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Synchronization in Networks of Nonlinear
Systems: Contraction Metric Analysis and
Deep-Learning for Feedback Estimation

Mattia Giaccagli, Samuele Zoboli, Daniele Astolfi, Vincent Andrieu and Giacomo Casadei

Abstract—In this work, we consider the problem of global
exponential synchronization of a network of identical input-
affine nonlinear time-varying systems. To this end, we tackle
the problem with incremental stability tools. We propose suffi-
cient metric-based conditions to design a distributed diffusive
coupling feedback law in two frameworks. First, we consider
the Euclidean scenario, where the network is assumed to be
connected. Second, we tackle the Riemannian framework by
assuming the presence of a leader for an undirected network.
This allows considering more general systems with significant
nonlinearities. In both scenarios, we propose two different
control laws: a full-state feedback and a static output feedback
controller. Then, we apply our design to several cases-studies.
To conclude, we propose an algorithm based on deep neural
networks (DNNs) to practically implement such controllers.

Index Terms—Synchronization, contraction, multi-agent sys-
tems, incremental stability, deep learning, deep neural network.

I. INTRODUCTION

The problem of a group of agents trying to achieve an
agreement is generally known as synchronization or consen-
sus. Such a problem arises in a vast range of applications,
e.g., power networks [1, 16], heat networks [1, 42] and robot
swarms [1, 33]. As a consequence, the control community
has devoted huge attention to network analysis and design
of suitable control architectures. At first, systems modeled
by linear ODEs (ordinary differential equations) were con-
sidered. In this context, fundamental results were obtained
in [41] for homogeneous networks (i.e. networks where the
agents dynamics are identical) and in [50] for heterogeneous
ones. A nonlinear distributed feedback was proposed for
simple single and double integrator dynamics [1]. Nowadays,
the control community is focusing on the analysis and design
of control for networks of systems described by nonlinear
dynamics.
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In this paper, we consider homogeneous networks. Most
of results exploit existing techniques developed for single-
agent systems, specifically adapted to deal with a distributed
framework. Among them, we recall passivity-based [6, 37],
dissipativity-based [46] and ISS approaches [10, 11]. High-
gain techniques, inherited from high-gain observers theory or
high-gain domination approaches (see, e.g., [9, 14, 26, 34]),
form another notable class of solutions. Such controllers
share pros and cons with their observers counterparts. This
led researchers to investigate alternative tools such as non-
linear integral control [37].

In this work, we approach the synchronization problem
with tools derived from incremental stability theory (see [2,
5, 17, 31]). In simple terms, a system is incrementally stable
if the distance between trajectories starting from different
initial conditions asymptotically decreases to zero. Thanks to
such a property (and many others), incremental stability tools
have been used in a wide range of control problems, such
as observer design [7, 40], output regulation [22, 36] and,
not last, multi-agent synchronization [4, 51, 52]. In the latter
case, however, existing results either focus on specific classes
of systems, such as Lur’e with sector bound conditions [52],
[4] and incrementally passive systems [37], or on generic
classes of systems but addressing the synchronization task
only locally, i.e., if the initial conditions of the agents are
sufficiently close to each other, e.g., [3].

In the following, we investigate some metric-based con-
ditions for the global exponential synchronization problem
of homogeneous networks, in which each agent is described
by a nonlinear time-varying input-affine multi-input multi-
output (MIMO) ODE and we look for the existence of
a nonlinear diffusive coupling, namely a static distributed
state/output control feedback. The contributions are various.
First, we approach the problems with an Euclidean-based
contractive analysis. We consider a directed and connected
network of input-affine nonlinear systems with constant input
vector fields. We show that synchronization can be achieved
under the design of an infinite gain margin control law
that involves the solution of a Riccati-like inequality. This
extends more classical results on synchronization of linear
systems, see [25, Section 5]. In this context, the proposed
design provides a unifying framework with respect to many
literature results (see e.g. the high-gain observer approach in
[13], the incremental passive approach in [37] and the results
in [4, 52] when considering particular classes of systems).
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Moreover, we show how the proposed design extends in
terms of control gain the results in [3] (where the control
gain was different for every agent) and domain of attraction
(local synchronization), as well as the results in [37] in terms
of network topology (which in our case is only assumed to
be connected). Then, we show that in leader-synchronization
scenarios with undirected networks the proposed control laws
can be generalized further by means of Riemannian metrics
(see, e.g. [2, 19, 31, 40]). This allows considering more
general classes of systems with significant nonlinearities.
However, in the Riemannian case, the proposed control
design requires the solution of a nonlinear partial differential
equation (PDE). This turns out to be a difficult task in
practice. To deal constructively with such a complexity, we
provide the following additional results. i) First, we show that
synchronization can be achieved in a regional context under
less stringent assumptions (i.e. without the so-called “Killing
assumption”). ii) Thanks to this relaxation, we provide a
formulation of a practical Deep Neural Network (DNN)-
based algorithm to check the solvability of such a PDE. The
use of DNNs for solving PDEs is not new to the Machine
Learning community, see, e.g., [8, 38]. In this context, we
recall the recent results on the use of Deep Learning tools for
the estimation of a Riemannian metric [47, 49]. We highlight
that this work is an extension of the authors’ conference work
[19], where preliminary results on the synchronization of
leader-connected undirected networks of SISO time-invariant
nonlinear systems were proposed. This is covered in Section
V.

The rest of the paper is organized as follows. Preliminaries
and framework are presented in Section II. In Section III,
some aspects on synchronization of linear systems are
recalled, to better frame the results of the paper. Sufficient
conditions based on Euclidean contraction are discussed
in Section IV while Riemannian conditions are given in
Section V. Some specific classes of systems dynamics are
then analyzed in Section VI, showing that existing high-gain
and LMI based designs are recovered by the proposed
conditions. Finally, a constructive DNNs-based algorithm to
approximately solve the metric estimation problem is given
in Section VII. To show the potential of this approach, we
consider the problem of synchronizing a network of Lorentz
oscillators. Conclusions and perspectives are provided in
Section VIII.

Notation: N, resp. R,C, is the set of natural, resp. real,
complex, numbers, R≥0 := [0,+∞),R>0 := (0,+∞). The
symbol 1 denotes a column vector whose entries are all 1
(dimension is clear from the context). The symbol ⊗ denotes
the Kronecker product. Given N matrices Ai ∈ Rni×n

for i = 1, . . . , N , we denote with col{A1, . . . AN} the
matrix (A⊤

1 , . . . , A
⊤
N )⊤ ∈ R(n1+···+nN )×n. Given N square

matrices Ai ∈ Rni×ni for i = 1, . . . , N , we denote with
diag{A1, . . . , AN} the square matrix with A1, . . . , AN on
the main diagonal and zeros everywhere else. The symbol In
indicates the identity matrix of dimension n × n (subscript
is omitted when it’s clear from the context). Given a square

matrix A, we denote He{A} := A+A⊤ and spec{A} denotes
its spectrum. | · | denotes the standard Euclidean norm. Given
a vector x ∈ Rn and a set S ⊂ Rn, we denote the Euclidean
distance of x with respect to S as |x|S := infz∈S |x− z|.
Given a 2-tensor P : Rn × R → Rn×n taking symmetric
values and a vector field f : Rn × R → Rn both C1,
we denote the Lie derivative of the tensor P along f as
LfP (x, t), defined as

LfP (x, t) := P (x, t)∂f∂x (x, t)+
∂f
∂x

⊤
(x, t)P (x, t)+ dfP (x, t)

dfP (x, t) := lim
h→0

P (X(x,t+h,t),t)−P (x,t)
h + ∂P

∂t (x, t) ,

where and X(x, t, t0) is the solution of

∂
∂tX(x, t, t0) = f(X(x, t, t0), t), X(x, t, t) = x,

for all t ≥ t0 in time-existence of solutions. Given a 2-tensor
P : Rn × R → Rn×n and a vector field g : Rn × R → Rn

both C1 (resp., a C1 matrix function g : Rn ×R → Rn×m),
we say that g is a “Killing vector” field (or that it satisfies the
“Killing vector property”) with respect to P , if LgP (x, t) = 0
(resp. LgiP (x, t) = 0 for all i = 1, . . . ,m, with gi denoting
the i-th column of g) for all (x, t) ∈ Rn × R. Note that the
Killing vector property is trivially satisfied in case both P, g
are constant matrices.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph theory

In a general framework, a communication graph is de-
scribed by a triplet G = {V, E ,A} in which V =
{v1, v2, . . . , vN} is a set of N ⊂ N vertexes (or nodes),
E ⊂ V × V is the set of edges ejk that models the intercon-
nection between the vertexes with the flow of information
from vertex j to vertex k weighted by the (k, j)-th entry
akj ≥ 0 of the adjacency matrix A ∈ RN×N . We denote by
L ∈ RN×N the Laplacian matrix of the graph, defined as

ℓkj = −akj for k ̸= j, ℓkj =

N∑
i=1

aki for k = j,

where ℓj,k is the (j, k)-th entry of L. We denote with Ni

the set of in-neighbors of node i, i.e. the set Ni := {j ∈
{1, . . . , N} | eji ∈ E}. A time-invariant graph is said to be
connected if and only if L has only one trivial eigenvalue
λ1(L) = 0 and all other eigenvalues λ2(L), . . . , λN (L) have
strictly positive real parts (see [23]).

In this article, two different types of graphs will be con-
sidered: directed and undirected. In particular, let us identify
the Laplacian of the network as

L =

(
L11 L12

L21 L22

)
(1)

where L11 is a scalar, L12 is a N − 1 row vector, L21 is a
N −1 column vector and L22 is a (N −1)× (N −1) matrix.
The following then holds.

Lemma 1. Let the graph G = {V, E ,A} be directed and
connected. Then, there exists a strictly positive real number
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µ > 0 and a symmetric positive definite matrix Q = Q⊤ ≻ 0
such that the Laplacian L satisfies

He{Q(L22 − 1L12)} ⪰ µI. (2)

Proof. Since the graph is connected, the Laplacian L has one
zero eigenvalue and N − 1 strictly positive eigenvalues (see
[25, Theorem 5.1]). Consider the matrix

R = R−1 =

(
1 0
1 −I

)
.

and let ν⊤ =
(
1 0 . . . 0

)
and note that Rν = 1.

Consider the change of coordinates on the Laplacian defined
by

L̃ := RLR−1 =

(
0 −L12

0 L22 − 1L12

)
.

Since R is full rank, the new matrix L has still one eigen-
vector associated with the eigenvalue zero, and all the others
strictly positive definite. In particular, the zero eigenvalue
is associated with the eigenvector ν, since Rν = 1 and
L1 = 0. Because of the block-diagonal structure of L̃, all
the eigenvalues of L22 − 1L12 are strictly positive. Hence
(2) holds.

For an undirected graph, instead, we have the following
property proved in [23].

Lemma 2. Consider the graph G = {V, E ,A} be undirected
and leader-connected (i.e. it contains at least one spanning
tree with the leader as a root). Then the Laplacian L can be
partitioned as

L =

(
0 0

L21 L22

)
. (3)

Moreover, there exists a strictly positive real number µ > 0
such that

L22 ⪰ µI. (4)

B. Synchronization with nonlinear diffusive coupling

The dynamics of each agent of the network is described
by a general time-varying nonlinear ODE

ẋi = f(t, xi, ui), y = h(t, xi), i = 1, . . . , N, (5)

where xi ∈ Rnx is the state of node i, ui ∈ Rnu is the
control action on node i, and yi ∈ Rny is the output which
is exchanged to the neighborhoods of the network. We denote
the state of the entire network as

x := col{x⊤1 , . . . , x⊤N}⊤ ∈ RNnx . (6)

Furthermore, we denote with Xi(x
◦
i , t, t0) the trajectory of

agent i starting from the initial condition x◦i and initial time
t0 ∈ R evaluated at time t ≥ t0, and with X (x◦, t, t0)
the trajectory of the entire network (6) evaluated at initial
condition x◦ ∈ RNnx , initial time t0 ∈ R at time t ≥ t0. Our
synchronization objective is to design a nonlinear diffusive

coupling, namely a distributed feedback control law of the
form

ui =
∑
j∈Ni

aij

[
φ(xi, yj , t)− φ(xi, yi, t)

]

= −
N∑
j=1

ℓijφ(xi, yj , t)

(7)

for all i = 1, . . . , N , for some C1 function φ : Rnx ×Rny ×
R → Rnu , that stabilizes the dynamics (16) on the so-called
synchronization manifold D defined as

D := {x ∈ RNnx | xi = xj , for all i, j ∈ {1, . . . , N}},
(8)

where the states of all the agents of the network agree with
each other. By construction, the i-th agent uses only the
output information yj of its neighborhoods j ∈ Ni and
its own local information (yi, xi). Furthermore, the control
action ui is equal to zero on the synchronization manifold.
In other words, when consensus is achieved, no correction
term is needed for each individual agent. As a consequence,
stabilizing all the agents on a desired equilibrium point is
generally not a valid solution in such a framework. We
formalize our synchronization problem as follows.

Problem 1 (Network synchronization). Let the function φ be
such that the manifold D defined in (8) is globally uniformly
exponentially stable for the closed-loop system

ẋi = f(t, xi,−
∑
j∈Ni

ℓijφ(xi, yj , t)), i = 1, . . . , N,

namely, there exist positive constants k and λ > 0 such that
for all (x◦, t0) in RNnx × R and for all t ≥ t0 in the time
domain of existence of solutions T ⊆ R we have

|X (x◦, t, t0)|D ≤ k exp(−λ (t− t0)) |x◦|D. (9)

Then, we say that the distributed feedback control law (7)
solves the global exponential synchronization problem for the
network (6).

III. NETWORK SYNCHRONIZATION FOR LINEAR
SYSTEMS

To better contextualize the results of our paper, it is
useful to recall some important aspects on synchronization
of homogeneous network of linear systems, see, e.g. [25,
Chapter 5]. Consider a network where each agent is described
by

ẋi = Axi +Bui, yi = Cxi, i = 1, . . . N, (10)

where x ∈ Rnx is the state, u ∈ Rnu is the control action,
y ∈ Rny is a linear combination of the state and A,B,C
are matrices of appropriate dimension. The following result
holds, see [25, Proposition 5.2].

Proposition 1 (Synchronization of linear systems). Consider
a connected network G = {V, E ,A} where each agent is
described by (10). Assume there exists a matrix K such that
the matrix A− λLBKC is Hurwitz for all λL ∈ spec{L} \
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{0}. Then the network in closed-loop with the distributed
control law

ui = K
∑
j∈Ni

aij(yj − yi) = −K
n∑

j=1

ℓijyj (11)

achieves synchronization, i.e. limt7→+∞ |xi(t)− xj(t)| = 0
for all (i, j) ∈ V × V .

In other words, for a connected network of linear systems,
the synchronization problem can be seen as a robust (or
simultaneous) stabilization problem. With “robust” we mean
that the stabilization problem must be achieved for any
strictly positive eigenvalue of the Laplacian λL, which can
be seen as a gain acting on the control term. To fulfill this
requirement, a solution is given by employing an infinite gain
margin feedback (see e.g. [43, Section 3]), that is, a feedback
law that achieves stability in the presence of an uncertain
factor in front of the gain matrix B.

For linear systems, a general sufficient condition can be
stated as follows.

Lemma 3. Suppose there exists a symmetric positive definite
matrix P = P⊤ ≻ 0, matrices D,E and positive real
numbers ε, ρ > 0 such that the following holds

PA+A⊤P − ρC⊤E⊤EC ⪯ −εP,
PBD = C⊤E⊤.

(12)

Then, the feedback gain K = DE is an infinite-gain margin
static output feedback law for the triplet (A,B,C), namely
A− κBKC is Hurwitz for any κ ∈ [ρ2 ,∞).

Proof. Let P given by (12) and compute

P (A− κBKC) + (A− κBKC)⊤P

= PA+A⊤P − κPBDEC − κC⊤E⊤D⊤B⊤P

= PA+A⊤P − ρC⊤E⊤EC − (2κ− ρ)C⊤E⊤EC

⪯ −εP

for all κ ≥ ρ
2 concluding the proof.

We remark that condition (12) is slightly different from
the one established in [29], where sufficient and necessary
conditions for the existence of a static output feedback
stabilizing control law are given. The conditions in [29] takes
the form

PA+A⊤P − PBB⊤P + C⊤C + E⊤E = 0,

KC −B⊤P = −E,

but do not necessarily have the infinite gain margin property
(except for the passivity-like case E = 0). Therefore, the
proposed inequality (12) is in general more restrictive. An
exhaustive discussion about necessity and feasibility of the
condition (12) is out of the scope of this work. Some specific
cases are discussed at the end of this section.

Coming back to our synchronization problem, we may
state now the following result.

Lemma 4 (Synchronization of linear systems). Consider
a network G = {V, E ,A} with node dynamics described

by (10) and suppose there exists a solution to (12). Then,
the distributed control law (11) solves the synchronization
Problem 1 with K = κDE with κ ≥ ρ

2µ and µ given by
Lemma 1.

The proof of such a result is shown, for instance, in [30,
Section II.B]. See also [25, Chapter 5] and references therein
for more details. Finally, we may observe that the afore-
mentioned condition (12) generalizes the following classical
multi-agent synchronization results.

• For a state-feedback synchronization problem

ẋi = Axi +Bui, yi = xi,

condition (12) recovers the feedback design

PA+A⊤P − PBB⊤P ⪯ −εP, K = B⊤P, (13)

with D = I , E = B⊤P , ρ = 1. Note that the ARE (13)
always admits a solution if (A,B) is stabilizable.

• For the observer-form output-feedback synchronization
problem

ẋi = Axi + ui, yi = Cxi,

the condition (12) recovers the feedback design

PA+A⊤P − C⊤C ⪯ −εP, K = P−1C⊤, (14)

with D = P−1C⊤, E = I , ρ = 1. The ARE (14) always
admits a solution if (A,C) is detectable.

• For the square ny = nu MIMO output-feedback syn-
chronization problem

ẋi = Axi +Bui, yi = Cxi,

the condition (12) recovers the passivity condition

PA+A⊤P − C⊤C ⪯ −εP, PB = C⊤, (15)

with D = Inu , E = Iny , ρ = 1 and K = Iny .
Therefore, the take-away message we aim to highlight in

this section is that, if we aim at developing a theory for
general nonlinear dynamics and generic connected networks,
we need to be able to solve a robust stabilization problem
as in Proposition 1. As a consequence, the key property is
given by the extension of the aforementioned infinite-gain
margin law in the contraction framework, see, e.g. [20]. This
symmetry will be further developed in the next sections.

IV. NETWORK SYNCHRONIZATION WITH EUCLIDEAN
CONTRACTION

In this first section, we will consider a network of N
homogeneous nonlinear multi-agent systems, i.e., described
by identical dynamics. The objective is to derive sufficient
conditions for the synchronization of the full network. Moti-
vated by the linear systems case, we aim to provide a design
which requires no additional assumptions on the network,
except for its connectivity. This is recalled in the following
assumption.

Assumption 1 (Graph network synchronization). The graph
G = {V, E ,A} is directed and connected.
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Concerning the dynamics of the agents of the network,
in this section we focus on time-varying nonlinear dynamics
described by the following nonlinear ODE

ẋi = f(xi, t) +Bui, i = 1, . . . , N, (16)

where xi ∈ Rnx is the state of node i, ui ∈ Rnu is the
control action on node i, B is a constant matrix and f :
Rnx × R 7→ Rnx is a vector field which is C1 in the first
argument and piece-wise continuous in the second. Motivated
by the analysis in Section III, we consider the case in which
agent (16) can exchange with their neighborhoods only an
output of the form

yi = Cxi, i = 1, . . . , N, (17)

with yi ∈ Rny and where C is a constant matrix. In particular,
our objective is to design a feedback distributed control law
stabilizing the dynamics (16) on the so-called synchronization
manifold D defined in (8), where the states of all the agents
of the network agree with each other. Following Section II-B,
we look for a diffusive coupling law of the form (7) for all
i = 1, . . . , N . Along the lines of the linear case, we focus on
a control design which involves the solution of a Riccati-like
inequality in order to get a control law possessing an infinite
gain margin property, see, e.g. [20]. We have the following
result.

Theorem 1 (Feedback network synchronization). Consider
a network G = {V, E ,A} fulfilling Assumption 1, with node
dynamics (16), (17). Assume there exists a symmetric positive
definite matrix P = P⊤ ≻ 0, two matrices D,E and two real
numbers ε, ρ > 0 such that

LfP (x, t)− ρC⊤E⊤EC ≤ −εP,
PBD = C⊤E⊤.

(18)

for all (x, t) ∈ Rnx ×R. Then, for any κ ≥ ρ
2µ , with µ given

by Lemma 1, the distributed feedback law (7) with

φ(x, t) = κKy , K = DE, (19)

solves the synchronization Problem 1 for the network of (16).

As for the linear case, condition (18) includes many
published results. For instance, in the case of output-feedback
form in which B = I , we recover the high-gain observer
approach proposed in [13, Proposition 1]. In the state-
feedback case with C = I , we recover the results in [3,
Theorem 3] which are generalized concerning the assumption
on the graph and in terms of gain of the control law, which in
our case is the same for each agent. When considering system
dynamics expressed in Lur’e form, we recover the results of
[52]. When considering the passivity condition as in (15), we
recover the context of incrementally passivity with respect to
a constant Euclidean metric P , see for instance [18], [36,
Section 5] and we generalize the result in [37, Theorem 4]
concerning the assumption on the graph.

Proof. The idea behind the proof is to set a virtual leader and
show that the dynamics of the error between any other agent
and such a leader exponentially goes to zero. Therefore, let

x̃ = (x̃⊤2 , . . . , x̃
⊤
N )⊤ where x̃i = xi − x1 represents the error

between agent xi and z = x1. Since ℓij = 0 if j ̸∈ Ni, the
x̃i-dynamics can be written as

˙̃xi = f(z + x̃i, t)− κB

N∑
j=1

ℓijDEC(z + x̃j)

− f(z, t) + κB

N∑
j=1

ℓ1jDEC(z + x̃j),

i = 2, . . . , N.

Since
∑N

j=1 ℓij = 0 for all i = 1, . . . , N , we

can add the terms −κB
(∑N

j=1 ℓ1j

)
DECz = 0 and

κB
(∑N

j=1 ℓij

)
DECz = 0. This leads, for i = 2, . . ., N,

to

˙̃xi = f(z + x̃i, t)− f(z, t)− κB

N∑
j=1

ℓijDECx̃j

+ κB

N∑
j=1

ℓ1jDECx̃j

= f(z + x̃i, t)− f(z, t)− κB

N∑
j=1

(ℓij − ℓ1j)DECx̃j .

Note that in these new coordinates, the synchronization
manifold defined in (8) corresponds to the origin of the x̃-
dynamics. Let t0 be in R and consider a solution Z(z◦, t, t0),
X̃ (t, t0) = (X̃2(t, t0), . . . , X̃N (t, t0)) of the closed-loop sys-
tem which is defined for all t in the time domain of definition
T ⊆ R. Consider the following Lyapunov function V

V (t) := X̃ (t, t0)
⊤(Q⊗ P )X̃ (t, t0) (20)

defined for all t in T , where P solves (18) and Q is chosen
as in Lemma 1. Taking the time-derivative V and recalling
that (Q⊗ P )⊤ = (Q⊤ ⊗ P⊤) = (Q⊗ P ), it yields

V̇ (t) = 2X̃ (t, t0)
⊤(Q⊗ P ) diag

i=2,...,N

{
f(Z + X̃i, t)− f(Z, t)

}
−2κ X̃ (t, t0)

⊤(Q⊗ P )((L22 − 1L12)⊗BDEC)X̃ (t, t0) .

Since Q⊗ P = (Q⊗ I)(I ⊗ P ), by Lemma 1 and by using
the Mean Value Theorem, it follows that

V̇ (t) =

=2X̃ (t, t0)
⊤
[
(Q⊗ P ) diag

i=2,...,N

{∫ 1

0

∂f

∂x
(Z − sX̃i, t) ds

}
− 2κ (Q(L22 − 1L12)⊗ PBDEC)

]
X̃ (t, t0)

≤2X̃ (t, t0)
⊤
[
(Q⊗ I) diag

i=2,...,N

{∫ 1

0

LfP (Z − sX̃i, t) ds

}
− 2κ (µI ⊗ C⊤E⊤EC)

]
X̃ (t, t0).

By using (18) and by choosing any κ ≥ ρ
2µ with µ given by

Lemma 1, we get

V̇ (t) ≤ −ε X̃ (t, t0)
⊤(Q⊗ P )X̃ (t, t0) = −ε V (t) . (21)
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From Gronwall’s Lemma (see [24, Corollary 6.6]) this im-
plies V (t) ≤ exp (−ε(t− t0))V (t0) for all t in T . Using
the definition of V in (20), the latter inequality gives

|X̃ (t, t0)|2 ≤ λM (Q⊗ P )

λm(Q⊗ P )
exp (−ε(t− t0)) |X̃ (t0, t0)|2 ,

(22)
for all t in T , where λm(Q⊗P ), λM (Q⊗P ) are respectively
the minimum and the maximum (strictly positive) eigenvalues
of Q ⊗ P . Remembering the definition x̃i = xi − z, by
equivalence of norms in finite dimensional spaces it follows
that there exist two strictly positive real numbers c, c > 0
such that

c
∣∣X (x◦, t, t0)

∣∣
D ≤

∣∣X̃ (t, t0)
∣∣ ≤ c

∣∣X (x◦, t, t0)
∣∣
D , (23)

for all t in T , which implies (9) and concludes the proof.

We highlight again the symmetry between the results
proposed in Theorem 1 and the linear case in Section III.
Both results involve the solution of a Riccati-like inequality
in order to guarantee an infinite-gain margin property for
the control action. This aspect allows relying on the sole
assumption of the network being simply connected.

As a last remark of this section, we stress that the Riccati-
like condition (18) are in general only sufficient and not
necessary. Indeed, in the context of contraction analysis and
incremental stability, the existence of a Riemannian metric is
proved to be equivalent (under some conditions of the vector
field) to the desired contraction properties [2]. However,
when considering an Euclidean metric, this equivalence is
lost. As a consequence, a set of Euclidean metric-based
conditions is only sufficient. See also [40] for further details.

V. LEADER SYNCHRONIZATION WITH RIEMANNIAN
CONTRACTION

In Section IV the synchronization problem has been solved
with an analysis based on incremental stability tools with
respect to an Euclidean metric. In order to extend such a
result for more general classes of systems, in this section
we aim to pursue a similar analysis with a study based on
Riemaniann metrics, see, e.g. [2, 31, 40]. Consider a network
G = {V, E ,A} of N identical agents described by

ẋi = f(xi, t) + g(xi, t)ui, i = 1, . . . , N, (24)

where x ∈ Rnx is the state, ui ∈ Rnu is the control action
and f : Rnx × R 7→ Rnx , g : Rnx × R 7→ Rnx×nu are C2

functions in the first argument and piecewise continuous in
the second.

In what follows, we focus on the leader-synchronization
problem. In other words, we suppose the presence of a leader,
that is, an agent of the network (24) for which the control
action is zero, as specified in the following assumption.
Without loss of generality, we label the leader as the node 1.

Assumption 2. The graph G = {V, E ,A} is undirected and
leader-connected. In other words, it contains at least one
spanning tree with the leader as a root.

Without loss of generalities, we assume a1j = 0, for all
j = 1, . . . , N . As a consequence, the dynamical system (25)
can be rewritten as

ẋ1 = f(x1, t)

ẋi = f(xi, t) + g(xi, t)ui, i = 2, . . . , N.
(25)

The control objective is to design a state-feedback distributed
control law of the form

ui =
∑
j∈Ni

aij

[
φ(xj , t)− φ(xi, t)

]
= −

N∑
j=1

ℓijφ(xj , t)

(26)
for all i = 2, . . . , N , for some C1 function φ : Rnx × R →
Rnu , stabilizing the dynamics of (25) to the synchronization
manifold D defined in (8). The i-th agent uses only the state
information of its neighborhoods and of itself, and the control
action ui is equal to zero on the synchronization manifold D
in (8). To this end, we look again for a feedback design which
is derived by a Riccati-like inequality. In this case, however,
we follow the contraction analysis based on Riemannian
metrics, see, e.g. [2]. We have the following result.

Theorem 2 (State-feedback leader-synchronization). Con-
sider a network G = {V, E ,A} of agents (25) and let
Assumption 2 hold. Assume moreover that there exist a C1

matrix function P : Rnx × R → Rnx×nx taking symmetric
positive definite values, a C2 function α : Rnx × R 7→ Rnu

and positive real numbers p, p, ε, ρ > 0 such that the
following conditions hold:

• the state control matrix function (SCMF) conditions hold
for all (x, t) ∈ Rnx × R

LfP (x, t)− ρP (x, t)g(x, t)g(x, t)⊤P (x, t) ⪯ −εP (x, t) ,
pI ⪯ P (x, t) ⪯ pI ;

(27)
• the matrix function g has the Killing vector field (see

Notation) property with respect to P , i.e.,

LgP (x, t) = 0 , ∀(x, t) ∈ Rnx × R ; (28)

• the following integrability condition holds

∂α⊤

∂x
(x, t) = P (x, t)g(x, t) , ∀(x, t) ∈ Rnx × R . (29)

Then, for any κ ≥ ρ
2µ , with µ given by Lemma 2, the

distributed state-feedback control law (26) with

φ(x, t) = κα(x, t) , (30)

solves the synchronization Problem 1 for the network of (25).

Proof. Similarly to the proof of Theorem 1, the main goal
is to show that the dynamics of the error between any agent
and the leader exponentially decreases to zero. Therefore,
let us denote x̃ =

(
x̃⊤2 . . . x̃⊤N

)⊤
where x̃i = xi − x1

represents the error between agent i and agent 1 and z = x1.
Since ℓij = 0 for all j ̸∈ Ni, the dynamics of the error x̃i for
all i = 2, . . . , N with the control law (30) can be rewritten
as

˙̃xi = f(z + x̃i, t)− f(z, t)−κg(z + x̃i, t)

N∑
j=1

ℓijα(z + x̃j , t).
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Note that there’s no term on g(z, t) since no control action is
acting on the leader. Since

∑N
j=1 ℓij = 0 for all i = 1, . . . , N ,

we can add the term κg(z + x̃i, t)
(∑N

j=1 ℓij

)
α(z, t) = 0

and get

˙̃xi = f(z + x̃i, t)− f(z, t)

− κg(z + x̃i, t)

N∑
j=1

ℓij [α(z + x̃j , t)− α(z, t)] .

(31)

Furthermore, consider that in this new coordinates, the syn-
chronization manifold defined in (8) corresponds to the origin
of the x̃-dynamics. Let t0 be in R and consider a solution
Z(z◦, t, t0) and X̃ (t, t0) = (X̃2(t, t0), . . . , X̃N (t, t0)) of
the closed-loop system which is defined for all t in the
time domain of definition T1 ⊂ R. Consider the function
Γ : [0, 1]× T2 × R 7→ RNnx which satisfies

Γ(s, t0, t0) = sX̃ (t0, t0)

and where its i-th component Γi is the solution of the
following ordinary differential equation

∂Γi

∂t
(s, t, t0) = f(ζi, t)− f(Z(z◦, t, t0), t)

− κg(ζi, t)

N∑
j=1

ℓij(α(ζj , t)− α(Z(z◦, t, t0), t))

where for the sake of shortness we denoted ζi =
Z(z◦, t, t0)+Γi(s, t, t0) and where Z(z◦, t, t0) is the solution
of the virtual leader z initialized at (z◦, t0) ∈ Rnx × R
and evaluated at time t ≥ t0. Finally T2 ⊂ T1 is the time
domain of definition of Γ. We will show in the following
that T2 = T1. Consider the function Vi for i = 2, . . . , N
defined for t in T2 by

Vi(t) =

∫ 1

0

∂Γi

∂s
(s, t, t0)

⊤P (ζi, t)
∂Γi

∂s
(s, t, t0)ds . (32)

Note that we have for all (k, l) in {1, . . . , nx}2

d

dt
[P (ζi, t)kl] =

∂Pkl

∂x
(ζi, t)

[
f(Z(z◦, t, t0) +

∂Γi
∂t (s, t, t0))

]
+
∂Pkl

∂t
(ζi, t).

This implies that for all vector ν in Rnx ,

d

dt

[
ν⊤P (ζi, t)ν

]
= ν⊤dfP (ζi, t))ν

− 2κ

N∑
j=1

[
ℓij

nu∑
ι=1

ν⊤dgιP (ζi, t)ν

× (αι(ζj , t)− αι(Z(z◦, t, t0), t))

]
.

By using the Killing vector assumption (28) and the integra-
bility one on the function α in (29), the time derivative of Vi

becomes

V̇i(t) =

∫
1

0

[
∂Γ⊤

i

∂s
(s, t, t0)LfP (ζi, t)

∂Γi

∂s
(s, t, t0)

− 2κ
∂Γ⊤

i

∂s
(s, t, t0)

N∑
j=1

ℓijP (ζi, t)g(ζi, t)

× g(ζj , t)
⊤P (ζj , t)

∂Γj

∂s
(s, t, t0)

]
ds.

Let DfP (ζ, t) := diag{LfP (ζ2, t), . . . , LfP (ζN , t)} and
Ψ(ζ, t) := col{P (ζ1, t)g(ζ1, t), . . . P (ζN , t)g(ζN , t)}. By
considering all the Vi we have that

N∑
i=2

V̇i(t) =

∫
1

0

[
∂Γ⊤

∂s
(s, t, t0)DfP (ζ, t)

∂Γ⊤

∂s
(s, t, t0)

− 2κ
∂Γ⊤

∂s
(s, t, t0)Ψ(ζ, t)L22Ψ

⊤(ζ, t)
∂Γ

∂s
(s, t, t0)

]
ds.

(33)

Hence by Lemma 2,

N∑
i=2

V̇i(t) ≤

∫
1

0

[
∂Γ⊤

∂s
(s, t, t0)DfP (ζ, t)

∂Γ⊤

∂s
(s, t, t0)

− 2κµ
∂Γ⊤

∂s
(s, t, t0)Ψ(ζ, t)Ψ⊤(ζ, t)

∂Γ

∂s
(s, t, t0)

]
ds. (34)

Therefore by selecting κ ≥ ρ
2µ with ρ satisfying the SCMF

defined in (27) and µ > 0 given by Lemma 2 we get

V̇ (t) =

N∑
i=2

V̇i(t) ≤ −ε
N∑
i=2

Vi(t) = −ε V (t) . (35)

From Gronwall’s Lemma (see [24, Corollary 6.6]) this im-
plies for all t in T2

V (t) ≤ exp (−ε(t− t0))V (t0) . (36)

From this inequality, we first deduce that T2 = T1 since
the path Γ has finite (Riemaniann) energy and has boundary
defined in T1. Moreover,

Vi(t) ≥ p

∫ 1

0

∂Γi

∂s
(s, t, t0)

⊤ ∂Γi

∂s
(s, t, t0)ds

≥ p X̃i(t, t0)
⊤X̃i(t, t0) .

Since moreover,

V (t0) ≤ p X̃ (t0, t0)
⊤X̃ (t0, t0)

it yields for all t in T1

|X̃ (t, t0)|2 ≤ exp(−ε(t− t0))
p

p
|X̃ (t0, t0)|2 .

With (23), inequality (9) follows.
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As in Section IV, the state-synchronization case considered
in Theorem 2 can be generalized to the output feedback
context. First, we consider a network of agents described as

ẋ1 = f(x1, t), y1 = h(x1, t),

ẋi = f(xi, t) + ui, yi = h(xi, t),
(37)

for all i = 2, . . . , N . The following result establishes a set of
sufficient conditions for the existence of a distributed output
feedback nonlinear diffuse coupling of the form (7).

Corollary 1 (Output-feedback leader-synchronization). Con-
sider a network G = {V, E ,A} of agents (37) and let satisfy-
ing Assumption 2 hold. Suppose that there exist a C1 matrix
function P : Rnx × R → Rnx×nx taking symmetric positive
definite values, and positive real numbers p, p, ε, ρ > 0 such
that the following conditions hold.

1) The Output Control Matrix Function (OCMF) condition
holds:

LfP (x, t)− ρ
∂h⊤

∂x
(x, t)

∂h

∂x
(x, t) ⪯ −εP (x, t) ,

pI ⪯ P (x, t) ⪯ pI ,

(38)

for all (x, t) ∈ Rnx × R for some
2) The vector field β : Rnx × R → Rnx defined as

β(x, t) = P−1(x, t)
∂h

∂x
(x, t)⊤ (39)

is a Killing vector for P , i.e.

LβP (x, t) = 0 ∀(x, t) ∈ Rnx × R. (40)

Then, for any κ ≥ ρ
2µ , with µ given by Lemma 2, the

distributed state-feedback control law (7) with

φ(x, y, t) = κβ(x, t)y (41)

solves the synchronization Problem 1 for the network (37).

In view of the structure (41) and the leader-connected
Assumption 2, the control law of Corollary 1 takes the form
u1 = 0 and

ui = −κ
N∑
j=1

ℓijβ(xi, t)yj , i = 2, . . . , N.

We remark that, differently from the previous cases, in the
output feedback context the i-th agent needs the knowledge
of its own state xi in order to implement the proposed
control law, i.e. the local information doesn’t coincide with
the distributed one. Such an example extends in a non-trivial
manner the case of observer-like form (14) to the Riemannian
context. The proof is omitted for space reasons and it can
be easily derived by adapting the steps used in the proof
of Theorem 2. A preliminary version (in the time invariant
context) can be also found in [19, Section 3].

The previous result can be also easily adapted to the
context of a Riemannian incremental passivity condition for
a network of systems of the form

ẋ1 = f(x1, t), y1 = h(x1, t),

ẋi = f(xi, t) + g(xi, t)ui, yi = h(xi, t),
(42)

for all i = 2, . . . , N when nu = ny . In this case, such a
result is obtained under the solution of the OCMF condition
in (38), while the conditions (39), (40) are replaced by

P (x, t)g(x, t) =
∂h⊤

∂x
(x, t), LgP (x, t) = 0, (43)

for all (x, t) ∈ Rnx × R, while the function φ is given by
φ(x, y, t) = κy . This case extends, in the context of leader
connected graphs, the Euclidean passivity condition given in
in [37]. An example of systems satisfying such a form is
given below in Section VI-A.

We conclude this section by noting that, differently from
the Euclidean case developed in Section IV, we don’t have
a complete extension to the Riemannian case of the general
ARE condition (12): we only extended the three cases (13),
(14), (15). Furthermore, only undirected leader-connected
networks have been considered. We believe that a complete
generalization is possible but the mathematical challenges are
not trivial. With respect to the proof of Theorem 2, one of the
main difficulties to address is that, the sum of Vi is not (in
general) a good candidate to be a Lyapunov function for the
non-leader directed case. A more complex Lyapunov function
has to be designed.

VI. CASE STUDIES

In this section, we specialize the previous conditions
to specific classes of nonlinear systems. In particular, we
will consider minimum-phase systems and nonlinear systems
that are described in the Lur’e form with an incremental
monotonic nonlinearity.

A. Minimum-phase systems

A significant amount of results in synchronization consid-
ers systems either in normal form or for which there exists
a globally defined diffeomorphism that allows to rewrite the
dynamics in normal form, see, e.g. [14, 26, 34]. For such
a class of systems, the zero-dynamics is generally assumed
to possess a unique steady-state trajectory which is attractive
with a given domain of attraction (minimum-phase). We show
below that the conditions provided in Section IV recover
these results. In particular, consider a network where each
agent is modeled as a SISO system whose dynamics can be
described by

żi = F (zi, yi)

ẏi = q(zi, yi) + ui
(44)

where xi = (zi, yi) ∈ Rnx is the state, with i = 1, . . . , N . In
particular, we consider systems with unitary relative degree,
that is, zi ∈ Rnx−1 and y ∈ R. The functions F, q are
C2 in their arguments. The high-frequency gain (i.e. the
coefficient in front of u) is selected as 1 without loss of
generality. With respect to the representation (42), we have
f(x) = (F (z, y)⊤, q(z, y))⊤, g(x) = (0, 1)⊤, h(x) = (0, 1).

We cast the synchronization problem to the incremental
framework with the following (incremental) minimum-phase
assumption.
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Assumption 3 (Incremental minimum-phase). There ex-
ists a C1 symmetric and positive definite matrix function
S : Rnx−1 7→ R(nx−1)×(nx−1) and positive real numbers
s, s̄, ε, ℓ > 0 such that the following inequalities1 hold

sI ⪯ S(z) ⪯ s̄I, LfS(z, y) ⪯ −εS(z),∣∣∣∣∂F∂y (z, y)
∣∣∣∣ ≤ ℓ,

∣∣∣∣∂q∂z (z, y)
∣∣∣∣ ≤ ℓ,

∣∣∣∣∂q∂y (z, y)
∣∣∣∣ ≤ ℓ,

for all (z, y) ∈ Rnx .

Under the previous assumption, the problem of synchro-
nization is solved, as established in the following result. It
recovers the results of [14].

Proposition 2 (Synchronization of minimum-phase systems).
Consider a network G = {V, E ,A} of agents (44) and let As-
sumptions 2 and 3 hold. Then, there exists κ⋆ > 0 such that,
for any κ ≥ κ⋆, the distributed state-feedback control law (7)
with φ(x, y, t) = κy solves the synchronization Problem 1 for
(44). Furthermore, if the metric S is Euclidean (i.e. constant),
then Assumption 2 can be relaxed with Assumption 1.

Proof. The proof follows by noticing that condition (43) is
satisfied with the metric P (x) = diag(S(z), 1) . Then, it
is completed with standard high-gain arguments in order to
find a sufficiently large ρ satisfying the condition (38). As
a consequence, the value of κ⋆ depends on the parameter µ
of Lemma 1 and the Lipschitz constant ℓ of Assumption 3.
Details are omitted for space reasons. A complete proof can
be found, e.g., in the first part of [22, Proposition 6] in the
context of constant output regulation. An alternative version
using similar arguments can be found also in [37, Theorem
2].

B. Systems with monotonic nonlinearity

We consider now a connected network a network G =
{V, E ,A} of nonlinear systems having the form

ẋi = Axi +Gψ(ηi, t) +Bui + ω(t), ηi = Hxi,

yi = Cxi,
(45)

i = 1 . . . , N , where A,G,B,H,C are constant matrices
of suitable dimension, ηi ∈ Rnη is a linear combination
of the state, ω : R 7→ Ω is any time-varying piecewise
continuous signal taking values in a compact set Ω ⊂ Rnx

and ψ : Rnη × R 7→ Rnψ is a C1 nonlinearity satisfying the
following incremental monotonic condition. With respect to
the representation (16), we have f(x) = Ax + Gψ(η, t) +
ω(t). The signal ω must be the same for all the agents of the
networks.

Assumption 4 (Monotonic). There exists a symmetric posi-
tive matrix Υ = Υ⊤ ≻ 0 such that

0 ⪯
∂ψ

∂η
(η, t) +

∂ψ⊤

∂η
(η, t) ⪯ Υ (46)

for all (η, t) ∈ Rnη × R.

1The notation LfS(z, y) has to be understood as the Lie derivative of S
along the vector field z 7→ f(z, y) where y is fixed.

Incremental stability for this class of systems has been
studied, for instance, in [4, 20, 48]. It is also known as
quadratic stability [15]. In the following, we want to show
that it is possible to rewrite the design proposed in Theorem 1
in the form of a Linear Matrix Inequality (LMI).

Proposition 3 (Synchronization of monotonic systems).
Consider a network G = {V, E ,A} of systems (45) and let
Assumption 4 hold. Suppose there exist a symmetric positive
definite matrix W = W⊤ ≻ 0, and two strictly positive real
number ϵ, ρ > 0 such that the following LMIAW +W⊤A⊤ − ρBB⊤ G+W⊤H⊤ W

G⊤ +HW −4Υ−1 0
W 0 −ϵI

 ⪯ 0

(47)
is satisfied. Then, the assumptions of Theorem 1 are satisfied
with D = I , C = I , E = B⊤W−1 and, for any κ ≥ ρ

2µ ,
with µ given by Lemma 1, the distributed feedback law (26)
with

φ(x, t) = κB⊤Px , P =W−1,

solves the synchronization Problem 1 for the network (45).
Moreover, if B =WC⊤, then the Assumptions of Theorem 1
are satisfied with D = I and E = I and synchronization is
achieved with φ(x, t) = κy.

Proof. The proof follows similar lines as in [20, Proposition
1] (see also [21, Lemma 2]) and it is omitted for space
reasons.

Note that a similar result has been given in [52] for non-
linearities satisfying an incremental sector bound condition.

VII. DEEP LEARNING FOR METRIC ESTIMATION

The main limitation of the approach presented in Section V
is the complexity of finding a metric P solving (27) and, at
the same time, satisfying the Killing vector field property in
(28). As shown in Section VI, for some classes of systems
these conditions can be easily verified, in particular for
constant metric. However, this is not an easy task in general,
especially when considering high-dimensional systems with
significant nonlinearities. In this section, we aim to provide
a practical solution to such limitations. First, we relax the
Killing vector assumption. Hence, we show that synchro-
nization can still be achieved (in compact sets) when the
LgP (x, t)-term is non-zero, yet sufficiently small. Second,
we circumvent the need of computing a suitable metric
by relying on Deep Learning tools. We provide a general
optimization-based algorithm allowing the approximation of
both the metric and the integrability condition in (29) via
Deep Neural Networks (DNNs). Finally, the proposed design
is applied to a synchronization problem of a network of
Lorentz oscillators. We present results for the state-feedback
control design. Nevertheless, the same tools can be used to
derive conditions for the output-feedback design. Further-
more, we consider the single-input case for simplicity. Yet,
similar results can be applied for the multi-input one.
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A. Killing-less leader-synchronization

We now present the theoretical result relaxing the Killing
vector field property used in the development of Section V.
In particular, we focus on condition (28).

Proposition 4 (Killing-less synchronization). Consider a
network G = {V, E ,A} of systems (25). Let Assumption 2
hold and assume there exists a C1 matrix function P :
Rnx × R 7→ Rnx×nx taking symmetric positive definite
values, positive real numbers p, p, ε, ρ > 0 and a C2 function
α : Rnx ×R 7→ Rnu such that (27), (29) hold. Let X ⊂ Rnx

be a compact set and fix κ ≥ ρ
2µ , with µ given by Lemma 2.

Then, there exists a positive real number ϵX > 0 such that,
if |LgP (x, t)| ≤ ϵX for all (x, t) ∈ X × R, the trajectory
of network in closed-loop with the state-feedback distributed
control law (26) with (30) exponentially converges towards
the synchronization manifold (8) for all time existence of
solutions in X , i.e. for all tf ≥ t0 such that Xi(x

◦
i , t, t0) ∈ X

for all t ∈ [t0, tf ) and all i = 1, . . . , N .

The previous proposition relax the Killing condition by
focusing on solutions evolving in a compact set X . As a
consequence, if such a set X is invariant for solutions of each
agent of the network, then synchronization can be achieved.

Proof. The proof is identical to the proof of Theorem 2 up
to equation (32). Therefore, the first part is omitted. Then, by
using the integrability assumption on the function α in (29),
the time derivative of Vi in (32) becomes

V̇i(t) =

∫
1

0

[
∂Γ⊤

i

∂s
(s, t, t0)LfP (ζi, t)

∂Γi

∂s
(s, t, t0)

− 2κ
∂Γ⊤

i

∂s
(s, t, t0)

N∑
j=1

ℓijP (ζi, t)g(ζi, t)

× g(ζj , t)
⊤P (ζj , t)

∂Γj

∂s
(s, t, t0)

−2κ
∂Γ⊤

i

∂s
(s, t, t0)LgP (ζi, t)

∂Γi

∂s
(s, t, t0)

N∑
j=1

ℓijα(ζj , t)

]
ds.

Consequently, by selecting κ ≥ ρ
2µ with ρ satisfying the

SCMF condition in (27), µ given by Lemma 2, and by
following similar computations as in the proof of Theorem
2, we get

N∑
i=2

V̇i(t) ≤ −ε

∫
1

0

[
∂Γ⊤

∂s
(s, t, t0)P (ζ, t)

∂Γ

∂s
(s, t, t0)

− 2κ
∂Γ⊤

∂s
(s, t, t0)DgP (ζ, t)

∂Γ

∂s
(s, t, t0)L22Λ(ζ, t)

]
ds

(48)

where we indicated with

DgP (ζ, t) := diag{LgP (ζ2, t), . . . , LgP (ζN , t)}
Λ(ζ, t) := [α(ζ2, t)

⊤, . . . , α(ζN , t)
⊤]⊤ .

Now, for any X ⊂ Rnx , let

ϵX :=
εp

4κN
3
2µα

with µ being the largest eigenvalue of L22 and

α := sup
x∈X,t≥t0

{α(x, t)} .

Then if |LgP (x, t)| ≤ ϵX , it follows that

κ

∫
1

0

∂Γ⊤

∂s
(s, t, t0)DgP (ζ, t)

∂Γ

∂s
(s, t, t0)L22Λ(ζ, t) ds

≤
εp

2

∫
1

0

∂Γ⊤

∂s
(s, t, t0)

∂Γ

∂s
(s, t, t0) ds

which by (48) it implies

V̇ (t) =

N∑
i=2

V̇i(t) ≤ −
ε

2

N∑
i=2

Vi(t) = −
ε

2
V (t) .

The proof concludes by following the same lines of Theorem
2.

Remark 1. Note that a bound on ϵX can be given also by
linearizing the error dynamics around the synchronization
manifold D defined in (8). This recovers known results on
local exponential synchronization, see [3].

B. A DNN-based algorithm for metric estimation

As mentioned in the previous section, a drawback of the
proposed approach lies in the fact that metrics may not be
easy to find in the Riemannian scenario. Moreover, even
when a metric has been found, it may not be straightforward
to design a control law satisfying the integrability condition
(29). A way of overcoming such difficulties is to combine
the proposed control design with Deep Learning tools. In the
last years, Deep Neural Networks (DNNs) turned out to be
effective tools for solving complex differential equations, see,
e.g., [8, 38]. As a matter of fact, recent works began mixing
learning tools and control. Such a combined framework
tackles the complexity of computing control theoretic exact
solutions by exploiting deep approximators, e.g., [27, 39, 53].
Hence, the idea is to set up an optimization problem for
approximating the solution. In this section, we circumvent the
need of analytically computing a suitable metric by learning
it with a DNN. Once a suitable metric has been found, we
train a second DNN to satisfy the integrability condition.

Similar approaches already appeared in the literature (see
e.g., [47, 49]). In [47], the authors propose a convex op-
timization problem to compute a suitable metric. Yet, they
successively suggest to approximate the solution via a DNN.
Hence, the convex optimization is solved on a finite number
of samples and the DNN provides a continuous interpolation
through those points. This overcomes the need of solving
such an optimization in each point of the state space. Our
approach, however, is inspired by [49]. The authors propose
a Siamese DNN structure [44]. The goal is to minimize
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a loss function defined by the matrix conditions required
for contraction. Once such a function reaches 0, the DNN
provides the entries of a suitable metric for each point in
the training/test datasets. Even if similar, our solution differs
in three main points. First, we rely on the continuous time
framework. Hence, we avoid the need of a Siamese network
by computing the DNN’s Jacobian. Note that, usually, such
a Jacobian can be easily obtained thanks to the automatic
differentiation tools provided by common libraries such as
Pytorch [35]. Second, we add a separate estimator which
looks for the best parameters in the cost function. It works
jointly with the DNN during the optimization process. Fi-
nally, we rely on (29) instead of computing the control law
via approximate integration over the geodesic. This greatly
simplifies the algorithm, since geodesics are not easy to find
in general.

We now describe the proposed algorithm. Let us consider
the problem of finding a suitable approximation of the metric
first. The neural metric is constructed as

P (x, θ′) =


p1(x, θ

′) p2(x, θ
′) · · · pn(x, θ

′)
p2(x, θ

′) pn+1(x, θ
′) · · · p2n(x, θ

′)
...

...
. . .

...
pn(x, θ

′) p2n(x, θ
′) · · · pM (x, θ′)

 ,

where M = n(n+1)
2 , n = nx, is the total number of entries to

be learned, the vector ϱ = (p0(x, θ
′), . . . , pM (x, θ′))⊤ is the

output of the neural network DNNP : Rnx×Rnθ′ 7→ RM and
θ′ ∈ Rnθ′ is the vector of DNNP parameters. To train the
DNNP parameters, we relax the Killing-vector assumption
and rely on Proposition 4. We set up an optimization problem
asking for the minimization of the following cost function

JP (x, θ
′) =

4∑
i=1

wiJi(x, θ
′), (49)

being w = (w1, . . . , w4) a vector of (positive) scalar weights
and

Ji(x, θ
′) = ln

(
max

(
ℜ
{
λM (Mi)

}
, 0

)
+ 1

)
,

with i = 1, . . . , 4, λM being the maximum eigenvalue and
Mi defined as

M1 = LfP (x, θ
′)− ρP (x, θ′)g(x)g⊤(x)P (x, θ′) + εI

M2 = LgP (x, θ
′)− ϵI

M3 = −LgP (x, θ
′)− ϵI

M4 = −P (x, θ′) + pI

where ρ, ϵ, p > 0 are positive scalars with ε > ϵ and where
ℜ{λ} is the real part of the complex number λ ∈ C. Note
that each cost Ji serves the purpose of satisfying a particular
condition for the neural metric. While J1 provides a positive
cost if the contraction condition (27) is not satisfied, J2
and J3 encourage the boundedness of LgP , thus relaxing
the Killing vector condition (28), and J4 steers the solution
towards positive definite matrices, see (27). Note that the
upperbound is always satisfied as we optimize our algorithm

Algorithm 1 DNN-based controller learning

1: Input: Dataset of
(
x , f(x) , g(x) , ∂f∂x (x) ,

∂g
∂x (x)

)
,

DNNP ,DNNα;
2: while JP (x, θ′) ̸= 0 do
3: Train DNNP and the estimator with (49);
4: end while
5: Train the DNNα with (50);
6: Set the distributed law

ui = −κ
N∑
j=1

ℓijDNNα(xj , θ
′′);

in a compact set X . The natural logarithm is used as a
regularization term between costs Ji. It allows the rescaling
of widely different costs to similar values and a more precise
selection of their importance through the weight vector w.
In parallel to the DNNP , we train a parameter estimator
outputting the values of ρ, ε, ϵ, p. The estimator and DNNP

work together, trying to minimize (49). Note that if the cost
reaches 0, all the contraction conditions are satisfied for the
dataset and the learned estimator outputs, hence learning can
be stopped.

The second step is to find a suitable law satisfying the
integrability condition (29). We train the parameters θ′′ ∈
Rnθ′′ of the second network DNNα : Rnx × Rnθ′ 7→ Rnu

such that

Jα(x, θ
′′) =

∣∣∣∣∂DNNα

∂x
(x, θ′′)− g(x)⊤P (x, θ′)

∣∣∣∣2 (50)

is minimized.
Finally, the controller is synthesized as in (30) with the ap-

proximation α(x) ≈ DNNα(x, θ
′′). We rely on the robustness

properties of contractive systems (see [45]) to compensate for
the DNNs’ approximation errors. The full learning procedure
is summarized by Algorithm 1.

C. Leader-synchronization of a network of Lorentz oscilla-
tors with DNNs

In the following, we apply the proposed algorithm to
a leader-synchronization problem2. We consider a network
of N = 6 identical Lorenz attractors. Such systems are
particularly interesting, since they can present a chaotic
behavior. Each agent i = 1, . . . , N is described by the
following dynamics

ẋi,1 = a(xi,2 − xi,1) + ui

ẋi,2 = xi,1(b− xi,3)− xi,2 + (2 + sin(xi,1))ui

ẋi,3 = xi,1xi,2 − cxi,3

with xi = (xi,1, xi,2, xi,3) ∈ R3 and where a, b, c are
positive scalars. Similarly to [12, Section 5], we pick a = 10,

2The code for reproducing the experiments proposed in
this section can be found at https://github.com/SamueleZoboli/
Control-learning-multiagent-lorenz.git

https://github.com/SamueleZoboli/Control-learning-multiagent-lorenz.git
https://github.com/SamueleZoboli/Control-learning-multiagent-lorenz.git
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Fig. 1: Considered network of Lorentz’s oscillators

b = 28, c = 8
3 , guaranteeing the chaotic behavior. We con-

sider the control matrix g(x) =
(
1 2 + sin(xi,1) 0

)⊤
to

exclude the possibility of feedback linearizing solutions. The
agents communicate with each other following the leader-
connected graph represented in Figure 1.

We code and train our fully-connected DNNs and es-
timator using PyTorch [35]. For the metric network, we
select an architecture composed of 4 hidden layers, with size
30, 20, 20, 10 respectively and tanh activation functions. The
output layer passes through a saturation function as a final
activation, limiting the single elements of the metric. The
second network presents 3 hidden layers, with size 30, 20, 10
respectively and tanh activation functions. We select the
identity function as output layer activation function.

We select a weight vector w = (1, 10, 10, 20), directing
the learning towards positive matrices first and successively
satisfying the Killing-less assumptions and the contraction
condition. We train both the networks and the estimator
using Adam optimizer [28]. The learning rate for the metric
network and the estimator is set as 3 × 10−3, while DNNα

uses a learning rate of 5 × 10−3. The DNNs learning rate
are scheduled according to a cosine annealing policy [32],
while the estimator one remains constant. We train the neural
metric and the estimator over 100 epochs (yet stopped after
15 epochs due to the cost reaching 0) and the second
DNN over 200 epochs. For both of the learning phases (the
metric learning and the integrability learning), the dataset
is composed by 2 × 105 samples coming from a Gaussian
distribution N (0, 10). We use 80% of the dataset as the
training set, with a batch size of 512. The remaining 20%
is used as test set.

We select a κ = 5 and we apply the controller in a noisy-
measurements scenario, i.e., ui = φ(xi + νi) where νi ∼
N (0, 0.2) represents some Gaussian measurement noise. This
allows testing the robustness properties of the proposed
neural control law. Each agents’ initial condition is randomly
sampled from a Gaussian distribution N (0, 20). Figure 2 and
Figure 3 show the controller performances once the DNNs
have been trained. Figure 2 presents the mean and standard
deviation between agents of the norm of the error with respect
to the leader trajectory. Figure 3 directly shows the state
trajectories of each agent. As synchronization is achieved,
we can see that the DNN optimized with (49) provides a
suitable approximation of the metric, while the one trained
with (50) effectively learns a primitive of g(x)⊤P (x, θ′).
The parameter estimator provided a decay rate ε ≈ 4.7 and
ρ ≈ 36.3. From Figure 3 it’s possible to see that the agents

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0

20

40

60

80

100
std(error norm)
mean(error norm)

Fig. 2: Evolution of the mean error norm between agents
with respect to the leader
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0

50

x 3

Fig. 3: States’ evolution of agents ai, i = 1, . . . , N , orange
is leader

quickly synchronize, despite having significantly different
initial conditions. It has to be noticed that such an approach
depends on the generalization capabilities of the DNN. Since
it is trained on a finite number of data, we cannot guarantee
perfect behavior for all the state space. Some considerations
about the neighborhoods of the sampled points could be done,
similarly to [49, Theorem 1]. Nevertheless, due to robustness
properties of contracting systems, training a neural metric
on a sufficiently big dataset is a valuable tool to tackle the
complexity of the proposed solution. This is proved by the
experimental results.

VIII. CONCLUSIONS

In this work, we considered the problem of state-
synchronization for a homogeneous connected network. To
this end, we derived sufficient conditions for the design of
a distributed nonlinear diffusive coupling control law. First,
by means of Euclidean metric-based incremental stability
tools, we achieved network-consensus between the agents,
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globally in the domain of attraction. Then, by means of
a Riemannian metric-based analysis, we achieved synchro-
nization of undirected graphs in the presence of a leader.
Static state and output feedback laws have been investigated.
Then we showed that our design applies for classical case
studies, such as minimum phase systems and linear systems
coupled with a monotonic nonlinearity. To conclude, we
showed that the proposed conditions for the Riemannian
case can be further relaxed by asking for synchronization
in compact sets. We provided a constructive algorithm based
on Deep Learning tools to estimate the metric. We applied
such a design for the synchronization of a network of Lorentz
oscillators. Future studies will involve the generalization of
the Riemannian case without the presence of a leader and in
case of directed networks and the design of (possibly robust)
dynamic output-feedback control actions.
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