering in Bose-
Einstein condensatesf47,48g, cavity cooling f49,50g, and
collective motion in high-finesse cavitiesf51g.
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APPENDIX

1. Improved geometrical factor gL

The analytical estimate for the total scattered power given
in Eq. s14d is seen to fail for very elongated samples. This
can be traced back to the assumption of homogeneous illu-
mination in the calculation of the on-axis intensity of the
scattered field. A simple way to arrive at an improved esti-
mate is to introduce an axial average of the incident intensity
in order to take into account the diffractive spreading of the
incident beam over the sample length. Since the scattering
efficiency depends quadratically on atom number, the aver-
age is performed over the squared density distribution and to
simplify the math the Gaussian atomic density distribution is
replaced by a rectangular distribution of same peak height
and area:

Ief f =
I0

Îp/2L0
E

0

Îp/2L0 1

1 + sz/zrd2dz

= I0
zr

Îp/2L0

arctansÎp/2L0zr
−1d. sA1d

Here zr =pw0
2/l denotes the Rayleigh range of the laser

beam. The inhomogeneous axial illumination changes also
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the effective length of the sample entering the estimate for
the opening angle of the diffraction cone. Incorporating this
effect we find empirically an improved expression for the
longitudinal geometrical factorfsee Eq.s15dg,

gL8 = S 2

p

zr
2

L0
2D1/2

arctanHp

2

L0
2

zr
2

1 + sL0z̃razr
−2d2

1 + sL0z̃ra
−1d2 J1/2

3f1 + sL0z̃razr
−2d2g−1/2 sA2d

which fits our numerical data at the level of 20% for Fresnel
numbers of the atomic sample up to 1/80.

2. Spontaneous emission rate

Within the framework of the point scatterer model the
distinction between spontaneous and induced emission is
blurred and with the approximation of a microscopically
continuous density distribution for the point scatterers spon-
taneous emission is completely lost. Introducing implicitly
microscopic density fluctuations and assuming that single
atom spontaneous emission happens independently of the
presence of the neighboring scatterers the spontaneously
emitted power per atom can be calculated as

h

t
=K Pspon

"vNat
L =

s

"v
E

R3
I incsrWdnsrWddV. sA3d

Setting for simplicity the wavelength of the dipole trap laser,
which determines the change in transverse dimensions of the
atomic sample, equal to the wavelength of the incident radia-
tion, the single atom spontaneous emission rate can be writ-
ten in the form

h

t
=

s

"v

2Pprobe

pw0
2 f1 + 2swa/w0d2g−1p−1/2E

−`

` exps− z2d
1 + sz/ad2dz,

with

a =
zr

L0
S1 + 2swa/w0d2

3
D1/2

and

E
−`

` 1

1 + sz/ad2exps− z2ddz= ap expsa2dErfcsad

where Erfcsad denotes the complementary error function.
The separation of the expression for the coupling strength

k2 into integrated spontaneous emissionh and an effective
optical deptha as in the 1D description can be done in
principle, but does not lead to simple analytical expressions.
In fact, such a separation is also not very meaningful when
done globally, since the time-integrated spontaneous emis-
sion rate can have substantiallocal variations due to the in-
homogeneous illumination. In addition, the contribution of a
central volume element to the total scattered field and thus to
the scattering efficiency is much bigger than for a volume
element on the rim of the density distribution. This means
that a spontaneous emission or optical pumping event in the
center of the sample leads to a more pronounced change in
the scattering efficiency. In a quantum description the spatial
inhomogeneity of both light and atom variables naturally
suggests importance sampling and leads to a concept of col-
lective variables which are no longer fully symmetric with
respect to exchange of single-particle labelsf14g.
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