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Synchronization in Networks of Nonlinear Systems:
Contraction Analysis via Riemannian Metrics and

Deep-Learning for Feedback Estimation
Mattia Giaccagli, Samuele Zoboli, Daniele Astolfi, Vincent Andrieu, and Giacomo Casadei

Abstract— We consider the problem of exponential synchroniza-
tion of a network of identical input-affine nonlinear time-varying
systems connected through an undirected graph, in the presence
of a leader. We tackle the problem with incremental stability tools.
We propose sufficient metric-based conditions to design a dis-
tributed diffusive coupling feedback law in two frameworks. First,
we consider full-state and (static) output feedbacks, where syn-
chronization is obtained for every initial condition. Then, we show
that synchronization can still be achieved in a smaller domain
of attraction under milder assumptions. To balance the analytical
difficulties of computing the proposed controller, we develop an
algorithm based on deep neural networks (DNNs) for practical
implementation.

Index Terms— Synchronization, contraction, multi-agent sys-
tems, incremental stability, deep learning, deep neural network.

I. INTRODUCTION

The problem of a group of agents trying to achieve an agree-
ment is generally known as synchronization or consensus. In this
work, we consider the problem of synchronization via distributed
control feedback (i.e. diffusive coupling) of homogeneous networks
(i.e. networks where the agents dynamics are identical). For linear
systems, fundamental results were obtained in [1], [2]. See also
[3, Section 5]. For nonlinear systems, most results exploit existing
techniques developed for single-agent systems, specifically adapted to
deal with a distributed framework. Among them, we recall passivity-
based [4], dissipativity-based [5], and ISS approaches [6]. High-gain
techniques, inherited from high-gain observers theory or high-gain
domination approaches (see, e.g., [7], [8]), form another notable class
of solutions. Finally, another very popular approach to solve the
synchronization problem consists in exploiting tools derived from
contraction and incremental stability theory (see [9]–[12]). Based on
this framework, most of the results considered quadratic Lyapunov
functions, or equivalently [12], Euclidean metrics. See, for instance,
[13]–[19]. Only few investigated the use of nonlinear metrics, e.g.
[20], [21].

In this work, we investigate the problem of global exponential
synchronization of homogeneous networks, in which each agent is
described by a nonlinear time-varying input-affine multi-input multi-
output (MIMO) ordinary differential equations (ODEs). We look
for the existence of a nonlinear diffusive coupling, namely a static
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distributed state/output control feedback. We consider the case of
undirected and leader-connected graphs, that is, there exists an agent
(the leader) who can send information to the other nodes without
receiving any. In the rest of the network, the communication links are
bi-directional. Following a contraction-based approach, we investigate
the use of nonlinear Rieammanian metrics (see, e.g., [11], [22]).
We propose a solution to the synchronization problem based on the
existence of a solution to a static partial differential inequality (PDI)
which conceptually extends the stabilizability Riccati-like algebraic
inequality (see, e.g., [2, Section II.C]). This allows to consider classes
of systems with a nonlinear input gain. However, the proposed PDI
is very complex to verify analytically. Therefore, to deal construc-
tively with such a complexity, we show that synchronization can
be achieved in a regional context under less stringent assumptions
(i.e. without the so-called “Killing assumption” and the “integrability
condition”, see below). Thanks to this relaxation, we provide a
formulation of a practical algorithm based on Deep Neural Networks
(DNNs) to check the solvability of such a PDI. Note that the proposed
approach presents conceptual similarities with the control contraction
metrics [23]. Therein, however, the control action is obtained by path-
integrating along the geodesic (see [23, equation (6)]) by solving an
optimization problem.

Note that the use of DNNs for solving PDIs is not new to the
Machine Learning community, see, e.g., [24], [25]. In this context,
we recall the recent results on the use of Deep Learning tools for the
estimation of a Riemannian metric [26]–[29]. To show the potential
of this approach, we consider the problem of synchronizing a network
of Lorentz oscillators in which the input gain is highly nonlinear (and
for which existing techniques cannot be easily applied). We highlight
that this work is an extension of the authors’ conference work [22],
where preliminary results on the synchronization of leader-connected
undirected networks of SISO time-invariant nonlinear systems were
proposed.
Notation: N, resp. R, is the set of natural, resp. real, numbers, R≥0 :=
[0,+∞),R>0 := (0,+∞). We denote Given N matrices Ai ∈
Rni×n for i = 1, . . . , N , we denote with col(A1, . . . AN ) the matrix
(A⊤

1 , . . . , A⊤
N )⊤ ∈ R(n1+···+nN )×n and with diag(A1, . . . , AN )

the square matrix with A1, . . . , AN on the main diagonal and zeros
everywhere else. Given a vector x ∈ Rn and a set S ⊂ Rn, we
denote the Euclidean distance of x with respect to S as |x|S :=
infz∈S |x− z|. Given a 2-tensor P : Rn × R → Rn×n taking
symmetric values and a vector field f : Rn × R → Rn both C1,
we denote the Lie derivative of the tensor P along f as LfP (x, t),
defined as

LfP (x, t) := P (x, t)∂f∂x (x, t)+
∂f
∂x

⊤
(x, t)P (x, t)+ dfP (x, t)

dfP (x, t) := lim
h→0

P (X(x,t+h,t),t)−P (x,t)
h + ∂P

∂t (x, t) ,

with X(x, t, t0) being the solution to ∂
∂tX(x, t, t0) =

f(X(x, t, t0), t), with X(x, t, t) = x, for all t ≥ t0 in time-
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existence of solutions. Given a 2-tensor P : Rn ×R → Rn×n and a
vector field g : Rn ×R → Rn both C1 (resp., a C1 matrix function
g : Rn × R → Rn×m), we say that g is a Killing vector field (or
that it satisfies the Killing vector property) with respect to P , if
LgP (x, t) = 0 (resp. LgiP (x, t) = 0 for all i = 1, . . . ,m, with gi
denoting the i-th column of g) for all (x, t) ∈ Rn × R. Note that
the Killing vector property is trivially satisfied in case both P, g are
constant matrices.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph theory

In a general framework, a communication graph is described by
a triplet G = {V, E ,A} in which V = {v1, v2, . . . , vN} is a set of
N ⊂ N vertexes (or nodes), E ⊂ V × V is the set of edges ejk
that models the interconnection between the vertexes with the flow
of information from vertex j to vertex k weighted by the (k, j)-th
entry akj ≥ 0 of the adjacency matrix A ∈ RN×N . We denote
by L ∈ RN×N the Laplacian matrix of the graph, defined as
ℓkj = −akj for k ̸= j, and ℓkj =

∑N
i=1 aki for k = j, where

ℓj,k is the (j, k)-th entry of L. We denote with Ni the set of in-
neighbors of node i, i.e. the set Ni := {j ∈ {1, . . . , N} | eji ∈ E}.
A time-invariant graph is said to be weakly connected if and only if L
has only one trivial eigenvalue λ1(L) = 0 and all other eigenvalues
λ2(L), . . . , λN (L) ∈ C have strictly positive real parts (see [3,
Theorem 5.1]).

In this article, we will consider leader-connected undirected
graphs. With leader-connected, we mean that we assume the existence
of a leader (i.e. the graph contains at least one spanning tree with the
leader as a root). The leader is labeled (without loss of generality) as
node 1 and has a set of in-neighbors that is the empty set, i.e. N1 = ∅.
In other words, no node in the network can send information to node
1. We also assume the network to be undirected, meaning that we
assume communication links to be bi-directional (i.e. eij = eji for
every i, j = 2, . . . , N ), except, of course, to the edges that nodes
in the network share with the leader. By considering such a graph
structure, the following property is proved in [30].

Lemma 1 Suppose the graph G = {V, E ,A} is undirected and
leader-connected . Then the Laplacian L can be partitioned as
L =

[
0 0

L21 L22.

]
. Moreover, there exists a strictly positive real

number µ > 0 such that L22 ⪰ µI

B. Synchronization with nonlinear diffusive coupling

In this article we consider a network of N agents. As we labeled
the leader as node 1, its dynamics is defined by

ẋ1 = f(x1, t), y1 = h(x1, t), (1a)

where x1 ∈ Rn is the state of the leader and y1 ∈ Rp its output,
while the dynamics of the other N − 1 nodes in the network are
described as

ẋi = f(xi, t) + g(xi, t)ui,

yi = h(xi, t),
i = 2, . . . , N. (1b)

where xi ∈ Rn is the state of node i, ui ∈ Rm is the control action
on node i and yi ∈ Rp is its output. We suppose that f, g, h are
C2 functions in their first argument and piecewise continuous in the
second. We denote the state of the entire network as

x := col(x1, . . . , xN ) ∈ RNn . (2)

Furthermore, we denote with Xi(x
◦
i , t, t0) the trajectory of agent

i evaluated at time t ≥ t0 such that Xi(t0) = x◦i , and with

X (x◦, t, t0) the trajectory of the entire network (2) evaluated at
initial condition x◦ ∈ RNn, initial time t0 ∈ R at time t ≥ t0. Our
synchronization objective is to design a nonlinear diffusive coupling,
namely a distributed feedback control law of the form

ui =
∑
j∈Ni

aij

[
φ(xi, yj , t)− φ(xi, yi, t)

]
= −

N∑
j=1

ℓijφ(xi, yj , t)

(3)
for all i = 2, . . . , N , for some C1 function φ : Rn × Rp ×
R → Rm, that stabilizes the dynamics (1) on the so-called leader-
synchronization manifold D defined as

D := {x ∈ RNn | xi = x1, for all i ∈ {1, . . . , N}}, (4)

where the states of all the agents of the network agree with the leader.
By construction, the i-th agent uses only the output information
yj of its neighborhoods j ∈ Ni and its own local information
(yi, xi). Furthermore, the control action ui is equal to zero on
the synchronization manifold. In other words, when consensus is
achieved, no correction term is needed for each individual agent. As a
consequence, stabilizing all the agents on a desired equilibrium point
is generally not a valid solution in such a framework. We formalize
our synchronization problem as follows.

Problem 1 (Leader synchronization) The distributed feedback
control law (3) solves the leader-synchronization problem for the
network (1) if the manifold D defined in (4) is globally uniformly
exponentially stable for the closed-loop dynamics

ẋ1 = f(x1, t) (5)

ẋi = f(t, xi)− g(t, xi)
∑
j∈Ni

ℓijφ(xi, yj , t), i = 2, . . . , N,

namely, there exist positive constants k and λ > 0 such that for all
(x◦, t0) in RNn ×R solutions of (5) are defined for all t ≥ t0 and

|X (x◦, t, t0)|D ≤ k exp(−λ (t− t0)) |x◦|D, ∀t ≥ t0. (6)

In order to solve our leader synchronization problem, the following
standing assumption is supposed to hold all along the paper.

Assumption 1 The graph G = {V, E ,A} is undirected and leader-
connected. Moreover, for each (x◦1, t0) in Rn × R the trajectory of
(1a) exists for all t ≥ t0.

III. MAIN RESULTS

A. State-feedback design

In this section, we first consider the problem in which agents can
exchange with their neighbors the full state information, namely yi =
xi in (1b). In compact form, we consider a network of N agents
described by

ẋ1 = f(x1, t)

ẋi = f(xi, t) + g(xi, t)ui, i = 2, . . . , N.
(7)

First, we suppose that the pair f, g satisfies a controllability assump-
tion which is stated as follows.

Assumption 2 There exist a C1 matrix function P : Rn × R →
Rn×n taking symmetric positive definite values and positive real
numbers p, p, ρ, λ > 0 such that the following holds for all (x, t) ∈
Rn × R

LfP (x, t)− ρP (x, t)g(x, t)g(x, t)⊤P (x, t) ⪯ −2λP (x, t) ,

pI ⪯ P (x, t) ⪯ pI .
(8)
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Assumption 2 can be seen as a Riccati-like inequality (see the
remark below), where P is a matrix function. This matrix function
P can be employed to endow with a Riemaniann metric Rn. At each
x in Rn, we define the scalar product ⟨a, b⟩P = a⊤P (x)b, (a, b) in
R2n. The (uniform) upper and lower bound on P are required in order
to guarantee that the induced norm is equivalent to the Euclidean
one |x| =

√
x⊤x. These bounds are needed to show that, if the

distance associated with the norm P between any node and the leader
decreases along the solutions, so it does also with the Euclidean one.

Remark. For linear systems of the form ẋ = Ax+Bu, Assumption 2
boils down to the well-known algebraic Riccati inequality (ARI)
PA+A⊤P−ρPBB⊤P ⪯ −2λP which admits a solution under the
mild assumption that (A,B) is stabilizable. In this case, a stabilizing
control action is given by u = −κB⊤P for any κ ≥ ρ. Furthermore,
we remark that such a design possesses the infinite-gain margin
property [31]. Such a property will play a fundamental role in the
following distributed analysis, as it will provide a synchronizing
control law that is ”robust“ with respect to the graph topology, see
[3, Section 5].

Assumption 3 The matrix function g has the Killing vector field (see
Notation) property with respect to P , namely

LgP (x, t) = 0 , ∀(x, t) ∈ Rn × R . (9)

Assumption 4 The vector field Pg satisfies an integrability condition
in the sense that, denoting g = [g1 . . . gm], there exists a C2 function
α = (α1, . . . , αm), αι : Rn × R 7→ R for ι = 1, . . . ,m, satisfying

∂αι

∂x
(x, t) = gι(x, t)

⊤P (x, t) , ∀(x, t) ∈ Rn × R . (10)

The Killing vector condition (9) in Assumption 3 implies that dis-
tances in the metric P between different trajectories of the dynamical
equation ẋ = g(x, t) are invariant. It means that signals entering
in the direction of g may change the trajectories but do not change
the distance between different trajectories. The integrability condition
(10) in Assumption 4 is introduced since the synchronization analysis
will be made through incremental properties and thus by analyzing
the Jacobian of the vector fields. We remark that, for linear systems,
both properties are always satisfied. Indeed P is Euclidean (and thus
constant) and so it is g(x, t) = B. This implies that the Killing vector
assumption (9) holds and the function α in (10) is α(x, t) = B⊤Px.

Remark. Note that Assumption 3 is needed in order to obtain
synchronization for every initial condition of the agents, i.e. to make
the leader-synchronization manifold globally exponentially stable. As
we will show in Section IV, such an assumption can be relaxed in
exchange of obtaining asymptotic stability of D with a domain of
attraction included in a compact set.

As last remark, we highlight that Assumption 2 and Assumption 3
recover the design proposed in [23, Section III.A]. We’re now ready
to show the main result of this section.

Theorem 1 Consider a network G = {V, E ,A} of agents (1) and
let Assumptions 1 to 4 hold. Then, for any κ ≥ ρ

2µ , with µ given by
Lemma 1, the distributed state-feedback control law (3) with

φ(xi, yj , t) = κα(xj , t) , (11)

and α satisfying (10), solves the synchronization Problem 1 for the
network of agents given in (1).

Proof: The main goal is to show that the norm of the difference
between any agent xi and the leader x1 exponentially decreases to
zero. Therefore, let us consider the following change of coordinates

xi 7→ x̃i := xi − x1, i = 2, . . . , N

and let us collect all the vectors x̃i as x̃ := col(x̃2, . . . , x̃N ) and
define z = x1. Since ℓij = 0 for all j ̸∈ Ni, the dynamics of the
error x̃i for all i = 2, . . . , N with the control law (3), (11) can be
rewritten as

˙̃xi = f(z + x̃i, t)− f(z, t)

− κg(z + x̃i, t)

 N∑
j=2

ℓijα(z + x̃j , t) + ℓi1α(z, t)

 .

Note that there is no term on g(z, t) since no control action is acting
on the leader. Since

∑N
j=1 ℓij = 0 for all i = 1, . . . , N , we can add

the term κg(z + x̃i, t)
(∑N

j=1 ℓij

)
α(z, t) = 0 and get

˙̃xi = f(z + x̃i, t)− f(z, t)

− κg(z + x̃i, t)

N∑
j=2

ℓij
[
α(z + x̃j , t)− α(z, t)

]
. (12)

Furthermore, note that in these new coordinates, the leader-
synchronization manifold defined in (4) corresponds to the origin
of the x̃-dynamics.

Now, given (z◦, x̃◦, t0) in RNn × R, let T > t0 be the time of
existence of the solution of (12) initialized from (z◦, x̃◦) at time t0.
For t in [t0, T ), let (Z(t), X̃ (t)) denotes this solution. Consider the
function Γ : [0, 1]× [t0, T ] 7→ RNn, with Γ = (Γ2, . . . ,ΓN ) which
satisfies Γ(s, t0) = s x̃◦, and where Γi, i = 2, . . . , N , is the solution
of the following ordinary differential equation for t0 ≤ t < t0 + T

∂Γi

∂t
(s, t) = f(ζi(s, t), t)− f(Z(t), t)

− κg(ζi(s, t), t)

N∑
j=2

ℓij(α(ζj(s, t), t)− α(Z(t), t))

where we denoted ζi(s, t) = Z(t)+Γi(s, t). Note that, by uniqueness
of the solution, Γ satisfies

Γ(0, t) = 0, Γ(1, t) = X̃ (t), ∀t ∈ [t0, T ) . (13)

Consider now the function V defined by

V =

N∑
i=2

Vi, Vi(·) =
∫ 1

0

∂Γi

∂s
(s, ·)⊤P (ζi(s, ·), ·)

∂Γi

∂s
(s, ·)ds.

(14)

Note that we have for all (k, l) in {1, . . . , n}2 we have

d

dt
[P (ζi(s, t), t)kl]

=
∂Pkl

∂x
(ζi(s, t), t)

∂ζi
∂t

(s, t) +
∂Pkl

∂t
(ζi(s, t), t),

=
∂Pkl

∂x
(ζi(s, t), t)

[
f(Z(t) +

∂Γi

∂t
(s, t))

]
+

∂Pkl

∂t
(ζi(s, t), t).
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This implies that for all vector ν in Rn, and i = 2, . . . , N ,

d

dt

[
ν⊤P (ζi(s, t), t)ν

]
= ν⊤dfP (ζi(s, t), t))ν

− κ

N∑
j=2

[
ℓij

m∑
ι=1

ν⊤dgιP (ζi(s, t), t)ν

× (αι(ζj(s, t), t)− αι(Z(t), t))

]
.

By using the Killing vector assumption (9) and the integrability one
in (10), the time derivative of Vi becomes

V̇i(t) =

∫ 1

0

[
∂Γi

∂s
(s, t)⊤LfP (ζi(s, t), t)

∂Γi

∂s
(s, t)

− 2κ
∂Γi

∂s
(s, t)⊤

N∑
j=2

ℓijP (ζi(s, t), t)g(ζi(s, t), t)

× g(ζj(s, t), t)
⊤P (ζj(s, t), t)

∂Γj

∂s
(s, t)

]
ds. (15)

With the following notations,

D(s, t) := diag
{
LfP (ζi(s, t), t)

}
i=2,...,N

,

Ψ(s, t) := col

{
P (ζi(s, t), t)g(ζi(s, t), t)

∂Γi

∂s
(s, t)

}
i=2,...,N

,

we compute the derivative of V as follows

V̇ (t) =

∫ 1

0

[
∂Γ

∂s

⊤

(s, t)D(t)
∂Γ

∂s
(s, t)− 2κΨ(s, t)L22Ψ(s, t)⊤

]
ds

≤

∫ 1

0

[
∂Γ

∂s

⊤

(s, t)D(t)
∂Γ

∂s
(s, t)− 2κµΨ(s, t)Ψ(s, t)⊤

]
ds

where in the second step we used Assumption 1 and Lemma 1.
Therefore, by selecting κ ≥ ρ

2µ with ρ satisfying inequality (8)
and µ > 0 given by Lemma 1, we get V̇ (t) ≤ −λV (t). From
Gronwall’s Lemma, this implies V (t) ≤ exp (−λ(t− t0))V (t0) for
all t ∈ [t0, t0 + T ). Moreover, with (13) it yields

Vi(t) ≥ p

∫ 1

0

∂Γi

∂s
(s, t)⊤

∂Γi

∂s
(s, t)ds ≥ p ∥X̃i(t)∥2 . (16)

Moreover, since
V (t0) ≤ p ∥x̃◦∥2, (17)

it yields for all t in [t0, t0 + T ) that

∥X̃ (t)∥2 ≤ exp(−λ(t− t0))
p

p
∥x̃◦∥2 .

Hence, remembering the definition x̃i = xi − z and the fact that the
leader trajectory is well-defined for all positive times, this implies
that the trajectories are complete in positive time (i.e. T = +∞).
Moreover, by equivalence of norms in finite dimensional spaces it
follows that there exist two strictly positive real numbers c, c > 0
such that c|X (x◦, t, t0)|D ≤ |X̃ (t)| ≤ c|X (x◦, t, t0)|D , for all t ≥
t0, which implies (6) and concludes the proof.

B. Output-feedback designs

We consider in this section the case of output feedback distributed
control laws, see, e.g. [8, Section 2]. To this end, we particularize
our result to the case of a network of agents described as

ẋ1 = f(x1, t), y1 = h(x1, t),

ẋi = f(xi, t) + ui, yi = h(xi, t),
(18)

for all i = 2, . . . , N , with yi ∈ Rp and ui ∈ Rn. The following
result establishes a set of sufficient conditions for the existence of
a distributed output feedback nonlinear diffuse coupling of the form
(11). Assumptions 2 and 3 are then modified as follows.

Assumption 5 There exist a C1 matrix function P : Rn × R →
Rn×n taking symmetric positive definite values, and real numbers
p, p, λ, ρ > 0 such that the following holds for all (x, t) ∈ Rn × R

LfP (x, t)− ρ
∂h

∂x
(x, t)⊤

∂h

∂x
(x, t) ⪯ −2λP (x, t) ,

pI ⪯ P (x, t) ⪯ pI .

(19)

Assumption 6 The vector field β : Rn × R → Rn defined as

β(x, t) = P (x, t)−1 ∂h

∂x
(x, t)⊤

is a Killing vector for P , i.e. LβP (x, t) = 0 for all (x, t) ∈ Rn×R.

Note that, in the linear case, condition (19) corresponds to the
detectability condition PA + A⊤ − ρC⊤C ⪯ −2λP , provided a
control gain of the form φ(xi, yi, t) = −P−1C⊤yi. Assumptions 5
and 6 coincide with those in [32] used in the context of observer
design with Riemannian metrics. Finally, we have the following
result.

Proposition 1 Consider a network G = {V, E ,A} of agents (18)
and suppose Assumptions 1, 5 and 6 hold. Then, for any κ ≥ ρ

2µ ,
with µ given by Lemma 1, the distributed output-feedback control
law (3) with φ(xi, yj , t) = κβ(xi, t) yj solves the synchronization
Problem 1 for the network (18).

Proof: The proof follows similar arguments as the one in
Theorem 1 and it is omitted for space reasons. A proof for the time-
invariant single-output case can be found in [22, Theorem 2].

We remark that, differently from the previous case, in the output
feedback context the i-th agent needs the knowledge of its own state
xi in order to implement the proposed control law. In other words,
the local information does not coincide with the distributed one.

The previous result can be also easily adapted to the context of a
Riemannian incremental passivity condition for a network of systems
of the form

ẋ1 = f(x1, t), y1 = h(x1, t),

ẋi = f(xi, t) + g(xi, t)ui, yi = h(xi, t),
(20)

for all i = 2, . . . , N and yi, ui ∈ Rm, namely m = p. In this
case, such a result is obtained under the solution of the Riccati-like
condition in Assumption 5. The Assumption 6 is however modified
as follows.

Assumption 7 The following condition holds for all (x, t) ∈ Rn×R

P (x, t)g(x, t) =
∂h

∂x
(x, t)⊤, LgP (x, t) = 0. (21)

Note that Assumption 5 together with 7 extend to the Riemannian
case the Euclidean passivity conditions given in in [19]. In the linear
case, we recover PA + A⊤ − ρC⊤C ⪯ −2λP , with PB = C⊤.
Finally, we have then the following result. The proof is omitted for
space reasons.

Proposition 2 Consider a network G = {V, E ,A} of agents (20)
and suppose Assumptions 1, 5 and 7 hold. Then, for any κ ≥ ρ

2µ ,
with µ given by Lemma 1, the distributed output-feedback control law
(3) with φ(xi, yj , t) = κ yj solves the synchronization Problem 1 for
the network (20).
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IV. RELAXING THE INTEGRABILITY AND KILLING
CONDITIONS

The main limitation of the approach presented in Section III is the
complexity of finding a metric P solving (8) and, at the same time,
satisfying the Killing vector field property in (9) and the integrability
condition in (10). In this section, we aim to provide a practical
solution to such limitations. We show that synchronization can still
be obtained under an an approximate integrability condition or an
approximate Killing vector assumption. Note that the type of result
is different in the two contexts. Indeed, global results can still be
achieved in case of an approximation of the integrability condition,
provided the control gain is not selected too large. However, only
semi-global results can be obtained when relaxing the Killing vector
assumption. For space reasons, in the rest of this section we consider
the state-feedback case developed in Section III-A. Nonetheless,
similar conclusions can be drawn for the output feedback designs
presented in Section III-B.

A. About the integrability condition
Instead of Assumption 4, consider the following one.

Assumption 4’ There exist a C2 function α : Rn × R 7→ Rm and
a scalar ε > 0 such that, for ι = 1, . . . ,m, the following holds∥∥∥∥∂αι

∂x
(x, t)− gι(x, t)

⊤P (x, t)

∥∥∥∥ ≤ ε, ∀(t, x) ∈ R× Rn. (22)

Theorem 2 Consider a network G = {V, E ,A} of agents (1) and
let Assumptions 1, 2, 3 and 4’ hold. Moreover, assume there exists
a positive real number ḡ such that |gι(x, t)| ≤ ḡ for all (x, t) in
Rn × R and ι = 1, . . . ,m. Let µ be given by Lemma 1 and let
L̄ = maxij |ℓij | where (ℓij) is the Laplacian matrix associated to
the graph. Then, if ε in Assumption 4 is selected as ε ∈ [0, ε∗)

with ε∗ =
λµp

ρNL̄mp̄ḡ
, there exists κ∗ such that for any κ ∈

[ ρ
2µ , κ

∗), the distributed state-feedback control law (3)-(11) solves
the synchronization Problem 1.

Proof: The proof is identical to the proof of Theorem 1 up
to equation (15). Recalling the compact notation ζi(s, t) = Z(t) +
Γi(s, t), with Assumption 2, for each i in {2, . . . , N}, the function
Vi defined in (14) satisfies for all t in [t0, T )

V̇i(t) =

∫ 1

0

[
∂Γ

∂s

⊤

D
∂Γ

∂s
− 2κµΨΨ⊤ + Ti

]
ds

where we used the compact notation introduced in the proof of
Theorem 1, we omitted the arguments for space reasons, and

Ti(s, t) = −2κ
∂Γi

∂s
(s, t)⊤

N∑
j=1

ℓij

m∑
ι=1

P (ζi(s, t), t)gι(ζi(s, t), t)

×
(
∂αι
∂x (ζj(s, t), t)− gι(ζj(s, t), t)

⊤P (ζj(s, t), t)
)

∂Γj
∂s (s, t).

With Assumption 4’, the bound on P , g and the ℓij ’s, the term Ti
can be bound as follows

|Ti(t, s)| ≤ 2κ
∥∥∥∂Γi

∂s (s, t, t0)
∥∥∥NL̄mp̄ḡε

∥∥∥∂Γj
∂s (s, t)

∥∥∥
where L̄ = maxij{

∣∣ℓij∣∣}. Consequently, with Assumption 1,
Lemma 1, and following the proof of Theorem 1, it yields,

V̇ (t) ≤

∫ 1

0

[
∂Γ

∂s
(s, t)⊤D(s, t)

∂Γ⊤

∂s
(s, t)− 2κµΨ(s, t)Ψ⊤(s, t)

+ 2κNL̄mp̄ḡε

∥∥∥∥∂Γi

∂s
(s, t)

∥∥∥∥∥∥∥∥∂Γj

∂s
(s, t)

∥∥∥∥
]
ds.

Using the fact that 2∥v∥∥w∥ ≤ v⊤v + w⊤w for any two vectors v
and w in Rn, this gives,

V̇ (t) ≤

∫ 1

0

[
∂Γ

∂s
(s, t)⊤ diag{Υi}i=2,...,N

∂Γ

∂s
(s, t)

]
ds,

where Υi(ζ, t) = LfP +2κc̄P −2κµPg⊤gP, with the functions P

and g depending on (ζ, t) and c̄ = NL̄mp̄ḡε
p . With Assumption 2, this

implies Υi(ζ, t) ≤ (2κc̄−λ)P +(ρ− 2κµ)Pg⊤gP. Note that with
the choice of ε in the statement of the theorem, we have ρ

2µ < λ
2c̄ .

Consequently, for each κ ∈ ( ρ
2µ ,

λ
2c̄ ) it implies V̇ (t) ≤ −λ̃V (t) for

all t ≥ t0, where λ̃ = 2κc̄− λ is a positive real number. The proof
completes following the lines of the proof of Theorem 1.

B. About the Killing vector field

When the equality constraint in Assumption 3 is replaced by an
approximation, the global synchronization may be lost. However, it is
shown in the following theorem that provided |LgP | is small enough,
a semi-global result can be obtained.

Theorem 3 Consider a network G = {V, E ,A} of systems (1).
Suppose Assumption 1, 2, and 4 hold. Let κ ≥ ρ

µ be fixed. Assume
|g(x)| ≤ ḡ for all x in Rn. Then, for each x̄ > 0 there exist k, ε > 0
such that, if the following holds

|LgιP (x, t)| ≤ ε , ∀ (x, t, ι) ∈ Rn × [t0,∞)× {1, . . . ,m}, (23)

then, for all (x◦, t0) in RNn×R such that ∥x◦∥D ≤ x̄, the solution
of (5) with the distributed state-feedback control law (3), (11) is
defined for all t ≥ t0 and

|X (x◦, t, t0)|D ≤ k exp(−λ
3 (t− t0)) |x◦|D ,∀t ≥ t0. (24)

Proof: Let x̄, t0 > 0 and let x◦ ∈ RNn satisfy ∥x◦∥D ≤ x̄.
Assume that (23) is satisfied for some positive real number ε that
will be selected later on. As in the proof of Theorem 1, consider
the function V defined in (14). With (16) and (17), there exists two
positive real numbers (cV , c̄V ) such that

cV
∣∣X (x◦, t)

∣∣2
D ≤ V (t) ≤ c̄V

∣∣X (x◦, t)
∣∣2
D.

With Assumption 2, and 4, for each i in {2, . . . , N}, the function Vi
defined in (14) satisfies for all t in [t0, T )

V̇i(t) =

∫ 1

0

[
∂Γ

∂s

⊤

D
∂Γ

∂s
− 2κµΨΨ⊤ + T̃i

]
ds

where we used the compact notation introduced in the proof of
Theorem 1, we omitted the arguments for space reasons, and

T̃i(t, s) =− κ
∂Γi

∂s
(s, t)⊤

m∑
ι=1

LgιP (ζi(s, t), t)

N∑
j=2

ℓij α̃ι
∂Γi

∂s
(s, t).

with α̃ι(ζj) := αι(ζj(s, t), t) − αι(Z(t), t). Note that, with As-
sumption 4 we have

α̃ι(ζj(s, t)) =

∫ 1

0

∂αι

∂x
(Z(t) + rΓj(s, t), t))Γj(s, t)dr

=

∫ 1

0

∂αι

∂x
(Z(t) + rΓj(s, t), t))

∫ s

0

∂Γj

∂s
(ν, t)dνdr.

Hence,

|α̃ι(ζj)| ≤ p̄ḡ

∫ 1

0

∣∣∣∣∂Γj

∂s
(ν, t)

∣∣∣∣ dν ≤ p̄ḡ
1

2

∫ 1

0
1 +

∣∣∣∣∂Γj

∂s
(ν, t)

∣∣∣∣2 dν.
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Employing that
∫ 1
0 ∥∂Γi

∂s (s, t)∥2ds ≤ Vi(t)
p , and with (23), this gives

V̇i(t) =

∫ 1

0

[
∂Γ

∂s

⊤

D
∂Γ

∂s
−2κµΨΨ⊤+Vi(t)εκc̄

(
1 +

Vj(t)

p

)]
ds

where c̄ = mNL̄ p̄
p ḡ where L̄ = maxij |ℓij |. Consequently, follow-

ing the proof of Theorem 1, we obtain, with κ ≥ ρ
2µ ,

V̇ ≤ −(λ− c̄κε)V +
c̄κε

p

N∑
i=2

V 2
i ≤ −

(
λ− c̄κε− c̄κε

p
V
)
V.

Finally, selecting ε < max
{

λ
3c̄κ ,

λp

3c̄κc̄V x

}
it implies V̇ ≤ −λ

3V

for all t ≥ t0, concluding the proof.

V. DEEP LEARNING FOR METRIC ESTIMATION

As mentioned in the previous section, a drawback of the proposed
approach lies in the fact that metrics may not be easy to find in the
Riemannian scenario. Moreover, even when a metric has been found,
designing a control law satisfying the integrability condition (10)
may not be straightforward. One way to overcome such difficulties
is to rely on Machine Learning tools to obtain approximate solutions,
thus leveraging on Theorem 3 and Theorem 2. In what follows,
we combine the proposed control design with Deep Learning tools.
In recent years, Deep Neural Networks (DNNs) turned out to be
effective tools for solving complex differential equations, see, e.g.,
[24], [25]. As a matter of fact, multiple works began mixing learning
tools and control. Such a combined framework tackles the complexity
of computing control theoretic exact solutions by exploiting deep
approximators. Hence, the idea is to set up and approximately solve
an optimization problem aimed at circumventing the need for an
analytic metric. Once a suitable metric has been found via a first
DNN, we train a second one to satisfy the integrability condition.

A. Related results
Similar approaches already appeared in the literature (see e.g.,

[26]–[28], [33]). In [26], the authors propose a convex optimization
problem to compute a suitable metric. Yet, they successively suggest
approximating the solution via a DNN. Hence, the convex optimiza-
tion is solved on a finite number of samples and the DNN provides
a continuous interpolation through those points. This overcomes the
need of solving such an optimization in each point of the state space.
In [28] the authors propose learning Control Contraction Metrics
(CCMs) [23] to solve output tracking problems. However, when con-
sidering the approximation error induced by the learning procedure,
the results offer probabilistic convergence guarantees to trajectories
close to the reference one. Moreover, the learned controller needs to
be structured in order to always verify the assumptions. Finally, [27]
proposes a Siamese DNN structure [34]. Similarly to our scenario,
both [27] and [28] aim at minimizing a loss function defined by
the matrix conditions required for contraction. Once such a function
reaches 0, the DNN provides the entries of a suitable metric for each
point in the training/test datasets.

Even if related, our solution differs on some fundamental points.
With respect to [28], we do not impose constraints on the controller
structure. Hence, we do not affect the expressivity of the selected
approximator. In addition, our approach is not based on CCMs.
Hence, while the proposed loss functions are similar in the sense
they involve sign definiteness-related costs, their components are
different. Moreover, we also optimize the components parameters,
which results in more plastic constraints. On a further note, our
sign definite cost relies on eigenvalues. While possibly resulting in
more complex conditions, this choice ensures sign definiteness of the

matrix. This differs from the random sampling approach in [28]. As
a final remark, due to the choice of the loss components, our solution
offers asymptotic convergence guarantees even when assumptions are
only approximately satisfied, see Theorem 2 and Theorem 3. With
respect to [27], we rely on the continuous-time framework. Hence,
we avoid the need of a Siamese network by computing the DNN
Jacobian. Note that, usually, such a Jacobian can be easily obtained
thanks to the automatic differentiation tools provided by common
libraries such as Pytorch [35]. Second, as previously stated, we add
a separate estimator which looks for the best parameters in the cost
function. It works jointly with the DNN during the optimization
process. Finally, we rely on (10) instead of computing the control law
via approximate integration over the geodesic. This greatly simplifies
the algorithm, since geodesics are not easy to find in general.

B. Proposed approach

We now describe the proposed algorithm. Let us consider the
problem of finding a suitable approximation of the metric first. The
neural metric is constructed as

P (x, θ′) =

 P1(x,θ
′) ··· Pn(x,θ

′)
...

. . .
...

Pn(x,θ
′) ··· Pp(x,θ

′)

,
where p =

n(n+1)
2 is the total number of entries to be learned, the

vector ϱ = (P1(x, θ
′), . . . , Pp(x, θ

′))⊤ is the output of the neural
network DNNP : Rn × Rnθ′ 7→ Rp and θ′ ∈ Rnθ′ is the vector
of DNNP parameters. To train the DNNP parameters, we rely on
Theorem 2 to relax the existence of a primitive for g(x)⊤P (x, θ′)
and on Theorem 3 to loosen the constraint posed by the Killing vector
field property (9). We set up an optimization problem asking for the
minimization of the following cost function

JP (x, θ′) =
4∑

i=1

wiJi(x, θ
′), (25)

being w = (w1, . . . , w4) a vector of (positive) scalar weights and

Ji(x, θ
′) = ln

(
max

(
Re
{
λM (Mi)

}
, 0
)
+ 1
)
,

with i = 1, . . . , 4, λM being the maximum eigenvalue and Mi

defined as

M1 = LfP (x, θ′)− ρP (x, θ′)g(x)g⊤(x)P (x, θ′) + εI

M2 = LgP (x, θ′)− ϵI, M3 = −LgP (x, θ′)− ϵI,

M4 = −P (x, θ′) + pI

where ρ, ϵ, p > 0 are positive scalars with ε > ϵ and where Re{λ}
is the real part of the complex number λ ∈ C. Note that each cost
Ji serves the purpose of satisfying a particular condition for the
neural metric. While J1 provides a positive cost if the contraction
condition (8) is not satisfied, J2 and J3 encourage the boundedness
of LgP , thus relaxing the Killing vector condition (9), and J4 steers
the solution towards positive definite matrices, see (8). Note that the
upperbound is always satisfied as we optimize our algorithm in a
compact set X . The natural logarithm is used as a regularization term
between costs Ji. It allows the rescaling of widely different costs
to similar values and a more precise selection of their importance
through the weight vector w. In parallel to DNNP , we train a
parameter estimator outputting the values of ρ, ε, ϵ, p. The estimator
and DNNP work together, trying to minimize (25). Note that if
the cost reaches 0, all the contraction conditions are satisfied for
the dataset and the learned estimator outputs, hence learning can be
stopped. The second step is to find a suitable law approximating the
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integrability condition (10). We train the parameters θ′′ ∈ Rnθ′′ of
the second network DNNα : Rn × Rnθ′ 7→ Rm such that

Jα(x, θ
′′) =

∣∣∣∣∂DNNα

∂x
(x, θ′′)− g(x)⊤P (x, θ′)

∣∣∣∣2 (26)

is minimized. The full learning procedure is summarized by Algo-
rithm 1. Clearly, the DNNs can be trained only on a dataset D of
finite size. Yet, DNNs are typically Lipschitz-continuous functions.
Hence, similarly to [27, Section IV], we provide a verification tool
via the following proposition, to assess the satisfaction of contraction
conditions over compact sets once the training is over.

Proposition 3 Let S ⊂ Rn be an arbitrary compact set and D ⊂ Rn

a set with a finite number of elements and let r > 0 be such that

S ⊆ ∪xi∈DB(xi, r), B(xi, r) := {x ∈ Rn : |x− xi| < r}.

Let M : Rn → Rn×n be a Lipschitz-continuous matrix-valued
function, with Lipschitz constant LM , taking symmetric values and
such that M(xi) ⪯ −2qI for all xi ∈ D and for some q > 0. If
q, r, LM are such that q > rLM , then M(x) ⪯ −qI , ∀x ∈ S.

Proof: By Lipschitz-continuity of M we have

M(x) = M(xi) +M(x)−M(xi) ⪯ M(xi) + |M(x)−M(xi)|I

⪯ M(xi) + LM |x− xi|I ⪯ −q

(
2− |x− xi|

r

)
I

for an arbitrary xi ∈ D. Then, M(x) ⪯ −qI for all x ∈ B(xi, r).
The result follows from the fact that S ⊆ ∪xi∈DB(xi, r).

Proposition 3 implies that if the dataset is composed of a suffi-
ciently fine grid, then the learned properties extend to the points in
between. Hence, we can obtain a valid metric over a compact set
by learning on a finite number of samples. Similar reasoning can be
proposed for the feedback law α.

Since the estimated metric is a DNN and g ∈ C2, their product is
Lipschitz continuous on a compact set. Since α is also modeled as
a DNN, by selecting smooth activation functions its Jacobian is con-
tinuous. Following similar arguments to those used in Proposition 3,
we can finally guarantee that a bounded error on a grid translates to
a bounded error on a compact set including it.

VI. ILLUSTRATION

In the following, we apply the proposed algorithm to a leader-
synchronization problem1. We consider a network of N = 6 identical
Lorenz attractors. Such systems are particularly interesting, since they
can present a chaotic behavior. Each agent i = 1, . . . , N is described
by the following dynamics

ẋi,1 = a(xi,2 − xi,1) + ui

ẋi,2 = xi,1(b− xi,3)− xi,2 + (2 + sin(xi,1))ui

ẋi,3 = xi,1xi,2 − cxi,3

with xi = (xi,1, xi,2, xi,3) ∈ R3 and where a = 10, b = 28,
c = 8

3 , guaranteeing the chaotic behavior. We consider the control
matrix g(x) = (1, 2 + sin(xi,1), 0) to exclude the possibility of
feedback linearizing solutions. The agents communicate with each
other following the leader-connected graph represented in Figure 1a.

We code and train our fully-connected DNNs and estimator using
PyTorch [35]. For the metric network, we select an architecture
composed of 4 hidden layers, with size 30, 20, 20, 10 respectively

1The code for reproducing the experiments proposed in this sec-
tion can be found at https://github.com/SamueleZoboli/
Control-learning-multiagent-lorenz.git

Algorithm 1 DNN-based controller learning

1: Input: Dataset of
(
x , f(x) , g(x) , ∂f∂x (x) ,

∂g
∂x (x)

)
,

DNNP ,DNNα;
2: while JP (x, θ′) ̸= 0 do
3: Train DNNP and the estimator with (25);
4: end while
5: Train the DNNα with (26);
6: Set the distributed law ui = −κ

∑N
j=1 ℓijDNNα(xj , θ

′′).

and tanh activation functions. The output layer passes through a
saturation function as a final activation, limiting the single elements
of the metric. The second network presents 3 hidden layers, with size
30, 20, 10 respectively and tanh activation functions. We select the
identity function as output layer activation function.

We select a weight vector w = (1, 10, 10, 20), directing the
learning towards positive matrices first and successively satisfying
the Killing-less assumptions and the contraction condition. We train
both the networks and the estimator using Adam optimizer [36].
The learning rate for the metric network and the estimator is set
as 3 × 10−3, while DNNα uses a learning rate of 5 × 10−3. The
DNNs learning rate are scheduled according to a cosine annealing
policy [37], while the estimator one remains constant. We train the
neural metric and the estimator over 100 epochs (yet stopped after
15 epochs due to the cost reaching 0) and the second DNN over 200
epochs. For both of the learning phases (the metric learning and the
integrability learning), the dataset is composed by 2 × 105 samples
coming from a Gaussian distribution N (0, 10). We use 80% of the
dataset as the training set, with a batch size of 512. The remaining
20% is used as test set.

We select a κ = 5 and we apply the controller in a noisy-
measurements scenario, i.e., ui = φ(xi + νi) where νi ∼ N (0, 0.2)
represents some Gaussian measurement noise. This allows testing the
robustness properties of the proposed neural control law. Each agents’
initial condition is randomly sampled from a Gaussian distribution
N (0, 20). Figures 1b and Figure 1c show the controller performances
once the DNNs have been trained. Figure 1b presents the mean
and standard deviation between agents of the norm of the error
with respect to the leader trajectory. Figure 1c directly shows the
state trajectories of each agent. As synchronization is achieved,
we can see that the DNN optimized with (25) provides a suitable
estimated metric, while the one trained with (26) effectively learns
an approximate primitive of g(x)⊤P (x, θ′). The parameter estimator
provided a decay rate ε ≈ 4.7 and ρ ≈ 36.3. From Figure Figure
1c it is possible to see that the agents quickly synchronize, despite
having significantly different initial conditions.

VII. CONCLUSIONS

We studied the problem of exponential synchronization of a
homogeneous network of input-affine nonlinear time-varying systems
connected through an undirected graph with the presence of a leader.
We proposed a set of sufficient conditions based on Riemaniann
metrics to design a distributed diffusive coupling state and output
feedback for every initial condition. Then, we showed that synchro-
nization can still be achieved under milder assumptions in a smaller
domain of attraction. To relax computational difficulties, we provided
an algorithm based on DNNs for practical implementation, and tested
it in a challenging environment. Future studies will try to generalize
the proposed conditions to more general networks by using different
Lyapunov functions and/or more complex analysis tools.

https://github.com/SamueleZoboli/Control-learning-multiagent-lorenz.git
https://github.com/SamueleZoboli/Control-learning-multiagent-lorenz.git


8

1

2

35

4

6

(a) Considered network of
Lorentz’s oscillators

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0

20

40

60

80

100
std(error norm)
mean(error norm)

(b) Evolution of the mean error norm between
agents with respect to the leader

−20

0

20

x 1

−100

−50

0

50

x 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0

50

x 3

(c) Evolution of the states (x1, x2, x3) of
agents ai, i = 1, . . . , N (leader in orange)

Fig. 1: Synchronization of Lorentz’s oscillators
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