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Abstract. A 3D simulation of the upper part of the solar convective zone is used to obtain information on the frequency
componentyy, of the correlation product of the turbulent velocity field. This component plays an important role in the stochastic
excitation of acoustic oscillations. A time analysis of the solar simulation shows that a Gaussian function does not correctly
reproduce the-dependency ofy inferred from the 3D simuation in the frequency range where the acoustic energy injected
into the solamp modes is important(~ 2—-4 mHz). Thev-dependency ofy is fitted with diferent analytical functions which

can then conveniently be used to compute the acoustic energy supph irgected into the solar radial oscillations. With
constraints from a 3D simulation, adjustment of free parameters to solar data is no longer necessary and is not performed here.
The result is compared with solar seismic data. Computed valueslatained with the analytical function which fits bggtare
found~2.7 times larger than those obtained with the Gaussian model and reproduce better the solar seismic observations. This
non-Gaussian description also leads to a Reynolds stress contribution of the same order as the one arising from the advection
of the turbulent fluctuations of entropy by the turbulent motions. Some discrepancy between observed and d®rgiuesd

still exist at high frequency and possible causes for this discrepancy are discussed.
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1. Introduction Direct computations of the rate at which the sgdanodes

_ . . , re excited have been performed by Stein & Nordlund (2001)
Solar oscillations are believed to be stochastically excited ¥ing 3D simulations of the upper part of the solar convective

turbulent convection in the outer part of the Sun. The exCitgs e They found good agreement between their numerical re-
tion is caused by turbulent convective motions which genergigys ang the solar seismic observations. This direct but time
acoustic energy which in turn is injected into thenodes. consuming approach did not address the role of the dynamic

Models of stochastic excitation of stellar modes have nroperties of the turbulent medium on the excitation mecha-
been proposed by several authors (e.g. Goldreich & Kee%y}m_

1977; Osaki 1990; Balmforth 1992; Goldreich et al. 1994).
These models use simplified models to describe the d
namics of the turbulent medium. For instance these &
proaches (Goldreich & Keeley 1977; Balmforth 1992) assu
a Gaussian function for representjpg the frequency compo-

_ In contrast semi-analytical formulations f&{v) offer the

dvantage of testingeparatelyseveral properties entering the
écitation mechanism. Here we consider the formulation by
amadi & Goupil (2001, hereafter Paper |, see also Samadi

d2001 for a summary) which includes a detailed treatment of

nent of the correlation product of the turbulent velocity fiel _ . .
As pointed out by Samadi (2001), the way the component thetime averagednddynamicproperties of the turbulent con-
' vective medium.

is modeled plays a crucial role in controlling the extent of th
excitation region of a given mode and hence the total amount of The impact of the averaged properties have been investi-
acoustic energy injected into the mode. In the followipgwill gated by Samadi et al. (2003). The authors used a 3D simula-
also be referred to ahe dymamic model of turbulenaaddy- tion of the upper part of the solar convective zone to constrain

namicwill refer to time-dependence or frequency-dependendéee averaged properties of the turbulent convective medium.
The computed rateB at which the solap modes are excited

Send gprint requests toR. Samadi, were found to be larger than those computed with a 1D mixing-
e-mail:reza.samadi@obspm. fr length solar model but stilinderestimatéhe solar seismic data
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by a factor~2.5. It was also found that the Reynolds tensor con- The driving sourceSg(r, wo) andSs(r, wp) arise from the
tributes about 20% of the total acoustic energy injected into tReynolds stress and the entropy fluctuations respectively:
solarp modes, in contrast with direct 3D estimations (Stein & “ dk E(k.r) E(k.r)
Nordlund 2001). These discrepancies were attributed to the 8g¢r, wg) = 2 o= ——— xx(wo. T) (3)
sumed Gaussian function for the dynamic model of turbulence. U 0
In the present paper we therefore derive an empirical “ dk E(k.r) Es(k.r)
namic model of turbulence obtained from a 3D simulation o k2 us g
the upper part of the solar convective zone and then study the +oo
consequences of using this model on the computed excitation X f dw xr(wo + w, MNxk(w, 1) (4)
ratesP. We compare our computation with solar seismic data e
and finally obtain on an improved model of stochastic excitahereug(r) = V®/3w is introduced for conveniencg(k, r)
tion. is the time averaged turbulent kinetic energy spectiagtk, r)
The paper is organised as follows: The basic theoretigalthe time averaged turbulent spectrum associated with the en-
background and notations are recalled in Sect. 2. In Sectt®py fluctuations angy(w, r) is the frequency-dependent part
a 3D simulation of the upper part of the solar convective zooé the correlation product of the turbulent velocity field (see
is used to characterigg in the domain where stochastic exSect. 2.2). In order to simplify the notation, we drop the ex-
citation takes place. The inferreddependency ofx is com- plicit r dependence of the quantities in Egs. (1-4).
pared with the Gaussian function and fitted witffelient non-
Gaussian functions. These functions are then used in Sec&
to compute the excitation rate for radial p modes. The re-
sults are compared with solar seismic observations as providétwe dynamic model of turbulence is representedyifw).
by Chaplin et al. (1998) and with computations in which thim order to give a precise meaning {@(w), we recall first
Gaussian function is assumed. Section 5 is dedicated to dis@asne theoretical relations. Excitation by Reynolds stresses in-
sions and conclusions. volvesg; j(k, w), the Fourier transform of the second-order ve-
locity correlations; here the indicasand j refer to any of
the 3 directions of the velocity field. For incompressible, ho-

s(r,wo) =

5 The dynamic model of turbulence

2. Stochastic excitation mogeneous and isotropic turbulenag;(k, w) has the form
) o (Batchelor 1970):
2.1. The model of stochastic excitation
. R oy = Bk (kK :
We consider the model of stochastic excitation as describediilk @) = 4k dij = e ®)

Paper | and assume here — as in Samadi et al. (2003) — that

injection of acoustic energy into the modes is isotropic ardhere E(k, ) is the turbulent kinetic energy spectrum as a
consider only radiap modes. Accordingly, the rate at whichfunction ofk andw andgj; is the Kronecker tensor. Following
a given mode with frequenayy is excited can be written as: Stein (1967)E(k, w) is decomposed as

E(k, w) = E(K) x«(w) (6)
P(w)—”—3 Molmg ut ] 162 %Zs
o= 2 0 3 po 153 \ dr R whereyk(w) satisfies the normalisation condition (Tennekes &

4 . Lumley 1982, Chap. 8.1):
L4 (ass) g_rzss . (1) oo
3\pow/ w} f dw xk(w) = 1. (7)

In Eq. (1),00 is the mean density, is the radial component of According to the decomposition of Eq. (&)(w) is — at fixed
the fluid displacement adiabatic eigenfunctipn is the mode | _ ihe frequency component B{K, ).

inertia (Eqg. (19))as = (0p/ds), wherep denotes the pressure According to Egs. (5) and (B)«(w) then represents the
andsthe entropysTs the rms value of the entropy fluctuationgrequency dependencedgfj(k, w). In other wordsy(w) mea-
which are assumed to arise solely from turbulepe:.r)isa gyres — in the frequency akavavenumber domains — the evo-

function involving the first and the second derivativegakith |,tion of the velocity correlation between two distant points of
respect tar, @ is a mean anisotropy factor defined by Goudfhe turbulent medium.

(1977) as The same decomposition of Eq. (7) is assumedfgk, w).
This leads to introducingy, the frequency-dependent part of
o(r) = <U2>-<u>2 @ the correlation product of the entropy fluctuation. For simplify-
- w(r) ing the computation o, as in Paper |, we assumg = y«. We

have checked that; andyx have almost the same behaviour
whereu is the velocity field< . > denotes horizontal averagein the region where excitation by entropy fluctuations is signif-
() denotes time average, amr) is the mean vertical velocity jcant.
(w? = < U2 > — < u, >2). Expressions fog, (&, r) are given in In the present work, we consider only the excitation of ra-
Samadi et al. (2003). dial p modes. LetE,(k, w) be the vertical component of the
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kinetic energy spectrum. We consider tiiatk, w) can be de- 3. Constraints from the 3D simulation
composed ak(k, w) (Eq. (7)). For isotropic turbulence we then h vsis of imulati fth fth |
haveE(k, w) = 3E(k. w), E(K) = 3E,(K) andy? = yi, whichis The analysis of a 3D simulation of the upper part of the solar

equivalent to stating that the averaged and dynamic properffggvecuve zone provides const_r aints for seyeral physical pa-
of the velocity field are the same in all 3 directions. rameters that enter the theoretical expression for the energy

The anisotropy factod — introduced in the expressionsupply rateP injected into the solap modes (Eq. (1)). The

for P, Eq. (1) — partially takes into account the spatial and terﬁ(-)nStr""imS may be considered to be of two types:
poral anisotropy of the turbulencée (= 3 corresponds to a

isotropic turb_ul_ence). It h.as been found in Samadi (_et ql. (2003') determine the actual wavenumber dependenci(f2),
that® ~ 2 within the region where most of the excitation oc- N
. . . _the kinetic turbulent spectrum, arigl(k, 2), the turbulent
curs. This shows that the time and space averaged properties : . . .
. . ) . spectrum associated with the entropy. Ftaicconstraints
of the medium are indeed anisotropic. One can therefore ex- . i
. ) . also determine the depth profile of the wavenunitjeat
pect that the dynamic properties of turbulenc@edibetween : : R : :
. ! L o which convective energy is injected into the turbulent in-
the horizontal and vertical directions. As the excitation of ra- . : .
. X . ertial range ofE (as in Samadi et al. 2003 we assume that
dial p modes is predominantly governed by turbulent elements : : T
Do . L o the wavenumbekgi at which convective energy is injected
moving in the vertical direction, an open question is whether . Vo : E
. . into the turbulent inertial range &, is equal tak). They
one should considef; rather thany in Egs. (3) and (4) when .
- . : also provide the depth dependencaifthe mean square
taking into account the dynamic properties of the turbulence. In Ly :
; velocity,w, the mean square vertical component of the ve-
the present work, we therefore characterise fpg#indyy from

a 3D simulation and assess the consequences of usinggjther locity, &, Ehezmea” square values of entr.opy fluctuangns
. X and® = u“/w*, the mean values of the anisotropy studied
or y in the calculation of.

in Samadi et al. (2003).
e The dynamicconstraints, on the other hand, concern the
2.3. A Gaussian function for y frequency componeni andy; (see Sect. 2.2).

Stein (1967) and Musielak et al. (1994) suggested several afga static constraints have been established in Samadi et al.

lytical forms for yx(w). The Gaussian Function (GF hereafter()2003). Here we investigate the dynamic constraints.
is the simplest choice and is defined as

Staticconstraintsgtaticrefers to spatial and time averages)

1 — (W [ W) . .
xk(w) = g (/e (8) 3.1. The 3D simulation
wy VI

wherewy is its linewidth. We study a 3D simulation of the upper part of the solar convec-
In the time domain, the Gaussian function, Eq. (8), is th®n zone obtained with the 3D numerical code developed by

Fourier transform of a Gaussian function whose linewidth &tein & Nordlund (1998).

equal to 2y, wherery is a characteristic time correlation length.  The simulated domain is 3.2 Mm deep and its surface is

Hencewy andri are related to each other as 6 x 6 Mm?2. The grid of mesh points is 256 256 x 163 (i.e.
2 ~23 kmx 23 kmx 37 km), the total duration 27 mn and the
Wi = T ©) sampling time 30s.

The characteristic timey is usually associated with the charac- Outputs of the simulation considered in Samadi et al.
teristic correlation time-scale of an eddy with wavenumiber (2003) are the velocity fieldu(x,4,zt) and the entropy

As in Balmforth (1992), we define it as s(x,y,zt) where — as in Samadi et al. (2003)z—= r - R,
2 andR; is the radius at the photosphere (i.e. whére: Teg).
Tk = K (10) The quantitiesu(x,y,zt) and (X, y,z t) were used to deter-

mine the quantitie€(k, 2), Es(k, 2), w and § involved in the
theoretical expression for the excitation r&teln the present
work we use the velocity fieldi(x, y, z t) to characterisgy
andyg.

where the velocity of the eddy with wave numbéis related
to the kinetic energy spectrul(k) by (Stein 1967)
2k
uz = dk E(K). (11)
k

The parameten in Eq. (10) accounts for our lack of preciseg 5 Fourier transform
knowledge of the time correlation under stellar conditions.

In the calculation oP, a GF is usually assumed fgg (e.g. At five different layers of the simulated domain, we compute
Goldreich & Keeley 1997, Balmforth 1992). This assumption ihe 3D Fourier transform, with respect to time and in the hori-
equivalent to supposing that two distant points in the turbulezontal plane, of the velocity field. These layers cover a region

medium are uncorrelated. where modes with frequeneyz 2 mHz are predominantly ex-
In Sect. 3, we use a 3D simulation of the upper part ofted.
the solar convective zone to derive thelependencies of; This providedi(k, z v) wherek is the wavenumber in the

andy. Inferredv-dependencies of; andy are compared to horizontal plane. Next we integraié(k, z v) over circles with
that of the GF. We next determine several analytical forms faadiusk = ||k|| at each given layez. This yieldsuik, z v) and
X andyy that can better represent theidependencies. thereforeE(k,v,2) = 0°(k,v,2). The quantityyx(v,2) is the
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frequency component di(k, v, 2), at fixedk. Hence, accord- modelsyy belowz ~ —-0.5 Mm (e.g.4 = 1.6 atz= —-0.64 Mm

ing to Egs. (6) and (7)x«(v, 2) is obtained fronE(k,v,2) as:  andA =~ 1.30 atz = —0.99 Mm, see Fig. 2). This shows that

the variation with depth of the characteristic timg(or equiv-

w2 = ——"—""—" (12) alently the characteristic frequeney) is not correctly repre-
fdv E(k, v, 2) sented by the relations of Egs. (10) and (11) when computed

assuming a constaitbelowz ~ —0.5 Mm; 7 increases faster
where the integration overis performed over the frequencyWith depth than expected from the relations (10) and (11). Itis
range Fvmax mad corresponding to the window of the Fouriehowever found in Sect. 4 that this feature has negligifilece

analysis with respect to timefax ~ 16 mHz). onP. . .
We proceed in the same manner for the vertical component The functiony; also decreases with the frequency more
of u. This then provide&,(k, v, 2) = 02(k, v, 2) andyZ(v, 2). slowly than the GF (see Fig. 1). Moreover, decreasing values

of A for z £ —0.5 Mm provide a better fit of}. But in con-
trast with yx, x; is overall better modeled with the GEF for

3.3. Inferred properties of ,c and x z 2 -0.5 Mm and with the GLF foz < —0.5 Mm rather than
Figure 1 presentg(v) as it is obtained from the simulation forwith the LF (not shown).
the wavenumbek at whichE(k, 2) peaks k = ko). We conclude from the frequency analysis of the 3D simu-

At the top of the superadiabatic region (for instarzce  1ation that the simple Gaussian function cannot correctly rep-
—~0.4 Mm in Fig. 1, this is the layer where the excitatiohesent the actual dynamic properties of the turbulent medium.
is the |argest), the GF does not Correctly mo/@-mv) (See One may eXpeCt that the GF causes an underestimation of the
Fig. 1). However the discrepancies between the GF and @f@ustic energy injected into the sofamodes. Instead the fre-
simulation data occur mostly above the solar ciiitiequency guency analysis favours a non-Gaussian functionyfandy
(v ~ 5.5 mHz). Discrepancies between the GF and the 3D siffiat decreases more slowly wittthan the GF.
ulation data have then minor consequences forpghaodes
exc{tation in this region. This is not the case deeper in the Si@.‘ConsequenceS in terms of  p modes excitation
ulation where the largest discrepancies between the GF and the
simulation data occur in the frequency range where the dorh-l. Computations of the excitation rate P
inant amount of acoustic energy is injected into fhenodes

(v ~ 2—4 mHZ). Computation of the excitation rat® is performed as in

. . . Samadi et al. (2003) except that here two analytical func-
To reproduce the shape pi(v) obtained with the 3D simu- tions other than the GF are assumed f@r as discussed in

lation, one needs a function which at high frequency decreageesct. 3. The computation process is summarised as follows:
rr}ore slowly t?han the GF. Ft(;]r mOde“Tg{. thTadfepe?denIC{ The eigenfunctionsf) and their frequencies) are computed
E Xk(tv).’ er tF’S ergphose ft ree analytical functions. r‘\(I?/ith Balmforth’s (1992) non-adiabatic code for a solar 1D
orentzian function ( ereafter) mixing-length model based on Gough’s (1977) non-local time-
1 1 13 dependent formulation of convection.
T2 1+ Quwjw)?’ (13) The quantities®, w? and s are obtained from the

. ) . 3D simulation. Thek-dependency oE(k, 2) is the Extended
the Gaussian plus an Exponential Function (GEF hereafter)koimogorov Spectrum (EKS hereafter) defined as:

xk(w) =

(1 ey, L _w/wk,) 14) E(K) « (k/ko)*™* for ko > k> knin
X(w) 2(—wk ﬁe T ’ a4 E(K) o< (k/ko)™>® for k> ko. (16)

and the Gaussian plus a Lorentzian function (GLF hereafter)y gq. (16), the wavenumbek, is the wavenumber at
1 , 1 1 which E(k) peaks andty, is the minimal wavenumber reached
yr(w) = 5 (—e‘(‘“/”k) + —2) (15) by the 3D simulation Knin = 1.05 Mm1). The variation
wi Tk 1+ (wfwi) with depth ofk, is also given by the 3D simulation. THe
All these functions satisfy the condition of normalisationlependency of the EKS reproduces the global featurds of
of Eq. (7). arising from the 3D simulation. The same model is considered
We first assume a constabt= 1. As shown in Fig. 1, all for Es(k, 2). E(k,2) andE¢(k, 2) satisfy the normalisation con-
these non-Gaussian functions reproduceivariation ofy,  ditions:

1

better than that obtained using a GF. +o0

In the middle of the excitation region-0.5 Mm < z < J dkEk.2) = 1/2du?
0.0 Mm) the overall best agreement is obtained with the L "fi (17)
Belowz ~ —0.5 Mm, the LF does not reproduggwell enough . dkEs(k,2) = 1/2&.

but still reproduces its-variation better than the other models.Jy_,,

However we have so far assumed thébr equivalently the
eddy time correlation) is depth independent, which is a strofige total energy contained iB(k,z) and E¢(k, 2), and their
assumption. When is allowed to vary withz, we find that depth dependencies, are then obtained from the 3D simulation
decreasing the value of belowz < -0.5 Mm, the LF best accordingto Eq. (17). These theoretical estimatePfane then
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Fig. 1. The filled dots represeni(v) obtained from the simulation for the wavenumkgat whichE(k, z) peaks. The solid curves represent the
Lorentzian function (LF, Eq. (13)), the dots-dashed curves the Gaussian Lorentzian function (GLF, Eq. (15)), the dashed curves the Gaussian
Exponential function (GEF, Eq. (14)) and the long dashed curves the Gaussian function (GF, Eq. (8)). In these four analytical fuactions,

is assumed for the calculation af (Egs. (10) and (11)). Four filerent layers are considered= —0.04 Mm (the top of the superadiabatic
region),z= —-0.49 Mm,z= -0.99 Mm andz = —1.40 Mm.

compared with the “observed® from Chaplin et al. (1998)’s all the non-Gaussian functions (the LF, the GEF and the GLF)

seismic data, calculated according to the relation: —which indeed better modgf andy from the 3D simulation
| than does the GF — decrease more slowly withan the GF

P(wo) = 2n 57— v2(wo) (18) in the frequency range where the mode amplitudes are large

) (v ¥ 2—4 mHz). Consequently a larger amount of acoustic en-
wherer is the radius at which oscillations are measured,  ergy is injected into the modes with the non-Gaussian functions
M than with the GF.

| = f dm¢é? (19) In Sect. 3.3, the overall best models fpx were ob-
0 tained with the LF and with decreasing values . bbelow

iS the mode inertia and Where the mode damp|ng na)tamd Z~ —05 Mm We use a Simple model for the depth Val‘iation
the mode surface velocityd) are obtained from Chaplin et al.of &:

(1998). In Eq. (18), the mode mas$gé?(rs) is given by the , _ 4 for z> —0.5 Mm
GMLT model and we adopts = R, + 200 km consistently ;, _ g, 0.71(064Mm+2) for -05>z>-1Mm  (20)
with Chaplin et al. (1998)’s observations. 1 =035 for z< —1 Mm.

We have computeB according to the simple model of Eq. (20)
and assuming the LF. We find no significant change®foom-

We investigate theffect of using diferent analytical functions pared to the calculations in which a constant value 1 is
for y« (Sect. 3) in the computation & . We first assume a con-assumed (not shown).

stant valuel = 1. Results are shown in Fig. 3. Computations In Sect. 3 we found that; is better modelled with the
performed with the GF underestimate the observadilues GEF forz * —0.5 Mm and with the GLF forz £ -0.5 Mm

by a factor~2.7. On the other hand, the LF, GEF and GLIFather than with the LF. However, as the stochastic excitation
choices result in larger values for the compulethan the GF is the largest in the range0.5 Mm < z < 0 Mm, we can
one (2 times larger). This brings them closer to the observassume the GEF in all the domain. The LF results in a value
tions, compared with the GF choice fpr. The reason is that for Pnax slightly larger than the one resulting from the GEF

4.2. Comparisons with observations
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1.000E 3 1.000
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0.100F
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L A=0.80 | § A=0.65 ~
——_ - A-tl.00 ——— - A=100

0.001 . 0.001 .
1 10 1 10
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Fig. 2. As in Fig. 1, the filled dots represegk(v, 2) obtained from the simulation at twoftérent layersz = —0.64 Mm (left panel) and
z = —0.99 Mm (right panel). The other curves represent the LF (Eq. (15)) witerdnt assumptions for. The dashed curved correspond to
A =1 and the solid curves correspondite: 0.80 atz = —0.64 Mm (left panel) andl = 0.65 atz= —0.99 Mm (right panel).

(only ~1.2 larger). A better agreement is then obtained with Conclusion and discussion

the analytical functions which fits begt (i.e. the LF) than the ] ) ]
one which fits best? (i.e. the GEF) in contrast with the in-2-1. A Non-Gaussian eddy time correlation
tuitive idea mentioned in Sect. 2.2 that the excitation of radi

: FH the present work we characterigmpiricall and ofy?,
p modes depends rather on the propertieg;athan on those P p Y Xk Xy

‘ the frequency components of the correlation product of the tur-
OF X bulent velocity field and of its vertical component respectively.

In the frequency range where observational constraints &drequency analysis of a solar 3D simulation shows that at
available, diferences between results obtained with tifeedi large scalesk ~ ko) the Gaussian function significantly un-
ent adopted non-Gaussian functions are of the same ordefl@igstimategy andy;, in the frequency range’(~ 2-4 mHz)
the actual error bars associated with the obseRredlues. ~ Where acoustic energy injected into the sgtamodes is the

) ) largest.
IOWBVeLOVi/ éhr?];;eﬁutﬁgcéfgggsezfgggvggi%v:ggi t_ nI(.)i.- be- As aresult, the maximum \_/alue Bfis found~2.7 smaller
C than the solar seismic constraints.

Gaussian functions are very large compared to the error bars__, . . .
y P This partly explains thenderestimatef the values of so-

ee bottom panel of Fig. 3). Thoseffdrences are related o :
(s P 9. 3) S sarer lar p mode excitation rates obtained by Houdek et al. (1999)

to differences in the-variation of the non-Gaussian models. h tati based on the th tical ion b
ObservationalconstraintsatIowfrequencycouldthereforeco@ 0Se computations are based on the theoretical Expression by

firm that the LF is indeed the best representation/fgy). ef;rlnf((nzr(t)g 95)1992) and the underestimate obtained by Samadi
Important discrepancies still remain at high frequency ( In order to reproduce the main propertiesyaf (or Xﬁ),

3.5 mHz). The excitation rate derived from the observations dgne has to consider a model which must decrease more slowly

creases asy~°? abover ~ 3.5 mHz) whereas the comput@d with v than the GF. We then assume fqrandy? three diferent

decreases as/~* (see bottom panel of Fig. 3). Possible origingimple analytical forms: the Lorentzian Function (LF), the so-

of this discrepancy are discussed in Sect. 5.5. called “Gaussian Exponential Function” (GEF, which is com-

Another consequence of a non-Gaussian dependeH@éed by the GF plus an exponential function) and the so-called

of xx (or x2) with the frequency is a larger relative Comribui‘Gaussian Lorentzian Function” (GLF, which is composed by

tion of the Reynolds stres@x to the mode excitation rate. e GF plus a Lorentzian function).

This is shown in Fig. 4. The GF generates a relative contribu- From the top of the excitation region (which corresponds to
tion of the Reynolds stress to the excitatid®k(P) which is the top of the superadiabatic region) down to the middle of the
smaller than that obtained assuming a non-Gaussian functfgitation regionZ ~ —0.5 Mm wherez s the distance to the
(e.g. for the LF, the relative contribution & to the excita- radius at the photosphere), the best agreement betyyegmd
tion is at least-2 times larger than with the GF). Excitation byfhe analytical approximations is obtained with the LF and with
the entropy fluctuations takes place predominantly at the téF 1- Deeper within the excitation reg|0$ —0_.5 Mm), the

of the excitation region over a thin layet@.2 Mm) while that agreementis better far < 1 and1 decreasing with depth.

due to the Reynolds stress extends deeper belos£2 Mm). The frequency dependenciesydfandyy are found to be

At the top of the excitation region, the discrepancy betwe#gry similar. Howeveyy is best modeled by the GEF. As fex,

the GF andy inferred from the 3D simulation mainly occursthe agreement is better belav~ —0.5 Mm with decreasing
abover ~ 5 mHz and thus has a small impact on mode excit4alues of the parametarthan withA = 1.

tion. This is not the case deeper in the excitation region where Assuming a non-Gaussian function — either the LF, the GEF
the GF under-estimatgs in a frequency range increasing in-or the GLF — results in values f&%,ax, the maximum of excita-
ward. tion power, which are-2 times larger than when assuming the
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Fig.4. Top: Same as Fig. 3 for the relative contribution of the
Reynolds stres$k to the total acoustic enerdy.

differences are directly related to th&ences in the-variation

of the non-Gaussian forms investigated in this work. This sug-
gests that accurate enough data below this frequency range,
could provide confirmation that the LF is indeed the best model
for y«.

P [erg/s]

5.2. Relative contribution of the entropy fluctuations
to the excitation

v [mHz]

Fig. 3. Top: The curves correspond to computed value$ph ob- 1he non-Gaussian charactengfcauses the excitation region
tained with diferent analytical functions fogy(v): the GF (long t0 extend deepe~600 km for modes of ordem = 20) than
dashed curve), the GEF (dashed curve), the GLF (dots-dashed cuwish the GF 200 km resp.). The largest entropy fluctuations
and the LF (solid curve). In all calculations, we assuine 1. The mainly occur at the outermost part of the convective zone (C2)
dots represenP(v) derived from the amplitudes and line widths ofover a very thin region~100 km) while excitation by the
the = 0 pmodes measured by Chaplin et al. (19%)ttom: same Reynolds stress contribution occurs on a more extended region.
as the top panel buR is plotted in a log-log representation as it iSConsequentIy the non-Gaussian propertyofeads to a rela-

usually represented in the literature. The vertical and horizontal Scaﬂﬁ%ly larger contribution of the Reynolds stress to the excita-

have been chosen for an easy comparison with equivalent plots foun .
in Stein & Nordlund (2001). The lines with dots show twdfdrent lt'|on than in the case of a GF. As a result, the Reynolds stress

power laws/: one withp = —6.2 and the other witlp = —1. contribution is of the same order as the contribution arising
from the advection of the turbulent fluctuations of entropy by

the turbulent movements (the so-called entropy source term).

GF and bring$max much closer to the maximum &f derived This is in contrast with previous results (Samadi et al. 2001)

from the solar seismic data of Chaplin et al. (1998). based on the GF which concluded that the entropy source term
We also find that taking into account the variationtafith dominates the Reynolds stress by abe2@. It also difers with

depth forz below—-0.5 Mm does not significantly change the'esults by Goldreich et al. (1994) who found that the excita-

values ofP. A constant value can then be assumed in the caldi@n arising directly from the entropy fluctuations dominates

lation of the solap mode excitation rates. The constant valugy about~10.

of 1 on the other hand plays an important role and we find On the other hand, in Stein & Nordlund (2001), the excita-

A=1. tion by turbulent pressure (Reynolds stress) is found dominant
We have investigated the Sensitivity to the adopted rebz4 times Iarger) whereas here we find that the contribution

resentation fory,: Although the LF fits best the-variation Of the entropy source term cannot be neglected. Whether this is

of y« inferred from the 3D simulation, the GLF results in valuéhe signature of some deficiency in the present excitation model

for Pmax Closer to the seismic constraints. However, the difs an open question.

ferences obtained with theftBrent non-Gaussian approxima-

tions for yi are globally smaller than the actual error bars a

sociated with the observations of Chaplin et al. (1998). O?i:is' Summary

the other hand, below the frequency range where observation& show that the usually adopt&hussian functiotor y is

constraints orP are available (i.e. below < 1.8 mHz), the dif- neither consistent with the properties@finferred from the 3D

ferences betweeR obtained with diferent non-Gaussian func-simulation nor does it reproduce the observed maximum of the

tions are very large compared to the current error bars. Thesdarp-modes excitation rates.
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Following an empirical approach we improve the model On the “observational side”, at high frequency, larger un-
of the convective eddy time-correlatigry which enters the certainties for the damping ratgsnduce larger uncertainties
current model of stochastic excitation. We then show that to i@ the derived supply energy rates.
produceboththev-variation ofyy as inferred from the 3D sim-  On the theoretical side, part of the discrepancy might well
ulation and the observed maximum of the sgtamodes ex- be attributed to a poor description of the eigenfunctions at high
citation rates one has to consider a non-Gaussian form whigdquency. Indeed, the discrepancies between the calculated
decreases at high frequency slower than the GF, as do the gliflenfrequencies and the observed ones are largest at high fre-
ferent non-Gaussian functions investigated here. quency ¢ 3 mHz). This indicates that the description of the

The use of non-Gaussian functions, for instance the LF, edgenfunctions are less accurate at high frequency. As the ex-
produces reasonably well the maximum value of the rate@ession for calculating involves the first and second deriva-
which solarp-modes are excitedithout any adjustments oftives of the mode eigenfunction, the lack of accuracy in the
free parametersr without introducing a scaling factpin con- calculation of the eigenfunctions has a larger impacPoat
trast with previous approaches (e.g. Balmforth 1992; Goldreibigh frequencies than at small frequencies.
et al. 1994, Samadi et al. 2001) We then solve the problem Other possib]e causes can perhaps be related to our sim-
of the underestimation by the previous theoretical approachgsfied excitation model which assumes isotropic turbulence.
Furthermore the use of such a non-Gaussian fornfonakes |ndeed the current theory assumes that the stochastic excita-
the contribution of the turbulent pressure to the excitation mugbn is the same in all three directions, particularly between the
larger than in previous works making our results more consigscending and descending flows. However the kinetic energy
tent with that by Stein & Nordlund (2001). and entropy fluctuations are larger in the downward flows than

Our investigation clearly emphasizes then-Gaussian in the upward flows (Stein & Nordlund 1998). Therefore the
character of the solar p modes excitatiama result of theon-  driving arising from the advection of the turbulent fluctuations
Gaussian property of the convective eddies time-correlations entropy by the turbulent movementstdis significantly be-

It also shows that the dynamic properties of the solar turbulenteen the elements moving downwards and those moving up-
convection inferred from the 3D simulation are consistent withards. As the entropy fluctuations are largest in the outermost
the helioseismic data. part of the convective zone, the above mentioned asymmetry

We stress that only simple non-Gaussian formg/fdnave will predominantly dect the high frequency modes.
been investigated here. More sophisticated forms are likely to Moreover, it is also assumed that the total kinetic energy,
improve the agreement with thedependency ofx (orXﬁ). E, is isotropically injected in all 3 directions. Excitation of the
This would not #ect the main conclusions presented in theadial p modes results from the vertical component of the ve-
present paper. locity. However at the top of the convective zone, the distribu-
tion of kinetic energy irE(k, z2) and inE,(k, 2) are very diferent
from each other. Theseftérences mayftect more strongly the
high frequency modes. Consequences of these departures from

We recall thaty, measures the temporal evolution of the cothe isotropic assumption need to be further investigated.
relation between two points of the turbulent medium separated
by a distance of2r/k. A Gaussian time-correlation means thag
the fluid motions in the medium are random in time. Departure
from a Gaussian time-correlation at large scales (k) sug- The non-Gaussian property @i and its consequences for
gests that a strong correlation exists at that scale. the stochastic excitation has been investigated so far only for
Downward plumes are likely to be responsible for the notlhe Sun However such a non-Gaussian feature of the turbu-
Gaussian behaviour ofx. Downward and upward convec-lence will most likely also be of importance for solar-like os-
tive motions are indeed highly asymmetric (Stein & Nordlundillating stars more massive than the Sun, provided our analysis
1998): downward flows are associated with patterns (pluméshalso valid for these stars. This can substantially change the
which are more coherent than the upward moving structumescitation spectrun® for such stars compared to that which is
(Rieutord & Zahn 1995). The upward flows are associatedrrently predicted.
with less coherent and more random structures (granules) char-Therefore investigations gf mode excitation in hotter and
acterised by a broad variety of sizes and lifetimes (Rieutofigore massive stars must be undertaken, which should proceec
& Zahn 1995). The non-Gaussian behavioryqf can most in two steps: first, the validity of the present results obtained
probably be attributed to plumes. This however remains to pethe solar case must be investigated for other stars with, for
checked (work in progress). instance, the help of dedicated 3D simulations. The conclusions
which will drawn from this first step must be used in a second
step to study the frequency dependence and the magnitile of
for different solar-like oscillating stars (see preliminary results
Despite a clear improvement in the agreement between #b-Samadi et al. 2002).
served and theoretical excitation rates, important discrepanciesFuture space missions such as COROT (Baglin & The
between the computdd and the solar measurements still re€orot Team 1998), MOST (Matthews 1998) and Eddington
main at high frequency 2 3.5 mHz (see Sect. 4.2 and Fig. 3)(Favata et al. 2000) will provide high-quality data on seismic

5.4. Possible origin of the non-Gaussian property of y k

6. Perspectives

5.5. Possible origin of the remaining discrepancy
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observations. COROT will be the first mission that will provid&oldreich, P., & Keeley, D. A. 1977, ApJ, 212, 243

high precision mode amplitudes and linewidths in other stafsoldreich, P., Murray, N., & Kumar, P. 1994, ApJ, 424, 466

This high-quality data will allow us to derive the excitatior>ough, D. O. 1977, ApJ, 214, 196

rate P and will provide improved observational constraints offoudek, G., Balmforth, N. J., Christensen-Dalsgaard, J., & Gough,

the theory of stochastic excitation which is, at present, poorl D. 0. 1999, A&A, 351' 582 ) )
constrained by observation. atthews, J. M. 1998, in Structure and Dynamics of the Interior of the

Sun and Sun-like Stars, 395
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