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Synchronization in Networks of Nonlinear Systems:
Contraction Analysis via Riemannian Metrics and

Deep-Learning for Feedback Estimation
Mattia Giaccagli, Samuele Zoboli, Daniele Astolfi, Vincent Andrieu, and Giacomo Casadei

Abstract— We consider the problem of exponential synchroniza-
tion of a network of identical input-affine nonlinear time-varying
systems connected through an undirected graph, in the presence
of a leader. We tackle the problem with incremental stability tools.
We propose sufficient metric-based conditions to design a dis-
tributed diffusive coupling feedback law in two frameworks. First,
we consider a state feedback design, where synchronization is
obtained for every initial condition. Then, we show that synchro-
nization can still be achieved regionally under milder assumptions.
To balance the analytical difficulties of computing the proposed
controller, we develop an algorithm based on deep neural networks
(DNNs) for practical implementation.

Index Terms— Synchronization, contraction, multi-agent sys-
tems, incremental stability, deep learning, deep neural network.

I. INTRODUCTION

The problem of a group of agents trying to achieve an agreement
is generally known as synchronization. In this work, we consider
the problem of synchronization via distributed control feedback (i.e.
diffusive coupling) of homogeneous networks (i.e. networks where
the agents’ dynamics are identical). For linear systems, fundamental
results were obtained in [1], [2]. See also [3, Section 5]. For
nonlinear systems, most results exploit existing techniques devel-
oped for single-agent systems, specifically adapted to deal with a
distributed framework. Among them, we recall passivity-based [4],
dissipativity-based [5], H∞-based [6, Chapter 9] and ISS approaches
[7]. High-gain techniques, inherited from high-gain observers theory
or domination approaches (see, e.g., [8], [9]), form another notable
class of solutions. Finally, another very popular approach to solve
the synchronization problem consists of exploiting tools derived from
contraction and incremental stability theory (see [10]–[13]). Based on
this framework, most of the results considered quadratic Lyapunov
functions, or equivalently [13], Euclidean metrics. See, e.g., [14]–
[21]. Only a few investigated the use of nonlinear metrics, e.g. [22].

In this work, we investigate the problem of global exponential
synchronization of homogeneous networks, in which each agent
is described by a nonlinear time-varying input-affine multi-input
ordinary differential equation (ODE). We look for the existence of
a nonlinear diffusive coupling, namely a static distributed control
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feedback. We consider the case of undirected and leader-connected
graphs, that is, there exists an agent (the leader) who can send
information to the other nodes without receiving any. In the rest of
the network, the communication links are bi-directional. Following
a contraction-based approach, we investigate the use of nonlinear
Riemannian metrics (see, e.g., [12], [23]). We propose a solution to
the synchronization problem based on the existence of a solution
to a static partial differential inequality (PDI) which conceptually
extends the stabilizability Riccati-like algebraic inequality (see, e.g.,
[2, Section II.C]). This allows considering classes of systems with a
nonlinear input gain. However, the proposed PDI is very complex
to verify analytically. Therefore, to deal constructively with such
complexity, we show that synchronization can be achieved in a
regional context under less stringent assumptions. Thanks to this
relaxation, we provide a formulation of a practical algorithm based on
Deep Neural Networks (DNNs) to check the solvability of such a PDI.
Note that the proposed approach presents conceptual similarities with
the control contraction metrics [24]. Therein, however, the control
action is obtained by path-integrating along the geodesic (see [24,
equation (6)]) by solving an optimization problem.

Note that the use of DNNs for solving PDIs is not new to the
Machine Learning community, see, e.g., [25], [26]. In this context,
we recall the recent results on the use of Deep Learning tools for the
estimation of a Riemannian metric [27]–[30]. To show the potential
of this approach, we consider the problem of synchronizing a network
of Lorentz oscillators in which the input gain is highly nonlinear (and
for which existing techniques cannot be easily applied). We highlight
that this work is an extension of the authors’ conference work [23],
where preliminary results on the synchronization of leader-connected
undirected networks of SISO time-invariant nonlinear systems were
proposed.
Notation: N, resp. R, is the set of natural, resp. real, numbers,
R≥0 := [0,+∞),R>0 := (0,+∞). Given N matrices Ai ∈ Rni×n

for i = 1, . . . , N , we denote with col(A1, . . . AN ) the matrix
(A⊤

1 , . . . , A⊤
N )⊤ ∈ R(n1+···+nN )×n and with diag(A1, . . . , AN )

the square matrix with A1, . . . , AN on the main diagonal and zeros
everywhere else. Given a vector x ∈ Rn and a set S ⊂ Rn, we denote
the standard Euclidean norm of x as |x| and Euclidean distance of x
with respect to S as |x|S := infz∈S |x− z|. Given a C1 vector field
f : Rn×R 7→ Rn and a C1 2-tensor P : Rn×R 7→ Rn×Rn taking
symmetric values, we indicate with LfP (x, t) the Lie derivative of
the tensor P along f defined as

LfP (x, t) := P (x, t)∂f∂x (x, t)+
∂f
∂x

⊤
(x, t)P (x, t)+ dfP (x, t)

dfP (x, t) := lim
h→0

P (X(x,t+h,t),t)−P (x,t)
h + ∂P

∂t (x, t) ,

with X(x, t, t0) being the solution to ∂
∂tX(x, t, t0) =

f(X(x, t, t0), t), with X(x, t, t0) = x, for all t ≥ t0 in
time-existence of solutions, with coordinates (LfP (x, t))i,j =



2

∑
k

[
2Pik(x, t)

∂fk
∂xj

(x, t) +
∂Pij
∂xk

(x, t)fk(x, t)
]
+

∂Pij
∂t (x, t). Given

a 2-tensor P : Rn×R → Rn×n and a vector field g : Rn×R → Rn

both C1 (resp., a C1 matrix function g : Rn×R → Rn×m), we say
that g is a Killing vector field (or that it satisfies the Killing vector
property) with respect to P , if LgP (x, t) = 0 (resp. LgiP (x, t) = 0
for all i = 1, . . . ,m, with gi denoting the i-th column of g) for all
(x, t) ∈ Rn × R. Note that the Killing vector property is trivially
satisfied in case both P, g are constant matrices.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph theory
In a general framework, a communication graph is described by a

triplet G = {V, E ,A} in which V = {v1, . . . , vN} is a set of N ⊂ N
vertexes (or nodes), E ⊂ V × V is the set of edges ejk that models
the interconnection between the vertexes with the flow of information
from vertex j to vertex k weighted by the (k, j)-th entry akj ≥ 0 of
the adjacency matrix A ∈ RN×N . We denote by L ∈ RN×N the
Laplacian matrix of the graph, defined as ℓkj = −akj for k ̸= j,
and ℓkj =

∑N
i=1 aki for k = j, where ℓjk is the (j, k)-th entry of

L. We denote with Ni the set of in-neighbors of node i, i.e. the set
Ni := {j ∈ {1, . . . , N} | eji ∈ E}. A time-invariant graph is said to
be weakly connected if and only if L has only one trivial eigenvalue
λ1(L) = 0 and all other eigenvalues λ2(L), . . . , λN (L) ∈ C have
strictly positive real parts (see [3, Theorem 5.1]).

In this article, we will consider leader-connected undirected
graphs. With leader-connected, we mean that we assume the existence
of a leader (i.e. the graph contains at least one spanning tree with the
leader as a root). The leader is labeled (without loss of generality) as
node 1 and has a set of in-neighbors that is the empty set, i.e. N1 = ∅.
In other words, no node in the network can send information to node
1. We also assume the network to be undirected, meaning that we
assume communication links to be bi-directional (i.e. eij = eji for
every i, j = 2, . . . , N ), except, of course, to the edges that nodes
in the network share with the leader. By considering such a graph
structure, the following property is proved in [31].

Lemma 1 Suppose the graph G = {V, E ,A} is undirected and
leader-connected. Then the Laplacian L can be partitioned as L =[

0 0N−1
L21 L22.

]
where 0N−1 is a vector of all zeros of size N − 1,

L21 ∈ R(N−1)×1 and L22 ∈ R(N−1)×(N−1). Moreover, there
exists strictly positive real numbers µ, µ̄ > 0 such that µIN−1 ⪯
L22 ⪯ µ̄IN−1.

B. Synchronization with nonlinear diffusive coupling
In this article we consider a network of N agents. As we labeled

the leader as node 1, its dynamics is defined by

ẋ1 = f(x1, t) (1a)

where x1 ∈ Rn is the state of the leader, while the dynamics of the
other N − 1 nodes in the network are described as

ẋi = f(xi, t) + g(xi, t)ui, i = 2, . . . , N. (1b)

where xi ∈ Rn is the state of node i and ui ∈ Rm is the control
action on node i. We suppose that f, g are C2 functions in their
first argument and piecewise continuous in the second. We denote
the state of the entire network as

x := col(x1, . . . , xN ) ∈ RNn . (2)

Furthermore, we denote with Xi(x
◦
i , t, t0) the trajectory of agent

i evaluated at time t ≥ t0 such that Xi(t0) = x◦i , and with

X (x◦, t, t0) the trajectory of the entire network (2) evaluated at
initial condition x◦ ∈ RNn, initial time t0 ∈ R at time t ≥ t0. Our
synchronization objective is to design a nonlinear diffusive coupling,
namely a distributed state-feedback control law of the form

ui =
∑
j∈Ni

aij

[
φ(xj , t)− φ(xi, t)

]
= −

N∑
j=1

ℓijφ(xj , t) (3)

for all i = 2, . . . , N , for some C1 function φ : Rn ×R → Rm, that
stabilizes the dynamics (1) on the so-called leader-synchronization
manifold D defined as

D := {x ∈ RNn | xi = x1, for all i ∈ {1, . . . , N}}, (4)

where the states of all the agents of the network agree with the leader.
By construction, the i-th agent uses only the information xj of its
neighborhoods j ∈ Ni and its own state xi. Furthermore, the control
action ui is equal to zero on the synchronization manifold, i.e. when
synchronization is achieved, no correction term is needed for each
agent. As a consequence, stabilizing all the agents on an equilibrium
point is generally not a valid solution in such a framework. We
formalize our synchronization problem as follows.

Problem 1 (Leader synchronization) The distributed feedback
control law (3) solves the leader-synchronization problem for the
network (1) if the manifold D defined in (4) is globally uniformly
exponentially stable for the closed-loop dynamics (1), (3), namely,
there exist positive constants k and λ > 0 such that for all (x◦, t0)
in RNn ×R the closed-loop solutions are defined for all t ≥ t0 and

|X (x◦, t, t0)|D ≤ k exp(−λ (t− t0)) |x◦|D, ∀t ≥ t0. (5)

In order to solve our leader synchronization problem, the following
standing assumption is supposed to hold all along the paper.

Assumption 1 The graph G = {V, E ,A} is undirected and leader-
connected. Moreover, for each (x◦1, t0) in Rn × R the trajectory of
(1a) exists for all t ≥ t0.

III. MAIN RESULTS

In this section, we provide the first main result of this paper. We
start by assuming that the pair f, g satisfies a controllability-like
assumption.

Assumption 2 There exist a C1 matrix function P : Rn × R →
Rn×n taking symmetric positive definite values and positive real
numbers p, p, ρ, λ > 0 such that the following holds for all (x, t) ∈
Rn × R

LfP (x, t)− ρP (x, t)g(x, t)g(x, t)⊤P (x, t) ⪯ −2λP (x, t) ,

pI ⪯ P (x, t) ⪯ pI .
(6)

Assumption 2 can be seen as a Riccati-like inequality, where P is a
matrix function. This matrix function P can be employed to endow
with a Riemaniann metric Rn. At each x in Rn, we define the scalar
product ⟨a, b⟩P = a⊤P (x)b, (a, b) in R2n. The (uniform) upper and
lower bound on P are required in order to guarantee that the induced
norm is equivalent to the Euclidean one |x| =

√
x⊤x. These bounds

are needed to show that, if the distance associated with the norm P
between any node and the leader decreases along the solutions, so it
does also the Euclidean one.

Remark. For linear systems of the form ẋ = Ax+Bu, Assumption 2
boils down to the well-known algebraic Riccati inequality (ARI)
PA+ A⊤P − ρPBB⊤P ⪯ −2λP which admits a solution under
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the mild assumption that (A,B) is stabilizable. In this case, a
stabilizing control action is given by u = −κB⊤P for any κ ≥ ρ.
Furthermore, we remark that such a design possesses an infinite-gain
margin property [32]. Such a property will play a fundamental role in
the following distributed analysis, as it will provide a synchronizing
control law that is “robust” with respect to the graph topology.

Assumption 3 The matrix function g has the Killing vector field (see
Notation) property with respect to P , namely

LgP (x, t) = 0 , ∀(x, t) ∈ Rn × R . (7)

Assumption 4 The vector field Pg satisfies an integrability condition
in the sense that, denoting g = [g1 . . . gm], there exists a C2 function
α = (α1, . . . , αm), αι : Rn × R 7→ R for ι = 1, . . . ,m, satisfying

∂αι

∂x
(x, t) = gι(x, t)

⊤P (x, t) , ∀(x, t) ∈ Rn × R . (8)

The Killing vector condition (7) in Assumption 3 implies that dis-
tances in the metric P between different trajectories of the dynamical
equation ẋ = g(x, t) are invariant. It means that any exogenous
signal entering in the direction of g may change the trajectories but
it does not change the distance between different trajectories1. The
integrability condition (8) in Assumption 4 is introduced since the
synchronization analysis will be made through incremental properties
and thus by analyzing the Jacobian of the vector fields. Note that
for linear systems, both properties are always satisfied. Indeed P is
constant and so it is g(x, t) = B. This implies that the Killing vector
assumption (7) holds and the function α in (8) is α(x, t) = B⊤Px.

Remark. Note that Assumption 3 is needed in order to obtain
synchronization for every initial condition of the agents, i.e. to make
the leader-synchronization manifold globally exponentially stable. As
we will show in Section IV, such an assumption can be relaxed in
exchange of obtaining asymptotic stability of D with a domain of
attraction included in a compact set.

As last remark, we highlight that Assumption 2 and Assumption 3
recover the design proposed in [24, Section III.A]. We’re now ready
to show the main result of this section.

Theorem 1 Consider a network G = {V, E ,A} of agents (1) and
let Assumptions 1 to 4 hold. Then, for any κ ≥ ρ

2µ , with µ given by
Lemma 1, the distributed state-feedback control law (3) with

φ(xi, t) = κα(xi, t) , (9)

and α satisfying (8), solves the synchronization Problem 1 for the
network of agents given in (1).

Proof: The main goal is to show that the norm of the difference
between any agent xi and the leader x1 exponentially decreases to
zero. Therefore, let us consider the following change of coordinates

xi 7→ x̃i := xi − x1, i = 2, . . . , N

and let us collect all the vectors x̃i as x̃ := col(x̃2, . . . , x̃N ) and
define z = x1. Since ℓij = 0 for all j ̸∈ Ni, the dynamics of the
error x̃i for all i = 2, . . . , N with the control law (3), (9) can be
rewritten as

˙̃xi = f(z + x̃i, t)− f(z, t)

− κg(z + x̃i, t)

 N∑
j=2

ℓijα(z + x̃j , t) + ℓi1α(z, t)

 .

1For more details on the subject, see [33] for further details on the δISS
properties induced by contraction and Killing vector fields

Note that there is no term on g(z, t) since no control action is acting
on the leader. Since

∑N
j=1 ℓij = 0 for all i = 1, . . . , N , we can add

the term κg(z + x̃i, t)
(∑N

j=1 ℓij

)
α(z, t) = 0 and get

˙̃xi = f(z + x̃i, t)− f(z, t)

− κg(z + x̃i, t)

N∑
j=2

ℓij
[
α(z + x̃j , t)− α(z, t)

]
. (10)

Note that in these new coordinates, the leader-synchronization mani-
fold defined in (4) corresponds to the origin of the x̃-dynamics. Now,
given (z◦, x̃◦, t0) in RNn × R, let T > t0 be the time of existence
of the solution of (10) initialized in (z◦, x̃◦) at time t0. For t in
[t0, T ), let (Z(t), X̃ (t)) denote this solution. Consider the function
Γ : [0, 1]× [t0, T ] 7→ RNn, with Γ = (Γ2, . . . ,ΓN ) which satisfies
Γ(s, t0) = s x̃◦, and where Γi, i = 2, . . . , N , is the solution of the
following ODE for t0 ≤ t < T

∂Γi

∂t
(s, t) = f(ζi(s, t), t)− f(Z(t), t)

− κg(ζi(s, t), t)

N∑
j=2

ℓij(α(ζj(s, t), t)− α(Z(t), t))

where we denoted ζi(s, t) = Z(t) + Γi(s, t). By uniqueness of
the solution, Γ satisfies Γ(0, t) = 0, Γ(1, t) = X̃ (t), for all
t ∈ [t0, T ). Consider now the function V defined by

V =

N∑
i=2

Vi, Vi(·) =
∫ 1

0

∂Γi

∂s
(s, ·)⊤P (ζi(s, ·), ·)

∂Γi

∂s
(s, ·)ds ,

(11)

and note that, by using (6), it yields

Vi(t) ≥ p

∫ 1

0

∂Γi

∂s
(s, t)⊤

∂Γi

∂s
(s, t)ds ≥ p |X̃i(t)|2 . (12)

Similarly, V (t0) ≤ p |x̃◦|2 , where x̃◦ is the initial condition of the
error dynamics with elements x̃i = xi −x1. By the definition of the
synchronization manifold D in (4) and by the equivalence of norms
in finite-dimensional spaces, there exist cV , c̄V > 0 such that

cV
∣∣X (x◦, t, t0)

∣∣2
D ≤ V (t) ≤ c̄V

∣∣X (x◦, t, t0)
∣∣2
D (13)

with x◦ being the initial condition of the network. We compute now
the derivative of V along solutions. We have

d

dt
[P (ζi(s, t), t)kl]

=
∂Pkl

∂x
(ζi(s, t), t)

∂ζi
∂t

(s, t) +
∂Pkl

∂t
(ζi(s, t), t),

=
∂Pkl

∂x
(ζi(s, t), t)

[
f(Z(t), t) +

∂Γi

∂t
(s, t)

]
+

∂Pkl

∂t
(ζi(s, t), t).

for all (k, l) ∈ {1, . . . , n}2. Therefore, for all i = 2, . . . , N ,

d

dt

[
ν⊤P (ζi(s, t), t)ν

]
= ν⊤dfP (ζi(s, t), t))ν

− κ

N∑
j=2

[
ℓij

m∑
ι=1

ν⊤dgιP (ζi(s, t), t)ν

× (αι(ζj(s, t), t)− αι(Z(t), t))

]
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for all vector ν in Rn. By using the Killing vector assumption (7)
and the integrability one in (8), the time derivative of Vi becomes

V̇i(t) =

∫ 1

0

[
∂Γi

∂s
(s, t)⊤LfP (ζi(s, t), t)

∂Γi

∂s
(s, t)

− 2κ
∂Γi

∂s
(s, t)⊤

N∑
j=2

ℓijP (ζi(s, t), t)g(ζi(s, t), t)

× g(ζj(s, t), t)
⊤P (ζj(s, t), t)

∂Γj

∂s
(s, t)

]
ds. (14)

With the following notations,

D(s, t) := diag
{
LfP (ζi(s, t), t)

}
i=2,...,N

,

Ψ(s, t) := col

{
∂Γ⊤

i

∂s
(s, t)P (ζi(s, t), t)g(ζi(s, t), t)

}
i=2,...,N

,

we compute the derivative of V as follows

V̇ (t) =

∫ 1

0

[
∂Γ

∂s

⊤

(s, t)D(t)
∂Γ

∂s
(s, t)− 2κΨ(s, t)L22Ψ(s, t)⊤

]
ds

≤

∫ 1

0

[
∂Γ

∂s

⊤

(s, t)D(t)
∂Γ

∂s
(s, t)− 2κµΨ(s, t)Ψ(s, t)⊤

]
ds

where in the second step we used Assumption 1 and Lemma 1.
Therefore, taking κ ≥ ρ

2µ with ρ satisfying (6) and µ > 0 given

by Lemma 1, we get V̇ (t) ≤ −λV (t). From Gronwall’s Lemma,
this implies V (t) ≤ exp (−λ(t− t0))V (t0) for all t ∈ [t0, T ).
Therefore, using (13), it yields for all t in [t0, T ) that

|X (t)|2D ≤ exp(−λ(t− t0))
c̄V
cV

|x◦|2D .

Hence, since the leader trajectory is well-defined for all positive
times, this implies that the trajectories are complete in positive time
(i.e. T = +∞), which implies (5) and concludes the proof.

Remark. To conclude, we point out that our conditions can be
straightforwardly extended for the case of static output feedback
design for systems of the form

ẋ1 = f(x1, t) , y1 = h(x1, t),

ẋi = f(xi, t) + ui , yi = h(xi, t),

ui = −
N∑
j=1

ℓijφ̃(xi, yj , t),

by suitably modifying Assumption 2-4. In this case, the inequality (6)
becomes a nonlinear version of the more classical output Riccati-like
inequality PA + A⊤P − ρC⊤C ⪯ −2λP , and the proof follows
similar arguments. For more details, we refer to [23, Section 3.2]
where the SISO time-invariant case was shown. Moreover, also the
case of passive interconnection can be considered, similarly to [19].

IV. RELAXING THE INTEGRABILITY AND KILLING
CONDITIONS

The main limitation of the approach presented in Section III is the
complexity of finding a metric P solving (6) and, at the same time,
satisfying the Killing vector field property in (7) and the integrability
condition in (8). In some cases, simpler and more robust design
can be given by considering Euclidean metrics (i.e. constant P )
and by assuming a specific structure for the nonlinearity, such as
monotonicity, sector boundness, or Lur’e-type conditions (see e.g.

[16], [34]). However, this is not always the case. Differently, for
the case of nonlinear metrics, one may try to obtain the function P
using computational tools (e.g. neural networks) leading inevitably
to approximations that may not exactly satisfy the conditions (7) and
(8). To this end, in this section, we aim to provide a practical solution
to such limitations. In particular, we show that synchronization can
still be obtained under an approximate integrability condition or an
approximate Killing vector assumption. The result is different in the
two contexts. Indeed, global results can still be achieved in case of
an approximation of the integrability condition, provided the control
gain is not selected too large. However, only semi-global results can
be obtained when relaxing the Killing vector assumption.

A. About the integrability condition

Instead of Assumption 4, consider the following one.

Assumption 4’ There exist a C2 function α : Rn × R 7→ Rm and
a scalar ε > 0 such that, for ι = 1, . . . ,m, the following holds∣∣∣∣∂αι

∂x
(x, t)− gι(x, t)

⊤P (x, t)

∣∣∣∣ ≤ ε, ∀(t, x) ∈ R× Rn. (15)

Theorem 2 Consider a network G = {V, E ,A} of agents (1) and
let Assumptions 1, 2, 3 and 4’ hold. Moreover, assume there exists
a positive real number ḡ > 0 such that |gι(x, t)| ≤ ḡ for all
(x, t) in Rn × R and ι = 1, . . . ,m. Let µ be given by Lemma 1
and let L̄ = maxij |ℓij | where (ℓij) is the Laplacian matrix
associated to the graph. Then, if ε in Assumption 4’ is such that
ε ∈ [0, ε∗) with ε∗ =

λµ p

ρNL̄mp̄ḡ
, there exists κ∗ such that for any

κ ∈ [ ρ
2µ , κ

∗), the distributed state-feedback control law (3)-(9) solves
the synchronization Problem 1.

Proof: The proof is identical to the proof of Theorem 1 up
to equation (14). Recalling the compact notation ζi(s, t) = Z(t) +
Γi(s, t), with Assumption 2, for each i in {2, . . . , N}, the function
Vi defined in (11) satisfies for all t in [t0, T )

V̇i(t) =

∫ 1

0

[
∂Γi

∂s
(s, t)⊤LfP (ζi(s, t), t)

∂Γi

∂s
(s, t)

− 2κ

N∑
j=2

ℓijΨi(s, t)Ψj(s, t)
⊤ + Ti(s, t)

]
ds,

where we used the compact notation as in the proof of Theorem 1
and

Ti(s, t) := −2κ
∂Γi

∂s
(s, t)⊤

N∑
j=2

ℓij

m∑
ι=1

P (ζi(s, t), t)gι(ζi(s, t), t)

× Σ(s, t)
∂Γj
∂s (s, t),

Σ(s, t) := ∂αι
∂x (ζj(s, t), t)− gι(ζj(s, t), t)

⊤P (ζj(s, t), t).

By Assumption 4’ and the bound on P, g, the terms Ti satisfy

|Ti(t, s)| ≤ 2κmp̄ḡε

∣∣∣∣∣∣
N∑
j=2

ℓij
∂Γi
∂s (s, t)⊤

∂Γj
∂s (s, t)

∣∣∣∣∣∣
= 2κc

∣∣∣∣∣∣
N∑
j=2

ℓij
∂Γi
∂s (s, t)⊤

∂Γj
∂s (s, t)

∣∣∣∣∣∣ .
Consequently, with Assumption 1 and the fact that L22 is bounded
as in Lemma 1, by following the proof of Theorem 1, we obtain
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V̇ (t) ≤

∫ 1

0

[
∂Γ

∂s
(s, t)⊤D(s, t)

∂Γ

∂s
(s, t)− 2κµΨ(s, t)Ψ(s, t)⊤

+ 2κc
∂Γ

∂s
(s, t)⊤L22

∂Γ

∂s
(s, t)

]
ds.

By Lemma 1 and the bounds on P , the above inequality gives

V̇ (t) ≤

∫ 1

0

∂Γ

∂s
(s, t)⊤ diag(Υi)i=2,...,N

∂Γ

∂s
(s, t) ds,

where Υi(ζ, t) = LfP + 2κc̄P − 2κµPg⊤gP, with P and g

depending on (ζ, t) and c̄ = µ̄mp̄ḡε
p . With Assumption 2, this implies

Υi(ζ, t) ≤ (2κc̄−λ)P (ζ, t)+(ρ−2κµ)P (ζ, t)g(ζ, t)⊤g(ζ, t)P (ζ, t).

Note that with the choice of ε <
λµ p

ρµ̄p̄ḡm
we have ρ

2µ < λ
2c̄ .

Consequently, for each κ ∈ [ ρ
2µ ,

λ
2c̄ ) it implies V̇ (t) ≤ −λ̃V (t)

for all t ≥ t0, where λ̃ = 2κc̄ − λ is a positive real number. The
proof ends following the lines of the proof of Theorem 1.

B. About the Killing vector field
When the equality constraint in Assumption 3 is replaced by an

approximation, the global synchronization may be lost. However, it is
shown in the following theorem that provided |LgP | is small enough,
a semi-global result can be obtained.

Theorem 3 Consider a network G = {V, E ,A} of systems (1).
Suppose Assumption 1, 2, and 4 hold, and let κ ≥ ρ

µ be fixed.
Moreover, assume there exists a positive real number ḡ such that
|gι(x, t)| ≤ ḡ for all (x, t) in Rn × R and ι = 1, . . . ,m. Then, for
each x̄ > 0 there exist k, ε > 0 such that, if the following holds

|LgιP (x, t)| ≤ ε , ∀ (x, t, ι) ∈ Rn × [t0,∞)× {1, . . . ,m}, (16)

then, for all (x◦, t0) in RNn×R such that |x◦|D ≤ x̄, the solution of
(1), (3) with the distributed state-feedback control law (9) is defined
for all t ≥ t0 and

|X (x◦, t, t0)|D ≤ ke−
λ
3 (t−t0) |x◦|D , ∀t ≥ t0. (17)

Proof: Let x̄, t0 > 0 and let x◦ ∈ RNn satisfy |x◦|D ≤ x̄.
Assume that (16) is satisfied for some positive real number ε that
will be selected later on. As in the proof of Theorem 1, consider the
function V defined in (11) 2. With Assumption 2, and 4, for each i
in {2, . . . , N}, the function Vi defined in (11) satisfies ∀ t ∈ [t0, T )

V̇i(t) =

∫ 1

0

[
∂Γi

∂s
(s, t)⊤LfP (ζi(s, t), t)

∂Γi

∂s
(s, t)

− 2κ

N∑
j=2

ℓijΩi(s, t)Ωj(s, t)
⊤ + T̃i(s, t)

]
ds,

where we used the compact notation as in the proof of Theorem 1
and, by letting α̃ι(ζj(s, t), t) := αι(ζj(s, t), t)− αι(Z(t), t),

T̃i(s, t) := −κ
∂Γi

∂s
(s, t)⊤

m∑
ι=1

LgιP (ζi(s, t), t)

×
N∑
j=2

ℓij α̃ι(ζj(s, t), t)
∂Γi

∂s
(s, t).

2Recall that, by definition, V is a Lyapunov function on the error between
the agents’ dynamics and the leader one.

By Assumption 4,

α̃ι(ζj(s, t), t) =

∫ 1

0

∂αι

∂x
(Z(t) + rΓj(s, t), t))Γj(s, t)dr

=

∫ 1

0

∂αι

∂x
(Z(t) + rΓj(s, t), t))

∫ s

0

∂Γj

∂s
(ν, t)dνdr.

Hence, via Assumption 4 and the bounds on P and g, we get

|α̃ι(ζj(s, t), t)| ≤ p̄ḡ

∫ 1

0

∣∣∣∣∂Γj

∂s
(ν, t)

∣∣∣∣ dν
≤ p̄ḡ

1

2

∫ 1

0
1 +

∣∣∣∣∂Γj

∂s
(ν, t)

∣∣∣∣2 dν.
Employing the fact that

∫ 1
0 |∂Γi

∂s (s, t)|2ds ≤ Vi(t)
p , by (16) we obtain

|T̃i(s, t)| ≤ κε
mḡp̄

2p

N∑
j=2

ℓij(p+ Vj(t))
∂Γi

∂s
(s, t)⊤

∂Γi

∂s
(s, t).

Consequently, Vi is bounded as

V̇i(t) ≤

∫ 1

0

[
∂Γi

∂s
(s, t)⊤

(
LfP (ζi(s, t), t)

+κεc

N∑
j=2

ℓij(p+Vj(t))

)
∂Γi

∂s
(s, t)−2κ

N∑
j=2

ℓijΩi(s, t)Ωj(s, t)
⊤
]
ds,

where c = mḡp̄
2p . Consequently,

V̇ (t) ≤

∫ 1

0

[
∂Γ

∂s
(s, t)⊤D(s, t)

∂Γ

∂s
(s, t)

− 2κµΨ(s, t)Ψ(s, t)⊤ + κεc
∂Γ

∂s
(s, t)⊤M(t)

∂Γ

∂s
(s, t)

]
ds

with M(t) = diag(L22V(t)) and V(t) = col(p + Vi(t))i=2,...,N .
Also,

M(t) ≤ max
i


N∑
j=2

ℓij(p+ Vj(t))

 IN−1 ≤ ℓ̄((N−1)p+V (t)) IN−1

with ℓ̄ = max
ij

ℓij . Then

V̇ (t) ≤

∫ 1

0

[
∂Γ

∂s
(s, t)⊤D(s, t)

∂Γ

∂s
(s, t)− 2κµΨ(s, t)Ψ(s, t)⊤+

κεcℓ̄(N−1)p
∂Γ

∂s
(s, t)⊤

∂Γ

∂s
(s, t)+κεcℓ̄V (t)

∂Γ

∂s
(s, t)⊤

∂Γ

∂s
(s, t)

]
ds.

Using (6) and following the proof of Theorem 1, we get,

V̇ (t) ≤ −(λ− c̄κε(N − 1))V (t) +
c̄κε

p

N∑
i=2

V 2
i

≤ −
(
λ− c̄κε(N − 1)− c̄κε

p
V
)
V.

with κ ≥ ρ
2µ and c̄ = cℓ̄. Finally, from (13) and since |x◦|D ≤ x̄, for

ε < min
{

λ
3c̄κ(N−1)

,
λp

3c̄κc̄V x̄

}
we get V̇ ≤ −λ

3V for all t ≥ t0,
concluding the proof.

Remark. We highlight that by Theorem 2, the relaxation of the inte-
grability condition via Assumption 4’ still allows the preservation of
the global aspect (in terms of initial conditions) of the synchronization
provided that the control gain is chosen sufficiently small. Differently,
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by relaxing the Killing vector condition, only semi-global results can
be claimed, as shown in Theorem 3. If both Killing and integrability
conditions are relaxed, then a semi-global result is obtained.

V. DEEP LEARNING FOR METRIC ESTIMATION

As mentioned in the previous section, a drawback of the proposed
approach lies in the fact that metrics may not be easy to find in
the Riemannian scenario. Moreover, even when a metric has been
found, designing a control law satisfying the integrability condition
(8) may not be straightforward. One way to overcome such difficulties
is to rely on Machine Learning tools to obtain approximate solutions,
thus leveraging on Theorem 3 and Theorem 2. In what follows,
we combine the proposed control design with Deep Learning tools.
In recent years, Deep Neural Networks (DNNs) turned out to be
effective tools for solving complex differential equations, see, e.g.,
[25], [26]. As a matter of fact, multiple works began mixing learning
tools and control. Such a combined framework tackles the complexity
of computing control theoretic exact solutions by exploiting deep
approximators. Hence, the idea is to set up and approximately solve
an optimization problem aimed at circumventing the need for an
analytic metric. Once a suitable metric has been found via a first
DNN, we train a second one to satisfy the integrability condition.

A. Related results

Similar approaches already appeared in the literature (see e.g.,
[27]–[29], [35]). In [27], the authors propose a convex optimization
problem to compute a suitable metric. Yet, they successively suggest
approximating the solution via a DNN. Hence, the convex optimiza-
tion is solved on a finite number of samples and the DNN provides
a continuous interpolation through those points. This overcomes the
need of solving such an optimization in each point of the state space.
In [29] the authors propose learning Control Contraction Metrics
(CCMs) [24] to solve output tracking problems. However, when con-
sidering the approximation error induced by the learning procedure,
the results offer probabilistic convergence guarantees to trajectories
close to the reference one. Moreover, the learned controller needs to
be structured in order to always verify the assumptions. Finally, [28]
proposes a Siamese DNN structure [36]. Similarly to our scenario,
both [28] and [29] aim at minimizing a loss function defined by
the matrix conditions required for contraction. Once such a function
reaches 0, the DNN provides the entries of a suitable metric for each
point in the training/test datasets. Even if related, our solution differs
on some fundamental points. With respect to [29], we do not impose
constraints on the controller structure. Hence, we do not affect the
expressivity of the selected approximator. In addition, our approach
is not based on CCMs. Hence, while the proposed loss functions
are similar in the sense they involve sign definiteness-related costs,
their components are different. Moreover, we also optimize the com-
ponents parameters, which results in more plastic constraints. Also
our sign definite cost relies on eigenvalues. While possibly resulting
in more complex conditions, this choice ensures sign definiteness of
the matrix. This differs from the random sampling approach in [29].
To conclude, due to the choice of the loss components, our solution
offers asymptotic convergence guarantees even when assumptions are
only approximately satisfied, see Theorem 2 and Theorem 3. With
respect to [28], we rely on the continuous-time framework. Hence,
we avoid the need of a Siamese network by computing the DNN
Jacobian. Usually, such a Jacobian can be easily obtained thanks
to the automatic differentiation tools provided by common libraries
such as Pytorch [37]. Second, as previously stated, we add a separate
estimator which looks for the best parameters in the cost function. It

works jointly with the DNN during the optimization process. Finally,
we rely on (8) instead of computing the control law via approximate
integration over the geodesic. This greatly simplifies the algorithm,
since geodesics are not generally easy to find.

B. Proposed approach

We now describe the proposed algorithm. In what follows, we se-
lect Multi-Layer Perceptrons (MLPs) as the DNNs of choice. Hence,
we will focus on time-invariant dynamics and metrics. However,
we remark that time dependency can be included in the learning
approach by either augmenting the network’s input with a suitable
time embedding or by using recurrent networks, such as Gated
Recurrent Units. Let us consider the problem of finding a suitable
approximation of the metric first. The neural metric is constructed as

P (x, θ′) =

 P1(x,θ
′) ··· Pn(x,θ

′)
...

. . .
...

Pn(x,θ
′) ··· Pp(x,θ

′)

,
where p =

n(n+1)
2 is the total number of entries to be learned, the

vector ϱ = (P1(x, θ
′), . . . , Pp(x, θ

′))⊤ is the output of the neural
network DNNP : Rn × Rnθ′ 7→ Rp and θ′ ∈ Rnθ′ is the vector
of DNNP parameters. To guarantee the smoothness of the learned
function, we select smooth activation functions, e.g. tanh. To train
the DNNP parameters, we rely on Theorem 2 to relax the existence
of a primitive for g(x)⊤P (x, θ′) and on Theorem 3 to loosen the
constraint posed by the Killing vector field property (7). We set up
an optimization problem asking for the minimization of the following
cost function

JP (x, θ′) =
4∑

i=1

wiJi(x, θ
′), (18)

being w = (w1, . . . , w4) a vector of (positive) scalar weights and

Ji(x, θ
′) = ln

(
max

(
λM (Mi), 0

)
+ 1
)

i = 1, 4
Ji(x, θ

′) =
∑m

ι=1 ln
(
max

(
λM (Mi,ι), 0

)
+ 1
)

i = 2, 3

with λM being the maximum eigenvalue and Mi defined as

M1 = LfP (x, θ′)− ρP (x, θ′)g(x)g⊤(x)P (x, θ′) + ηI

M2,ι = LgιP (x, θ′)− ϵI, M3,ι = −LgιP (x, θ′)− ϵI,

M4 = −P (x, θ′) + pI

where ρ, ϵ, p > 0 are positive scalars with η > ϵ. We remark
that since all matrices M are symmetric, their eigenvalues are real.
This also guarantees that the bounds imposed by M2,M3 translate
into bounds of the form (16). Note that each cost Ji serves the
purpose of satisfying a particular condition for the neural metric.
While J1 provides a positive cost if the contraction condition (6) is
not satisfied, J2 and J3 encourage the boundedness of LgP , thus
relaxing the Killing vector condition (7), and J4 steers the solution
towards positive definite matrices, see (6). Note that the upperbound
is always satisfied as we optimize our algorithm in a compact set
X . The natural logarithm is used as a regularization term between
costs Ji. It allows the rescaling of widely different costs to similar
values and a more precise selection of their importance through the
weight vector w. In parallel to DNNP , we train a parameter estimator
outputting the values of ρ, η, ϵ, p. The estimator and DNNP work
together, trying to minimize (18). Note that if the cost reaches 0, all
the contraction conditions are satisfied for the dataset and the learned
estimator outputs, hence learning can be stopped. The second step
is to find a suitable law approximating the integrability condition
(8). We train the parameters θ′′ ∈ Rnθ′′ of the second network
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DNNα : Rn × Rnθ′ 7→ Rm such that

Jα(x, θ
′′) =

∣∣∣∣∂DNNα

∂x
(x, θ′′)− g(x)⊤P (x, θ′)

∣∣∣∣2 (19)

is minimized. The full learning procedure is summarized by Algo-
rithm 1. Clearly, the DNNs can be trained only on a dataset D of
finite size. Yet, DNNs are typically Lipschitz-continuous functions.
Hence, similarly to [28, Section IV], we provide a verification tool
via the following proposition, to assess the satisfaction of contraction
conditions over compact sets once the training is over.

Proposition 1 Let S ⊂ Rn be an arbitrary compact set and D ⊂ Rn

a set with a finite number of elements and let r > 0 be such that

S ⊆ ∪xi∈DB(xi, r), B(xi, r) := {x ∈ Rn : |x− xi| < r}.

Let M : Rn → Rn×n be a Lipschitz-continuous matrix-valued
function, with Lipschitz constant LM , taking symmetric values and
such that M(xi) ⪯ −2qI for all xi ∈ D and for some q > 0. If
q, r, LM are such that q > rLM , then M(x) ⪯ −qI , ∀x ∈ S.

Proof: By Lipschitz-continuity of M we have

M(x) = M(xi) +M(x)−M(xi) ⪯ M(xi) + |M(x)−M(xi)|I

⪯ M(xi) + LM |x− xi|I ⪯ −q

(
2− |x− xi|

r

)
I

for an arbitrary xi ∈ D. Then, M(x) ⪯ −qI for all x ∈ B(xi, r).
The result follows from the fact that S ⊆ ∪xi∈DB(xi, r).

Proposition 1 implies that if the dataset is composed of a suf-
ficiently fine grid, then the learned properties extend to the points
in between. Hence, we can obtain a valid metric over a compact
set by learning on a finite number of samples. Similar reasoning
can be proposed for the feedback law α. Since the estimated metric
is a DNN and g ∈ C2, their product is Lipschitz continuous on
a compact set. Since α is also modeled as a DNN, by selecting
smooth activation functions its Jacobian is continuous. Following
similar arguments to those used in Proposition 1, we can finally
guarantee that a bounded error on a grid translates to a bounded
error on a compact set including it.

VI. ILLUSTRATION

In the following, we apply the proposed algorithm to a leader-
synchronization problem3. We consider a network of N = 6 identical
Lorenz attractors. Such systems can present chaotic behavior. Each
agent i = 1, . . . , N is described by the following dynamics

ẋi,1 = a(xi,2 − xi,1) + ui

ẋi,2 = xi,1(b− xi,3)− xi,2 + (2 + sin(xi,1))ui

ẋi,3 = xi,1xi,2 − cxi,3

with xi = (xi,1, xi,2, xi,3) ∈ R3 and where a = 10, b = 28, c = 8
3 ,

guaranteeing the chaotic behavior. We consider the control matrix
g(x) = (1, 2 + sin(xi,1), 0) to exclude the possibility of feedback
linearizing solutions. The agents communicate with each other fol-
lowing the leader-connected graph represented in Figure 1a. We code
and train our fully-connected DNNs and estimator using PyTorch
[37]. For the metric network, we select an architecture composed
of 4 hidden layers, with size 30, 20, 20, 10 respectively and tanh(·)
activation functions. The output layer passes through a saturation
function as a final activation, limiting the single elements of the

3The code for reproducing the experiments proposed in this sec-
tion can be found at https://github.com/SamueleZoboli/
Control-learning-multiagent-lorenz.git

Algorithm 1 DNN-based controller learning

1: Input: Dataset of
(
x , f(x) , g(x) , ∂f∂x (x) ,

∂g
∂x (x)

)
,

DNNP ,DNNα;
2: while JP (x, θ′) ̸= 0 do
3: Train DNNP and the estimator with (18);
4: end while
5: Train the DNNα with (19);
6: Set the distributed law ui = −κ

∑N
j=1 ℓijDNNα(xj , θ

′′).

metric. The second network has 3 hidden layers, with size 30, 20, 10
respectively and tanh(·) activation functions. We select the identity
function as output layer activation function. We select a weight vector
w = (1, 10, 10, 20), directing the learning toward positive matrices
first and successively satisfying the Killing-less assumptions and the
contraction condition. We train both the networks and the estimator
using Adam optimizer [38]. The learning rate for the metric network
and the estimator is set as 3 × 10−3, while DNNα uses a learning
rate of 5× 10−3. The DNNs learning rates are scheduled according
to a cosine annealing policy [39], while the estimator one remains
constant. We train the neural metric and the estimator over 100 epochs
(yet stopped after 15 epochs due to the cost reaching 0) and the
second DNN over 200 epochs. For both learning phases (the metric
learning and the integrability learning), the dataset is composed of
2 × 105 samples coming from a Gaussian distribution N (0, 10).
We use 80% of the dataset as the training set, with a batch size
of 512. The remaining 20% is used as test set. We select a κ = 5
and we apply the controller in a noisy-measurements scenario, i.e.,
ui = φ(xi + νi) where νi ∼ N (0, 0.2) represents some Gaussian
measurement noise. This allows testing the robustness properties of
the proposed neural control law. Each agents’ initial condition is
randomly sampled from a Gaussian distribution N (0, 20). Figures
1b and Figure 1c show the controller performances once the DNNs
have been trained. Figure 1b presents the mean and standard deviation
between agents of the norm of the error with respect to the leader
trajectory. Figure 1c directly shows the state trajectories of each
agent. As synchronization is achieved, we can see that the DNN
optimized with (18) provides a suitable estimated metric, while the
one trained with (19) effectively learns an approximate primitive
of g(x)⊤P (x, θ′). The parameter estimator provided a decay rate
η ≈ 4.7 and ρ ≈ 36.3. From Figure 1c it is possible to see that
the agents quickly synchronize, despite having significantly different
initial conditions.

VII. CONCLUSIONS

We studied the problem of exponential synchronization of a
homogeneous network of input-affine nonlinear time-varying systems
connected through an undirected graph with the presence of a leader.
We proposed a set of sufficient conditions based on Riemaniann
metrics to design a distributed diffusive coupling state feedback for
every initial condition. Then, we showed that synchronization can
still be achieved under milder assumptions in a smaller domain
of attraction. To relax computational difficulties, we provided an
algorithm based on DNNs for practical implementation and tested
it in a challenging environment. Future studies will consider more
general networks using different Lyapunov functions and/or more
complex analysis tools.
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of heterogeneous multi-agent nonlinear systems via contraction analy-
sis,” IEEE Control Systems Letters, 2021.

[22] S. Jafarpour, P. Cisneros-Velarde, and F. Bullo, “Weak and semi-
contraction for network systems and diffusively coupled oscillators,”
IEEE Transactions on Automatic Control, vol. 67, no. 3, pp. 1285–1300,
2022.

[23] M. Giaccagli, V. Andrieu, D. Astolfi, and G. Casadei, “Sufficient
metric conditions for synchronization of leader-connected homogeneous
nonlinear multi-agent systems,” IFAC-PapersOnLine, vol. 54, no. 14, pp.
412–417, 2021.

[24] I. Manchester and J. Slotine, “Control contraction metrics: Convex and
intrinsic criteria for nonlinear feedback design,” IEEE Transactions on
Automatic Control, vol. 62, no. 6, pp. 3046–3053, 2017.

[25] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural
networks: a deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,” Journal of
Computational physics, vol. 378, pp. 686–707, 2019.

[26] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. Karniadakis, “Physics-
informed neural networks (PINNs) for fluid mechanics: A review,” Acta
Mechanica Sinica, pp. 1–12, 2022.

[27] H. Tsukamoto, S. Chung, and J. Slotine, “Contraction theory for nonlin-
ear stability analysis and learning-based control: A tutorial overview,”
Annual Reviews in Control, vol. 52, pp. 135–169, 2021.

[28] L. Wei, R. McCloy, and J. Bao, “Discrete-time contraction-based control
of nonlinear systems with parametric uncertainties using neural net-
works,” Computers & Chemical Engineering, vol. 166, p. 107962, 2022.

[29] D. Sun, S. Jha, and C. Fan, “Learning certified control using contraction
metric,” in Conference on Robot Learning, 2021, pp. 1519–1539.

[30] S. Zoboli, S. Janny, and M. Giaccagli, “Deep learning-based output
tracking via regulation and contraction theory,” 22nd IFAC World
Congress, 2022.

[31] C. Godsil and G. Royle, Algebraic graph theory. Springer, 2001.
[32] M. Giaccagli, V. Andrieu, S. Tarbouriech, and D. Astolfi, “Infinite gain

margin, contraction and optimality: an LMI-based design,” European
Journal of Control, p. 100685, 2022.

[33] M. Giaccagli, D. Astolfi, and V. Andrieu, “Further results on incremental
input-to-state stability based on contraction-metric analysis,” in 62nd
IEEE Conference on Decision and Control (CDC 2023), 2023.

[34] M. Giaccagli, V. Andrieu, S. Tarbouriech, and D. Astolfi, “LMI condi-
tions for contraction, integral action, and output feedback stabilization
for a class of nonlinear systems,” Automatica, vol. 154, p. 111106, 2023.

[35] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates: A
survey of neural Lyapunov, barrier, and contraction methods for robotics
and control,” IEEE Transactions on Robotics, 2023.

[36] D. Sheng and G. Fazekas, “A feature learning siamese model for
intelligent control of the dynamic range compressor,” in 2019 IEEE
International Joint Conference on Neural Networks, 2019, pp. 1–8.

[37] A. Paszke et al., “Pytorch: an imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems
32. Curran Associates, Inc., 2019, pp. 8024–8035.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
3rd International Conference on Learning Representations (ICLR), 2015.

[39] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” 5th International Conference on Learning Representa-
tions (ICLR), 2017.


	Introduction
	Preliminaries and Problem Statement
	Graph theory
	Synchronization with nonlinear diffusive coupling

	Main Results
	Relaxing the Integrability and Killing conditions
	About the integrability condition
	About the Killing vector field

	Deep Learning for Metric Estimation
	Related results
	Proposed approach

	Illustration
	Conclusions
	References

