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Abstract. A 3D simulation of the upper part of the solar convective zone is used to obtain information on the frequency
component,χk, of the correlation product of the turbulent velocity field. This component plays an important role in the stochastic
excitation of acoustic oscillations. A time analysis of the solar simulation shows that a Gaussian function does not correctly
reproduce theν-dependency ofχk inferred from the 3D simuation in the frequency range where the acoustic energy injected
into the solarp modes is important (ν ' 2−4 mHz). Theν-dependency ofχk is fitted with different analytical functions which
can then conveniently be used to compute the acoustic energy supply rateP injected into the solar radial oscillations. With
constraints from a 3D simulation, adjustment of free parameters to solar data is no longer necessary and is not performed here.
The result is compared with solar seismic data. Computed values ofP obtained with the analytical function which fits bestχk are
found∼2.7 times larger than those obtained with the Gaussian model and reproduce better the solar seismic observations. This
non-Gaussian description also leads to a Reynolds stress contribution of the same order as the one arising from the advection
of the turbulent fluctuations of entropy by the turbulent motions. Some discrepancy between observed and computedP values
still exist at high frequency and possible causes for this discrepancy are discussed.
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1. Introduction

Solar oscillations are believed to be stochastically excited by
turbulent convection in the outer part of the Sun. The excita-
tion is caused by turbulent convective motions which generate
acoustic energy which in turn is injected into thep modes.

Models of stochastic excitation of stellarp modes have
been proposed by several authors (e.g. Goldreich & Keeley
1977; Osaki 1990; Balmforth 1992; Goldreich et al. 1994).
These models use simplified models to describe the dy-
namics of the turbulent medium. For instance these ap-
proaches (Goldreich & Keeley 1977; Balmforth 1992) assume
a Gaussian function for representingχk, the frequency compo-
nent of the correlation product of the turbulent velocity field.
As pointed out by Samadi (2001), the way the componentχk

is modeled plays a crucial role in controlling the extent of the
excitation region of a given mode and hence the total amount of
acoustic energy injected into the mode. In the following,χk will
also be referred to asthe dymamic model of turbulenceanddy-
namicwill refer to time-dependence or frequency-dependence.

Send offprint requests to: R. Samadi,
e-mail:reza.samadi@obspm.fr

Direct computations of the rate at which the solarp modes
are excited have been performed by Stein & Nordlund (2001)
using 3D simulations of the upper part of the solar convective
zone. They found good agreement between their numerical re-
sults and the solar seismic observations. This direct but time
consuming approach did not address the role of the dynamic
properties of the turbulent medium on the excitation mecha-
nism.

In contrast semi-analytical formulations forP(ν) offer the
advantage of testingseparatelyseveral properties entering the
excitation mechanism. Here we consider the formulation by
Samadi & Goupil (2001, hereafter Paper I, see also Samadi
2001 for a summary) which includes a detailed treatment of
thetime averagedanddynamicproperties of the turbulent con-
vective medium.

The impact of the averaged properties have been investi-
gated by Samadi et al. (2003). The authors used a 3D simula-
tion of the upper part of the solar convective zone to constrain
the averaged properties of the turbulent convective medium.
The computed ratesP at which the solarp modes are excited
were found to be larger than those computed with a 1D mixing-
length solar model but stillunderestimatethe solar seismic data
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by a factor∼2.5. It was also found that the Reynolds tensor con-
tributes about 20% of the total acoustic energy injected into the
solarp modes, in contrast with direct 3D estimations (Stein &
Nordlund 2001). These discrepancies were attributed to the as-
sumed Gaussian function for the dynamic model of turbulence.

In the present paper we therefore derive an empirical dy-
namic model of turbulence obtained from a 3D simulation of
the upper part of the solar convective zone and then study the
consequences of using this model on the computed excitation
ratesP. We compare our computation with solar seismic data
and finally obtain on an improved model of stochastic excita-
tion.

The paper is organised as follows: The basic theoretical
background and notations are recalled in Sect. 2. In Sect. 3,
a 3D simulation of the upper part of the solar convective zone
is used to characteriseχk in the domain where stochastic ex-
citation takes place. The inferredν-dependency ofχk is com-
pared with the Gaussian function and fitted with different non-
Gaussian functions. These functions are then used in Sect. 4
to compute the excitation rateP for radial p modes. The re-
sults are compared with solar seismic observations as provided
by Chaplin et al. (1998) and with computations in which the
Gaussian function is assumed. Section 5 is dedicated to discus-
sions and conclusions.

2. Stochastic excitation

2.1. The model of stochastic excitation

We consider the model of stochastic excitation as described in
Paper I and assume here – as in Samadi et al. (2003) – that
injection of acoustic energy into the modes is isotropic and
consider only radialp modes. Accordingly, the rate at which
a given mode with frequencyω0 is excited can be written as:

P(ω0) =
π3

2I

∫ M

0
dm
Φ

3
ρ0w

4


16
15
Φ

3

(
dξr
dr

)2

SR

+
4
3

(
αs s̃
ρ0w

)2
gr

ω2
0

SS

 · (1)

In Eq. (1),ρ0 is the mean density,ξr is the radial component of
the fluid displacement adiabatic eigenfunctionξ, I is the mode
inertia (Eq. (19)),αs = (∂p/∂s)ρ wherep denotes the pressure
ands the entropy, ˜s is the rms value of the entropy fluctuations
which are assumed to arise solely from turbulence,gr (ξr , r) is a
function involving the first and the second derivatives ofξr with
respect tor, Φ is a mean anisotropy factor defined by Gough
(1977) as

Φ(r) ≡ < u2 > − < u >2

w2(r)
(2)

whereu is the velocity field,< . > denotes horizontal average,
() denotes time average, andw(r) is the mean vertical velocity
(w2 ≡ < u2

z > − < uz >2). Expressions forgr (ξr , r) are given in
Samadi et al. (2003).

The driving sourcesSR(r, ω0) andSS(r, ω0) arise from the
Reynolds stress and the entropy fluctuations respectively:

SR(r, ω0) =
∫ ∞

0

dk
k2

E(k, r)

u2
0

E(k, r)

u2
0

χk(ω0, r) (3)

SS(r, ω0) =
∫ ∞

0

dk
k2

E(k, r)

u2
0

Es(k, r)
s̃2

×
∫ +∞

−∞
dωχk(ω0 + ω, r)χk(ω, r) (4)

whereu0(r) ≡ √Φ/3w is introduced for convenience,E(k, r)
is the time averaged turbulent kinetic energy spectrum,Es(k, r)
is the time averaged turbulent spectrum associated with the en-
tropy fluctuations andχk(ω, r) is the frequency-dependent part
of the correlation product of the turbulent velocity field (see
Sect. 2.2). In order to simplify the notation, we drop the ex-
plicit r dependence of the quantities in Eqs. (1–4).

2.2. The dynamic model of turbulence

The dynamic model of turbulence is represented byχk(ω).
In order to give a precise meaning toχk(ω), we recall first
some theoretical relations. Excitation by Reynolds stresses in-
volvesφi, j(k, ω), the Fourier transform of the second-order ve-
locity correlations; here the indicesi and j refer to any of
the 3 directions of the velocity field. For incompressible, ho-
mogeneous and isotropic turbulence,φi j (k, ω) has the form
(Batchelor 1970):

φi j (k, ω) =
E(k, ω)
4πk2

(
δi j − kikj

k2

)
(5)

where E(k, ω) is the turbulent kinetic energy spectrum as a
function ofk andω andδi j is the Kronecker tensor. Following
Stein (1967),E(k, ω) is decomposed as

E(k, ω) = E(k) χk(ω) (6)

whereχk(ω) satisfies the normalisation condition (Tennekes &
Lumley 1982, Chap. 8.1):∫ +∞

−∞
dωχk(ω) = 1. (7)

According to the decomposition of Eq. (6),χk(ω) is – at fixed
k – the frequency component ofE(k, ω).

According to Eqs. (5) and (6),χk(ω) then represents the
frequency dependence ofφi, j(k, ω). In other words,χk(ω) mea-
sures – in the frequency andk wavenumber domains – the evo-
lution of the velocity correlation between two distant points of
the turbulent medium.

The same decomposition of Eq. (7) is assumed forEs(k, ω).
This leads to introducingχs

k, the frequency-dependent part of
the correlation product of the entropy fluctuation. For simplify-
ing the computation ofP, as in Paper I, we assumeχs

k = χk. We
have checked thatχs

k andχk have almost the same behaviour
in the region where excitation by entropy fluctuations is signif-
icant.

In the present work, we consider only the excitation of ra-
dial p modes. LetEz(k, ω) be the vertical component of the
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kinetic energy spectrum. We consider thatEz(k, ω) can be de-
composed asE(k, ω) (Eq. (7)). For isotropic turbulence we then
haveE(k, ω) = 3 Ez(k, ω), E(k) = 3 Ez(k) andχz

k = χk, which is
equivalent to stating that the averaged and dynamic properties
of the velocity field are the same in all 3 directions.

The anisotropy factorΦ – introduced in the expression
for P, Eq. (1) – partially takes into account the spatial and tem-
poral anisotropy of the turbulence (Φ = 3 corresponds to a
isotropic turbulence). It has been found in Samadi et al. (2003)
thatΦ ' 2 within the region where most of the excitation oc-
curs. This shows that the time and space averaged properties
of the medium are indeed anisotropic. One can therefore ex-
pect that the dynamic properties of turbulence differ between
the horizontal and vertical directions. As the excitation of ra-
dial p modes is predominantly governed by turbulent elements
moving in the vertical direction, an open question is whether
one should considerχz

k rather thanχk in Eqs. (3) and (4) when
taking into account the dynamic properties of the turbulence. In
the present work, we therefore characterise bothχz

k andχk from
a 3D simulation and assess the consequences of using eitherχz

k
or χk in the calculation ofP.

2.3. A Gaussian function for χk

Stein (1967) and Musielak et al. (1994) suggested several ana-
lytical forms forχk(ω). The Gaussian Function (GF hereafter)
is the simplest choice and is defined as

χk(ω) =
1

ωk
√
π

e−(ω/ωk)2
(8)

whereωk is its linewidth.
In the time domain, the Gaussian function, Eq. (8), is the

Fourier transform of a Gaussian function whose linewidth is
equal to 2τk, whereτk is a characteristic time correlation length.
Henceωk andτk are related to each other as

ωk =
2
τk
· (9)

The characteristic timeτk is usually associated with the charac-
teristic correlation time-scale of an eddy with wavenumberk.
As in Balmforth (1992), we define it as

τk ≡ λkuk
(10)

where the velocityuk of the eddy with wave numberk is related
to the kinetic energy spectrumE(k) by (Stein 1967)

u2
k =

∫ 2k

k
dk E(k). (11)

The parameterλ in Eq. (10) accounts for our lack of precise
knowledge of the time correlationτk under stellar conditions.

In the calculation ofP, a GF is usually assumed forχk (e.g.
Goldreich & Keeley 1997, Balmforth 1992). This assumption is
equivalent to supposing that two distant points in the turbulent
medium are uncorrelated.

In Sect. 3, we use a 3D simulation of the upper part of
the solar convective zone to derive theν-dependencies ofχz

k
andχk. Inferredν-dependencies ofχz

k andχk are compared to
that of the GF. We next determine several analytical forms for
χz

k andχk that can better represent theirν-dependencies.

3. Constraints from the 3D simulation

The analysis of a 3D simulation of the upper part of the solar
convective zone provides constraints for several physical pa-
rameters that enter the theoretical expression for the energy
supply rateP injected into the solarp modes (Eq. (1)). The
constraints may be considered to be of two types:

• Staticconstraints (staticrefers to spatial and time averages)
determine the actual wavenumber dependency ofE(k, z),
the kinetic turbulent spectrum, andEs(k, z), the turbulent
spectrum associated with the entropy. Thestaticconstraints
also determine the depth profile of the wavenumberkE

0 at
which convective energy is injected into the turbulent in-
ertial range ofE (as in Samadi et al. 2003 we assume that
the wavenumberkEs

0 , at which convective energy is injected
into the turbulent inertial range ofEs, is equal tokE

0 ). They
also provide the depth dependence ofu2, the mean square
velocity,w2, the mean square vertical component of the ve-
locity, s̃2, the mean square values of entropy fluctuations
andΦ = u2/w2, the mean values of the anisotropy studied
in Samadi et al. (2003).
• The dynamicconstraints, on the other hand, concern the

frequency componentχk andχz
k (see Sect. 2.2).

The static constraints have been established in Samadi et al.
(2003). Here we investigate the dynamic constraints.

3.1. The 3D simulation

We study a 3D simulation of the upper part of the solar convec-
tion zone obtained with the 3D numerical code developed by
Stein & Nordlund (1998).

The simulated domain is 3.2 Mm deep and its surface is
6 × 6 Mm2. The grid of mesh points is 256× 256× 163 (i.e.
∼23 km× 23 km× 37 km), the total duration 27 mn and the
sampling time 30s.

Outputs of the simulation considered in Samadi et al.
(2003) are the velocity fieldu(x, y, z, t) and the entropy
s(x, y, z, t) where – as in Samadi et al. (2003) –z = r − R�
andR� is the radius at the photosphere (i.e. whereT = Teff).
The quantitiesu(x, y, z, t) and s(x, y, z, t) were used to deter-
mine the quantitiesE(k, z), Es(k, z), w and s̃2 involved in the
theoretical expression for the excitation rateP. In the present
work we use the velocity fieldu(x, y, z, t) to characteriseχk

andχz
k.

3.2. Fourier transform

At five different layers of the simulated domain, we compute
the 3D Fourier transform, with respect to time and in the hori-
zontal plane, of the velocity fieldu. These layers cover a region
where modes with frequencyν >∼ 2 mHz are predominantly ex-
cited.

This providesû(k, z, ν) wherek is the wavenumber in the
horizontal plane. Next we integrateû2(k, z, ν) over circles with
radiusk = ‖k‖ at each given layerz. This yieldsû(k, z, ν) and
thereforeE(k, ν, z) ≡ û2(k, ν, z). The quantityχk(ν, z) is the
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frequency component ofE(k, ν, z), at fixedk. Hence, accord-
ing to Eqs. (6) and (7),χk(ν, z) is obtained fromE(k, ν, z) as:

χk(ν, z) =
E(k, ν, z)∫
dνE(k, ν, z)

(12)

where the integration overν is performed over the frequency
range [−νmax, νmax] corresponding to the window of the Fourier
analysis with respect to time (νmax ' 16 mHz).

We proceed in the same manner for the vertical component
of u. This then providesEz(k, ν, z) ≡ û2

z(k, ν, z) andχz
k(ν, z).

3.3. Inferred properties of χk and χzk
Figure 1 presentsχk(ν) as it is obtained from the simulation for
the wavenumberk at whichE(k, z) peaks (k = k0).

At the top of the superadiabatic region (for instancez =
−0.4 Mm in Fig. 1, this is the layer where the excitation
is the largest), the GF does not correctly modelχk(ν) (see
Fig. 1). However the discrepancies between the GF and the
simulation data occur mostly above the solar cut-off frequency
(ν ∼ 5.5 mHz). Discrepancies between the GF and the 3D sim-
ulation data have then minor consequences for thep modes
excitation in this region. This is not the case deeper in the sim-
ulation where the largest discrepancies between the GF and the
simulation data occur in the frequency range where the dom-
inant amount of acoustic energy is injected into thep modes
(ν ∼ 2−4 mHz).

To reproduce the shape ofχk(ν) obtained with the 3D simu-
lation, one needs a function which at high frequency decreases
more slowly than the GF. For modeling theν-dependency
of χk(ν), we thus propose three analytical functions: the
Lorentzian function (LF hereafter)

χk(ω) =
1

πωk/2
1

1+ (2ω/ωk)2
, (13)

the Gaussian plus an Exponential Function (GEF hereafter)

χk(ω) =
1
2

(
1

ωk
√
π

e−(ω/ωk)2
+

1
2ωk

e−|ω/ωk|
)
, (14)

and the Gaussian plus a Lorentzian function (GLF hereafter)

χk(ω) =
1
2

(
1

ωk
√
π

e−(ω/ωk)2
+

1
πωk

1

1+ (ω/ωk)2

)
· (15)

All these functions satisfy the condition of normalisation
of Eq. (7).

We first assume a constantλ = 1. As shown in Fig. 1, all
these non-Gaussian functions reproduce theν-variation ofχk

better than that obtained using a GF.
In the middle of the excitation region (−0.5 Mm <∼ z <∼

0.0 Mm) the overall best agreement is obtained with the LF.
Belowz∼ −0.5 Mm, the LF does not reproduceχk well enough
but still reproduces itsν-variation better than the other models.

However we have so far assumed thatλ (or equivalently the
eddy time correlation) is depth independent, which is a strong
assumption. Whenλ is allowed to vary withz, we find that
decreasing the value ofλ below z <∼ −0.5 Mm, the LF best

modelsχk belowz∼ −0.5 Mm (e.g.λ = 1.6 atz = −0.64 Mm
andλ ' 1.30 atz = −0.99 Mm, see Fig. 2). This shows that
the variation with depth of the characteristic timeτk (or equiv-
alently the characteristic frequencyωk) is not correctly repre-
sented by the relations of Eqs. (10) and (11) when computed
assuming a constantλ belowz ∼ −0.5 Mm; τk increases faster
with depth than expected from the relations (10) and (11). It is
however found in Sect. 4 that this feature has negligible effect
on P.

The functionχz
k also decreases with the frequency more

slowly than the GF (see Fig. 1). Moreover, decreasing values
of λ for z <∼ −0.5 Mm provide a better fit ofχz

k. But in con-
trast withχk, χ

z
k is overall better modeled with the GEF for

z >∼ −0.5 Mm and with the GLF forz <∼ −0.5 Mm rather than
with the LF (not shown).

We conclude from the frequency analysis of the 3D simu-
lation that the simple Gaussian function cannot correctly rep-
resent the actual dynamic properties of the turbulent medium.
One may expect that the GF causes an underestimation of the
acoustic energy injected into the solarp modes. Instead the fre-
quency analysis favours a non-Gaussian function forχz

k andχk

that decreases more slowly withν than the GF.

4. Consequences in terms of p modes excitation

4.1. Computations of the excitation rate P

Computation of the excitation rateP is performed as in
Samadi et al. (2003) except that here two analytical func-
tions other than the GF are assumed forχk, as discussed in
Sect. 3. The computation process is summarised as follows:
The eigenfunctions (ξr ) and their frequencies (ν) are computed
with Balmforth’s (1992) non-adiabatic code for a solar 1D
mixing-length model based on Gough’s (1977) non-local time-
dependent formulation of convection.

The quantitiesΦ, w2 and s2 are obtained from the
3D simulation. Thek-dependency ofE(k, z) is the Extended
Kolmogorov Spectrum (EKS hereafter) defined as:

E(k) ∝ (k/k0)+1 for k0 > k > kmin

E(k) ∝ (k/k0)−5/3 for k > k0.
(16)

In Eq. (16), the wavenumberk0 is the wavenumber at
whichE(k) peaks andkmin is the minimal wavenumber reached
by the 3D simulation (kmin = 1.05 Mm−1). The variation
with depth ofk0 is also given by the 3D simulation. Thek-
dependency of the EKS reproduces the global features ofE
arising from the 3D simulation. The same model is considered
for Es(k, z). E(k, z) andEs(k, z) satisfy the normalisation con-
ditions:∫ +∞

kmin

dk E(k, z) = 1/2Φw2

∫ +∞

kmin

dk Es(k, z) = 1/2 s̃2.
(17)

The total energy contained inE(k, z) and Es(k, z), and their
depth dependencies, are then obtained from the 3D simulation
according to Eq. (17). These theoretical estimates forP are then
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Fig. 1.The filled dots representχk(ν) obtained from the simulation for the wavenumberk0 at whichE(k, z) peaks. The solid curves represent the
Lorentzian function (LF, Eq. (13)), the dots-dashed curves the Gaussian Lorentzian function (GLF, Eq. (15)), the dashed curves the Gaussian
Exponential function (GEF, Eq. (14)) and the long dashed curves the Gaussian function (GF, Eq. (8)). In these four analytical functions,λ = 1
is assumed for the calculation ofωk (Eqs. (10) and (11)). Four different layers are considered:z = −0.04 Mm (the top of the superadiabatic
region),z= −0.49 Mm,z= −0.99 Mm andz= −1.40 Mm.

compared with the “observed”P from Chaplin et al. (1998)’s
seismic data, calculated according to the relation:

P(ω0) = 2η
I
ξ2r (rs)

v2s(ω0) (18)

wherers is the radius at which oscillations are measured,

I ≡
∫ M

0
dmξ2r (19)

is the mode inertia and where the mode damping rate (η) and
the mode surface velocity (vs) are obtained from Chaplin et al.
(1998). In Eq. (18), the mode massI/ξ2r (rs) is given by the
GMLT model and we adoptrs = R� + 200 km consistently
with Chaplin et al. (1998)’s observations.

4.2. Comparisons with observations

We investigate the effect of using different analytical functions
for χk (Sect. 3) in the computation ofP . We first assume a con-
stant valueλ = 1. Results are shown in Fig. 3. Computations
performed with the GF underestimate the observedP values
by a factor∼2.7. On the other hand, the LF, GEF and GLF
choices result in larger values for the computedP than the GF
one (∼2 times larger). This brings them closer to the observa-
tions, compared with the GF choice forχk. The reason is that

all the non-Gaussian functions (the LF, the GEF and the GLF)
– which indeed better modelχz

k andχk from the 3D simulation
than does the GF – decrease more slowly withν than the GF
in the frequency range where the mode amplitudes are large
(ν ' 2− 4 mHz). Consequently a larger amount of acoustic en-
ergy is injected into the modes with the non-Gaussian functions
than with the GF.

In Sect. 3.3, the overall best models forχk were ob-
tained with the LF and with decreasing values ofλ below
z ∼ −0.5 Mm. We use a simple model for the depth variation
of λ:

λ = 1 for z> −0.5 Mm
λ = 0.9+ 0.71(0.64Mm+ z) for −0.5 ≥ z≥ −1 Mm
λ = 0.35 for z< −1 Mm.

(20)

We have computedP according to the simple model of Eq. (20)
and assuming the LF. We find no significant changes forP com-
pared to the calculations in which a constant valueλ = 1 is
assumed (not shown).

In Sect. 3 we found thatχz
k is better modelled with the

GEF for z >∼ −0.5 Mm and with the GLF forz <∼ −0.5 Mm
rather than with the LF. However, as the stochastic excitation
is the largest in the range−0.5 Mm <∼ z <∼ 0 Mm, we can
assume the GEF in all the domain. The LF results in a value
for Pmax slightly larger than the one resulting from the GEF
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Fig. 2. As in Fig. 1, the filled dots representχk(ν, z) obtained from the simulation at two different layers:z = −0.64 Mm (left panel) and
z = −0.99 Mm (right panel). The other curves represent the LF (Eq. (15)) with different assumptions forλ: The dashed curved correspond to
λ = 1 and the solid curves correspond toλ = 0.80 atz= −0.64 Mm (left panel) andλ = 0.65 atz= −0.99 Mm (right panel).

(only ∼1.2 larger). A better agreement is then obtained with
the analytical functions which fits bestχk (i.e. the LF) than the
one which fits bestχz

k (i.e. the GEF) in contrast with the in-
tuitive idea mentioned in Sect. 2.2 that the excitation of radial
p modes depends rather on the properties ofχz

k than on those
of χk.

In the frequency range where observational constraints are
available, differences between results obtained with the differ-
ent adopted non-Gaussian functions are of the same order as
the actual error bars associated with the observedP values.

Below the frequency range of the observations – i.e. be-
low ν <∼ 1.8 mHz – the differences between the different non-
Gaussian functions are very large compared to the error bars
(see bottom panel of Fig. 3). Those differences are related
to differences in theν-variation of the non-Gaussian models.
Observational constraints at low frequency could therefore con-
firm that the LF is indeed the best representation forχk(ν).

Important discrepancies still remain at high frequency (ν >∼
3.5 mHz). The excitation rate derived from the observations de-
creases as∼ν−6.2 aboveν ' 3.5 mHz) whereas the computedP
decreases as∼ν−1 (see bottom panel of Fig. 3). Possible origins
of this discrepancy are discussed in Sect. 5.5.

Another consequence of a non-Gaussian dependence
of χk (or χz

k) with the frequency is a larger relative contribu-
tion of the Reynolds stressPR to the mode excitation rateP.
This is shown in Fig. 4. The GF generates a relative contribu-
tion of the Reynolds stress to the excitation (PR/P) which is
smaller than that obtained assuming a non-Gaussian function
(e.g. for the LF, the relative contribution ofPR to the excita-
tion is at least∼2 times larger than with the GF). Excitation by
the entropy fluctuations takes place predominantly at the top
of the excitation region over a thin layer (<∼0.2 Mm) while that
due to the Reynolds stress extends deeper below (∼0.5−2 Mm).
At the top of the excitation region, the discrepancy between
the GF andχk inferred from the 3D simulation mainly occurs
aboveν ' 5 mHz and thus has a small impact on mode excita-
tion. This is not the case deeper in the excitation region where
the GF under-estimatesχk in a frequency range increasing in-
ward.

5. Conclusion and discussion

5.1. A Non-Gaussian eddy time correlation

In the present work we characterizeempiricallyχk and ofχz
k,

the frequency components of the correlation product of the tur-
bulent velocity field and of its vertical component respectively.
A frequency analysis of a solar 3D simulation shows that at
large scales (k ∼ k0) the Gaussian function significantly un-
derestimatesχk andχz

k in the frequency range (ν ' 2−4 mHz)
where acoustic energy injected into the solarp modes is the
largest.

As a result, the maximum value ofP is found∼2.7 smaller
than the solar seismic constraints.

This partly explains theunderestimateof the values of so-
lar p mode excitation rates obtained by Houdek et al. (1999)
whose computations are based on the theoretical expression by
Balmforth (1992) and the underestimate obtained by Samadi
et al. (2003).

In order to reproduce the main properties ofχk (or χz
k),

one has to consider a model which must decrease more slowly
with ν than the GF. We then assume forχk andχz

k three different
simple analytical forms: the Lorentzian Function (LF), the so-
called “Gaussian Exponential Function” (GEF, which is com-
posed by the GF plus an exponential function) and the so-called
“Gaussian Lorentzian Function” (GLF, which is composed by
the GF plus a Lorentzian function).

From the top of the excitation region (which corresponds to
the top of the superadiabatic region) down to the middle of the
excitation region (z ∼ −0.5 Mm wherez is the distance to the
radius at the photosphere), the best agreement betweenχk and
the analytical approximations is obtained with the LF and with
λ = 1. Deeper within the excitation region (z<∼ −0.5 Mm), the
agreement is better forλ < 1 andλ decreasing with depth.

The frequency dependencies ofχz
k andχk are found to be

very similar. Howeverχz
k is best modeled by the GEF. As forχk,

the agreement is better belowz ∼ −0.5 Mm with decreasing
values of the parameterλ than withλ = 1.

Assuming a non-Gaussian function – either the LF, the GEF
or the GLF – results in values forPmax, the maximum of excita-
tion power, which are∼2 times larger than when assuming the
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Fig. 3. Top: The curves correspond to computed values ofP(ν) ob-
tained with different analytical functions forχk(ν): the GF (long
dashed curve), the GEF (dashed curve), the GLF (dots-dashed curve)
and the LF (solid curve). In all calculations, we assumeλ = 1. The
dots representP(ν) derived from the amplitudes and line widths of
the` = 0 p modes measured by Chaplin et al. (1998).Bottom: same
as the top panel butP is plotted in a log-log representation as it is
usually represented in the literature. The vertical and horizontal scales
have been chosen for an easy comparison with equivalent plots found
in Stein & Nordlund (2001). The lines with dots show two different
power lawsνp: one withp = −6.2 and the other withp = −1.

GF and bringsPmax much closer to the maximum ofP derived
from the solar seismic data of Chaplin et al. (1998).

We also find that taking into account the variation ofλ with
depth forz below−0.5 Mm does not significantly change the
values ofP. A constant value can then be assumed in the calcu-
lation of the solarp mode excitation rates. The constant value
of λ on the other hand plays an important role and we find
λ = 1.

We have investigated the sensitivity to the adopted rep-
resentation forχk: Although the LF fits best theν-variation
of χk inferred from the 3D simulation, the GLF results in value
for Pmax closer to the seismic constraints. However, the dif-
ferences obtained with the different non-Gaussian approxima-
tions forχk are globally smaller than the actual error bars as-
sociated with the observations of Chaplin et al. (1998). On
the other hand, below the frequency range where observational
constraints onP are available (i.e. belowν <∼ 1.8 mHz), the dif-
ferences betweenP obtained with different non-Gaussian func-
tions are very large compared to the current error bars. Those

Fig. 4. Top: Same as Fig. 3 for the relative contribution of the
Reynolds stress,PR to the total acoustic energyP.

differences are directly related to the diffences in theν-variation
of the non-Gaussian forms investigated in this work. This sug-
gests that accurate enough data below this frequency range,
could provide confirmation that the LF is indeed the best model
for χk.

5.2. Relative contribution of the entropy fluctuations
to the excitation

The non-Gaussian character ofχk causes the excitation region
to extend deeper (∼500 km for modes of ordern = 20) than
with the GF (∼200 km resp.). The largest entropy fluctuations
mainly occur at the outermost part of the convective zone (CZ)
over a very thin region (∼100 km) while excitation by the
Reynolds stress contribution occurs on a more extended region.
Consequently the non-Gaussian property ofχk leads to a rela-
tively larger contribution of the Reynolds stress to the excita-
tion than in the case of a GF. As a result, the Reynolds stress
contribution is of the same order as the contribution arising
from the advection of the turbulent fluctuations of entropy by
the turbulent movements (the so-called entropy source term).
This is in contrast with previous results (Samadi et al. 2001)
based on the GF which concluded that the entropy source term
dominates the Reynolds stress by about∼20. It also differs with
results by Goldreich et al. (1994) who found that the excita-
tion arising directly from the entropy fluctuations dominates
by about∼10.

On the other hand, in Stein & Nordlund (2001), the excita-
tion by turbulent pressure (Reynolds stress) is found dominant
(∼4 times larger) whereas here we find that the contribution
of the entropy source term cannot be neglected. Whether this is
the signature of some deficiency in the present excitation model
is an open question.

5.3. Summary

We show that the usually adoptedGaussian functionfor χk is
neither consistent with the properties ofχk inferred from the 3D
simulation nor does it reproduce the observed maximum of the
solarp-modes excitation rates.
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Following an empirical approach we improve the model
of the convective eddy time-correlationχk which enters the
current model of stochastic excitation. We then show that to re-
produceboththeν-variation ofχk as inferred from the 3D sim-
ulation and the observed maximum of the solarp-modes ex-
citation rates one has to consider a non-Gaussian form which
decreases at high frequency slower than the GF, as do the dif-
ferent non-Gaussian functions investigated here.

The use of non-Gaussian functions, for instance the LF, re-
produces reasonably well the maximum value of the rate at
which solarp-modes are excitedwithout any adjustments of
free parametersor without introducing a scaling factor, in con-
trast with previous approaches (e.g. Balmforth 1992; Goldreich
et al. 1994; Samadi et al. 2001). We then solve the problem
of the underestimation by the previous theoretical approaches.
Furthermore the use of such a non-Gaussian form forχk makes
the contribution of the turbulent pressure to the excitation much
larger than in previous works making our results more consis-
tent with that by Stein & Nordlund (2001).

Our investigation clearly emphasizes thenon-Gaussian
character of the solar p modes excitationas a result of thenon-
Gaussian property of the convective eddies time-correlations.
It also shows that the dynamic properties of the solar turbulent
convection inferred from the 3D simulation are consistent with
the helioseismic data.

We stress that only simple non-Gaussian forms forχk have
been investigated here. More sophisticated forms are likely to
improve the agreement with theν-dependency ofχk (or χz

k).
This would not affect the main conclusions presented in the
present paper.

5.4. Possible origin of the non-Gaussian property of χk

We recall thatχk measures the temporal evolution of the cor-
relation between two points of the turbulent medium separated
by a distance of∼2π/k. A Gaussian time-correlation means that
the fluid motions in the medium are random in time. Departure
from a Gaussian time-correlation at large scales (k ∼ k0) sug-
gests that a strong correlation exists at that scale.

Downward plumes are likely to be responsible for the non-
Gaussian behaviour ofχk. Downward and upward convec-
tive motions are indeed highly asymmetric (Stein & Nordlund
1998): downward flows are associated with patterns (plumes)
which are more coherent than the upward moving structures
(Rieutord & Zahn 1995). The upward flows are associated
with less coherent and more random structures (granules) char-
acterised by a broad variety of sizes and lifetimes (Rieutord
& Zahn 1995). The non-Gaussian behavior ofχk can most
probably be attributed to plumes. This however remains to be
checked (work in progress).

5.5. Possible origin of the remaining discrepancy

Despite a clear improvement in the agreement between ob-
served and theoretical excitation rates, important discrepancies
between the computedP and the solar measurements still re-
main at high frequencyν >∼ 3.5 mHz (see Sect. 4.2 and Fig. 3).

On the “observational side”, at high frequency, larger un-
certainties for the damping ratesη induce larger uncertainties
on the derived supply energy rates.

On the theoretical side, part of the discrepancy might well
be attributed to a poor description of the eigenfunctions at high
frequency. Indeed, the discrepancies between the calculated
eigenfrequencies and the observed ones are largest at high fre-
quency (ν >∼ 3 mHz). This indicates that the description of the
eigenfunctions are less accurate at high frequency. As the ex-
pression for calculatingP involves the first and second deriva-
tives of the mode eigenfunction, the lack of accuracy in the
calculation of the eigenfunctions has a larger impact onP at
high frequencies than at small frequencies.

Other possible causes can perhaps be related to our sim-
plified excitation model which assumes isotropic turbulence.
Indeed the current theory assumes that the stochastic excita-
tion is the same in all three directions, particularly between the
ascending and descending flows. However the kinetic energy
and entropy fluctuations are larger in the downward flows than
in the upward flows (Stein & Nordlund 1998). Therefore the
driving arising from the advection of the turbulent fluctuations
of entropy by the turbulent movements differs significantly be-
tween the elements moving downwards and those moving up-
wards. As the entropy fluctuations are largest in the outermost
part of the convective zone, the above mentioned asymmetry
will predominantly affect the high frequency modes.

Moreover, it is also assumed that the total kinetic energy,
E, is isotropically injected in all 3 directions. Excitation of the
radial p modes results from the vertical component of the ve-
locity. However at the top of the convective zone, the distribu-
tion of kinetic energy inE(k, z) and inEz(k, z) are very different
from each other. These differences may affect more strongly the
high frequency modes. Consequences of these departures from
the isotropic assumption need to be further investigated.

5.6. Perspectives

The non-Gaussian property ofχk and its consequences for
the stochastic excitation has been investigated so far only for
the Sun. However such a non-Gaussian feature of the turbu-
lence will most likely also be of importance for solar-like os-
cillating stars more massive than the Sun, provided our analysis
is also valid for these stars. This can substantially change the
excitation spectrumP for such stars compared to that which is
currently predicted.

Therefore investigations ofp mode excitation in hotter and
more massive stars must be undertaken, which should proceed
in two steps: first, the validity of the present results obtained
in the solar case must be investigated for other stars with, for
instance, the help of dedicated 3D simulations. The conclusions
which will drawn from this first step must be used in a second
step to study the frequency dependence and the magnitude ofP
for different solar-like oscillating stars (see preliminary results
in Samadi et al. 2002).

Future space missions such as COROT (Baglin & The
Corot Team 1998), MOST (Matthews 1998) and Eddington
(Favata et al. 2000) will provide high-quality data on seismic
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observations. COROT will be the first mission that will provide
high precision mode amplitudes and linewidths in other stars.
This high-quality data will allow us to derive the excitation
rateP and will provide improved observational constraints on
the theory of stochastic excitation which is, at present, poorly
constrained by observation.
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