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ABSTRACT

Aggregation of amyloid B peptides is known to be one of the main processes responsible for
Alzheimer’s disease. The resulting dementia is believed to be due in part to the formation of
potentially toxic oligomers. However, the study of such intermediates and the understanding of
how they form is very challenging because they are heterogeneous and transient in nature.
Unfortunately, few techniques can quantify, in real time, the proportion and the size of the different
soluble species during the aggregation process. In a previous work (Deleanu et al. Anal. Chem.
2021), we showed the potential of Taylor dispersion analysis (TDA) in amyloid speciation during
the aggregation process of AB(1-40) and AB(1-42). The current work aims at exploring in detail
the aggregation of amyloid AB(1-40):AB(1-42) peptide mixtures with different proportions of each
peptide (1:0, 3:1, 1:1, 1:3 and 0:1), using TDA and atomic force microscopy (AFM). TDA allowed
for monitoring the kinetics of the amyloid assembly and quantifying the transient intermediates.
Complementarily, AFM allowed the formation of insoluble fibrils to be visualized. Together, the
two techniques enabled to study the influence of the peptide ratios on the kinetics and the formation

of potentially toxic oligomeric species.

KEYWORDS. Taylor dispersion analysis; AFM; peptide aggregation; oligomers; amyloid beta

peptides; diffusion coefficient; hydrodynamic radius.
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Introduction

Alzheimer’s disease (AD) is the most common primary dementia. It usually presents a
progressive course and characteristically affects different cognitive and behavioral functions.
Perhaps the cardinal, most frequently observed symptom of disease onset is memory loss', which
results from initial lesions in the hippocampus (which lies in the medial temporal lobes of the brain
and is responsible for long-term memory) further extending to the rest of the brain. At later stages,
the degeneration of other cognitive and behavioral areas is observed which will clearly indicate
the type of dementia.

The brains of Alzheimer's patients present a series of characteristic hallmarks. First,
neurofibrillary tangles composed of hyperphosphorylated tau protein are observed in neurons.
Then, extracellular fibrillary structures called neuritic (or senile) plaques, that are due to the
deposition of amyloid B peptides (Ap), are observed?. In the 1990’s, it was believed that the senile
plaques were the most pathogenic forms of the AB>#, which resulted from the self-assembly of the
two major amyloid peptides AB(1-40) and AB(1-42). During this self-assembly, species are formed
with evolving morphology and size from oligomers, to protofibrils and finally to fibrils and
plaques, through a highly complicated process.

More recent studies suggested that the main factor of AD pathogenesis was the formation of
soluble oligomers of AP, which are believed to be more toxic than plaques because they are able
to spread across neuronal tissue and bind to membrane receptors, including the prion protein,
promoting neurotoxicity and synaptic loss>”’. However, in contrast to fibrils, which are highly
stable and can be observed by microscopy, the soluble oligomers are more difficult to detect and
to study in real time®, since they are metastable, transient® and highly polydisperse in size. Studies

have shown that AB(1-40) does not quantitatively form small oligomers during the aggregation
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process but rather goes from monomers to fibrils following a direct pathway® '°. On the other hand,

AP(1-42) goes through the formation of intermediate species with diverse sizes and shapes'! 1.

Although these two amyloid peptides coexist in vivo'> 14

, most of the in vitro studies on Ap were
focused on the study of pure peptide solutions and only a small proportion of the vast AD literature
was dedicated to mixtures of these peptides'>!8. Many of the studies dealing with the mixtures
were directed toward the kinetics of the aggregation process and more particularly the study of the

15-17,19-21

amyloid fibers and very few toward the oligomeric structures'®. The aggregation process

17, 21

in such mixtures was already studied by Thioflavin T fluorescence'”-?!, sedimentation'”, atomic

)16, 19 22,23

force microscopy (AFM , nuclear magnetic resonance (NMR or electron paramagnetic
resonance'® to name few methods. The results from these studies indicated that both AB(1-40) and
AP(1-42) interact during the aggregation process, with cross seeding between peptides. However,
some authors claimed that the fibrils are homomolecular!” while others stated that
heteromolecular!® fibrils are obtained. In all cases, it was observed that the presence of AB(1-42)
accelerated the aggregation of AB(1-40) and vice versa. To our knowledge, an in-depth study on
the species present during the early stages of the aggregation of amyloid peptide mixtures does not
exist to date. For that reason, and to help develop drug candidates targeting the toxic oligomers,
new analytical methodologies are required to monitor and size the different species in real time.
In this context, Taylor dispersion analysis?*?® (TDA) appears as a very promising alternative
analytical method. In our previous report’’, we showed the ability of TDA to follow the
aggregation process of amyloid peptides, using an extensive data treatment that revealed a
complete picture of the aggregation process and allowed to size the transient structures. As

described eclsewhere, TDA allows to determine the molecular diffusion coefficient, D, and

hydrodynamic radius, R;, of a solute, including for mixtures, without any bias in size as compared
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to other sizing methods®®, since the small and the large solutes contribute proportionally to their
mass abundance in the mixture*. The use of TDA in the field of protein aggregation presents
several advantages®*-33. It offers low sample consumption (less than 1 pL for the whole aggregation
process), short analysis time allowing a high number of sampling points and real time monitoring
of the aggregation, a wide range of sizing (from angstrom to sub-micron) allowing to size the
monomers, oligomers and higher size soluble prefibrillar structures, together with a direct analysis
without any sample pretreatment or filtration 3+-%°,

In this work, we used TDA to study peptide mixtures of AB(1-40) and AP(1-42) with the aim of
revealing the size of the transient structures formed during the aggregation process. The results for
selected time points were compared with those obtained by AFM to correlate the observations

from these two independent techniques. AFM also allowed to study non-soluble fibrils, which

cannot be sized or directly observed by TDA.

Materials and methods

Materials

Amyloid beta (1-40) (denoted AP(1-40) in this work) was prepared by fast conventional solid
phase peptide synthesis (SPPS) using a Fmoc orthogonal strategy as described elsewhere?’.
Amyloid beta (1-42) (AB(1-42), batch number 100002591, >95%) was purchased from Bachem
(Bubendorf, Switzerland). Sodium dihydrogen phosphate, tris(hydroxymethyl)aminomethane,
hydrochloric acid fuming 37%, sodium chloride and sodium hydroxide were purchased from
Sigma Aldrich (France). The ultrapure water used for all buffers was prepared with a MilliQ

system from Millipore (France).

Peptide pretreatment
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Both AB(1-40) and AP(1-42) were first pretreated independently as described elsewhere®”: 3%
Briefly, AB(1-40) and AB(1-42) were dissolved in a 0.10 % (m/v) and 0.16 % (m/v) NH4OH
aqueous solution respectively to reach a final peptide concentration of 2 mg/mL. The peptide
solutions were then incubated at room temperature for 10 min, separated into several aliquots and
freeze-dried. The aliquot volume was calculated in order to obtain 10 nmol of peptide in each

Eppendorf tube. The lyophilized peptide aliquots were stored at -20 °C until further use.

Peptide aggregation study by Taylor dispersion analysis

Briefly, and as described thoroughly elsewhere?>2%3%3° Taylor dispersion analysis allows for the
determination of the molecular diffusion coefficient of a solute which can be obtained from the
band broadening resulting from the combination of the Poiseuille parabolic flow and the molecular
diffusion by quantifying the temporal variance (¢°) of the elution profile. For that, a Gaussian
function is used to fit the experimental elution peak allowing to obtain the peak variance ¢° and
thus calculate the molecular diffusion coefficient, D, and consequently the hydrodynamic radius,
R;,. When more than one size populations are present, a sum of Gaussian functions can be used to
fit the experimental trace, or Constrained Regularized Linear Inversion (CRLI)*® can be used to
get the size distribution. For more details, the reader may refer to the supporting information for

the theoretical aspects, equations and more details on the data processing.

TDA was performed on an Agilent 7100 (Waldbronn, Germany) capillary electrophoresis system
using bare fused silica capillaries (Polymicro technologies, USA) having 40 cm x 50 pum i.d.
dimensions and a detection window at 31.5 cm. New capillaries were conditioned with the
following flushes: 1 M NaOH for 30 min; ultrapure water for 30 min. Between each analysis,
capillaries were rinsed with 20 mM phosphate buffer, pH 7.4 (2 min). Samples were injected

hydrodynamically on the inlet end of the capillary (44 mbar, 3 s, injected volume was about 7 nL
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corresponding to 1% of the capillary volume to the detection point). Experiments were performed
using a mobilization pressure of 100 mbar. The temperature of the capillary cartridge was set at
37 °C. The vial carrousel was thermostated using an external circulating water bath 600F from
Julabo (Germany). The solutes were monitored by UV absorbance at 191 nm. The mobile phase
was a 20 mM, pH 7.4 phosphate buffer (viscosity at 37 °C is 0.7x10"* Pa.s). To prepare the
mixtures, freeze-dried mixed peptide aliquots were prepared so that the final sample would contain
13 nmol of total peptide except for the pure samples where the amount of peptide was of 10 nmol.
First, each of the required stock aliquots (see previous section) were dissolved in 100 pL of 0.16%
(m/v) NH4OH to avoid aggregation during this step, and appropriate volumes were used to obtain
the desired mixtures. The final aliquots were immediately subjected to freeze-drying and then
stored at -20°C until further use. The resulting peptide powders were dissolved in 20 mM
phosphate buffer at pH 7.4 to reach a final total peptide concentration of 133 uM : 7) 100 % APB(1-
40) contained 10 nmol of AB(1-40) dissolved in 75 pL of buffer; ii) 75 % AP(1-40) and 25 %
APB(1-42) mixture contained 10 nmol of AB(1-40) and 3.33 nmol of AP(1-42) dissolved in 100 uL
of buffer; iii) 50 % AP(1-40) and 50 % AP(1-42) mixture contained 6.67 nmol of each peptide and
was dissolved in 100 pL of buffer; iv) 25 % AP(1-40) and 75 % AP(1-42) mixture contained 3.33
nmol of AB(1-40) and 10 nmol of AB(1-42) dissolved in 100 pL of buffer and finally v) 0 % AB(1-
40) contained 10 nmol of AB(1-42) dissolved in 75 puL of buffer. After dissolution, the mixtures
were immediately transferred to a capillary electrophoresis vial and incubated at 37°C in the
capillary electrophoresis instrument carrousel. Aggregation was monitored by injecting the sample
(Vinj = 7 nL) every 7 min in the case of pure AB(1-42) and the AP(1-40): AP(1-42) 1:3 mixture (25
% AP(1-40)), while it was injected every 20 min for the AB(1-40): AB(1-42) 1:1 mixture (50 %

APB(1-40)) and every 30 min in the case of pure AB(1-40) and the AB(1-40): AB(1-42) 3:1 mixture
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(75 % AB(1-40)). During the monitoring of the aggregation process, each sample was injected for
100 to 125 TDA runs, corresponding to a total injected sample volume between 700 nL and 875
nL. To avoid sample evaporation, the vial cap was changed three times a day. The taylorgrams
were recorded with the Agilent Chemstation software, then exported to Microsoft Excel for
subsequent data processing. In general, the obtained elution profiles were not Gaussian, meaning
that the sample was polydisperse in size. All taylorgrams were fitted on the basis of the right-side
elution profile (i.e. ¢ > to, with # the peak time) to remove the spikes present on the left side as

described elsewhere?’.

Atomic force microscopy (AFM)

For atomic force microscopy characterisation, 5 puL aliquots of the peptide solutions collected at
different aggregation times were dried on silicon substrates freshly cleaned with piranha solution,
before gently rinsing with ultrapure water and drying in a flow of nitrogen gas. An Agilent 5500
AFM system with MSNL-F cantilevers (f= 110-120 kHz, k= 0.6 N/m, average tip radius of 2-12
nm) was used for topographical imaging in intermittent contact mode. The AFM topography
images were levelled, line-corrected and analysed using Gwyddion*!, a free and open-source SPM
(scanning probe microscopy) data visualization and analysis program. Maxima analysis was

performed using Image]*.

Results and discussion

Taylor Dispersion Analysis and data processing

One main objective of this work is to show the influence of the relative proportion of AB(1-40)
with respect to AB(1-42) on the aggregation process. The aggregation of the peptides in the

different mixtures was followed at 37°C. Figure 1 shows the taylorgrams recorded at selected
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incubation times for AB(1-40), AP(1-40):AB(1-42) mixtures (with molar ratio of AB(1-40) in the
mixture of 25%, 50% and 75% corresponding to 3:1, 1:1 and 1:3 mixtures), and AB(1-42). The
total peptide concentration in each solution was set at 133.3 uM. All experimental taylorgrams,
for all incubations times 74, are shown in Figures SI.1 to SL5. Figure 1 allows for a visual
comparison of the aggregation kinetics between the different amyloid peptide ratios. The
absorbance decrease of the elution profile with 7., which is due to the decrease in concentration
of the soluble species, was faster when increasing the AB(1-42) content in the mixture, as

previously observed for pure peptide solutions®’.

In order to elucidate the aggregation process in these solutions, an extensive data treatment was
realized on all the obtained taylorgrams. As already observed in our previous report?’, sharp peaks
or spikes, sometimes appear on the left side of the elution peak because of the presence of large

fibrils in suspension which are out of the Taylor regime** 4

and/or due to specific hydrodynamic
behavior for suspended large aggregates*®. The presence of these spikes imposes a data treatment
on the right side of the elution profile. Two different approaches were used to treat the
experimental elution profiles. First, the fitting with a finite number of Gaussian functions (7 =4 in
this work), leads to the classification of the obtained size populations into four categories: (i) small
unidentified molecules (R, < 0.9 nm), (i7) monomers and small oligomers (0.9 nm < R, <5 nm),
(#ii) higher mass oligomers (5 nm < R, < 50 nm) and finally (iv) soluble protofibrils (50 nm < R,
<300 nm). The second approach is based on the Constrained Regularized Linear Inversion (CRLI)

which aims at finding the probability density function Pp(D) that fits the taylorgram without any

hypothesis on the number of populations*.

Aggregation process of pure and mixed solutions of A peptides by TDA and AFM
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In the case of AB(1-40) alone, the first sign of spikes (fibrils) appears at 7, ~ 12 h (Figure SI.1).
However, the spike intensity remained relatively low and did not increase drastically over the
whole aggregation process (see gray data points in Figure 2). In parallel, the monomer peak
intensity remained constant until z,c ~ 20 h (“lag phase”), and then decreased rapidly to reach a
lower plateau after 7, ~ 48 h (red squares in Figure 2). This suggests an initial slow aggregation
step followed by a rapid fibrillization catalyzed by the formation of large aggregates (seeds) that
do not enter the capillary upon injection*®, in accordance with our previous report where another

concentration (100 pM) of AB(1-40) was used?’.

On the contrary, AB(1-42) alone did not show any lag phase and a fast decrease of this population
was observed with a complete disappearance after less than 2 h (red squares in Figure 2).
Meanwhile, when mixed together, AB(1-42) seemed to increase the kinetics of aggregation, with
the monomer population decreasing after 15 h, 8 h and 6 h for the 75%, 50% and 25% A(1-40)

mixtures respectively, without any visible lag phase (red squares in Figure 2).

With the aim of verifying hypotheses formulated from TDA, we also performed AFM imaging for
key times of the fibrillization process. The findings by TDA correlated well with AFM
observations for AB(1-40) alone (Figure 3), which showed the number of fibrils rise only at #,; =
28.10 h. In AFM images, the substrate remained covered with spherical objects in the 10 nm
diameter range (including eventual tip convolution effects) that can be attributed to monomers and
oligomers. The coverage by these species only decreased significantly, exposing portions of the
bare substrate, for 7,, = 28.10 h, which demonstrates the consumption of these objects by the

fibrillization process.

10



216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

In the case of AB(1-42) alone, the kinetics of aggregation were much faster than that of AB(1-40),
as demonstrated by the taylorgrams (Figure 1) and the monomer consumption (red squares in
Figure 2). The first spikes were observed only after 7,o ~ 10 min (Figure SI 5), in agreement with
AFM showing fibrils for the shortest incubation times, and a complete disappearance of the soluble
peptide species was observed after ¢, ~7 h (Figure 3). Similarly, only few monomeric/oligomeric
species remained visible after 48 min in AFM images, which showed from this time onward mainly
the substrate and fibrils. The decrease in the number of fibrils observed by microscopy for the
longest incubation times is likely due to the tangling of fibrils and compaction of these aggregates,
that have less affinity for the substrate and are more easily removed during the rinsing and drying

steps, as observed for other amyloid systems*’.

When mixed together, aggregation/fibrillization observed by both TDA and AFM accelerated with
the proportion of AB(1-42). In the case of the 75% AP(1-40) mixture, the first spikes in TDA
appeared after 7,.~6.5 h (Figure S1.2), while they were observed after only ~1.5 h and ~1 h for the
50 % and 25 % AP(1-40) mixtures respectively (Figures SI.3 and S1.4 respectively). In the case of
the mixture with the highest amount of AB(1-40), the spikes intensity increased with time and
remained visible even after 60 h of aggregation suggesting that the formed fibrillary structures are
smaller in size than those formed with AB(1-40) alone, and can enter more easily in the capillary
during the injection step. These observations were also conveyed in the AFM images, with fibers
appearing increasingly early during the aggregation process, and the spherical objects attributed to
monomers and oligomers being consumed faster upon raising the proportion of AB(1-42). Indeed,
these small species remain predominant on the substrates up to 28.10, 8.15, 3.05 and 0.27 h

respectively for 0, 25, 75 and 100% AB(1-42).

11
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As mentioned earlier, the Taylorgrams were treated by fitting a sum of Gaussian functions to
extract the abundance of size populations present under each elution peak during the aggregation
process. Figure 4 shows the hydrodynamic radii of the populations in the studied mixtures as a
function of incubation time, while Table 1 shows the average hydrodynamic radii values for the
size populations and the different peptide mixtures. As can be seen in Figure 4, the size of each
population was relatively constant during the aggregation process. The population called
‘monomer’ corresponds to the monomers and small oligomers with an average size of about 2 nm
in all mixtures. However, the statistical analysis showed that the monomer populations in AB(1-
40) and in the 25 % AP(1-40) mixture were significantly smaller at a 95% confidence level than
for the other three mixtures, based on the average hydrodynamic radii obtained over the whole
aggregation study for each mixture (see Table 2 and Figure SI.6). Further, AB(1-40) alone showed
the lowest ‘monomer’ population size average value of 1.81 + 0.11 nm, while the 25 % AB(1-40)
mixture showed the highest average value of 2.42 + 0.20 nm. While the other three mixtures, 75
% AP(1-40) mixture, 50% AP(1-40) mixture and AP(1-42) alone were not statistically different
(see Ry values in Table 2). These results suggest that when the mixture contained an excess of
APB(1-42) as compared to AP(1-40), the formed oligomers were larger in size than those obtained
for AP(1-42) alone and for the mixtures with a higher amount of AB(1-40). To explain this
observation, the following hypothesis is proposed. First, it was already shown that AB(1-40)
mainly forms fibrils directly from the monomeric state without passing through intermediate
species” !°. The presence of the first fibrils of AB(1-40) catalyzed by the presence of AP(1-42) may
play the role of seeds for the AB(1-42) peptide®!, and thus, oligomers with a higher molar mass are
formed. When the amount of AB(1-42) decreases, the aggregation process tends to follow the

pathway characteristic of AB(1-40) (direct formation of fibrils), and thus, the smallest oligomeric

12
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species tend to remain monomeric with a lower average size. For AFM, in the presence of
biomolecules, the lateral dimensions are often affected by tip convolution, leading to unpredictable
broadening of surface features*® *°. We therefore measured the average heights of the various
objects, which gave a good estimation of radii. The results obtained on the different mixtures of
the radii (at times enabling to measure isolated objects) for small spherical objects attributed to
monomers/oligomers, and the derived half-widths for the fibers are gathered in Table 2. The radii
of monomers/oligomers are in good agreement between TDA and AFM, although values measured

for monomers, oligomers and fibers with AFM are not significantly different between ratios.

Table 2: Average hydrodynamic radius in nm obtained by TDA over the whole aggregation process
of each mixture. Average heights in nm obtained by AFM on the small spherical objects and on

the fibrils for the different AP mixtures and at different aggregation times.

AFM
TDA Small spherical
Fibrils
objects
% AP(1-40) in AB(1- Average R; (nm) Radii + M) Half-width + ®)
ta ta
40):Ap(1-42) mixtures (n=number of points) SD (nm) ‘ SD (nm) ‘
1.96 £0.10
0 2.15+£0.40 1.47 2.89+0.70 0.8
(n=121)
2.42+0.20
25 222+044 8.02 278 £0.72 27.83
(n="177)
2.00+0.25
50 N.A. N.A. N.A. N.A.
(n=42)
1.98£0.24
75 2.32+044 12.23 3.02+£1.17 27.97
(n=177)
1.81£0.11
100 (n=153) 243+0.60 28.10 3.53+0.93 28.10
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As for the higher mass oligomer population, the size remained relatively constant throughout the
aggregation process within a given mixture. However, it was observed that with an increase in the
AP(1-40) proportion, the average size for the oligomer population was higher than in the case of
an excess of AP(1-42) (~18 nm as compared to ~9 nm) (Figure SI.6). Moreover, a sudden increase
of the oligomer R;, from about 10 nm to ~ 30 nm can be observed when the “monomer” population
decreased in area (Figure 2 for the size and Figure 4 for the area) after ~ 2h for AB(1-42), 24 h for
the 75% AP(1-40) mixture and 32 h for AB(1-40). This effect was not observed for the 50% and
25% AP(1-40) mixtures. Further, Figure 2 shows that this oligomeric population reaches a
maximum in concentration at around 30 min for the AP(1-42) sample, while this maximum is
shifted to higher times with the decrease in AB(1-42) proportion (1.3 h, 1.6 h, 5.5 h and 16 h for
25%, 50%, 75% and 100 % AP(1-40) mixtures, respectively). Recent studies suggested that
amyloid peptides can undergo liquid-liquid phase separation (LLPS) before the formation of
amyloid fibrils**>2, The “high mass oligomers” population with R; ranging from 5 to 50 nm found
in this work, might correspond to high-density protein condensates. The size increase of the species

over time can be explained by Ostwald ripening.

Regarding the protofibril population, the R, values varied between 80 and 140 nm, for all the

mixtures independently of the peptide proportions (Figure 4).
Hydrodynamic radius distributions by CRLI

To get a deeper insight into the evolution of the species during the aggregation process, CRLI

analysis®’ 4°

was applied on the right part of the taylorgrams (i.e. for ¢ > #9). Figure 5 shows the
hydrodynamic radii distributions obtained by CRLI on TDA runs for selected aggregation times

for all studied samples, while Figures SI.7 to SI.11 show the distributions over the whole

14
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aggregation process for the studied samples. From these distributions, one can note that for Ap(1-
40) alone, only the monomer and small oligomer populations were observed throughout the
aggregation process without the notable appearance of intermediate species. On the contrary,
AP(1-42) aggregation led to intermediate oligomers having an average size around 10 nm
accompanied with a broadening and disappearance of the monomeric population in accordance
with our previous report?’. When mixed together, the presence of intermediate species became
more noticeable with the increase in AB(1-42) proportion. These results provide an explanation to
the increase in AP mixtures toxicity with an increase in the AP(1-42)/AB(1-40) ratio!'® 23 33,

supporting the notion that this toxicity correlates with the amount of intermediate oligomeric

species.
Kinetic analysis of the aggregation process

One of the major advantages of using TDA combined with advanced data treatment is the
possibility to get the size distributions of the different populations with high throughput during the
whole aggregation process. These distributions allow gaining insight on the aggregation
mechanism, by modelling the data based on the chain of association and dissociation reactions

shown in Figure 6.

Monomer (M) (& Oligomer (O) ﬁ Protofibrils (P) iﬁ Fibrils (F)

k
. kon kpo FP
T kprr
Ly

Figure 6. Scheme of the association and dissociation reactions of amyloid species used to model
the aggregation process (adapted from>*). The rate constant for each reaction is indicated close to

the respective reaction arrow.
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The forward and backward reactions going from the monomer (M) population to the oligomers
(O), the protofibrils (P), and finally the fibrils (F), as shown in Figure 6, are modelled by the

following set of equations:

% =k M (1) + kyyy O(t) + ke pyy P(t) + Ky F(0) (1)
% = —(kgp + Ky ) O) + Ky M (1) )
% = (K + gy ) P2) + iy O2) 3)

LD e PO) kg F (O )
dr

where, M(t), O(t), P(t) and F(t) are the concentrations of the monomers, oligomers, protofibrils
and fibrils respectively. kumo is the rate for the reaction transforming monomers into oligomers;
similar notations are used for the other rate constants. Note that TDA does not allow the fibrils
population to be directly measured, so only equations (1-3) were used. We fit Egs. (1-3) to the
temporal evolution of the population distributions obtained by TDA, by assuming that the
(integrated) absorbance signal for each species is proportional to its concentration, and that the
same proportionality constant applies to all species. Equation (4) was not used since TDA does
not allow the direct quantification of the fibril concentrations. The fit is performed using custom
software based on the Scipy package™, performing a least square minimization of the set of rate
constants, solving numerically Egs. (1-3) at each iteration. The resulting fitting curves are shown
as dot-dashed lines in Figure 2 (see also Figures SI.12 to SI.16), while the fitting parameters are
reported in Table 1. Note that for most samples the monomer population asymptotically tends for
large ¢ to a non-zero concentration value, due to the dissociation of the higher-order species. The

100 % AB(1-40) could not be fitted entirely, because of the presence of a lag phase at early times.
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However, data for this sample could be fitted by excluding the monomer population data points
for ¢ < ~20 h. For all other sample mixtures, the fit allowed to extract the kinetics rate constants
reported in Table 1. From these values, it can be deduced that the reaction rates tend to decrease
with increasing amounts of AB(1-40) in the mixture. For the 0% AB(1-40) sample, the forward
reactions were dominant as compared to the backward ones, suggesting that the aggregation is
close to an irreversible reaction rather than to an equilibrium one. When a small amount of AB(1-
40) is added (25%), the reaction rates of forward and backward reactions become similar. These
results can explain the higher toxicity of this AB ratio observed in the literature!®. Indeed, the
backward reactions correspond to the dissociation of higher order species into monomers or low
molar mass oligomers, which are known to be toxic. To our knowledge, this is the first time that
kinetic rates of the aggregation mechanism of A peptides could be determined by measuring
directly the monomer and oligomer distributions. When combined with models proposed in the
literature, mainly based on measurements of the time-dependent aggregate mass °* %57 (e.g. by
ThT fluorescence assay), or numerical simulations®, TDA data as those presented here will help
reaching a comprehensive understanding of the aggregation process of these amyloid species,

potentially contributing to assess the effectiveness of drugs targeting the toxic oligomeric species.

Conclusion

This work demonstrated the interest of Taylor dispersion analysis to assist the study of complex
amyloid peptide mixtures and shed more light on the aggregation process in these systems. The
comparison of the results obtained in parallel by TDA and AFM showed the complementarity of
the two techniques, where TDA is able to quantify and size of small objects while AFM can size

the fibrillary structures not accessible by TDA. In addition, the results confirmed that the kinetics
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of aggregation strongly depend on the nature of amyloid-forming peptides and their environment.
Under our working conditions, the more amyloid-prone AP(1-42) aggregates more rapidly
(minutes scale) compared to AP(1-40), which aggregates in about 24h, in agreement with
previously published works?” >, When mixing together the two species, the aggregation rate was
highly influenced by the ratio of AB(1-40):AB(1-42). Indeed, AP(1-42) was found to accelerate the
aggregation rate of AP(1-40), probably by a cross-seeding mechanism. For example, the
disappearance of the monomeric species decreased from 48 h in the case of 100 % AB(1-40) to 12
h when 25 % of AP(1-42) were present in the sample.

In addition to the clear observation on the interplay between both AP peptides during the
aggregation process of mixtures and the influence of the A ratio on the aggregation rate, this work
shows that this ratio modulates the formation of potentially toxic oligomers. In fact, when the
peptides were mixed together, intermediate oligomeric species were observed and tended to
increase in proportion upon increasing the AB(1-42) content. Modifying the Af ratio changed the
onset of the oligomeric species appearance and monomeric species disappearance (monomers and
small oligomers Ry, lower than 5 nm), as well as the aggregation mechanism (direct formation of
fibrils or formation of intermediate species). These results support the importance of understanding
the mechanism of the aggregation process in the case of A mixtures (in better accordance with
the in vivo conditions), to better direct research toward an AD therapy able to inhibit the formation
of intermediate species depending on the AP ratio. In this respect, TDA was shown to be a
straightforward method able to give with unprecedented detail new insight on the size and
distribution of the species formed during the aggregation process. Finally, the combination of TDA
with extensive data processing and highly resolved efficient methods such as AFM paves the way

for building a comprehensive picture of the speciation and growth processes, as illustrated here for
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amyloid peptides, with potential applications to a wide range of biological, organic and inorganic

polymer systems.
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383  Table 1. Dependence of various parameters on the proportion of AB(1-40) in the studied mixtures.
384  Populations’ size: Average hydrodynamic radii of the monomer, oligomers and protofibrils size
385  populations obtained by the deconvolution of the taylorgrams with a finite number of Gaussian
386  functions. Kinetics parameters: values of the rate constants £ obtained by fitting the peak areas
387  corresponding to the various populations with equations (1) to (3). The last two columns show the
388 time at which the oligomer population reaches its maximum, #to/igomersmax, and the initial

389  concentration of the monomer population, M(t=0).

Populations’ size Kinetic parameters

% AP(1- | Monomer Higher

40) in and small mass Protofibrils Forward reactions Backward reactions
AB(1- oligomers  oligomers
40):Ap(1-
42) <R,> + <R,> + <R,> + kMO kOP kpr kom kpy krm tOligomersy M(t=0)
mixtures | (nm) SD (mm) SD (mm) SD | (#) (') @ | (W) & (') | max () (mAU.min)
100% 20 0.1 13.0 &85 1012 578 | NA. NA.  NA. | NA. NA  NA. N.A. N.A.
75% 24 02 93 1.8 140.2 43.7| 1.106 0.817 0.943 | 1.497 0.123 0.050 4.171 3.551
50% 20 02 13.1 102 895 394 | 0.182 0.240 0.171 | 0.179 0 0.018 0.884 4.268
25% 20 02 179 104 1356 569 | 1457 1226 2.190 | 1.386 1.332 0.045 0.722 3.709
0% 1.8 0.1 191 98 995 40.7| 2991 3.409 3.704 0 0.998 0.048 0.309 4.346

20



390
391

392

393

394

395

396

397

AB 40 % in AB 40:AB 42 mixtures

¢ 100% 75% 50% 25% 0%

ag tag
140 | | | 40h
(30, } \ NN 30h

|ILJL | | 20h

)
AL

10h

N 6h

\
I —
I\

Absorbance (mAU)

10 mAU

Oh

T
1 2 31 31 2 3

EIthion tim2e (min) ’
Figure 1. Overview of selected taylorgrams obtained during the aggregation process of AB(1-40)
:AB(1-42) mixtures (AB(1-40) % of 100 %; 75%; 50%; 25% and 0%) at different common
incubation times. Experimental conditions: Sample: 133 uM of total peptide; 20 mM phosphate
buffer, pH 7.4. Incubation: quiescent conditions at 37 °C. Fused silica capillaries: 50 pm i.d. x 40
cm x 31.5 cm. Mobile phase: 20 mM phosphate buffer, pH 7.4. Mobilization pressure: 100 mbar.
Injection: 44 mbar for 3 s, V=7 nL (Vi/ Va = 1 %). Analyses were performed at 37 °C. UV

detection at 191 nm.
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Figure 2. Peak area evolution of the different populations observed during the aggregation process
of AB(1-40):AB(1-42) mixtures and obtained using a fit with finite number of Gaussian functions.
Three size populations are represented: monomer and low molar mass oligomers (m), higher molar
mass oligomers (m), soluble protofibrils (=) and non-diffusing species (“spikes™) (m). Experimental
conditions as in Figure 1. Black dashed-dotted lines are the kinetic fits obtained from equations
(1) to (3). The grey dashed line in AB(1-40) monomer distribution is a guide for the eye. The scale

of the vertical axis is the same in all graphs and is indicated on the bottom-left corner of the figure.
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Figure 3: AFM images taken in intermittent contact mode under dry conditions, for different key
times of the aggregation process in the presence of different peptide proportions. The AB(1-
40):AB(1-42) ratio is given on the left side of the panel, aggregation times in hours are overlayed

on the images. The scale bar on the bottom right corner is valid for all images and equals 1 um.
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Figure 4. Hydrodynamic radius evolution of the different populations observed during the
aggregation process of AB(1-40):AB(1-42) mixtures and obtained using a fit with finite number of
Gaussian functions. Three size populations are represented: monomer and low molar mass
oligomers 0.9 < R, < 5 nm (m), higher molar mass oligomers 5 < R; < 50 nm (e), and soluble

protofibrils 50 < R, <300 nm ( 4 ). Experimental conditions as in Figure 1.
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Figure 5. Size distributions of AB(1-40):Ap(1-42) mixtures obtained by CRLI analysis at selected

incubation times #,; = 0 to 12 h. Experimental taylorgrams corresponding to these distributions are

shown in Figure 1, the experimental conditions are as in Figure 1.
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