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ABSTRACT
Analytical theory is combined with extensive numerical simulations to compare different

flavours of centroiding algorithms: thresholding, weighted centroid, correlation, quad cell

(QC). For each method, optimal parameters are defined in function of photon flux, readout

noise and turbulence level. We find that at very low flux the noise of QC and weighted cen-

troid leads the best result, but the latter method can provide linear and optimal response if

the weight follows spot displacements. Both methods can work with average flux as low as

10 photons per subaperture under a readout noise of three electrons. At high-flux levels, the

dominant errors come from non-linearity of response, from spot truncations and distortions

and from detector pixel sampling. It is shown that at high flux, centre of gravity approaches

and correlation methods are equivalent (and provide better results than QC estimator) as soon

as their parameters are optimized. Finally, examples of applications are given to illustrate the

results obtained in the paper.

Key words: turbulence – instrumentation: adaptive optics.

1 I N T RO D U C T I O N

Adaptive optics (AO) is nowadays a mature astronomical technique.

New varieties of AO, such as multi-object AO (MOAO) (Gendron

et al. 2005) or extreme AO (ExAO) (Fusco et al. 2005) are be-

ing studied. These developments, in turn, put new requirements on

wavefront sensing devices (WFS) in terms of their sensitivity, pre-

cision and linearity. New ideas like pyramid WFS (Ragazzoni &

Farinato 1999; Esposito & Riccardi 2001) are being proposed. Yet,

the classical Shack–Hartmann WFS (SHWFS), used for example in

NACO the AO installed at the VLT (Rousset et al. 2003), remains a

workhorse of astronomical AO systems now and in the near future.

A SHWFS samples the incident wavefront by mean of a lenslet

array; the telescope aperture is divided into an array of square sub-

apetures, which produces an array of spots on a detector. The wave-

front is then analysed by measuring, in real time, the displacements

of the centroids of those spots which are directly proportional to

the local wavefront slopes averaged over subapertures. A good es-

timation of the wavefront distortion is therefore obtained from a

good measurement of the spot positions. The accuracy of such mea-

surements depends on the strength of the different noise source as

well as on a non-negligible number of WFS parameters such as the

detector size, the sampling factor, field-of-view (FOV) size, etc.

The goal of this study is to compare quantitatively different esti-

mators of spot positions and suggest best suitable methods in cases

�E-mail: sthomas@ctio.noao.edu

of low and high photon fluxes. In this paper, three main classes of al-

gorithms are considered: quad cell (QC) estimator, centre of gravity

(CoG) approaches and correlation (Corr) methods.

Centroid measurements are usually corrupted by the coarse sam-

pling of the CCD, photon noise from the guide star, readout noise

(RON) of the CCD, and speckle noise introduced by the atmosphere.

In case of strong RON and weak signal, the spot can be completely

lost in the detector noise, at least occasionally. This presents a prob-

lem to common centroid algorithms like thresholding that rely on the

brightest pixel(s) to determine approximate centre of the spot. When

the spot is not detected, the centroid calculation with such methods

is completely wrong. Thus, the lowest useful signal is determined

by spot detection rather than by centroiding noise.

Concerning the CoG approaches, different types of algorithms

have been developed to improve the basic centroid calculation in

a SHWFS: mean-square-error estimator (van Dam & Lane 2000),

maximum a posteriori estimator (Sallberg, Welsh & Roggemann

1997) or Gram–Charlier matched filter (Ruggiu, Solomon & Loos

1998). Arines & Ares (2002) analysed the thresholding method.

On the other hand, many parameters are involved in the estimation

of the centroid calculation error as explained below, and therefore

there are many ways to approach this problem. For example, Irwan

& Lane (1999) just considered the size of the CCD and the related

truncation problem. They concentrated on photon noise only us-

ing different models of spot shape (Gaussian or diffraction-limited

spot), neglecting RON or other parameters. In this paper, we choose

to focus on various causes of errors such as detector, photon noises

or turbulence as well as WFS parameters. Most previous studies
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remained theoretical or compared performance to simple centroid-

ing. Despite a large number of papers on this subject, the ultimate

performance of SHWFS and a recipe of the best slope estimation

method (at least in the framework of an AO loop) are still debated.

Moreover, there are no clear results concerning detection limits and

linearity.

As for the linearity, it is often assumed that an AO system working

in a closed loop scheme keeps the spots well centred, hence linearity

is not essential. However, in any real AO instrument the spots can be

offset intentionally to compensate for the non-common-path aber-

rations (Blanc et al. 2003; Hartung et al. 2003; Sauvage et al. 2005).

In critical applications such as planet detection by means of ExAO

with coronagraph, a linearity of the response becomes important. It

is interesting to add that it will also drive the selection of the sens-

ing technique towards a SHWFS, as opposed to curvature sensing

or pyramid (Fusco et al. 2004). The same is true for MOAO, where

turbulence will be compensated in open loop relying on a SHWFS

with a perfectly linear response. Our study is thus of relevance to

these new developments.

Finally, an AO system working with faint natural guide stars (for

low or medium correction level) requires a WFS with highest possi-

ble sensitivity, whereas linearity becomes less critical. Here, simple

QC centroiding is often used (e.g. Herriot, Morris & Anthon 2000),

despite its non-linearity. Are there any better options? As shown

below, the weighted centroiding method (Nicolle et al. 2004) offers

comparable noise performance while being linear.

Correlation approaches are another way to measure a spot po-

sition. Such approaches are particularly well adapted when com-

plex and extended objects are considered (cf. Michau, Rousset &

Fontanella 1992; Rimmele & Radick 1998; Poyneer, LaFortune &

Awwal 2003). They have been widely used in solar AO for more

than 10 yr. Here, we apply correlation centroiding to the case of a

point source, select best variants of calculating the position of the

correlation peak, and compare it to also other algorithms.

We begin by introducing relevant parameters and relations and

by describing our technique of numerical simulations in Section 2.

Different techniques of centroid measurements are discussed in de-

tail in Section 3 (for the simple CoG), Section 4 (for the improved

CoG algorithms) and Section 5 (for the Corr method). Finally, a

comparison of the different methods for an ideal case and for more

realistic systems is given in Section 6.

2 T H E M E T H O D O F S T U DY

2.1 Definitions

Throughout the paper, we consider only one spot in one subaperture

of a SHWFS (Fig. 1). The spot is sampled by the detector within

a FOV of the width Wp pixels. A spot intensity distribution P(x, y)

is first transformed into an array of pixel intensity values Ii,j of the

size Wp × Wp , and then corrupted by photon and detector noise.

These data are used to compute the spot centroid (x̂, ŷ), whereas

the true centroid of P(x, y) is located at (x0, y0). The full width at

half-maximum (FWHM) of the spot is NT pixels.

Let d be the size of a square subaperture and λ the sens-

ing wavelength. The parameter Nsamp = (λ/d)/p conveniently re-

lates the angular pixel size p to the half-width of the diffraction-

limited spot, λ/d. The condition Nsamp = 2 corresponds to the

Nyquist sampling of the spots and is used throughout this pa-

per, unless stated otherwise. It means that for diffraction-limited

spots NT = Nsamp = 2. Such sampling is close to optimum

at medium or high flux (Winick 1986). When spot images

Figure 1. Some notations used in the paper. Intensity distribution in the spot

P(x, y) is transformed by the detector into a discrete array of pixel values

Ii,j .

are very noisy, the optimum sampling corresponds to a spot

FWHM of 1–2 pixels. Selecting an even coarser sampling,

Nsamp < 1, only increases the error. Oversampling (Nsamp > 2)

does not bring any additional information but increases the effect of

detector noise and thus the final centroid error.

In the following, Wp is used for the FOV of the subaperture ex-

pressed in pixels and W for the same FOV expressed in λ/d.

2.2 Spot profile

Two spot models were used. The first is a two-dimensional Gaussian

function:

P(x, y) = Nph

2πσ 2
spot

exp

[
− (x − x0)2 + (y − y0)2

2σ 2
spot

]
, (1)

where (x0, y0) is the true centroid position. We introduce a random

jitter of the spot centre with rms amplitude σ t = 0.1 pixels, with the

average spot position centred in the field. The FWHM of such spot is

NT = 2
√

2 ln 2 σspot ≈ 2.3548 σspot. Gaussian spots are convenient

for analytical derivations and as a benchmark for comparison with

our simulations. In the following, we assimilate NT with λ/d for

convenience, using the fact that the first rough approximation of a

diffraction spot is a Gaussian.

Diffraction spots formed by a square d × d subaperture and dis-

torted by atmospheric turbulence represent a second, more realistic

model. In this case, P(x, y) becomes a random function and its

parameters, like NT, can be defined only in statistical sense. Atmo-

spheric phase distortion was generated for each realization from a

Kolmogorov power spectrum with a Fried parameter r0 (at the sens-

ing wavelength λ). The overall tilt was subtracted, and a monochro-

matic spot image was calculated. The true centroids (x0, y0) were

computed for each distorted spot. We call this realistic spot model
throughout the paper. The strength of spot distortion depends on the

ratio d/r0: for d/r0 < 1 the spots are practically diffraction limited

(hence NT = Nsamp),

P(x, y) = Nph sinc2

(
x

Nsamp

)
sinc2

(
y

Nsamp

)
, (2)

where sinc (y) = sin (πy)/(πy). On the other hand, for d/r0 > 3 the

central maximum begins to split randomly into multiple speckles.

2.3 Measurement error

As mentioned in the introduction, light intensity in each detector

pixel is first corrupted by the photon noise (following a Poisson

statistics) and by the additive Gaussian RON with variance N2
r .

Moreover, centroiding errors arise from coarse sampling of the spot

by CCD pixels, from truncation of the spot wings by finite size of
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the subaperture field, from the spot distortions produced by atmo-

spheric turbulence, etc. The error variance of the estimated centroid

position (x̂) can be expressed as

σ 2
x = 〈

(x̂ − x0)2
〉

, (3)

where 〈·〉 represents a statistical (ensemble) average, x0 is the real

centroid position in pixels and x̂ is the centroid position estimated

by a given algorithm. We write the estimate in a general form as

x̂ = αrx0 + fnl(x0) + ε + noise, (4)

where αr is a response coefficient (it remains the same whatever

the spot motion), fnl describes the non-linearity of the centroid

algorithm, and ε gathers all errors due to spot shape, including

truncations by the finite FOV (we often refer to these effects as

‘turbulence’). Finally, noise stands for errors caused by the readout

and photon noise. Including equation (4) in equation (3) leads to

σ 2
x = 〈

[(αr − 1)x0 + fnl(x0) + ε + noise]2
〉

. (5)

The function f nl(x) can be represented as Taylor expansion around

x = x0. The constant and linear terms are zero by definition. As-

suming that f nl(x) is symmetric around x = x0, the quadratic term

vanishes as well, and we can model the non-linearity by a cubic

term with a coefficient β,

fnl(x0) ≈ βx3
0 . (6)

We can safely assume that photon and detector noises are not

correlated with the shape and position of the spot. We make fur-

ther, less certain assumptions that ε and x0 are uncorrelated (not

strictly true for truncation error) and that the response coefficient αr

is constant (true for undistorted spots, d/r0 < 1, and for Gaussian

spots). To simplify further, we will assume here that the centroid

calculation algorithm is always adjusted to unit response, αr = 1.

Then equation (5) becomes

σ 2
x = β2

〈
x6

0

〉 + 〈ε2〉 + σ 2
noise. (7)

If the residual spot motion in a SHWFS is Gaussian with zero

average and variance σ 2
t = 〈x2

0〉 pixels2, then 〈x6
0〉 which is the sixth

moment of the Gaussian function is equal to 15σ 6
t . The variance

σ 2
noise contains two independent terms related to detector (σ 2

Nr
) and

photon (σ 2
Nph) noises. Hence

σ 2
x = 15β2σ 6

t + σ 2
ε + σ 2

Nr
+ σ 2

Nph
. (8)

It is important to remind that σ 2
noise is defined here for unit re-

sponse, αr = 1. The relative importance of each noise source changes

depending on the conditions of use of the SHWFS. The strategy was

to identify major noise contributors in each case and to select most

appropriate centroiding algorithms. Whenever possible, the mod-

elization of different terms in equation (8) is provided.

For example, a well-known theoretical result is that the minimum

possible centroid noise for an unbiased estimator, considering a

Gaussian spot with rms size σ spot pixels and pure photon noise, is

equal to σ Nph
= σ spot/

√
Nph (Winick 1986; Irwan & Lane 1999),

where Nph is the average number of photons per spot and per frame.

Moreover, this boundary is reached by a simple centroid (Rousset

1999), which is thus the maximum likelihood estimator in this case.

Here, we also adopt the common practice of expressing centroid

errors in units of phase difference across subaperture (in radians).

Thus, the relation between the rms phase error σφ and the centroid

error σx is

σφ = 2πdp

λ
σx = 2π

Nsamp

σx , (9)

where λ is the sensing wavelength, d is the subaperture size and p
is the angular size of the CCD pixel. We caution the reader that σφ

is computed in radians for one subaperture at the WFS wavelength.

To be used in calculations of AO performance, it has to be rescaled

to the imaging wavelength and to the full telescope aperture, and

filtered by the AO loop rejection transfer function (Madec 1999).

Thus, errors exceeding 1 rad are perfectly acceptable for IR imag-

ing when a visible-band WFS is considered. However, when, for

a Gaussian spot, we reach a condition σx � σ spot, centroid mea-

surements become meaningless because they fail to localize spots

better than the spot size. Given that Nsamp = NT = 2.355σ spot, this

condition corresponds to σφ = 2π/2.355 = 2.67 rad, or a variance

of 7.1 rad2.

2.4 Simulations

Our main technique to study various centroid algorithms consists in

numerical simulation. We generate series of 1000 independent spot

realizations. The intensity distribution P(x, y) (either Gaussian or

realistic) is computed without noise first. The pixel signals are then

replaced by the Poisson random variable, with the average of Nph

photons per spot on a FOV Wp pixels. A zero-mean normal noise

with variance N2
r is added to simulate the RON.

At very low light level, each simulated spot is tested for detectabil-

ity. The first possible check is to have the maximum well above the

RON, Imax > 2Nr. A second one is to reject the centroids with mea-

sured |x̂ − x0| > σspot or |ŷ − y0| > σspot as spurious (outside the

spot). If one of those checks is not passed, the measure is assumed

to have failed and therefore rejected. The number of rejected cases

gives us information on the detectability limit: when more than a

certain fraction of images are rejected, we consider that the cen-

troid measurements have failed and are not reliable for those light

conditions. Otherwise, the rms centroid error σx is computed on the

retained images.

A certain fraction of frames with undetected spots is acceptable

because an AO system will then simply use centroid measurements

from previous frames (this only leads to an additional delay in the

closed loop scheme). We set this fraction to 50 per cent and deter-

mine for each method the minimum number of photons Nph,min when

this limit is reached. Adopting a somewhat more strict criterion (say

10 per cent invalid frames) would increase the detection threshold.

The robustness of each centroiding method is characterized here by

Nph,min.

In the following we will describe the centroid algorithms consid-

ered in this study. For each method, we give a short explanation and

then we focus on their advantages and drawbacks.

3 S I M P L E C E N T RO I D ( C O G )

The CoG is the simplest and most direct way to calculate the position

of a symmetric spot:

x̂CoG =
∑

x Ix,y∑
Ix,y

. (10)

This formula is widely used in AO. However, it has some limitations

when using a real spot (diffraction or seeing limited) and in presence

of RON. In the following, those limitations are described.

3.1 Centroid noise

Let us first recall well-known results concerning the noise of the

CoG estimator. Rousset (1999) shows that for a Gaussian spot, the
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photon-noise and RON contributions to phase variance are,

respectively,

σ 2
φ,Nph

= π2

2 ln 2

1

Nph

(
NT

Nsamp

)2

, (11)

σ 2
φ,Nr

= π2

3

N 2
r

N 2
ph

N 4
s

N 2
samp

, (12)

where NT is the FWHM of the spot in pixels, Nr is the readout noise,

and N2
s the total number of pixels used in the CoG calculation. It is

interesting to note here that for NT = Nsamp, the photon-noise contri-

bution σ 2
φ,Nph

reaches its Cramér–Rao bound (CRB) (Section 6.1).

At low light levels, the RON contribution is dominant. It can be

decreased by using the smallest number of pixels N2
s possible in the

CoG calculation. This leads to the QC method and to other modifi-

cations of the CoG considered below.

Two main hypothesis have been used to derive equation (11). First,

a Gaussian spot shape has been considered whereas diffraction spots

are described by equation (2). Compared to the Gaussian function,

the sinc2 function decreases slower in the field. In the case of a

Poisson statistics (photon noise case) and considering the diffraction

spot, it can be shown that (cf. Appendix A)

σ 2
φ,Nph

≈ 2
W

Nph

, (13)

where W is the subaperture FOV expressed in λ/d units (W =
Wpdp/λ, with p the pixel size in radians).

In this context and in presence of photon noise only, this means

that the size of the window will become important for a realistic spot,

while the error variance does not depend on the size of the window

for a Gaussian spot. When taking into account the diffraction, the

error variance increases linearly with the FOV of one lenslet, as

shown in Fig. 2. Thus, for an infinite window size we get an infinite

error variance. This result can be explained by the non-integrability

of the function x2 sinc2(x).

It is therefore obvious that the noise depends on the structure

of the spot. This structure changes for different configurations –

Gaussian spot, diffraction spot, turbulent spot – which adds some

difficulties in the determination of a general theoretical expression.

On the other hand, in presence of RON, the noise does not depend

on the structure of the spot, since when the FOV is increased, the

error due to the RON dominates the photon error.

Figure 2. Error variance as a function of the FOV in presence of photon

noise for a spot with a sinc2 distribution.

Figure 3. Validity of the analytical expression (11) for the noise influence on

CoG measurements in case of Gaussian spots. Error variance as a function of

the spot sampling (i.e. the number of pixels per FWHM). 2 pixels correspond

to a Nyquist sampling. Photon-noise case (100 photons per subaperture and

per frame).

Secondly, a Nyquist sampling criterion (Nsamp � 2) is implicitly

assumed. As shown in Fig. 3, increasing Nsamp (typically Nsamp >

1.25) does not modify the noise variance. On the other hand, taking

Nsamp smaller than 1.25 induces an additional error related to the

undersampling effect. This error can be explained by non-linearity

for undersampled images, as shown in the next section and in Fig. 3.

3.2 Response coefficient and non-linearity

Non-linear CoG response appears when the FOV is too small in

comparison to the spot size. Indeed, it is straightforward to show that

the CoG is perfectly linear for infinite FOV and adequate sampling.

The smaller the FOV, the larger the deviation from linearity (Fig. 4).

We can easily quantify this effect for a Gaussian spot of rms size

σ spot centred on (x0, 0). The CoG estimate x̂ calculated on the finite

window of size Wp pixels is (cf. Appendix B)

x̂ = x0 − σspot

√
2

π

eζ − eη

�(ζ ) + �(η)
, (14)

Figure 4. Linearity of the simple CoG as a function of the spot motion for

different FOV sizes. The unit used here is NT, FWHM of the spot.
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where ζ = (Wp/2 − x0)/(
√

2σspot), η = (Wp/2 − x0)/(
√

2σspot),

and �(t) = 2/
√

π
∫ t

0
exp(−u2) du.

It is interesting to note that if Wp →∞ then x̂ = x0, in other words

the CoG algorithm is asymptotically unbiased. For moderately large

FOV size, Wp/2 > 2
√

2σspot, we can develop (14) in series around

x0 = 0, up to the third order:

x̂ 	 x0 − σspot

√
2

π
e

−(Wp/2)2/(2σ 2
spot)

[
Wpx0√
2σspot

+ 1

6

(
Wpx0√
2σspot

)3
]

.

(15)

We recognize here a small deviation of the response coefficient from

1 (second term) and a non-linearity proportional to x3
0 (third term).

The difference of αr from 1 is less than 2.5 per cent for a W = 2 (or

Wp = 4 for a Nyquist sampling) and <0.04 per cent for a W = 3 (or

Wp = 6 for a Nyquist sampling).

Apart from the FOV size, the linearity of response is affected by

sampling (Hardy 1998). This error is periodic, with the period of

1 pixel. We verified that CoG non-linearity is extremely small for

reasonably well sampled spots, Nsamp > 1, and becomes obvious

only for very coarse sampling, Nsamp = 0.5.

3.3 Atmospheric effects

The behaviour of all centroiding methods changes when we go from

the Gaussian spot to a realistic diffraction spot distorted by atmo-

spheric turbulence. In order to isolate the contribution of the at-

mosphere itself, we simulated recentred and noiseless spots. All

methods effectively truncate outer parts of the spots and thus lead

to a difference between calculated position and real CoG. This dif-

ference mainly depends on the SH FOV size W relative to λ/d and

on the turbulence strength. It can be modelled as

σ 2
φ,Atm = K W −2

(
d

r0

)5/3

. (16)

Fits to our simulation results (Fig. 5) show that K 	 0.5 for well-

sampled (Nsamp > 1.5) spots (the error increases for coarser sam-

plings). This fits has been done empirically from the simulation

curves.

The origin of atmospheric centroid error can be understood as fol-

lows. The maximum intensity in the spot corresponds to a position in

the FOV where the waves from subaperture interfere constructively

or, in other words, to a minimum rms residual phase perturbation.

Figure 5. Illustration of the dependence of the CoG error variance on the

turbulence and the subaperture FOV. The different curves represent different

turbulence strengths (i.e. various d/r0). A Nyquist-sampled spot is consid-

ered.

The best-fitting plane approximating a given wavefront corresponds

to the Zernike tilt, while the true spot centroid corresponds to the

average phase gradient over the subaperture, called G-tilt (Tyler

1994). Formulae for both tilts and their difference are well known

in case of circular apertures and lead to the expression σ 2
φ,Atm =

0.241 (d/r0)5/3 (see equation 4.25; Sasiela 1994). Most of this dif-

ference is related to the coma aberration in the wavefront over each

subaperture, never corrected by the AO. Thus, even in the worst case

where only the spot maximum is measured (e.g. high threshold), the

atmospheric error should not exceed 0.25 (d/r0)5/3.

The residual fitting error in an AO system with subaperture size

d is of the order 0.3 (d/r0)5/3 rad2 (Noll 1976). It might seem that

reducing the WFS measuring error much below this quantity is

useless as it will not improve the Strehl ratio. However, fitting errors

contain mostly high spatial frequencies and hence scatter light into

the distant wings of the compensated point spread function (PSF).

The residual PSF intensity at distances from λi/D to λi/D (where

D is the telescope diameter and λi is the imaging wavelength) is

directly related to the WFS errors, dominated by σ 2
φ,Atm in case of

bright stars and unfortunate choice of centroiding algorithm.

3.4 CoG: the necessary trade-offs

The trade-offs needed to optimize a simple CoG concern the FOV

and the sampling factor.

In presence of photon noise only, Nyquist-sampled images are

required. Then a trade-off in terms of FOV W is needed. This trade-

off depends on the photon noise error, which increases with W (cf.

Section 3.1), and the atmospheric error, which decreases as W−2. In

this case, one can define the optimal FOV size Wopt by minimizing

the sum of equations (13) and (16).

σ 2
noise+atm = 2

W

Nph

+ 0.5W −2

(
d

r0

)5/3

. (17)

This leads to an analytical expression for Wopt:

Wopt = 1.26 N 1/2
ph

(
d

r0

)5/9

. (18)

Taking, for example, d/r0 = 2 and Nph = 50, we obtain the best

FOV of 6.8 λ/d.

This zero-read-noise case corresponds to electron multiplication

CCDs or L3CCD, with half of the flux because of the multiple

amplification stages. Equations (17) and (18) can be used with a

factor of 2 in front.

In presence of detector noise, we want to decrease the number of

pixels to minimize the noise at low flux. However, this configuration

is not optimal at high flux, as explained earlier. It is therefore inter-

esting to improve the simple CoG algorithm, adapting it to a large

range of flux and RON. We present some optimization methods in

the following.

4 I M P ROV E D C O G A L G O R I T H M S

Centroid errors due to detector noise can be reduced if we take

into account only pixels with signal above certain threshold. The

thresholding approach is detailed in Section 4.1. Recently, it has

been proposed to weight pixels depending on their flux and RON.

This method is called the weighted CoG (WCoG) (Nicolle et al.

2004) and is detailed in Section 4.2.
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4.1 Thresholding (TCoG)

Compared to the simple CoG, the thresholding method is used to

follow the spot and therefore avoids the non-linearity problems (if

the threshold value is not too high). However, the truncation effects

are still present since we take into account only a fraction of all

pixels.

There are many ways to select pixels with high flux. We could

consider a fixed number of brightest pixels or choose pixels with

values above some threshold. We use the following method. The

pixel with the maximum value Imax is first determined, then the

threshold IT is set to IT = TImax, where T is a parameter to be

optimized. IT is then subtracted from the spot image and the centroid

is computed using only pixels with non-negative values, such as

x̂TCoG =
∑

I>IT
x(I − IT)∑

I>IT
(I − IT)

. (19)

It is important to subtract the threshold before the CoG calcula-

tion. Indeed, it can be shown that otherwise, the response coefficient

αr will be less than 1, i.e. the estimate x̂TCoG will be intrinsically bi-

ased.

In the low-flux regime, it may be difficult to detect spot maximum

against the RON. Therefore, we add the following condition: the

threshold is set to IT = max (TImax, mNr). The choice of m depends

on a trade-off between robustness (m > 3 required) and sensitivity

(m ∼ 1 is better). We choose m = 3.

The noise of thresholded CoG can still be computed with equa-

tions (11) and (12), where N2
s represents the average number of

pixels above threshold. By reducing N2
s , we diminish σ 2

φ,Nr
but in-

crease the error due to the atmospheric turbulence. Hence, there is a

compromise to find for T to optimize the threshold IT as a function

of Nph.

In conclusion, thresholding resolves only part of our problems,

such as the noise at medium flux. It is also very simple to implement.

However, it is not optimal as it is difficult, for example, to choose

pixels to be considered and their number (Arines & Ares 2002).

In the next section we present a more efficient method proposed

recently.

4.2 The weighted centre of gravity

The idea of the WCoG is to give weight to the different pixels

depending on their flux – a kind of ‘soft’ thresholding. The contri-

bution of the noisy pixels with very little signal – outside the core

of the spot – is attenuated but not eliminated. Let us define (Fw)x,y

the weighting function of FWHM Nw. Then the WCoG centroid is

computed as

x̂WCoG = γ

∑
x Ix,y(Fw)x,y∑
Ix,y(Fw)x,y

. (20)

The coefficient γ is needed to ensure unit response, αr = 1. We

can simply specify a circular window of radius r, (Fw)x,y = 1 for√
x2 + y2 < r , or a square window. However, a better choice of the

weighting function (Fw)x,y (i.e. different from a constant) is needed

to optimize the performance of the centroid algorithm, as shown by

Nicolle et al. (2004).

The WCoG method exists in two versions. The weight (Fw)x,y

can either be fixed, or recentred on the spot (‘following weight’),

in a manner similar to thresholding. The properties of these two

algorithms are different. Here, we consider only a fixed weight,

centred on the most likely spot position, which can be seen as an a

priori information for centroid measurement. This WCoG flavour is

well suited for closed-loop AO systems where the spots are always

centred.

4.2.1 Response coefficient and non-linearity

The result of the estimation of the spot position using the WCoG

with fixed window would be biased if we set γ = 1. For a Gaussian

spot and Gaussian weight, the WCoG response can be calculated

analytically, similarly to the CoG:

x̂WCoG = γ
σ 2

eq

σ 2
spot

x0 − γ σeq

√
2

π

eζ − eη

�(ζ ) + �(η)
, (21)

where if σ 2
w is the rms size of the weighting function, σ eq is defined

as σ 2
eq = σ 2

spot σ 2
w/(σ 2

spot + σ 2
w), and the variables ζ and η are the

same as in equation (14) with σ spot replaced by σ eq.

In order to obtain unit response, we have to set

γ = σ 2
spot

σ 2
eq

= N 2
T + N 2

w

N 2
w

. (22)

On the other hand, this method is linear.

4.2.2 Noise of WCoG

The noise of WCoG with unit response is obtained from the study

of Nicolle et al. (2004), corrected by the factor γ 2:

σ 2
Nph,WCoG = π2

2 ln 2Nph

(
NT

Nsamp

)2
(

N 2
T + N 2

w

)4(
2N 2

T + N 2
w

)2
N 4

w

, (23)

σ 2
Nr,WCoG = π3

32 (ln 2)2

(
Nr

Nph

)2
(

N 2
T + N 2

w

)4

N 2
samp N 4

w

. (24)

Equations (23) and (24) were derived by assuming a Gaussian spot,

a Gaussian weight and a good sampling.

We see from those formulae that for photon noise only and

Nw = NT, the error variance is 1.78 times larger than for simple CoG

(equation 11). This factor tends to 1 when Nw increases. Therefore

there is no real interest to use this method when the spot is Gaussian

and in presence of photon noise only. This ideal case is only useful

as an illustration. In the following we will present the advantages of

WCoG.

4.2.2.1 Sampling. The analytical formulae have been obtained for

a well-sampled spot. A comparison between theory and simula-

tion is given in Fig. 6. A good match is obtained for Nsamp > 2,

but for coarser samplings the errors are larger than those given by

equations (23) and (24). The error due to RON, σ 2
Nr,WCoG

, reaches a

minimum for Nsamp = 1.5. Our simulations show that by reducing

sampling from Nsamp = 2 to 1.5, the σ 2
Nr,WCoG

is reduced by 1.35

times, not 1.77 as predicted by equation (23).

4.2.2.2 Spot shape. The contribution of RON noise to WCoG

(equation 24) does not depend on the spot shape, as for the simple

CoG. However, the photon noise (equation 23) does. We observe

differences between analytical formulae and simulations, both for

a Gaussian and for diffraction spots, and the noise depends on the

FOV size (Fig. 7).

The behaviours of WCoG and simple CoG with respect to photon

noise are radically different. By weighting pixels with a Gaussian

function Fw, we reduce the dependence of photon noise on the FOV
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Figure 6. Error variance of WCoG as a function of the sampling, for photon

noise (dashed line) and RON with Nr = 3 (full line). Nph = 20 and NT =
Nw. The analytical expressions are plotted in dotted lines.

Figure 7. Influence of subaperture FOV W and of Nw on the photon noise

variance with a WCoG, in presence of a diffraction spot. The number of

iterations is 10 000 and we took the same set of noise for each value of Nw,

explaining the absence of fluctuations in the curves. The analytical curve

corresponds to the equation (23) derived for a Gaussian spot.

size (as long as it is large enough, W > 2). There is an optimal

width of the weighting function, Nw,opt 	 4.5 pixels (for Nyquist

sampling Nsamp = 2), cf. Fig. 7, that ensures the minimum photon-

noise centroid variance of

σ 2
Nph,lin,opt = 7.1

Nph

≈
(

2π

Nsamp

)2
σ 2

spot

Nph

. (25)

Therefore, by using the WCoG algorithm with diffraction spot, we

can reach the same level of photon noise as for a Gaussian spot of

the same FWHM. We suspect that this is close to CRB, although

we did not optimize the shape of weighting function explicitly for

the case of diffraction spot. The gain of WCoG over simple CoG

depends on the FOV size and can be dramatic.

4.2.3 Atmospheric effects

As for the CoG, the error variance due to the atmosphere depends

on the subaperture FOV, W, as shown on Fig. 8. It also depends on

Figure 8. The variance of atmospheric error of WCoG centroids depends

on the width of the weighting function Nw and on the FOV size W.

the weighting function FWHM Nw. A first approximation of this

error variance is given by

σ 2
atmo,WCoG ≈ K

(
4N−2

w + W −2
)(

d

r0

)5/3

, (26)

where Nw is in pixels and W is the FOV in λ/d units. The coefficient

K is equal to 0.5 for Nyquist-sampled spot. This fit is an empirical

result based on simulations.

4.2.4 Optimization

As for the CoG, there is an optimum width of the weight, Nw, de-

pending on the noise parameters, d/r0, and the number of photons.

For example, in the case of a detector without RON, the optimum

Nw is found by minimizing the sum σ 2
Nph,WCoG

+ σ 2
atmo,WCoG. Fig. 9

gives the optimum for d/r0 = 1 and Nph = 100.

4.3 Quad cell

A QC is the specific case of the CoG for a 2 × 2 pixels array (N2
s =

4). In this case, the FOV is given by the pixel size and by definition,

Figure 9. Trade-off for the FHWM of the weighting function. Photon-noise

(dashed line) and atmospheric (dotted line) variances are plotted as a function

of Nw (in pixels) for the following conditions: d/r0 = 1, Nph = 100 and W
= 8λ/d. The variance sum (solid line) shows a minimum around Nw = 7.

Nyquist-sampled spot is considered.
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the spot is undersampled. QC is widely used in astronomical AO

systems, e.g. in Altair (Herriot et al. 2000), because the weak signal

from guide stars is better detected against RON and because, with

a small number of pixels, the RON can be further reduced by a

slow CCD readout. A QC algorithm calculates the centroid x̂QC in

each direction from the differential intensity between one-half of

the detector and the other,

x̂QC = πγ
Il − Ir

Il + Ir

, (27)

where Il and Ir are the intensities, respectively, on the left and the

right halves of the detector and γ is the coefficient, given in pixels,

translating intensity ratio into displacement, depending on the spot

shape and size. For a Gaussian spot we found that γ = σ/
√

2π

pixels.

4.3.1 Noise of QC

Expression (27) leads to the following variance for photon and de-

tector noises Rousset (1999)

σ 2
Nph,QC = π2κ2

Nph

, (28)

σ 2
Nr,QC = 4π2κ2

(
Nr

Nph

)2

. (29)

For a diffraction-limited spot, κ = 1. For a Gaussian spot, κ de-

pends on the rms size of the spot. Following our definition for a

Gaussian spot, the rms size is defined by σ and is given in radi-

ans in this case (and in this paper for this case only). Therefore

κ = γ 2π/(λ/d) = √
2π σ/(λ/d). In real AO systems γ is usually

variable, and considerable effort has been invested in developing

methods of real-time QC calibration (Veran & Herriot 2000).

In the following, we will assume that we are able to correct for

γ fluctuations, e.g. the rms size fluctuations. In our simulation, the

estimation of γ has been made by first calculating the long-exposure

PSF and then do linear fitting by Fourier method in order to get σ .

It is also interesting to note that nowadays, detectors in SHWFS

can be photon-noise limited. In that case, the error variance ratio of

the QC and the simple CoG is

σ 2
Nph,QC

σ 2
Nph,CoG

= 2ln2

( √
2π

2
√

2ln2

)2

= π

2
. (30)

The error variance of QC is 1.57 times greater than that of the

simple CoG.

4.3.2 Non-linearity of QC

The response of the QC algorithm is non-linear. Elementary calcu-

lation for a Gaussian spot leads to β = −1/σ 2
spot. Hence, the non-

linearity centroid error (in pixels) is σNL = √
15 σspot(σt/σspot)

3 (cf.

equation 8). It may quickly dominate other error sources even at

moderate Nph. On top of that, if the FOV size becomes smaller than

the spot, additional non-linearity appears, similar to simple CoG.

4.3.3 Atmospheric noise

As for the previous algorithms, we study the atmospheric component

of QC noise by ignoring both RON and photon-noise contributions,

as well as any residual spot motion. Fig. 10 shows the error variance

Figure 10. Atmospheric error variance of QC centroids: simulations (sym-

bols) and models (lines).

as a function of d/r0 for different FOV. A fit of the data leads to the

following expression:

σ 2
φ,Atm ≈ KW

(
d

r0

)5/3

, (31)

with KW depending on the FOV. When the FOV is very small, the

error is higher (KW = 0.2) because the spot is truncated. At larger

FOV, the error variance saturates at KW =0.07. This model, however,

works only for low turbulence, d/r0 < 1. As we see in Fig. 10, the

dependence on d/r0 becomes steeper than 5/3 power under strong

turbulence. One explanation comes from the noise of γ fluctuations

when d/r0 > 1.

The atmospheric error barely depends on the FOV size (as soon

as it is larger than a few λ/d). Even in the low-turbulence case

(KW = 0.07), it is 1.4 W2 times larger than for simple CoG (cf.

equation 16). In conclusion, using QC centroiding is only efficient

for a noisy detector under low-flux conditions and considering small

d/r0 values. For accurate wavefront measurement and photon-noise-

limited detectors other CoG methods are better.

5 C O R R E L AT I O N A L G O R I T H M

The use of the correlation in imagery is not new and has been already

proposed for AO systems that use extended reference objects, e.g. in

solar observations (Michau et al. 1992; Rimmele & Radick 1998;

Keller, Plymate & Ammons 2003; Poyneer et al. 2003). In this study,

we apply correlation algorithm (COR) to a point source. First, we

compute the cross-correlation function (CCF) C between the spot

image I and some template Fw.

C(x, y) = I ⊗ Fw =
∑

i, j

Ii, j Fw(xi + x, y j + y) (32)

and then determine the spot centre from the maximum of C(x, y).

The methods of finding this position are discussed below. Since the

COR method is not based on the centroid calculation, it appears

to be very good at suppressing the noise from pixels outside the

spot. Moreover, correlation is known to be the best method of signal

detection (‘matched filtering’). We note that the coordinates x, y
are continuous, unlike discrete image pixels, hence C(x, y) can be

computed with arbitrarily high resolution.

A correlation template Fw(x, y) can be either a mean spot image,

some analytical function or the image in one subaperture, like in

solar AO systems (Keller et al. 2003).

In practice, the CCF has been calculated using Fourier transform

(FT). In that case, the image has to be put in a support at least twice

as big as the image size to avoid aliasing effects. The sampling of
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the computed CCF can be made arbitrarily fine. One way to do this

is to plunge the FT product into a grid Ke times larger, where Ke is

the oversampling factor.

The behaviour of correlation centroiding with respect to the image

sampling is not different from other centroid methods. At low flux –

for example Nph = 30 for Nr = 3 e− – it is slightly better to use

Nsamp = 1.5. However, for higher flux, undersampling (Nsamp < 2)

leads to a worse error variance, while for oversampling (Nsamp > 2)

the error variance stays the same.

We remind the reader that NT is the FWHM of the spot image,

Nw the FWHM of the template Fw. Furthermore, we will call δ the

FWHM of CCF.

5.1 Determination of the CCF peak

Once the CCF is computed, it is not trivial to determine the precise

position of its maximum x̂corr. To do this, we studied three meth-

ods: simple CoG with threshold (Noël 1997), parabola fitting and

Gaussian fitting.

For the thresholding method, x̂corr is computed by equation (19)

where I is replaced by C and IT by CT = Tcorr max (C). The value

of Tcorr has been optimized in parallel with Ke. Fig. 11 shows the

behaviour of the error variance for different thresholds (from T = 0

or T = 0.9).

For the parabola fitting, the determination of x̂corr was done sep-

arately in x and y. Three points around the maximum x∗, y∗ of C
along either x or y define a parabola, and its maximum leads to the

x̂corr estimate (Poyneer et al. 2003) as

x̂corr = x∗ − 0.5[C(x∗ + 1, y∗) − C(x∗ − 1, y∗)]

C(x∗ + 1, y∗) + C(x∗ − 1, y∗) − 2C(x∗, y∗)
. (33)

In this case, a resampling of Ke = 4 is necessary and sufficient. For

the Gaussian fitting, the one-dimensional cut through the maximum

C(x∗, y∗) is fitted by a Gaussian curve to find x̂corr.

We found that all methods of peak determination are almost iden-

tical and linear (Fig. 12) when using a Gaussian spot.

However, while the determination of the correlation peak using a

few pixels around the maximum position is the best method to use

in presence of RON, it is not the case in presence of atmospherical

turbulence. In this latest case, information contained in the wings of

the CCF is important as well. For this reason, the methods using a

given function fit, such as the parabola fitting, will not be optimum.

The thresholding method on the other hand can be optimized by

adapting the threshold value in function of the dominant noise. If

Figure 11. Error variance of x̂corr determined by estimation of correlation

maximum using a thresholded centre of gravity with Gaussian shape spots

(with FWHM = 2 pixels). The spot motion is 0.1 pixel rms. Both photon

and readout (Nr = 3) noises are considered. Various values of threshold are

used. The template image is a noise-free Gaussian [P(x)].

Figure 12. Comparison of three different cases of peak determination for a

Gaussian spot: the thresholding, the parabola fitting and the Gaussian fitting.

All methods use an oversampling factor Ke = 8. There is photon noise and

RON (Nr = 3). The theory corresponds to the sum of equations (C7) and

(35).

the readout noise is dominant, we will use a high value of threshold

to be sensitive only to the information contained in the peak. If the

atmospherical noise is dominant, we will use a very low threshold

to also be sensitive to the information contained in the wings of the

CCF and therefore the image itself.

Thus, for comparison with other centroid algorithms, we will use

the thresholding method with a adaptable threshold.

5.2 Noise of correlation centroiding

It is possible to derive a theoretical expression of the error variance

for the correlation method. The derivation in presence of RON is

given in Appendix C (Michau et al. 1992).

A simplified expression of equation (C7) is

σ 2
x,COR,Nr

= 4δ2 N 2
r

N 2
ph

, (34)

where δ is the FWHM of C〈Fw〉, the autocorrelation function of Fw.

σ 2
x,COR,N r is given in pixels2.

The photon noise derivation is more complex, we studied is by

simulation only. Fig. 13 shows the behaviour of the correlation er-

ror variance in presence of photon noise only. A fit of the curve

corresponding to the best thresholding gives

σ 2
x,COR,NPh

≈ π2

2 ln(2)Nph

(
NT

Nsamp

)2

. (35)

This expression is equivalent to the error variance found in pres-

ence of photon noise only for the simple CoG. It can be shown

Figure 13. Error variance as a function of the number of photons for the

correlation method, in presence of photon noise only, for different threshold

values. The spot and template are Gaussian.
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(Cabanillas 2000) that the correlation is similar to the CoG, the op-

timal centroid estimator (maximum likelihood) for a Gaussian spot

in presence of photon noise only, if the template is the logarithm of

the same Gaussian Fw. We found however that using the Gaussian

distribution or the logarithm of this distribution gives very similar

results.

5.3 Response coefficient and non-linearity

The response coefficient of COR used with any of the optimized

peak determination methods is equal to 1. Moreover, the linearity

is very good, even when using the thresholding. Indeed, C(x, y) is a

function which can be resampled, as explained before. This allows

us to increase the value of the threshold to select only the region

very close to the maximum without considering only 1 pixel.

5.4 Atmospheric noise

In this section, we study the behaviour of the correlation method in

function of the size of the window used in the CCF peak determina-

tion Wcor and the FWHM of the template, in presence of atmospheric

turbulence only. The CCF peak is determined by thresholding with

T = 0.01, which is the best method in this particular case; it gives

lower errors at high flux. It is important to also notice that using the

thresholding method to determine the CCF peak allows the adapta-

tion of the threshold value depending on the flux and readout noise.

Hence, the results are more accurate than for other CCF peak deter-

mination method for any flux.

We find the same dependence of the error variance on the window

size Wcor and the strength of the turbulence as for the simple CoG,

which is

σ 2
φ,cor,Atm = K Wcor

−2

(
d

r0

)5/3

. (36)

A fit to the data of Fig. 14 gives K 	 0.5 for well-sampled spots

(Nsamp = 2). These results are valid as long as the correlation func-

tion is not truncated (due to a high threshold for example). This K
value depends obviously on the method used to determine the peak

position of the correlation function. For example, the parabolic fit-

ting is worse than the thresholding with a low threshold by a factor

of 2. Indeed, the parabolic fitting take into account only the few

pixels around the maximum. We saw in Section 5.1 that this was

not the optimum method.

The main conclusion here is that in presence of only atmospheric

turbulence, the correlation method is identical to the CoG.

Figure 14. Error variance due to the atmospheric noise as a function of

the correlation window size in λ/d for different value of d/r0. The model

(equation 36) is overplotted as full lines. In this case T = 0.01.

Table 1. Computation time for different algorithms

and two computers. Computer A = Intel Pentium IV

2.54 GHz, 512 Kb Cache, 1 Gb RAM. Computer B =
AMD Athlon 1.1 GHz, 256 Kb Cache, 512 Kb Ram.

sa = subaperture.

Computer CoG (μs/sa) Corr (μs/sa)

A 1 3.8

B 2.64 8.33

5.5 Computation time

We did some timing test for the CoG and the correlation for two

different type of computer. The results are given in Table 1.

Those results show that the correlation is indeed slower by a

factor of 3. However, depending on the requirements for the loop

time, this can be acceptable. Moreover, its use in solar AO proves

that the computation time is not a stopper.

6 C O M PA R I S O N B E T W E E N C E N T RO I D
M E T H O D S

6.1 The Cramér–Rao bound

The CRB is a lower boundary for the error variance of any unbi-

ased statistical estimator. Winick (1986) applied this powerful tool

to the case of SHWFS. He assumes the CCD noise to be Poisson-

distributed shot noise generated by both the image spot and the

detector dark current. In theory, no unbiased method can give bet-

ter results than this limit. Therefore, we computed and used it in

our study as a lower boundary, to compare with our simulations.

Moreover, it also indicates whether the best method has been found

or not.

However, it is really important to be careful with the validity of

assumptions inherent to the CR method. The estimator has to be un-

biased, which is the case of all the estimators considered in this study

except the QC. Indeed, QC is non-linear and therefore the response

coefficient αr becomes rapidly different from 1. This explains why

the QC curve goes slightly below the CR bound (e.g. Fig. 15). This

is also the case for WCoG method with γ = 1.

Figure 15. Comparaison of different methods. Variance of the error in rad2

in presence of photon noise and RON (Nr = 3). The Gaussian spot moves

randomly of 0.1 pixels rms in each direction. The plain line is the CRB. The

values of Nw and the FOV are given in λ/d for reference. If Tcorr = 0.6 for

the correlation, the error variance decreases at low flux but the noise at high

flux is higher. The best way is therefore to adapt the threshold as a function

of the flux and noise.
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6.2 Robustness at low flux

In Fig. 15 we compare centroid methods for a Gaussian spot, at

different levels of flux. The upper limit of reliable centroiding cor-

responds to the centroid variance equal to the rms spot size, or

phase variance of 7.1 rad2. It turns out that the most robust method

is the QC, which can give a good estimation of the spot position at

10 photons when Nr = 3. We recall that detection test has been im-

plemented at low flux, explaining the behaviour (saturation) of the

curves.

6.3 Comparison for a Gaussian spot

After studying in detail centroiding methods independently, the

methods are intercompared. The conclusions are as follows.

(i) In presence of photon noise only, all methods after optimiza-

tion are equivalent, with the exception of the QC where the error

variance saturates at high flux due to the non-linearity. The motion

of the spot is 0.1 pixel rms, leading to a non-linearity component

equal to about 5 10−4 rad2.

(ii) In presence of both readout and photon noise however, the

best method depends on the flux, as shown in Fig. 15. At low flux,

the QC is the optimum method. Then, its error variance saturates at

around 5 10−4 rad2 for higher flux. At higher flux, the photon noise

dominates and all methods except the QC are identical. Fig. 15

shows a comparison with the CRB as well. The sampling is equal

to Nsamp = 2, which is the optimum for all methods at high flux.

At low flux, Nsamp = 1.5 gives only marginally better results, which

explains why we did not consider this value.

It is possible to adapt the values of the different method’s pa-

rameter as a function of flux and RON to get lower error variances.

In the following, we used this adaptation in the comparison of the

different methods in presence of atmospherical turbulence.

6.4 Example of results for real AO systems

Considering the high number of parameters of this study, using one

method with one set of parameters only is an utopia. The solution is

to adapt the parameters of each method depending on the turbulence

strength, the RON and the flux.

We will give a comparison of performance for two real systems,

Planet Finder (PF) (Fusco et al. 2005) and the SOAR Adaptive

Module (SAM) (Tokovinin et al. 2004), working in two different

configurations (Table 2). PF is a second generation extreme AO for

the VLT and SAM is an AO being built for the SOAR telescope

using the Ground Layer AO concept.

The first example (PF) almost can be assimilated to the case of

photon noise only, which can be reached by using a new type of

CCD detectors with internal multiplication, L3CCD (Basden, Haniff

& Mackay 2003). As said in Section 3.4, the expected noise is

then doubled since equivalent to what would be found with half

the flux for conventional CCD. The second example (SAM) shows

the case of common detectors where both photon and RON are

Table 2. Parameters of the study. Note that the min-

imum number of photons is lower for PF because of

the lower detector RON value for this system.

d/r0 Nr Nph Nsamp

PF 1 0.5 [2–104] 2

SAM 2 5 [10–104] 1

Figure 16. PF: Variance of the error in rad2 in presence of the atmospheric

turbulence (d/r0 = 1) for different centroid methods. Only photon noise is

considered. The vertical dotted line (Nph = 8) represents the limit for which

the signal in the brightest pixel is always greater than 2Nr. The correlation

method gives the same results as the WCoG when the same parameters are

used.

present. The last difference is the sampling: Nyquist for PF and

half-Nyquist for SAM. For each case, we compared the different

methods described before, adapting their parameters in order to

reach the best performance.

We will first comment on the detectability limit. Just as a re-

minder, the detectability limit is calculated from the occurrence of

the maximum signal being higher than 2Nr over 1000 iterations (cf.

Section 2.4). Here, we will show the limit for which the maximum

signal is lower than 2Nr at least once. To give an idea for SAM, the

maximum intensity of an average image is equal to about 8 per cent

of the total flux when Nyquist sampled and 14 per cent when half

Nyquist sampled (assuming that the centre of the spot is in between

4 pixels). We then conclude that for Nph,min = 70, the maximum in-

tensity of the spot is too low compared to the RON, and all methods

relying on this maximum (like the thresholding) are useless. This

limit is equal to Nph,min = 8 for the case of PF. The values of Nph,min

decrease to a few photons for FP and to about 20 photons when we

set the level of occurrence to 50 per cent.

In the following we will concentrate on the WCoG, the correlation

and the QC. On the figures, we disregarded thresholding and simple

CoG to avoid confusion. Those two methods are not optimal at low

flux and similar to correlation and WCoG at high flux.

Case of PF. Without RON (Fig. 16), all method are equivalent ex-

cept the QC, as expected. Considering the computation time down-

side of the correlation, it is better to use the simple or WCoG.

The vertical dotted line (Nph = 8) represents the limit for which

the signal in the brightest pixel is always greater than 2Nr. If the

signal happens to be lower for one iteration, we remind that the

measure is not taking into account (see Section 2.4).

Case of SAM. If the RON increases (Fig. 17), the results do not

change when the number of photons is high enough – NPh > 300

for Nr = 5 – since the error variance is limited by the atmospheric

turbulence.

To reduce the impact of the noise, we used a positivity constraint

(use a threshold such as T = 0) on the images before applying any

method.

For low flux, the QC is 1.5 times better, assuming the optimistic

case where the FWHM and hence the response coefficient γ are

known. This is linked to the high RON and the undersampling. The

two other methods however either do not rely on the knowledge of

the FWHM or allow to measure the FWHM with accuracy since we
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Figure 17. SAM: Variance of the error in rad2 in presence of atmospheric

turbulence (d/r0 = 2) for SAM with a sampling of Nsamp = 1. Both photon

and RON are present. The vertical dotted line (Nph = 70) represents the limit

for which the signal in the brightest pixel is always greater than 2Nr.

have a direct access to the shape of spot, which is not the case for

QC. Moreover, the results are better at high flux. Therefore, if the

error budget allows it, the simplest and more reliable method, which

is the WCoG, must be chosen, even if it is not the best at low flux.

6.5 Implementation issues

From those results, it is essential to consider the implementation

issues of the WFS before making a final choice. In the following,

we will give some comments for the different methods.

(i) The QC. The advantage of this method is the low number of

pixels (only 2 × 2), even if in practice we often use more pixels.

However, there is an unknown which is the exact FWHM of the

spot in presence of turbulence. This FWHM must be known to get

a response coefficient γ = 1. Considering the poor sampling of the

image, it is difficult to calculate the spot size from the data. More-

over, this method is non-linear. The QC method can be interesting

though in case of a very high RON and small values of d/r0.

(ii) The CoG and its improvements. The subaperture field is

typically of 6 × 6 or 8 × 8 pixels. The pure CoG is very sensitive to

noisy pixels when the signal is low compared to the RON or when

the turbulence is high. Improvement can be achieved by optimizing

the threshold or by using a WCoG. The last one gives the best results

when adapting the rms size of the Fw as a function of flux and RON.

Moreover, the response coefficient γ depends on the FWHM of

the spot like for the QC. However, in that case it will be easier to

determine γ since we have a direct measurement of the spot. The

procedure will be to recentre and average off-line individual frames

in order to obtain a recentred long exposure image and then derive

the FWHM value from this direct data. Then, this value of FWHM

will be used in the next measurement.

(iii) The correlation. The computation for this method is more

complex, especially when over sampling is needed to estimate the

peak position of the correlation function. The thresholded CoG gives

the best estimation of the peak position of the correlation function,

since the adaptation of the threshold allows to deal with either high

RON or high atmospheric turbulence. Other methods are not as

robust and give higher error in presence of atmospheric turbulence.

The advantage of COR is that the response coefficient does not

depend on the spot size and shape.

7 C O N C L U S I O N S A N D F U T U R E WO R K

In this paper, we gave a practical comparison of different methods

of centroid calculation in a SH wavefront sensor. We studied some

variations of the centre of gravity such as WCoG, thresholding and

QC. We also considered the use of the correlation to determine

the spot positions. The first part of the paper was focused on the

simplified case of Gaussian spot or diffraction-limited spot without

atmospheric turbulence, while the second part considered all sources

of error.

We are not presenting here a real recipe but a methodology to

calculate the error of a SH wavefront sensor. This study can be

applied to different domains by changing the parameters and the

shape of the spot.

We first show a good understanding of the theory in the case of

a Gaussian spot. For this particular case, the formulae can be used

directly to estimate the noise in the WFS.

For diffraction-limited spot and spots distorted by atmospheric

turbulence, the derivation of such formulae is more challenging.

Therefore, we have studied the methods mainly by simulation. The

comparison is given in two different cases: with and without RON for

a strength of turbulence equal to d/r0 = 2. The best method would

be the WCoG, with adapting the size of the weighting function,

which does not require a complicated implementation.

The correlation gives also good results and good detectability by

adapting the threshold value to the flux and the RON considered.

One can notice as well that at high flux, the correlation and the sim-

ple CoG give smallest errors and are similar. It is safe to say that for

point sources the correlation method is not worth using, consider-

ing the complexity of its implementation. However, in presence of

elongated spots it is the best method (Poyneer et al. 2003). We are

planning to continue this study.

For lower turbulence, the QC is very efficient for high RON and

leads to simpler detectors.

The conclusion though is that we do not have a magic method.

However, the WCoG gives the optimum results independently of the

signal to noise ratio when adjusting the FWHM of the weighting

function. The study was made in the context of detailed designs and

trade-offs where simplified analytical formula do not apply in the

prediction of the WFS behaviour. We also show the complexity of

the problem and the importance of the contribution of each error

in the budget for the comparison of different methods (or more

generally different type of WFS).
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Véran J.-P., Herriot G., 2000, J. Opt. Soc. Am. (A), 17, 1430

Winick K. A., 1986, J. Opt. Soc. Am. (A), 3, 1809

A P P E N D I X A : P H OTO N N O I S E E X P R E S S I O N
I N T H E C A S E O F A D I F F R AC T I O N L I M I T E D
S P OT

In the case of a diffraction limited spot and a Poisson statistics

(photon noise case), the equation (11) is no longer valid. Indeed,

there is some signal contained in the wings of the PSF leading to

photon noise. The size of the window has to be optimized. The

photon noise variance (for one direction) can be expressed for this

case as

σ 2
φ,Nph

=
(

2πd

λ

)2
1

N 2
ph

∫ w/2

−w/2

∫ w/2

−w/2

α2〈P2(α, β)〉 dα dβ (A1)

with P(α, β) the sinc 2 shape of the spot (cf. equation 2) and w the

size of the subaperture in radians. Because we are in presence of

photon noise only in this case, 〈P2(α, β)〉 = P(α, β) and therefore

we can write

σ 2
φ,Nph

=
(

2πd

λ

)2
1

Nph

∫ w/2

−w/2

α2sinc2

(
α

λ/d

)
dα

∫ w/2

−w/2

sinc2

(
β

λ/d

)
dβ.

(A2)

We have∫ w/2

−w/2

α2sinc2

(
α

λ/d

)
dα = 2

λ2

(πd)2

∫ w/2

0

sin2

(
πdα

λ

)
dα

=
(

λ

πd

)2
w

2

[
1 − sinc

(
dw

λ

)]
,

(A3)

and∫ w/2

−w/2

sinc2

(
β

λ/d

)
dβ = λ

πd

∫ (πd/λ)(w/2)

0

sinc2 (γ ) dγ, (A4)

where γ = β

λ/d .

Thus,

σ 2
φ,Nph

=
(

2πd

λ

)2
1

Nph

(
λ

πd

)2
w

2

[
1 − sinc

(
dw

λ

)]
λ

πd

∫ (πd/λ)(w/2)

0

sinc2(γ ) dγ. (A5)

The function [1 − sinc (πdw/λ)] tends to 1 (with some oscil-

lations) and
∫ (πd/λ)(w/2)

0
sinc2(γ ) dγ tends to π/2 when w tends to

infinity (or at least if w 
 λ/d). In that case, equation (A5) can be

approximated by

σ 2
φ,Nph

≈
(

2πd

λ

)2
1

Nph

w

2

(
λ

πd

)3

π ≈ 2
W

Nph

, (A6)

with W = w λ/d, the size of the subaperture in λ/d unit.

A P P E N D I X B : D E R I VAT I O N O F T H E C O G
E S T I M AT E C A L C U L AT E D O N A F I N I T E
W I N D OW

The definition of the CoG of P(x, y) on a finite window of size Wp

is

x̂ = 1

P0

∫∫ Wp/2

−Wp/2

x P (x, y) dx dy, (B1)

with

P0 =
∫∫ Wp/2

−Wp/2

P(x, y) dx d (B2)

=
∫∫ Wp/2

−Wp/2

Nph

2πσ 2
spot

e
−[(x−x0)2+y2]/2σ 2

spot dx dy (B3)

= Nph

2πσ 2
spot

∫ Wp/2

−Wp/2

e
−(x−x0)2/2σ 2

spot dx (B4)

∫ Wp/2

−Wp/2

e
−y2/2σ 2

spot dy. (B5)

We first get by deriving the expression of I0

P0 = Nph

2
[�(η) + �(ζ )] × �

(
Wp/2

σspot

√
2

)
, (B6)

where ζ = (Wp/2 − x0)/(
√

2σspot), η = (Wp/2 − x0)/(
√

2σspot),

and �(t) = 2/
√

π
∫ t

0
exp(−u2) du.

Then from equation (B1), we obtain

x̂ = 1

P0

∫∫ Wp/2

−Wp/2

x
Nph

2πσ 2
spot

e
−[(x−x0)2+y2]/2σ 2

spot dx dy (B7)
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= 1

P0

∫ Wp/2

−Wp/2

x e
−(x−x0)2/2σ 2

spot dx (B8)

∫ Wp/2

−Wp/2

e
−y2/2σ 2

spot dy. (B9)

This leads to

x̂ = x0 − σspot

√
2

π

eζ − eη

�(ζ ) + �(η)
. (B10)

The derivation for the WCoG is similar, taking

x̂ = 1

P0

∫∫ Wp/2

−Wp/2

x P(x, y)Fw(x, y) dx dy, (B11)

where Fw is the weighting function, and

P0 =
∫∫ Wp/2

−Wp/2

P(x, y)Fw(x, y) dx dy. (B12)

A P P E N D I X C : RO N C A L C U L AT I O N F O R T H E
C O R R E L AT I O N M E T H O D

Here, we consider the case where the reference Fw is a known,

deterministic function. Let s be the threshold and D the domain

where C(x, y) � s, and Dc the domain where the functions are

defined. Then

xcorr =
∫

D
x[C(x, y) − s]dxdy∫

D
[C(x, y) − s] dxdy

= Ng

Dg

, (C1)

where Ng is the numerator and Dg the denominator. If we assume

that the fluctuations of Dg are negligible compared to those of Ng,

we find that

σ 2
x,COR =

〈
N 2

g

〉 − 〈Ng〉2

D2
g

, (C2)

where

〈N 2
g 〉 − N 2

g =
∫

D

∫
D

xx ′σ 2
C (x, y, x ′, y′) dx dy dx ′ dy′, (C3)

where σ 2
C (x, y, x′, y′) is the variance of the correlation function. We

can show that

σ 2
C (x, y, x ′, y′) =∫

Dc

∫
Dc

Fw(u, v)Fw(u′, v′)[〈I (u + x, v + y)I (u′ + x ′, v′ + y′)〉

− 〈I (u + x, v + y)〉〈I (u′ + x ′, v′ + y′)〉] du dv du′ dv′. (C4)

Since

[〈I (x, y)I (x ′, y′)〉 − 〈I (x, y)〉〈I (x ′, y′)〉] ={
σ 2

b (x, y), if (x, y) = (x ′, y′)

0, if (x, y) �= (x ′, y′)
,

(C5)

where σb(x, y) is the noise density. In presence of readout noise,

which is a white noise, σb is a constant equal to Nr.

σ 2
C (x, y, x ′, y′) =

N 2
r

∫
Dc

Fw(u, v)Fw(u + x − x ′, v + y − y′) du dv.
(C6)

Therefore, a development of equation (C2) gives

σ 2
x,COR,Nr

= N 2
r

∫
D

∫
D

xx ′[C〈Fw〉(x − x ′, y − y′)
]

dx dy dx ′ dy′

〈Dg〉2
,

(C7)

where C〈Fw〉 is the autocorrelation function of Fw. σ 2
x,COR, Nr is given

in pixels2.

A simplified expression of equation (C7) can be derived using the

following approximation:

C〈Fw〉(x, y) ≈ CI (x, y)(Dc ⊗ Dc)(x, y) (C8)

close to the maximum. Then, we can fit the function near the maxi-

mum by a parabola as

CI (x, y) = N 2
ph

(
1 − x2 + y2

2δ2

)
, (C9)

where δ is the FWHM of C〈Fw〉.
We finally find

σ 2
x,COR,Nr

= 4δ2 N 2
r

N 2
ph

. (C10)
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