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Abstract. Using up-to-date model atmospheres (Heiter et al. 2002) with the turbulent convection approach developed by
Canuto et al. (1996, CGM), quadratic, cubic and square root limb darkening coefficients (LDC) are calculated with a least
square fit method for the Str¨omgren photometric system. This is done for a sample of solar metallicity models with effective
temperatures between 6000 and 8500 K and with logg between 2.5 and 4.5. A comparison is made between these LDC and
the ones computed from model atmospheres using the classical mixing length prescription with a mixing length parameter
α = 1.25 andα = 0.5. For CGM model atmospheres, the law which reproduces better the model intensity is found to be the
square root one for theu band and the cubic law for thev band. The results are more complex for theb andy bands depending
on the temperature and gravity of the model. Similar conclusions are reached for MLTα = 0.5 models. As expected much
larger differences are found between CGM and MLT withα = 1.25. In a second part, the weighted limb-darkening integrals,
b`, and their derivatives with respect to temperature and gravity, are then computed using the best limb-darkening law. These
integrals are known to be very important in the context of photometric mode identification of non-radial pulsating stars. The
effect of convection treatment on these quantities is discussed and as expected differences in theb` coefficients and derivatives
computed with CGM and MLTα = 0.5 are much smaller than differences obtained between computations with CGM and MLT
α = 1.25.
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1. Introduction

Limb darkening is a well-known effect in stellar atmospheres.
It plays an important role in different fields of astrophysics,
such as light curve analyses of eclipsing binary systems (e.g.
Van Hamme 1993) or, more recently, detections of extra-solar
planets by transit (e.g. Mazeh et al. 2000).

Send offprint requests to: C. Barban,
e-mail:Caroline.Barban@obspm.fr
? Table 1 is only available in electronic form at the CDS via

anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/1095

Another need for accurate limb darkening coeffi-
cients (LDC) is in the field of asteroseismology. LDC
are used by methods based on multicolor photometry for
oscillation mode identification in variable main sequence stars
such asδ Scuti andγ Doradus stars (Balona & Evers 1999;
Garrido 2000 and references therein; Balona & Dziembowski
1999; Daszynska-Daszkiewicz et al. 2002). These methods
involve apparent oscillation amplitudes and phases which
need to be precisely calculated. To this end, it is necessary to
compute, from model atmospheres, accurate colors and more
importantly accurate derivatives of colors, color indices and
weighted limb darkening integrals with respect to logTeff and
logg (Sect. 4, see also Garrido 2000). New grids of stellar
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atmospheres which fulfill this requirement are now available;
they were computed with modified versions of the ATLAS9
code with a higher resolution in optical depth for a more ac-
curate description of the vertical structure of the atmospheres
and with a finer grid in the (Teff, logg) plane. Several sets of
model atmospheres were computed with different treatments
of the convective energy transport (Heiter et al. 2002, hereafter
Paper I). LDC computed from these new models with the
α = 0.5 MLT (mixing length theory) prescription have already
been used for oscillation mode identification purposes (Garrido
et al. 2002a,b; Breger et al. 2002) and for the computation
of apparent oscillation amplitudes for simulatingδ Scuti
oscillations spectra (Barban et al. 2001).

The purpose of the present paper therefore is twofold: first,
we compute LDC for a set of up-dated model atmospheres
which have been computed with the turbulent convection ap-
proach developed by Canuto et al. (1996, CGM). This ap-
proach permits to match a larger amount of observed data, in
particular concerning photometry and spectroscopy of A stars
(Paper I, for the latter see also Smalley & Kupka 1997 and
Smalley et al. 2002). In a second part, we calculate weighted
limb darkening integrals as accurate as required for asteroseis-
mic studies. We also compare the results to LDC computed
with the MLT convective option with two values of the mix-
ing length parameterα = 0.5 andα = 1.25. The lower value
corresponds to a best representation of at least the first two
Balmer Line Profiles in the series using a unique convection
model (Van’t Veer-Menneret & M´egessier 1996; Fuhrmann
et al. 1993; Barklem et al. 2002). The larger value is the Kurucz
standard one (Kurucz 1993; Castelli et al. 1997). Balona &
Evers (1999) already pointed out the effect of the convective
treatment for temperatures below∼8300 K on two quantities
(the non-adiabatic parameterf which is the ratio of local lumi-
nosity amplitude to displacement amplitude and the phase dif-
ference between maximum temperature and maximum radius
displacement) which are used to compute the apparent oscilla-
tion amplitudes and phases. We will study here this effect on
the weighted limb-darkening integrals which are also used to
compute the apparent oscillation amplitudes and phases.

For each model atmosphere, the intensity variation over the
disk, I (µ) (whereµ = cos(θ) andθ is the angle between the line
of sight and the normal to the local stellar surface) is obtained
from solving the transfer equation (hereafter ATLAS9 intensi-
ties). In practice, however, it is often more convenient to use
intensity variations over the disk which are represented by a
µ-dependent law, denoted hereIfit(µ). The associated LDC are
then obtained by fitting the lawIfit(µ) to the model atmosphere
intensity variationI (µ). The law to be used is however still
debated. The first investigated law was linearlyµ-dependent
(Milne 1921). It was shown that this law is not adequate ex-
cept for a specific range of effective temperatures around the
solar one, i.e. of the order of 5000 K (see Claret 2000 and ref-
erences therein). Then several other laws were suggested such
as laws with a quadraticµ-dependence (e.g. Wade & Rucinski
1985; Claret & Giménez 1990), with a square root one (e.g.
Dı́az-Cordovés & Giménez 1992), with a cubic one (Van’t Veer
1960) or with a more sophisticated non-linearµ-dependence
(Claret 2000).

It is known that the LDC depend on the effective tem-
perature and gravity of the model atmosphere and on the
wavelength. In this paper, we focus on stars with convective
envelopes with effective temperatures in the range 6000 K–
8500 K and surface gravity, logg, 2.5–4.5 (the surface gravi-
ties are given in CGS units throughout the paper). This range
corresponds to stellar parameters of A–F stars of interest here.
As mode identification in asteroseismology usually works in
Strömgren photometry, we concentrate on these filters. For this
range of temperatures and gravities and for theuvby bands,
Dı́az-Cordovés et al. (1995) found that the square root law can
be a very good approximation; however, they mentioned that
the results may not be conclusive because of the treatment of
convection in the model atmospheres. We therefore investigate
several laws known to be appropriate for model atmospheres in
our range of interest.

The paper is organized as follows: in Sect. 2, we present
the model atmospheres we used and their intensity and flux
computed in the Str¨omgren photometric systems. Section 3 is
devoted to the computation of the LDC using different limb
darkening laws with a discussion of how we select the best
law. The resulting LDC are then used to compute the weighted
limb-darkening integrals and their derivatives (Sect. 4). The
effect of the convection treatment on LDC and on weighted
limb-darkening integrals and their derivatives are discussed
in Sect. 5. Finally, Sect. 6 is devoted to discussions and
conclusions.

2. Intensities and fluxes from model atmospheres

A description of the CGM model atmospheres used in this pa-
per is given in Paper I. Our set has a solar chemical composi-
tion and covers a range of effective temperatures from 6000 to
8500 K with a step width of 250 K as well as surface gravities,
logg, from 2.5 to 4.5 with a step width of 0.1 and a microtur-
bulent velocity of 2 km s−1.

For studying the effect of convection treatment on limb-
darkening, we use also models with the classical MLT convec-
tive treatment and for two different values of the mixing length
parameter. As in Paper I and for the same reasons, we take the
values of the mixing length parameter to be eitherα = 0.5 Hp

orα = 1.25Hp whereHp is the pressure scale height. All other
assumptions in building the model atmospheres are the same
for the three different grids.

For each model, monochromatic specific intensities,
I (λ, µ), are computed for 1221 different values of wavelength
at 20 equally spaced values ofµ from 0.05 to 1 with a step
of 0.05. These specific intensities are then integrated overλ for
eachu, v, b, y band:

I x(µ) =
∫ λ2

λ1

I (λ, µ) Sx(λ) dλ (1)

where I x(µ) is the specific intensity in the bandx; I (λ, µ) is
the monochromatic specific intensity given by the model atmo-
spheres;λ1 andλ2 are the photometric band lower and upper
boundaries defining the bandx. Sx(λ) is the response function
for the passbandx computed in the Kurucz program (Kurucz
1998) of uvby colors calculations from ATLAS9 fluxes.
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Fig. 1. I (µ)/I (1) as a function ofµ for logg = 4.0, Teff = 7250 K, for
u, v,b, y bands and a CGM model atmosphere.

As explained in Kurucz (1979, references therein), the response
function computation includes atmospheric transmissivity, re-
flection from aluminium mirrors, a standard detector sensitiv-
ity, and the filter transmission curves (Matsushima 1969). The
response is normalized such that:∫ λ2

λ1

Sx(λ) dλ = 1.

An example of the intensity computed in the Str¨omgren photo-
metric system is given in Fig. 1. Differences can be seen in the
behavior of the intensity with the band because opacities – and
consequently optical depth and formation depth – are functions
of wavelength. We can then anticipate that the limb-darkening
laws which fit best the intensity will differ from one Str¨omgren
band to another.

The fluxF(λ) is another output of ATLAS9. It is also inte-
grated overλ for eachu, v, b, y band:

Fx =

∫ λ2

λ1

F(λ)S(λ)dλ. (2)

Figure 2 displays the flux integrated over the Str¨omgren photo-
metric bands. D´ıaz-Cordovés et al. (1995) reported a discon-
tinuity in the variation ofF/I (1) with the effective temper-
ature around 7900 K. Claret (2000) and Claret et al. (1995)
have shown this discontinuity in the LDC and Claret (2000) at-
tributed this gap to the onset of convection. This discontinuity
is due to the use of an overshooting treatment for the top of the
hydrogen convection zone in the ATLAS9 code as discussed in
Van’t Veer & Mégessier (1996) and Castelli et al. (1997) and
Castelli (1999). No such discontinuity is visible in our data (see
Fig. 2) because in our models, no overshooting is included.

The behavior of the flux in theu band with the effective
temperature differs significantly from that of the other bands.
Indeed, theu band forms much higher in the atmosphere than
the other bands.

3. Limb-darkening laws and coefficients

3.1. Limb-darkening laws

For ourTeff and logg range of interest, we consider three dif-
ferent laws: quadratic, cubic and square root laws.

Fig. 2. F/I (1) as a function ofTeff for logg = 4.0, for u, v, b, y bands
and for CGM model atmospheres.

We study these laws for the following forms:
Quadratic law:(

I x(µ)
I x(1)

)
fit

= 1− a(1− µ) − b(1− µ)2. (3)

Cubic law:(
I x(µ)
I x(1)

)
fit

= 1− c(1− µ) − d(1− µ)2 − e(1− µ)3 (4)

which generalizes the cubic law studied by Van’t Veer (1960)
who considered the cased = 0.

Square root law:(
I x(µ)
I x(1)

)
fit

= 1− f (1− µ) − g(1− √µ) (5)

whereI x(1) is the specific intensity at the center of the disk for
thex band anda, b, c, d, e, f , andg are the corresponding LDC.

3.2. Limb-darkening coefficients

Following e.g. D´ıaz-Cordovés et al. (1995), we choose a least-
square method (LSM) as the numerical method to compute
the LDC. We therefore obtain the LDC for the three different
limb-darkening laws (Eqs. (3)–(5)) by determining the best fit
between the considered law and the ATLAS9 intensities with
an LSM. Several works (e.g. D´ıaz-Cordovés et al. 1995; Claret
2000) have shown that this method reproduces better the vari-
ation of intensity over the stellar disk than the method which
is based on the flux conservation as used, e.g., by Wade &
Ruciński (1985).

Limb-darkening coefficients for the three laws and for
theu band are given in Table 1 for our temperature and gravity
ranges; the corresponding standard deviationσ for each law is
also given as an indication of the quality of the fit.σ is defined
as:

σ2 =
1
N

N∑
i=1

[
I (µi)
I (1)

−
(
I (µi)
I (1)

)
fit

]2

(6)

whereN is the number ofµ values, hereN = 20. The data for
the other bands are available onhttp://dasgal.obspm.fr/
∼barban/Limb AF/. With the adopted numerical scheme, ac-
curacy of the calculation is∼2%–10% depending on the band,
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or equivalently two digits in the numerical values of the coef-
ficients are significant; Table 1 nevertheless lists them with 3
digits for comparison with results of previous authors.

Figure 3 represents the LDC for each law at a given grav-
ity as a function of temperature and for the Str¨omgren pho-
tometric bands. The coefficientsa to g behave smoothly with
effective temperature. Gaps or discontinuities are not seen, for
the same reason as discussed in Sect. 2. Whatever the band,
the linear coefficient is dominant for the 3 laws (except for the
square root law at high temperatures). This explains why the
linear coefficientsa, c, f behave the same way i.e. decrease
with the effective temperature as expected (see D´ıaz-Cordovés
et al. 1995 and references therein). The corrective term coeffi-
cients (quadratic and square root)b andg vary in a similar way
with the effective temperature. Coefficientsd andebehave dif-
ferently than theb andg coefficients as compensating effects
can exist when two corrective terms are used (in the cubic law)
instead of one (quadratic and square root laws).

Like for the flux (Fig. 2), the effective temperature depen-
dence of coefficients in theu band is quite different from the
other bands. The three other bands on the other hand show a
similar effective temperature dependence.

3.3. Selecting the best limb-darkening laws

The limb-darkening law must represent well enough the model
atmosphere intensity variation over the disk. To quantify the
quality of the fit between the model atmosphere intensity and
the given law, we followed D´ıaz-Cordovés & Giménez (1992)
and used the standard deviation,σ (see Eq. (6)). For the 4 pho-
tometric bands and the considered range of temperature and
gravity,σ remains smaller than∼1.3× 10−2. Figure 4 is a typ-
ical example ofσ values found for our temperature range, for
logg = 4.0, and the Str¨omgren photometric bands. Figure 4
confirms that the law which best reproduces the model atmo-
sphere intensity depends on the photometric band and on the
effective temperature. For this particular example, the square
root law clearly gives the best result for theu band, the cubic
law for the v band. For the other bands,b andy, no general
rule can be drawn; any of the three laws can give the smallerσ
depending on the effective temperature and gravity.

Another indication of the goodness of the fit is the com-
parison between the variation withµ of the ATLAS9 intensity
and that of the intensity derived from the limb-darkening law.
Figure 5 displays such a comparison for a given temperature
and gravity. This figure shows that, for a given temperature and
gravity, the square root law gives the best result for theu band
while it is the cubic law which gives the best result for the other
3 bands. It must be noted that for theb band, the cubic and
quadratic law give the same result (cf. also Fig. 4).

In practice, we use theσ criterion for selecting the best
law but check also that the variation of the intensities withµ is
correctly reproduced. With a tolerance ofδσ = 0.001 in theσ’s
that are given in Table 1 (i.e. two laws are considered of similar
quality whenever theirσ’s differ by less than 0.001), we find a
unique best law for each band,u and v, for our temperature
and gravity ranges. Hence in the remainder of the paper, the

Fig. 3. The quadratic coefficients,a and b, the cubic coefficients,c,
d and e, and the square root coefficients, f and g, as a function of
temperature, forlog g = 4.0, for uvby bands and for CGM models.

square root law is chosen as the best law for theu band and the
cubic law for thev band. For theb band, the best law can be
taken as the cubic one for all temperatures and gravities except
for some high gravities at low temperatures (at 6000 K with
logg = 4.3 and 4.5 and at 6250 K with logg = 3.8−4.5) for
which we must take the square root law. For they band, the
cubic law is selected except for some gravities and effective
temperatures for which we must choose the square root law (at
6000 K and 6250 K with all logg, at 6500 K with logg = 3−4.5
and at 6750 K with logg = 4.3−4.5). For any band, the best
law yields aσ smaller than 0.003–0.004. As a consequence, it
turns out that the quadratic law is not selected in the effective
temperature and gravity range of interest here.
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Fig. 4. σ as a function of temperature for logg = 4.0, for theuvby
bands and for CGM models.+ correspond to the quadratic law (Q),∗
to the cubic law (C), and� to the square root law (SR).

Fig. 5.∆I ≡ I (µ)/I (1)–I (µ)/I (1)law as a function ofµ for Teff = 7250 K
and logg = 4.0, for theuvby bands and for CGM models.+ corre-
sponds to the quadratic law,∗ to the cubic law, and� to the square
root law.

Once the best law is selected and for the four bands, the
flux computed with the limb-darkening laws fits the ATLAS9
flux to better than 0.45% and the intensity variation over the
disk computed with limb-darkening laws to better than 3.5% at
low µ and than 0.5% forµ greater than 0.2.

4. Weighted limb-darkening integrals

Photometric methods for oscillation mode identification which
are currently used forδ Scuti andγ Doradus stars are based
on an analytic expression for the flux variation due to non
radial pulsation (Watson 1988 and for instance Balona &
Dziembowski 1999). This expression uses weighted limb dark-
ening integrals and their derivatives with respect to logTeff

and logg. The weighted limb darkening integrals are de-
fined as:

b`x =
∫ 1

0
hx(µ) µ P`(µ)dµ (7)

where:
- P` are the Legendre polynomials of order`;

- hx(µ) is the limb-darkening function, defined as:

hx(µ) = hx(1)

(
I x(µ)
I x(1)

)
fit

with hx(1) = 2
I x(1)
Fx

(8)

whereFx is the model atmosphere flux in thex band.hx(µ) is
normalized as (Watson 1988):
∫ 1

0
µhx(µ)dµ = 1. (9)

We find it convenient to rewrite the limb darkening laws
(Eq. (3)–(5)) under the forms:

- for the quadratic law:

hx(µ) = X0,x + X1,xµ + X2,xµ
2 (10)

- for the cubic law:

hx(µ) = Y0,x + Y1,xµ + Y2,xµ
2 + Y3,xµ

3 (11)

- for the square root law:

hx(µ) = Z0,x + Z1,xµ + Z2,x
√
µ (12)

whereXi,x,Yi,x,Zi,x are constants and depend on the physics of
the model atmosphere and on thex band. The normalization
condition (Eq. (9)) imposes the following relations:

- for the quadratic law:

X0,x = 2− 2
3

X1,x − 1
2

X2,x (13)

- for the cubic law:

Y0,x = 2− 2
3

Y1,x − 1
2

Y2,x − 2
5

Y3,x (14)

- for the square root law:

Z0,x = 2− 2
3

Z1,x − 4
5

Z2,x. (15)

Substituting Eqs. (10)–(12) into Eq. (7) and using Eqs. (13)–
(15) gives:

- for the quadratic law:

b`x = C0,` +C1,` X1,x +C2,` X2,x (16)

- for the cubic law:

b`x = C0,` +C1,` Y1,x +C2,` Y2,x +C3,` Y3,x (17)

- for the square root law:

b`x = C0,` +C1,` Z1,x +C′2,` Z2,x. (18)

The coefficientsCi,` are then given by

C0,` = 2 I`,1
C1,` = I`,2 − (2/3) I`,1
C2,` = I`,3 − (1/2) I`,1
C3,` = I`,4 − (2/5) I`,1
C′2,` = I`,3/2 − (4/5) I`,1 (19)
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where following Dziembowski (1977), we define:

I`,q =
∫ 1

0
µq P`(µ) dµ. (20)

Table 2 lists theCi,` coefficients for` = 0−10. TheXi ,Yi ,Zi

quantities are related to the LDCa to g (Eqs. (3)–(5) and (8))
by:

X1,x = hx(1) (a+ 2b), X2,x = −hx(1) b
Y1,x = hx(1) (c+ 2d+ 3e), Y2,x = −hx(1) (d+ 3e)
Y3,x = hx(1) e
Z1,x = hx(1) f , Z2,x = hx(1) g.

An example of variation ofhx(1) with effective temperature for
a given gravity can be seen from Fig. 2.

The derivatives ofb`,x with respect to logTeff and logg are
numerically computed by means of a cubic spline decomposi-
tion and care has been taken to avoid grid boundary effects.

For later discussion, we note that a general variation ofb`,x
can be written for the square root law (Eq. (18)), for in-
stance, as:

∆b`x = C1,` ∆Z1,x +C′2,` ∆Z2,x (21)

where∆ represents either a derivative with respect to logTeff

or to logg or represents the difference betweenb`,x computed
with two different assumptions for the convective treatment of
the model atmosphere.

Hence, dependences of theb`,x in Eq. (16)–(18) of their
derivatives or variations in Eq. (21) with convection depend on
one hand oǹ through theI`,q (Ci,`) and on the other hand on
logTeff , logg, and on the convection model (through the struc-
ture of the atmosphere) through the coefficientsX,Y, andZ.

4.1. Dependence of b` and derivatives
on the limb darkening law

Here, we compare theb` coefficients computed with the cubic
and square root laws. Differences in theb` between these two
laws are negligible at loẁ (smaller than 0.1% for̀ < 3) and
tend to increase with the degree` and, for instance, reach up
to 15% for` = 5, 6 in theu band and 50% in thev band. The
differences significantly depend onTeff but show a similar be-
havior with gravity changes. This remains true for any`.

The b` derivatives are also sensitive to the choice of the
limb darkening law. Differences in the derivatives with respect
to logTeff are significant for̀ > 4 and are present mainly at
low temperatures (Teff < 7500 K). Differences in the deriva-
tives with respect to logg can differ by a factor 4–5 for̀ > 4,
but nevertheless remain small as the derivatives themselves are
small.

We have shown here that except for low` values, the effect
of the limb darkening law onb` and their derivatives is not
negligible.

4.2. Dependence of b` and derivatives
on temperature and gravity

The weighted limb-darkening integrals are computed with
a limb darkening law which is selected as the best one

Table 2. Ci,` coefficients for` = 0 to 10 for quadratic, cubic, and
square root laws.

` C0 C1 C2 C′2 C3

0 +1 0 0 0 0
1 2/3 1/36 1/30 2/105 1/30
2 1/4 1/20 1/16 1/30 9/140
3 0 1/24 2/35 2/77 1/16
4 –1/24 1/72 5/192 1/156 17/504
5 0 –1/192 0 –2/385 1/160
6 1/64 –1/192 –7/1280 –343/106080 –1/320
7 0 1/640 0 2/1045 –1/1920
8 –1/128 1/384 3/1280 907/495040 1/640
9 0 –1/1536 0 –2/2185 1/8960
10 7/1536 –7/4608 –55/43008 –2629/2284800 –7/7680

according to the Sect. 3.3, that-is, for instance, the square root
law for theu band and the cubic law for thev band.

The b` are only weakly dependent onTeff and logg. On
the other hand, their derivatives significantly depend on logg
and onTeff. These dependencies are`-dependent and differ in
eachu, v, b, y band (see Figs. 6 and 7).

4.2.1. A typical low ` case

Figure 6 illustrates a typical loẁcase, i.e.̀ = 3. Theb`=3,x co-
efficients and their derivatives with respect to logg and logTeff

are plotted versusTeff and for different values of logg. Only the
coefficients foru andv bands are shown as those for theb andy
bands behave quite similarly to thev coefficients.

For theu band (and the square root law),b`=3,x decreases
with Teff and increases with logg. Its derivatives with respect
to logTeff monotonously increase withTeff and decrease with
logg. Derivatives ofb` with respect to the gravity are about
2 orders of magnitude smaller than the derivatives ofb` with
Teff and are more sensitive to numerical accuracy limitations.

Theb`=3,x for the other bands decrease monotonously and
smoothly withTeff. On the other hand, theb`=3,x in v, b, and
y bands decrease with logg in contrast with theb`=3,x behavior
in theu band. This is directly related to the different behavior
of the intensities in the bandu compared to the other bands
with Teff (see Fig. 1). Derivatives ofb`=3,x in the other bands
are non-monotonously varying withTeff and logg and are of
the same order of magnitude as for theu band.

4.2.2. Dependence of b` and derivatives on `

It is well known that for a given model atmosphere,b` de-
creases with̀ (Dziembowski 1977). Figure 7 shows theb`’s
and their derivatives as a function ofTeff and logg for various
` values for theu band (and the square root law). TheTeff and
logg behavior of theb`’s is similar, i.e. a decrease withTeff

and an increase with logg, for ` = 1 to 4 and for` = 7, 8.
The` = 5, 6, 10 both increase withTeff and decrease with logg
while ` = 9 shows a minimum around 6500 K and decreases
with logg. The absolute values of the derivatives ofb`,x with
respect to logg and logTeff also decrease rapidly towards small
values with increasing degrees (Fig. 7). Derivatives ofb` with
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Fig. 6. For u and v bands and for CGM models; top: weighted limb
darkening integralsb`=3 (the square root law was used foru, and the
cubic law for v); middle: partial derivatives ofb`=3 with respect to
logTeff ; bottom: partial derivatives ofb`=3 with respect to logg.

logTeff vary in a similar way withTeff for ` = 1 to 4 and̀ = 8,
decrease for̀ = 6, 7 and show a maximum for̀ = 5, 9, 10
around 7000 K. Derivatives ofb` with the gravity remain small:
roughly these derivatives amount to 10−3 at low ` and decrease
down to 10−6−10−5 at high`. Figure 8 showsb` derivatives for
thev band for several̀. This can be explained by the` depen-
dence of theb` derivatives at loẁ which follows thè behavior
of theCi,` coefficients (i.e. theI`,q in Eq. (19)) and differs de-
pending on whether̀ − q is positive or negative, even or odd
(Dziembowski 1977). For instance, for theu band in Fig. 7 and
the v band in Fig. 8, a qualitative change of behavior in theb`
derivatives is seen to occur between` ≤ 2 and` > 2 which
arises becauseC1,` in Eq. (19) involvesI`,2. Indeed, from the
definition, the expression forI`,q differs for` > q and` < q.
Hereq = 2 and the behavior ofI`,2 differs for` > 2 and` < 2.

For high`, the integralsI`,q behave as̀−(q+3/2) for an integer
q (Dziembowski 1977). Forq = 3/2, we find that

I`,3/2 = (−)(`−3)/2 6
(5+ 2`)(1+ 2`)(2` − 3)

for odd`

I`,3/2 = (−)(`−2)/2 6
(5+ 2`)(1+ 2`)(2` − 3)

for even`

and asymptotically for high`, we therefore also have
I`,3/2 ∼ `−3.

Fig. 7. For u band and for CGM models:b` (top panel) and its deriva-
tives with respect to logTeff (middle) and logg (bottom) as a func-
tion of Teff (left side) for logg = 3.0 and as a function of logg for
Teff = 7500 K (right side), for several̀ values (̀ = 7 and` = 10
would be close tò = 9).

The high ` behavior of the dominantC’s coefficients
(Eqs. (19)–(20)) then is:
for odd`:

C0,` = 0 = C2,` (22)

C1,` ∼ 2
√

2/π (−)(`−3)/2 `−7/2 (23)

C′2,` ∼
3
4

(−)(`−3)/2 `−3 (24)

for even`, one has:

C1,` = −C0,`/3; C2,` ∼ −C0,`/4 (25)

C3,` = −C0,`/5; C′2,` ∼ −2C0,`/5 (26)

and

C0,` ∼ 2
√

2/π (−)(`−2)/2 `−5/2. (27)

Accordingly, for high`, theb` behavior and its derivatives or
variations with the physics of the model obeys:
for the cubic law:
- for odd`:

b` ∼ 2
√

2/π (−)(`−3)/2 `−7/2 Y1 (28)
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Fig. 8. For thev band and for CGM models: derivatives ofb` with
respect to logTeff (top) and logg (bottom) as a function ofTeff (left
side) for logg = 3.0 and as a function of logg for Teff = 7500 K (right
side) for several̀ values (̀ = 7 and` = 10 would be close tò = 9).

∆b` ∼ 2
√

2/π (−)(`−3)/2 `−7/2 ∆Y1 (29)

- for even`:

b` ∼ C0,` (1− 1
3

Y1 − 1
4

Y2 − 1
5

Y3) (30)

∆b` ∼ −1
3

C0,` (∆Y1 +
3
4
∆Y2 +

3
5
∆Y3) (31)

with C0,` given by Eq. (27).
for the square root law:
- for odd`:

b` ∼ 3
4

(−)(`−3)/2 `−3 Z2 (32)

∆b` ∼ 3
4

(−)(`−3)/2 `−3 ∆Z2 (33)

- for even`:

b` ∼ 2
√

2/π (−)(`−2)/2 `−5/2 (1− 1
3

Z1 − 2
5

Z2) (34)

∆b` ∼ −2
√

2/π (−)(`−2)/2 `−5/2(
1
3
∆Z1 +

2
5
∆Z2) (35)

where we have dropped the band subscriptx for clarity.

It must be noted that theb` behavior at high̀ is very dif-
ferent depending on whether the degree is even or odd: it de-
creases more rapidly for odd̀than for eveǹ (as already no-
ticed by Dziembowski et al. 1998) for a given law. In addition,
for the cubic law, the linear term remains dominant for odd`
whereas the corrective terms (higherµ dependence of the law)
do also contribute for eveǹ. For the square root law, the cor-
rective term (square rootµ dependence) is dominant for odd`
whereas it contributes roughly equally with the other terms for
even`.

5. Effect of the convective treatment

5.1. Limb-darkening coefficients

We now compare the LDC for our CGM models with the LDC
which have been computed assuming a classical MLT convec-
tive treatment and for two values of the mixing length parame-
ter (α = 0.5 andα = 1.25).

As expected largest differences occur between CGM and
MLT α = 1.25 whereas differences between CGM and MLT
α = 0.5 remain much smaller (see Fig. 9).

For the coefficientsa, c, and f in the u band, the differ-
ences between CGM and MLTα = 1.25 models extend toward
higher temperatures for model atmospheres with higher gravi-
ties where they reach their maximum value of 10%, i.e. more
than the numerical precision of the calculation of the coeffi-
cients themselves (∼2%). Forb, e, andg in the u band also,
the differences are smaller than 25% except for few points with
much higher differences (up to a factor 10); these differences
reach their maximum at low temperature. And finally, for the
coefficientd in theu band, differences are as high as a factor 4
which is reached at low temperature. For the bandsv and b,
the differences fora andc are less than 30% and less than 60%
for f . For these three coefficients, the differences extend toward
the highest temperatures for model atmospheres with higher
gravities. The other coefficients,b, d, e, andg, differ in maxi-
mum by a factor∼20−30 at low temperature. For the bandy,
the values are intermediate between the bandu ones and thev
andb ones except for the coefficientd which has the same dif-
ferences as in thev andb bands. For this band, the differences
propagate toward higher temperatures for model atmospheres
with higher gravities. The bandu is less affected by the treat-
ment of convection than the other bands because it is formed
higher in the atmosphere, above the convection zone.

A comparison between LCD computed with MLTα = 0.5
and CGM model atmospheres shows differences which are
smaller than the ones mentioned above. They behave as above
with largest differences in the bandsb, v reaching 10% fora, c,
and f and a factor 8 for the other coefficients. We note how-
ever that the coefficient d stands out, because differences be-
tween CGM and MLTα = 0.5 reach the same order of mag-
nitude as the differences between CGM and MLTα = 1.25;
this happens for models with intermediate gravity and below
∼7600 K. This can be explained by the fact that the maxi-
mum flux for each band happens to be in a region which, when
it is convective, is more or less efficient in transporting heat
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Fig. 9.Typical examples off , d, andg as a function ofTeff for a given
photometric band for a given value of logg and for three different
convection options (MLTα = 0.5, MLT α = 1.25 and CGM).

depending on the adopted convection model and adopted val-
ues of the convection parameters.

The above differences in LDC closely follow the differ-
ences in the temperature vertical structure of the model at-
mosphere due to different treatments of the convective energy
transport as discussed in Paper I.

5.2. Best law for a given band

We now consider the effect of convection treatment in the
model atmosphere on the selection of the best law for a given
band. Again, there are more differences with CGM mod-
els compared with MLTα = 1.25 model atmospheres than
with CGM model atmospheres compared with MLTα = 0.5
model atmospheres. With a toleranceδσ = 0.001 as used
above, the law considered as the best is the same with CGM
model atmospheres and MLTα = 0.5 model atmospheres ex-
cept for a couple of models in theb band (at 6000 K and for
log g = 3.8, 4.0–4.2, 4.4).

The “best” law is the same in thev band for CGM and MLT
α = 1.25 models. For the other bands, many differences exist
and no general trend can be established.

5.3. Weighted limb-darkening integrals b`
and their derivatives

As a general statement, differences in theb` coefficients and
derivatives computed with CGM and MLTα = 0.5 are much
smaller than differences obtained between computations with
CGM and MLTα = 1.25, as expected from the above remarks.

Comparisons for some typical cases are shown in Fig. 10.
As found earlier (Balona & Evers 1999), differences in the con-
vective treatment disappear at∼8300 K above which the tem-
perature gradient is radiative.

The variations (increase or decrease) of theb` coefficients
with Teff and logg show similar trends for the three convec-
tion options. Like for the LDC, the effect is maximal onb`
for low effective temperatures, low gravity model atmospheres,
but these large differences extend towards higher temperatures
for models with higher gravity. However, the magnitude of the
differences is not the same. As can be seen in Fig. 10, the mag-
nitude of the differences in theb`’s due to the convection treat-
ment is` dependent. It is large for small` and decreases with
increasing̀ due to theCi,` dependence of theb`. For instance
for theu band, the square root law has been chosen and one has
∆b`,u ∼ C1,` ∆Z1,u = C1,` ∆(hu(1) f ) as f is dominant overg.
∆ here represents the change due to different treatments for the
convective flux. Hence∆b`,u decreases with̀ like C1,` for a
given change in the∆Z1,u.

The effect, onb` and derivatives, of changing the convective
option in the model atmospheres is dominant in thev band.

For the effect of convection on the derivatives, we can con-
sider theu band (and the square root law) as a representative
band. Differences between∂b`/∂ logTeff computed with CGM
and MLT α = 1.25 can reach up 20% whereas differences be-
tween∂b`/∂ logTeff computed with CGM and MLTα = 0.5
reach at maximum 5%.

Derivatives ofb` with the gravity show a similar behavior
when computed with CGM and MLTα = 0.5 while computa-
tions with MLTα = 1.25 result in values which differ to an ex-
tent which depends onTeff and gravity. The difference between
computations with CGM and MLTα = 1.25 is about<10−4 for
low ` and decreases for high̀. Differences are much smaller
between derivatives computed with CGM and MLTα = 0.5
with a maximum of 5× 10−4 for low ` and 5× 10−5 for ` = 10
for instance.

6. Discussion and conclusions

LDC have been computed for model atmospheres with a solar
metallicity, an effective temperature in the range 6000–8500 K
and logg in the range 2.5–4.5 with 3 different laws: quadratic,
cubic, and square root. Our model atmospheres are built with
a turbulent convection approach developed by Canuto et al.
(1996, CGM), which is considered as an improvement over the
MLT prescription and is implemented today for non-grey, line
blanketed, horizontally averaged models.

In order to study the effect on LDC of the treatment of
convection, we used also model atmospheres built with the
MLT presciption for two different value ofα: 0.5 and 1.25.
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Fig. 10. For u (top) andv (bottom) bands and for logg = 3.5, dif-
ferences betweenb` computed from CGM model atmospheres andb`
computed from MLTα = 1.25 model atmospheres (left) and the dif-
ference betweenb` computed from CGM model atmospheres andb`
computed from MLTα = 0.5 model atmospheres (right), as a function
of theTeff for several̀ values.

As expected, larger differences are observed between CGM
and MLTα = 1.25 than between CGM and MLTα = 0.5.

A comparison with the LDC computed by Claret (2000)
is made. Claret (2000) proposes a new non-linear law valid for
the whole HR Diagram, however the author gives also the LDC
computed from ATLAS models with the quadratic and square
root laws we use in this paper. Figure 11 shows a comparison,
for a given gravity, of the quadratic coefficients,a andb and
square root coefficients, f andg from Claret (2000) and from
this work. The general behavior of the considered LDC with ef-
fective temperature is similar for both works, i.e. a decrease of
a and f and an increase ofb andg with Teff. This is not the case
for Claret’s LDC between 7500 and 8000 K where the observed
discontinuity is due to the same reason mentionned in Sect. 2.
The LDC values from these two works are similar at high tem-
peratures whereas they are quite different at low temperatures.
Figure 12 shows howI (µ)/I (1) derived from the LDC from this
work and from Claret (2000) matches the model atmosphere
intensity. The larger differences between these two works ap-
pear at low temperature and decrease towards high temperature
as also seen in LDC (Fig. 11). On the other hand, the fits are
similar quality at high temperatures. We can see on these fig-
ures that the use of a higher resolution in optical depth in the
model atmospheres, a different treatment of the convection and
the non-use of the overshooting option in ATLAS code imply
significant changes in the LDC values and then on the intensity
variation withµ.

Using model atmospheres with the CGM prescription for
the convection treatment, we find that the law which gives the
best results for theu band is the square root one. The cubic
law gives the best fit for thev band as well as for theb band
except for few models at low temperatures and high gravity.
Finally, for they band, the cubic law gives the best results for
high temperatures, and the square root law for low tempera-
tures. Similar results are generally obtained with MLTα = 0.5.
On the other hand, conclusions about the best law to use for
a given band significantly differ when the model atmosphere

Fig. 11. Quadratic coefficients,a andb, and square root coefficients,
f andg, from Claret (2000) (left panels) and from this work (right
panels), as a function of temperature, for logg = 3.5, for uvby bands.

is computed with MLTα = 1.25. For the considered tempera-
tures and gravities and for theuvby bands, similar results were
obtained by D´ıaz-Cordovés et al. (1995) with different model
atmospheres; they found by comparing a linear, a quadratic and
a square root law that the latter can be a very good approxima-
tion.

The weighted limb-darkening integralsb`x and their deriva-
tives have then been computed from the LDC. We find, as pre-
vious authors, that theb`x are only weakly dependent onTeff

and logg. On the other hand, their derivatives significantly de-
pend on logg and onTeff. These dependencies are`-dependent
and differ in eachu, v, b, y band. In addition, these integrals de-
pend on the convective treatment and as expected larger differ-
ences are found between CGM and MLTα = 1.25 than be-
tween CGM and MLTα = 0.5.

The new grid of model atmospheres which are finer spaced
in temperature and gravity and have a higher resolution in
the temperature distribution with depth allowed us to have
smootherb`x and their derivatives as required for the mode
identification method. The improvements of these integrals and
its derivatives become evident when comparing the present re-
sults with plots shown in Garrido (2000). In particular, the dis-
continuities in these integrals, of the order of 0.01 in absolute
value translating into a few percent for the lower`-values but
up to 30–40% for̀ = 4 and even larger for higher̀-values,
have disappeared completely. Subsequently the discontinuities
in the derivatives with respect to temperature, with uncertain-
ties of several orders of magnitude, have also disappeared. We
think the effect was due to the inclusion of overshooting in the
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Fig. 12. ∆I ≡ |I (µ)/I (1) – I (µ)/I (1)law| for a square root law using
LDC from this work (dotted line) and LDC from Claret (2000) (dashed
line) for the u band, logg = 3.5, for Teff = 6500 K (top) and for
Teff = 8000 K (note the difference of vertical scale between the two,
upper and lower, plots).

former calculations. The consequences on the mode identifi-
cation photometric technique depends critically on the`-value
considered and on the color index, but their contributions in-
crease almost monotonically with̀, as can be seen in Fig. 11
of Garrido (2000). More detailed calculations, taking into ac-
count non-adiabatic theoretical calculations to be included in
the linear formula given in Watson (1988), will be given in a
forthcoming paper.

Tables for all numerical coefficients are available upon re-
quest; tables for quadratic, cubic and square root LDC and the
σ corresponding to the law for CGM models and foru, v, b,
andy bands are available on
http://dasgal.obspm.fr/∼barban/Limb AF/
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