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Adolescence is a period of vulnerability for the maturation of gray matter (GM) and also
for the onset of psychiatric disorders such as major depressive disorder (MDD), bipolar
disorder and schizophrenia. Chronic neuroinflammation is considered to play a role in
the etiology of these illnesses. However, the involvement of neuroinflammation in the
observed link between regional GM volume reductions and psychiatric symptoms is not
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established yet. Here, we investigated a possible common immune-related genetic link
between these two phenomena in european adolescents recruited from the community.
Hippocampal and medial prefrontal cortex (mPFC) were defined a priori as regions
of interest (ROIs). Their GM volumes were extracted in 1,563 14-year-olds from the
IMAGEN database. We found a set of 26 SNPs that correlated with the hippocampal
volumes and 29 with the mPFC volumes at age 14. We formed two ROI-Related
Immune-gene scores (RRI) with the inflammation SNPs that correlated to hippocampal
GM volume and to mPFC GM volume. The predictive ability of both RRIs with regards to
the presence of psychiatric symptoms at age 18 was investigated by correlating the RRIs
with psychometric questionnaires obtained at age 18. The RRIs (but not control scores
constructed with random SNPs) correlated with the presence of depressive symptoms,
positive psychotic symptoms, and externalizing symptoms in later adolescence. In
addition, the effect of childhood maltreatment, one of the major environmental risk
factors for depression and other mental disorders, interacted with the RRI effect. We
next sought to validate this finding by investigating our set of inflammatory genes in
a translational animal model of early life adversity. Mice were subjected to a protocol
of maternal separation at an early post-natal age. We evaluated depressive behaviors
in separated and non-separated mice at adolescence and their correlations with the
concomitant expression of our genes in whole blood samples. We show that in mice,
early life adversity affected the expression of our set of genes in peripheral blood, and
that levels of expression correlated with symptoms of negative affect in adolescence.
Overall, our translational findings in adolescent mice and humans provide a novel
validated gene-set of immune-related genes for further research in the early stages of
mood disorders.

Keywords: immunity genes, psychiatric symptoms, adolescence, MRI, childhood maltreatment

INTRODUCTION

Some large-scale studies combining genetic and brain structural
data hypothesize the existence of shared neurobiological
mechanisms underlying prevalent psychiatric disorders, such as
major depressive disorder (MDD), attention-deficit/hyperactivity
disorder, and schizophrenia (Parker et al., 2020; Patel et al.,
2021). The central findings supporting this hypothesis are the
associations found between disorder-specific regional differences
in brain structure (e.g., cortical thickness or regional volumes)
and common clusters of genes involved in brain development
or maturation. Although they do not establish causality, these
observations point to the interplay of genetic and brain structural
underpinnings in the pathophysiology of psychiatric illnesses.
Here, we aim to further contribute to this endeavor by
applying a targeted approach, i.e., by focusing on a limited
number of genes and brain regions. The main advantage of
such an approach is the improvement of statistical power to
identify associations in smaller samples. Specifically, we will
investigate the possible association between neuroinflammatory-
related genes and regional gray matter (GM) volumes in the
hippocampus and medial prefrontal cortex (mPFC) in the
development of mood disorders (MDD and bipolar disorder)
and schizophrenia.

Although a wide range of structural abnormalities has
been associated with psychiatric disorders (e.g., Patel et al.,
2021), herein we focused on volumetric GM measurements
in the hippocampus and mPFC as regions of interest
(ROI). Indeed, reduced hippocampal and PFC volume
are among the most replicated findings in MRI studies
of depression (MacQueen et al., 2003; Schmaal et al., 2020).
Lower hippocampal volumes have been associated with
adolescent onset MDD (Chen et al., 2010; Schmaal et al.,
2016), and ventral medial PFC maturation has been related
to negative affect in the developing brain (Ducharme et al.,
2014). GM reductions in these two regions have been put
forward as indicators of the severity and stage of MDD
(Belleau et al., 2019). Still, in their review, Belleau et al.
(2019) speculate that, although hippocampal and mPFC
GM reductions have been associated with MDD, these
reductions are neither necessary nor sufficient for inducing
a depressive episode. Instead, these structural abnormalities
should be regarded as intermediary effectors driving the
progression and recurrence of depression. Consistently,
our group has reported lower volumes in both regions
as variables of interest for tackling irregular sleep habits
paving the way to psychiatric symptoms in adolescents
(Lapidaire et al., 2021).
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Our second reduction in scope, i.e., focusing on a carefully
selected set of immune-related genes rather than a genome-
wide paradigm, is founded on research putting forward
chronic neuroinflammation as a neurobiological characteristic
of MDD driving GM loss (Kubera et al., 2011; Barnes et al.,
2017). This theory, originally called the “inflammatory and
neurodegenerative hypothesis of depression” by Maes et al.
(2009), is based on multiple pieces of evidence. The first paper
demonstrating a close connection between depression and the
immune system was published in 1990 and found that MDD
was often associated with a significantly higher number of
activated T-cells (Maes et al., 1990). Since then, there have been
many consistent findings of increased levels of proinflammatory
cytokines in the cerebrospinal fluid (CSF) of patients with
depression, the most prominent being interleukin-1 (IL-1), IL-
2, IL-6, IL-8, IL-12, interferon-γ and tumor necrosis factor-
α. In addition, elevations in peripheral blood concentrations
of chemokines, adhesion molecules, acute phase proteins and
inflammatory mediators such as prostaglandins have been
observed. Lastly, depression could be induced by administrating
cytokines (see the comprehensive reviews by Raison et al., 2006
and Miller and Raison, 2015).

To our knowledge, there is no report investigating the
putative association between immune-related genetic variation
and MDD-related hippocampal and mPFC GM reductions. In
order to do so, we will combine the benefits of a candidate
gene approach and a polygenic approach. More specifically, we
will construct two “polygenic” scores using only inflammation-
related common genetic polymorphisms: one in association with
hippocampal GM volume and another in association with mPFC
GM volume. Hence, these scores will be referred to as ROI-related
immune-gene scores (RRI-scores). The IMAGEN database will
be used to access genetic and T1 imaging data in 14-year-olds, an
age of particular interest as confounding effects due to the use of
medication can be considered minimal. A second notable asset
of the IMAGEN database is the availability of follow-up data at
the age of 18, including a wide range of psychometric data. We
will use this follow-up to investigate both RRI-scores with regards
to the participants’ psychiatric symptoms later in adolescence.
Thus, we will examine whether the putative association between
neuroinflammatory genes and regional GM reductions plays a
role in the development of psychiatric symptoms.

Moreover, we will test the translational hypothesis that genetic
predisposition influences the capacity of an environmental risk
factor to induce a psychiatric disorder (Caspi and Moffitt,
2006; Bagot et al., 2014). First, we will assess whether there is
an interaction between the RRIs and the degree of childhood
maltreatment (CM) explaining negative affects at adolescence,
in the IMAGEN database. Second, we will use a translational
approach employing an animal model of early life adversity. We
will assess whether (i) mice subjected to early life adversity display
depressive-like behaviors at adolescence; (ii) the expression of the
constructed hippocampal RRI gene-set is altered in peripheral
blood in these mice; (iii) transcript levels correlate with the
severity of depression-related behavioral scores in adolescent
mice. The advantage of this combined approach is that we
use transcriptional profiling, which measures the expression

of genes and is sensitive to both genotype and environment,
to gain insight toward the (patho)physiological link between
inflammatory pathways, childhood trauma, and depression
symptoms in adolescence.

MATERIALS AND METHODS

Participants
Participants’ datasets were drawn from the IMAGEN project, a
European multi-center collaboration combining genetic, neuro-
imaging and neuropsychological data from 2223 adolescents at
baseline (BL; 14 years old). Participants were followed up 2 years
(follow-up 1; FU1) and 4 years later (FU2). An initial sample
of 1563 14-year-old adolescents was defined, for which genetic
information, T1-weighted MRI images passing the different
quality control procedures and the multiple necessary variables
were available. In order to perform correlational analyses with
psychometric measurements, subgroups of the initial sample
were constructed with participants for whom the necessary
psychometric data were available. Recruitment procedures have
been previously described (Schumann et al., 2010). Written
informed consent was obtained from all participants and
their legal guardians and verbal assent was obtained from
the adolescents.

Neuro-Imaging Data
T1-Weighted MRI
High-resolution T1-weighted anatomical MR images were
obtained by means of three Tesla scanners (Philips, Siemens,
and General Electric), using a standardized 3D T1-weighted
magnetization prepared rapid acquisition gradient echo
(MPRAGE) sequence based on the ADNI protocol.1 The full
details of the MRI acquisition protocols and quality checks
have been described previously (Schumann et al., 2010).
Image preprocessing was performed with Statistical Parametric
Mapping 12 software (SPM12) and its toolbox extension
Computational Anatomy Toolbox 12 software (CAT12). In
summary, T1-weighted images were segmented and normalized
using customized tissue probability maps. Then, the normalized,
segmented, and modulated gray matter (GM) and white matter
(WM) images were smoothed using a 8-mm full-width at half-
maximum Gaussian kernel. Total GM, WM, and cerebrospinal
fluid (CSF) volumes were computed for each participant. Total
intracranial volume (TIV) was defined as the sum of GM, WM,
and CSF volumes. Correct segmentation by CAT12 was verified
through visual evaluation of the outliers determined by the
automated quality control step “Check Sample Homogeneity”
available in CAT12.

Extraction of Regional Gray Matter Volumes
The matlab-script “get_totals.m”2 was used to extract the
hippocampal and mPFC GM volumes from the baseline GM-
segmented T1 MRI images. In order to do so, two masks were

1http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition/
2http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
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designed (see Supplementary Figure 1) using WFU Pickatlas
software (a SPM12 toolbox extension): a bilateral hippocampal
mask, available in Pickatlas, and a mPFC mask, composed of the
Brodmann areas (BA) 10, 11, 12, 14, 24, 25, 32, and 33. Here
the medial prefrontal cortex was defined in its widest sense. For
instance, BA11 was added because it pertains to the orbito-frontal
cortex in its most medial part; BA10 pertains to the anterior
prefrontal pole but it also includes a medial part.

Genetic Data
SNP Genotyping
The DNA purification and genotyping procedures implemented
in the IMAGEN study have been previously described
(Desrivières et al., 2015). Population homogeneity was verified
with the Structure software using HapMap populations as
reference groups (Pritchard et al., 2000). Further correction for
population stratification through principal component analysis
was deemed unnecessary. After the quality control measures,
genotypic data for a total of 466 125 SNPs were considered. The
software PLINK was used to extract the SNP genotypes.

Construction of RRI-Scores
Based on an extensive literature screening, using the keywords
“chronic,” “neuroinflammation,” and “review” in PubMed, genes
encoding direct and indirect contributors to neuroinflammation
were characterized. To this end, every gene (or protein) that was
found to be related to neuroinflammation according to at least
three reviews was added to the list. Albeit not systematic, we did
consider this procedure to be appropriate for this exploratory
study. Including more genes by loosening the constraints might
be worth exploring in future research, but will not necessarily lead
to RRIs with higher predictive power. The SNPs in and around
(±5 kb) the listed immune-related genes were obtained by means
of the UCSC Genome Browser3 and only those genotyped in
the IMAGEN database were selected, a total of 674 SNPs. The
methodology used in this study to construct the two RRIs (one
associated with hippocampal GM volume, the other with mPFC
GM volume) was based on the recent guide put forward by Choi
et al. (2020). The effect of every SNP on either the hippocampal
or the mPFC GM volume was assessed by performing linear
regression analyses in R, using data from the initial sample and
the standard lm function in R. The dependent variable was the
BL GM volume of either the hippocampus or the mPFC, the
independent variable was the major allele count for the SNP of
interest (0= homozygous for the minor allele, 1= heterozygous,
2 = homozygous for the major allele). The regression was
controlled for the covariates sex, Puberty Developmental Scale
(PDS) score as a proxy of age, TIV and scanner type. Next, the
SNPs that correlated (p < 0.1 without correction for multiple
comparisons) with the hippocampal or mPFC GM volume were
selected. In order to control for linkage disequilibrium (LD) and
avoid redundancy in the SNPs included in the score, a manual
procedure analogous to SNP pruning was carried out. More
specifically, the online application LDmatrix developed by the

3https://genome.ucsc.edu

National Institute of Health4 was used to study the LD between
the SNPs. Groups of SNPs that were found in high LD (r2 > 0.5)
were replaced by the most significantly correlated SNP of that
group as representative, eliminating the other SNP(s) of that
group. Lastly, for every participant, a hippocampal RRI (HRRI)
and mPFC RRI (MRRI) were calculated based on the participant’s
genotype for the group of independent SNPs that were correlated
with the hippocampal and mPFC GM volume, respectively. More
precisely, the score was defined by the sum of minor alleles for
the included SNPs, weighted by the effect size of those alleles
individually. A normalization of the HRRI and MRRI values was
performed in order to obtain two scores ranging from 0 to 10 that
could easily be compared and combined.

Construction of Control Scores
A collection of 674 SNPs available in the IMAGEN database was
randomly selected. Using an identical methodology as described
above, a control score explaining hippocampal GM volume and a
control score explaining mPFC GM volume were designed using
these 674 random SNPs.

Questionnaire Data
Questionnaires
Five questionnaire measurements were extracted from the
IMAGEN database. First, the algorithmically calculated scores
(ranging from 0 to 5) representing the probability of depression
according to the DSM-IV (referred to as DepBand) were obtained
for participants at FU2 through the Development and Well-
Being Assessment (DAWBA), a self-administered diagnostic
questionnaire.5 Second, the Community Assessment Psychic
Experiences-42 (CAPE-42) questionnaire was used to obtain
three scores evaluating the presence of depressive symptoms
(referred to as the Depressive Dimension Score; DDS) as well as
psychotic experiences, both positive (Positive Dimension Score;
PDS) and negative (Negative Dimension Score; NDS) at FU2.
Third, the self-reported Strengths and Difficulties Questionnaire
(SDQ) at FU2 was used to construct two scores representing
externalizing and internalizing behaviors; the Externalizing
Score (ES) by summing the Conduct Problems Score and
Hyperactivity Score, the Internalizing Score (IS) by summing
the Emotional Symptoms Score and the Peer Problems Score.
Fourth, a score representing childhood maltreatment (CM)
was constructed based on information from the Childhood
Trauma Questionnaire (CTQ). This retrospective recall-based
questionnaire was administered to the participants at BL and, as
described in the manual, produces a score (ranging from 0 to
4) representing the endured stress with regards to six categories.
Participants were subsequently categorized in five groups based
on the highest score in the six subscales. Ultimately, the three
highest groups were merged, resulting in a CM score ranging
from 0 to 2. Fifth, the Alcohol Use Disorders Identification
Test (AUDIT) Score at FU2 was extracted from the database in
order to be included as a covariate in linear regression analyses
modeling FU2 GM volumes.

4https://ldlink.nci.nih.gov/?tab=ldmatrix
5http://www.dawba.info
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Correlational Analyses
The above-mentioned psychometric measurements (DepBand,
DDS, PDS, NDS, ES, and IS) were modeled separately in function
of the HRRI, the MRRI and the sum of both scores (HMRRI),
as well as the control scores. These regression analyses were
performed in R. Since the dependent variables DepBand, ES
and IS displayed probability distributions similar to a Poisson
distribution, Poisson regression (the log-linear type of the
generalized linear model) was opted for. The dependent variables
DDS, PDS, and NDS were found normally distributed. However,
a log-transformation of the dependent variable was implemented
in order to correct for the positive skewness. All regression
analyses were controlled for the covariates gender and CM.
Also, the interaction between CM and the score was evaluated.
P-values were corrected for multiple comparisons through the
Benjamini-Hochberg false discovery rate (FDR) procedure, using
the p.adjust function in R.

Animals
All experiments on mice were carried out according to
policies on the care and use of laboratory animals of
European Community legislation 2010/63/EU. The local Ethics
Committee (Comité d’éthique en expérimentation animale
Charles Darwin N◦5) approved the protocols used in this study
(protocol number 01486).

The mice were kept under standard conditions at 22 ± 1◦C,
and a 12-h light-dark cycle with food and water available
ad libitum.

Maternal Separation/Maternal Stress
Protocol
Pregnant dams (BALB/c Jico) were purchased from Centre
d’Elevage Janvier, (Le Genest St Isle, France) to arrive in our
facility 5 days before expected delivery. Dams and their respective
litters were divided into two groups. The first group (MS,
Maternaly separated; n = 3 dams) was subjected to maternal
separation/maternal stress procedure; the second group (NS, No
Separation; n= 2 dams) of dams and respective litters was kept in
standard housing conditions as controls.

The maternal separation/maternal stress protocol was adapted
from Franklin et al. (2010). The protocol combined (i) physical
separation of the pups from the mother and among them; (ii)
a short maternal stress at the end of the separation period; (iii)
unpredictability regarding the timing of the separation and the
maternal stressors.

For maternal separation the pups were placed in separate clean
compartments inside a temperature- and humidity-controlled
terrarium, to avoid any physical distress of the pups; the mother
was placed in a clean novel cage with bedding, food, and water.
Maternal separation lasted for 3 h and was applied once daily
from post-natal day 1 (P1) to P14; the timing was unpredictable.
Maternal stress was applied to the dam at the end of the 3 h
separation period and consisted of one of the following: 20 min
contention in a plastic perforated tube; 10 min forced swimming
stress; 10 min tail-suspension stress. Stressors were alternated
pseudorandomly. Both MS and NS groups were left undisturbed

between P14 and P21 (weaning). At weaning the sex of the pups
was determined (for the present cohort: 6 male and 17 female)
and they were subsequently assigned to social groups of 3–4 mice
per cage, composed of animals of same sex, and subjected to the
same protocol (MS or NS), but from more than one dams to avoid
litter effect. The sex ratio per group was, for MS: 4M/9F; and for
NS: 3M/7F. A Fisher’s exact test applied to these sex ratios is not
statistically significant (p > 0.999).

Behavioral Characterization of the Pups
at Late Adolescence
We evaluated behaviors associated with depression (anhedonia,
anxiety) in the separated (n = 13) and non-separated (n = 10)
pups at late adolescence (P52–59). Behavioral dimensions were
assessed with the Sucrose preference (anhedonia; P52) and Dark-
light tests (anxiety; P59).

Sucrose Preference
For the sucrose preference test mice were first habituated to
drink from two graduated pipettes one filled with water, and
the other with sucrose solution for 3 days, the side of the
sucrose pipette being alternated each day. On day 4 and after
an overnight (15 h) deprivation of water, the two pipettes were
presented again; one was filled with water and the other with
4% sucrose. The water and sucrose solution consumed over
a 3 h-period, were measured. The sucrose preference index
is defined as (sucrose consumed)/(sucrose consumed + water
consumed)× 100 (percentage index).

Dark-Light
The apparatus consisted of one box divided in two
compartments, an illuminated one (30 × 20 × 20 cm),
which is open, and a dark one (15 × 20 × 20 cm), which is
covered with a lid. A small aperture (width of 5.5 cm and height
of 7 cm) allows the mouse to freely move between the dark
compartment and the illuminated one. At the beginning of the
experiment, the mouse was placed in the illuminated box, facing
the aperture. Time spent in the lit box was measured during
a 10 min period.

Next, we performed a Z-normalization. For this an individual
z-score was calculated for each test and for each animal as follows:
z-score = [(individual data for observed parameter) - (mean of
control group)]/(standard deviation of control group). For both
sucrose preference and dark/light z-scores were multiplied by
−1, as decreased sucrose preference and decreased time in lit
compartment measure depressive/anxiety-like behaviors. For the
computation of means and standard deviation of control groups,
control groups were defined as NS mice; note that for control
groups the mean of z-score by behavioral dimension is equal to
zero. Subsequently, a global “depression-index” for each animal
was calculated by averaging the z-scores of the two individual
tests as previously described (Apazoglou et al., 2018).

Blood Collection
At the end of the behavioral evaluations (P60), 0.25 ml of
blood was collected from the submandibular vein and stabilized
with 1.3 ml RNAlater R© solution (Life Technologies, Ambion,
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Austin, TX). Mice were euthanized several months later by
pentobarbital injection.

RNA Isolation
Total RNAs were purified from the blood using the Mouse
RiboPure-Blood RNA isolation kit (Invitrogen), according to
manufacturer’s recommendations. After washings, total RNAs
were eluted with 0.1 mM EDTA and were subsequently submitted
to DNase treatment (DNA-freeTM kit, Life Technologies,
Ambion, Austin, TX). RNA concentration was determined using
a nanodrop ND-1000 spectrophotometer (Thermo Scientific,
Waltham, MA). Three samples (one female MS/two male NS)
did not provide enough quantities and qualities and were further
excluded from the gene expression analysis.

Candidate mRNA Expression
Quantification
850 ng of total RNA was reverse transcribed using the High-
Capacity cDNA Reverse Transcription kit (Life Technologies,
Applied Biosystems, Foster City, CA). 800 ng of the resulting
cDNA were combined with a TaqMan R© Fast advanced Master
Mix (Thermo Fisher Scientific) and real-time PCR reactions were
simultaneously run in triplicate in a thermocycler under the
following conditions: 2 min at 50◦C, 10 min at 92◦C, 45 cycles of
1 s at 95◦C, and 20 s at 60◦C, in custom array microfluidic cards
(Applied Biosystems, Pleasanton, CA) using a QuantStudioTM

7 system and data collected using QuantStudioTM Real-Time
PCR Software v1.1 (Applied Biosystems). For each of the 16
candidate genes tested (related to the SNPs included in the
HGPS), primer-probe sets were selected using the web portal
of the manufacturer (Applied Biosystems, see Supplementary
Table 5). In addition, Rab5a was universally used as a reference
gene (Hervé et al., 2017). Raw Ct values were obtained with
manual baseline settings on the ThermoFisher cloud RQ software
(Applied Biosystems), and then the relative expression level
of each mRNA was quantified by using the 2−11Ct method
(Livak and Schmittgen, 2001). In this method, each candidate
gene is quantified relative to the expression of Rab5a and each
amplification is also compared to a calibrator sample (the mean
of the samples from the NS mice).

Statistics
Behavioral Evaluation
The z-scores for anhedonia, dark light, and the global depression-
like index were analyzed separately. For each parameter,
the comparison of two independent groups (MS vs. NS)
involved Student’s t-test that were performed using the
STATISTICA software. The results are expressed as mean± SEM
(standard error).

Gene Expression
For gene expression comparisons, after observing non-
homogeneous variances for each candidate gene in each
subgroup (through the [R] function levene_test) and absence of
normality of residuals (through the [R] function shapiro_test)
of a parametric model (through the [R] function lm), a non-
parametric (by permutation) equivalent of a two-way factorial

ANOVA was performed through the [R] function aovp in the
lmPerm library. When ANOVA effects were significant, multiple
group comparisons for each gene were performed through the
[R] function pairwise.perm.t.test in the RVAideMemoire library
to provide FDR p-value adjustment.

Behavior and Gene Expression Correlations
Correlograms, allowing visualization of behavior and gene
expression data into correlation matrices were implemented
through the [R] function corrplot in the corrplot library and
variables were ordered according to first principal components.
Linear regressions with 95% confidence intervals were plotted
through the [R] functions ggplot, geom_point, and geom_smooth
(with “lm” method) in the ggplot2 library.

RESULTS

Selection of Genes and SNPs
Supplementary Table 1 lists the 90 immune-related genes
selected for this study and classifies them in 6 categories:
“Cytokines and Cytokine Receptors” (43 genes), “Oxidative
Stress Effectors” (4), “Monocytosis and Granulopoiesis” (14),
“Inflammatory Signaling Pathway” (21), “Kynurenine Pathway”
(5), and “Phospholipases” (3). For these 90 genes, 674 related
common SNPs were found genotyped in the IMAGEN database.

The Single Effects of Immune-Related
SNPs on Brain Structure
In our initial sample of 1563 14-year-old participants, the mean
bilateral hippocampal GM volume was 1.20 ± 0.109 ml and the
mean mPFC GM volume was 30.1 ± 3.42 ml. Other volumetric
data from the 14-year-olds (BL) and 18-year-olds (FU2) can be
found in Supplementary Table 2. Sex, PDS, TIV and scanner
type were all found to be significantly reacted with GM volume
(p < 0.001), regardless of the region. The individual effects of the
selected 674 SNPs on BL hippocampal and mPFC GM volume
were assessed through linear regression analyses, controlled for
sex, PDS, TIV, and scanner type. No correlation surpassed the
significance threshold of p < 0.05 after Bonferroni correction for
multiple comparisons.

Construction of the RRIs
As described in the section “Materials and Methods,” we
constructed two scores, one explaining the hippocampal GM
volume at BL (HRRI), the other explaining the mPFC GM volume
at BL (MRRI), using only immune-related SNPs. We found 26
“independent” SNPs that were considerably correlated with the
hippocampal volume and thus incorporated in the HRRI; 29
SNPs were combined in the MRRI (Supplementary Tables 3, 4).

Correlation of the RRIs With
Psychometric Data
The first psychometric measurement of interest was the
DepBand, representing depression probability at FU2 (Table 1).
Controlling for the covariates sex and CM, DepBand, could
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TABLE 1 | Correlations between depression probability (DAWBA score) at age 18 and the genetic scores.

Independent variable χ2 (df) B z p p (corr)

DepBand at FU2 HRRI 1192 (857) 0.0207 0.770 0.441 0.721

MRRI 1185 (857) 0.0764 2.811 0.00494 0.0296*

HMRRI 1186 (857) 0.0477 2.518 0.0119 0.0536

CM:HRRI 1180 (856) 0.122 3.57 0.000364 0.00327*

CM:MRRI 1184 (856) 0.0271 0.735 0.463 0.556

CM:HMRRI 1179 (856) 0.0679 2.80 0.00516 0.0310*

The DepBand score (DAWBA questionnaire) obtained at FU2 was correlated with the three RRIs (ROI-Related-Immune-gene-score) as well as the three interactions
between the scores and childhood maltreatment (CM) by means of a Poisson regression (N = 861).
χ2 (df) = residual deviance (degrees of freedom), used for Chi-Squared goodness-of-fit test; B = unstandardized regression coefficient.
* p < 0.05 (FDR-corrected).

FIGURE 1 | Correlations between RRIs (determined from their link with GM regional volumes at age 14 as described in the text) and psychometric measurements at
age 18. MPGS = MRRI, HPGS = HRRI, HMPGS = HMRRI. The colored lines are proposed regression lines for the different levels of childhood maltreatment (CM),
after controlling for CM and sex. Red: CM = 0; green: CM = 1; blue: CM = 2. The blue and green line overlap in the bottom left graph.

not be correlated with the HRRI [p(corr) = 0.721]. The MRRI,
however, positively and significantly covaried with DepBand
[p(corr) = 0.0296; Figure 1]. Since both scores were not found
redundant (p = 0.436), we also created the HMRRI by adding

up the HRRI and MRRI. The HMRRI positively covaried with
DepBand [p(corr)= 0.0536] but did not survive FDR-correction.
Next, the interactions between CM and the scores in relation
to DepBand were evaluated. The number of participants with
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a CM score of 0 was 588, 283 had a score of 1, and 108
had a score of 2. A positive and significant interaction was
observed between the HRRI and childhood maltreatment score
CM [p(corr)= 0.00327]. This suggests that, as the level of endured
trauma increases, the association between MRRI and presence of
depressive symptoms at age 18 increases as well. It is important
to note that all goodness-of-fit Chi-Squared tests for the Poisson
regressions were found significant, suggesting that the data do not
fit the model perfectly well. Alternative models were considered
but not found better.

The second psychometric tool of interest was the CAPE-42,
which consists out of three subscores (Table 2). A positive and
significant correlation was observed between the log-transformed
Positive Dimension Score, representing the amount of positive
psychotic symptoms at FU2, and the HMRRI [p(corr) = 0.0296;
Figure 1]. As no significant interactions were found between CM
and the RRIs in explaining one of the three CAPE-42 subscores,
these results are not shown in Table 2.

Lastly, the Externalizing Score (ES) and Internalizing Score
(IS) at FU2 were modeled in function of the scores, again using
Poisson regression (Table 3). A significant inverse correlation
was observed between the ES and the HRRI [p(corr) = 0.0294;
Figure 1]. We also found a significant positive interaction
between HRRI and CM in explaining the ES [p(corr)= 0.000857].

Correlation of the Control Scores With
Psychometric Data
No significant correlations were found between the control
scores and the different psychiatric symptom measurements. In
addition, we did not observe any significant interactions between
childhood maltreatment and the control scores in function of the
psychiatric symptoms.

Behavioral Effects of Early Life Stress in
Adolescent Animals
Supplementary Figures 2, 3 as well as Figure 2 show that
early life stress profoundly affects anhedonia and anxiety at late
adolescence in mice. At late adolescence, mice subjected to early
life stress between P1 and P14 show increased anhedonia and

anxiety as compared to NS mice (raw data are presented in
Supplementary Figures 2, 3 and z-score in Figure 2). The global
depression-index (Figure 2) is also significantly elevated in MS
mice indicating that early life adversity (P1–P14) induces long-
lasting negative affects still present in late adolescence (P52–P59).

Effect of Early Life Stress on Candidate
Gene Expression in Adolescent Animals
We next sought to investigate the effect of early life stress on
the transcriptional expression of HRRI set of genes. Among the
17 candidate genes, 3 were not analyzed further (IKBKG, IL12B,
IL13) because of low quality results. The remaining 14 candidate
genes were well expressed in mouse blood and subsequently
constituted the focus of our analysis as “mouse HRRI.” Figure 3
shows that maternal separation has a significant effect on the
global transcript level of mouse HRRI (p< 2.0E-16). Individually,
post-hoc analysis demonstrated significant dysregulation for
Ikbkb, Il10ra, Il10rb, Il18, Pla2g6, and Ptgs1. Among those Ptgs1
was increased while all the others were decreased in MS mice.

Correlations Between Gene Expression
and Behavior in Adolescent Mice
Figure 4 shows that among the 14 mouse HRRI genes profiled,
6 were correlated with the global depression-index (a composite
score of anhedonia and anxiety subscores). We noted that all
the genes that correlated with behavior, also highly correlated
with each other. Figure 5 illustrates the tight link between one
of the most significant altered genes, Il10rb, and depressive-like
behavior. Regression analyses for behavior and Ikbkb, Il10rb, Il18,
Pla2g6, and Ptgs1 are shown in Supplementary Figure 4.

DISCUSSION

In this translational study, we explored the link between
inflammation-related genes and brain structure, along with
early life adversity and emergence of psychiatric symptoms. We
investigated imaging genetics in a large database of community
adolescents. We formed scores aggregating inflammation genes
related with hippocampal or mPFC volumes at age 14. We found

TABLE 2 | Correlations between the clinical dimensions (CAPE-42 subscores) and the genetic scores.

Independent variable R2 B t p p (corr)

Positive Dimension (log) HRRI 0.0449 0.0115 2.01 0.0444 0.114

MRRI 0.0466 0.0134 2.38 0.0175 0.0630

HMRRI 0.0506 0.0124 3.11 0.00192 0.0296*

Negative Dimension (log) HRRI 0.0431 −0.00887 −1.06 0.289 0.520

MRRI 0.0420 0.0087 0.226 0.821 0.921

HMRRI 0.0423 −0.00342 −0.583 0.560 0.840

Depressive Dimension (log) HRRI 0.091 0.000741 0.091 0.928 0.928

MRRI 0.0933 0.0124 1.54 0.123 0.277

HMRRI 0.0952 0.00667 1.161 0.246 0.492

The three subscores of the CAPE-42 questionnaire obtained at FU2 were correlated with the three RRIs after log-transformation of the dependent variables (N = 930).
R2
= coefficient of determination; B = unstandardized regression coefficient.

* p < 0.05 (FDR-corrected).
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TABLE 3 | Correlations between Externalizing and Internalizing Score (SDQ) at age 18 and the genetic scores.

Independent variable χ2 (df) B z p p (corr)

Externalizing at FU2 HRRI 1563 (951) −0.0275 −2.90 0.00368 0.0294*

MRRI 1572 (951) −0.00262 −0.282 0.778 0.921

HMRRI 1567 (951) −0.0146 −2.22 0.0263 0.079

CM:HRRI 1547 (950) 0.0538 4.07 4.76 × 10−5 0.000857*

CM:MRRI 1572 (950) −0.00832 −0.610 0.542 0.588

CM:HMRRI 1561 (950) 0.0228 2.44 0.01473 0.0529

Internalizing at FU2 HRRI 1824 (951) −0.00465 −0.471 0.637 0.844

MRRI 1825 (951) −0.00158 −0.164 0.870 0.921

HMRRI 1824 (951) −0.00305 −0.445 0.657 0.845

CM:HRRI 1819 (950) 0.0298 2.21 0.0269 0.0807

CM:MRRI 1824 (950) −0.00118 −0.0850 0.932 0.932

CM:HMRRI 1822 (950) 0.0143 1.51 0.132 0.237

The Externalizing and Internalizing Score (SDQ) obtained at FU2 were correlated with the three RRIs as well as the three interactions between the RRIs and childhood
maltreatment (CM) by means of a Poisson regression (N = 955).
χ2 (df) = residual deviance (degrees of freedom), used for Chi-Squared goodness-of-fit test; B = unstandardized regression coefficient.
* p < 0.05 (FDR-corrected).

that these RRIs related with psychiatric symptoms at age 18.
Also, we found a set of inflammation genes that were related to
gray matter volume of hippocampal regions, and to childhood
maltreatment score in these adolescents. Expression levels of
inflammation genes associated with psychiatric symptoms (genes
from HRRI) were subsequently examined in a murine model of
early life adversity. Interestingly, expression of these genes was
significantly altered after maternal separation in mice.

Excessive activation of the immune system as well as
abnormalities in brain structure have been associated with

FIGURE 2 | Early life stress induces depressive-like behaviors in adolescent
mice. Newborn mice were either subjected to a maternal separation paradigm
between P1 (post-natal day 1) and P14 (MS, black dots) or were left
undisturbed (controls, NS, white dots). NS and MS mice were evaluated for
anhedonia and anxiety (measured in the sucrose preference and the dark-light
tests, respectively) in late adolescence, between P52 and P59. Anhedonia
and anxiety scores were z-transformed and a composite depression-index
(global z-score) was averaged. Two-tailed Student’s t-test shows increased
levels of anhedonia (df = 21; t = 4.155) and anxiety (df = 21; t = 2.202) as
well as increased depression index (df = 21, t = 4.797) in MS mice as
compared to NS. * p < 0.05; ***p < 0.0001.

depression. Furthermore, depression as well as its associated
structural abnormalities are relatively heritable. Meta-analyses
have found a heritability of 37% for depression (Sullivan et al.,
2000) and a heritability between 40 and 70% for hippocampal
volume (Gu and Kanai, 2014). Yet, characterization of the
contributing individual genetic factors has proven to be very
difficult. In a large genome wide association (GWA) study that
investigated how common genetic variants affect the structure
of subcortical regions, only a couple of genetic loci could be
significantly correlated (Hibar et al., 2015). Similarly, despite
considerable success within other illnesses such as diabetes
and rheumatoid arthritis, GWA analyses of MDD have overall
failed to produce results at the SNP level (Bogdan et al.,
2017). Explanations for this could be found in the phenotypic
heterogeneity, the lack of very large sample sizes and the
complex functional architecture of the genetic polymorphisms.
This last issue has been addressed by exploring gene-environment
interactions and applying polygenic approaches. For example, in
a recent study, structural abnormalities in schizophrenia were
explored by creating a polygenic risk score (PRS) based on the
weighted effects of SNPs found associated with schizophrenia
in a prior GWA study (Alnæs et al., 2019). Also, PRSs for
bipolar disorder and PRSs for schizophrenia both were found
to have certain predictive power with regards to depression,
corroborating prior evidence that these disorders share some
common genetic overlap (Musliner et al., 2019).

Since psychiatric disorders as well as their associated structural
abnormalities seem to involve a genetic contribution, we
hypothesized the existence of an immune-related genetic overlap
between GM structural reductions and psychiatric symptoms.
This was explored by constructing two RRIs based solely on SNPs
related to inflammatory genes: one predicting hippocampal GM
volume in 14-year-olds (HRRI), the other predicting mPFC GM
volume (MRRI). We found that both scores were correlated with
the presence of different symptoms later in adolescence.

We observed that the RRIs describing the genetic variation
in less than 30 inflammatory SNPs had small yet significant
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FIGURE 3 | Transcriptional expression of HRRI candidate genes in adolescent mice. Total RNA from blood of NS and MS mice at P60 was profiled by RT-qPCR for
14 HRRI candidate gene transcripts. The expression of each transcript was quantified relative to the expression of a reference gene, Rab5a, whereas the mean of
NS mice was used as a calibrator. Statistical analysis was realized using a permutation-based non-parametric factorial ANOVA. Yellow and blue dashed lines indicate
the mean values of all NS and MS, respectively, and highlight a significant “gene” effect between NS and MS animals (p = 0.00295). Significant multigroup
comparisons for each gene were performed by pairwise permutation t-tests and are as follows, Ptgs1 (p = 0.022), Ikbkb (p = 0.028), Pla2g6 (p = 0.022), Il10ra
(p = 0.008), Il10rb (p = 0.002), Il18 (p = 0.032). * p < 0.05; **p < 0.01.

predictive power regarding certain psychometric measurements
obtained at age 18. As expected, effect sizes were consistently
relatively small. The MRRI was found correlated with the
presence of depressive symptoms. Secondly, both HRRI and
MRRI were correlated with positive psychotic symptoms.
Schizophrenia, the main disorder linked with these symptoms,
has been consistently associated with neuroanatomical
abnormalities such as reductions in GM volume (Weinberger,
1987; Keshavan et al., 2005; Bakhshi and Chance, 2015). Thirdly,
we found a negative relationship between the HRRI and
externalizing symptoms at age 18. This seems unexpected at
first sight. A recent review addressing neuro-imaging findings
in two of the major externalizing disorders, conduct disorder
and oppositional defiant disorder, did not describe any studies
reporting increases of hippocampal GM volume (Noordermeer
et al., 2016). However, functional deficiencies in the amygdala,
common in externalizing disorders, could be explained by
abnormalities in the neighboring hippocampal complex (Yang
and Wang, 2017). Lastly, we observed positive interactions
between the scores and childhood maltreatment. This means
that the probability of developing certain psychiatric symptoms
due to a history of childhood maltreatment will be larger in the
context of a specific genetic predisposition, in this case a high
RRI. Gene-environment interactions in psychiatric diseases have
been described repeatedly. For example, a polymorphism in the
promoter region of the serotonin transporter gene was reported
to moderate the influence of stressful life events on depression
(Caspi et al., 2003).

The ability of the RRIs to predict to a limited extent the
presence of psychiatric symptoms suggests the existence of
the proposed genetic overlap. Indeed, the same variation in
immune-related genes was found to explain both GM volume
reductions in the hippocampus or mPFC and the degree of
certain psychiatric symptoms. However, it could be argued
that the RRIs predictive ability is solely due to the fact that
the RRIs are constructed in such a way that they represent
a portion of the GM volume variance. As the link between
GM volumes and psychiatric illnesses is already established,
the ability of an alternative score representing those structural
abnormalities to predict psychiatric symptoms would not be
surprising. In order to investigate this, we performed a control
study by constructing two scores on the basis of random
SNPs. These control scores did not significantly correlate with
any psychometric measurement, nor did they display any
interactions with childhood maltreatment. This higher predictive
power of the non-random RRIs points at the involvement
of the immune system. We thus not only corroborate prior
evidence for the link between structural GM reductions and
psychiatric illnesses, but also provide pioneering evidence
strongly suggesting an immune-related genetic overlap between
regional GM volumes and psychiatric symptoms, and define a
novel combination of genes involved in this link. In order to
further investigate this suggested causality, it would be interesting
to perform a longitudinal study in which brain structural changes
during adolescence are associated with the development of
psychiatric symptoms.
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FIGURE 4 | Correlation between transcriptional expression of HRRI candidate genes and depressive-like behavior in adolescent mice. Correlation matrix graph,
correlogram, highlighting correlation between qualitative (Z_Behavior, a depression-index reflecting a composite score of anhedonia and anxiety subscores) and
quantitative (transcriptional relative level of HRRI candidate genes obtained by RT-qPCR from blood samples) variables in adolescent mice. The variables are ordered
according to first principal components. Positive correlations are displayed in red and negative correlations in blue color. The intensity of the color and the size of the
squares are proportional to the Pearson correlation coefficients. Only significant correlations are indicated by a colored square.

To further investigate the functional importance of the novel
gene-set that we defined we employed a translational approach
linking genotype and gene expression analyses. Indeed, the
phenotype during adolescence is likely to be modulated by both
genotype and environment, so that genotype analyses alone
probably cannot account for their interaction (Kent et al., 2012).
In contrast, transcriptional profiling that measures the expression
of genes is sensitive to both genotype and environment and
therefore may offer insights in pathophysiology. We focused on
blood transcriptomics, since blood signature demonstrated that
it could represent a surrogate for brain gene expression and
may predict stress-induced behaviors (Sullivan et al., 2006; van
Heerden et al., 2009; Rollins et al., 2010; Tylee et al., 2013; Witt
et al., 2013; Luykx et al., 2016; Hervé et al., 2017).

We implemented an animal model of early life adversity and
measured depression-like behaviors in adolescence. Based on the
above reported effects in human subjects we hypothesized that
early life adversity would affect not only behavior but also the
expression of our set of genes, and that expression would correlate
with symptoms of negative affects at adolescence.

Mice were subjected to a protocol of early life adversity
(maternal separation) at an early post-natal age (P1–P15).
We evaluated behaviors associated with depression (anhedonia:
sucrose preference; anxiety: dark-light box) in MS and NS
mice at adolescence (P52–P59). We measured the expression
of our genes in whole blood samples collected at the same
time-point (P60). We specifically focused on the hippocampal

gene-set since the hippocampus is a region consistently
implicated in depression and depression-like phenotypes in
humans and mice (Vythilingam et al., 2002; Turecki et al., 2012;
Apazoglou et al., 2018).

Our results showed that mice subjected to early life adversity
displayed negative affects at adolescence (Figure 2). The
expression of our mouse HRRI gene-set was altered in mice
subjected to early life adversity (Figure 3), and transcript levels
inside this gene-set correlated with depression-related behavioral
score at adolescence (Figure 4).

Within the examined gene-set, Figure 3 shows a significant
decrease for Ikbkb, Il10ra, Il10rb, Il18, Pla2g6, and an increase for
Ptgs1 transcripts.

Figure 4 shows that among these genes, three (Ikbkb, Il10rb,
Pla2g6) were significantly correlated with the global depression-
index in MS mice. Notably the three also highly correlated
with each other.

Interestingly, Ikbkb, Il10rb, and Pla2g6, which were decreased
in MS mice are implicated in inflammatory homeostasis.
Ikbkb is a regulator of the canonical NF-Kappa-B pathway a
key-pathway in immunity/inflammation (Schmid and Birbach,
2008); Il10rb encodes for the anti-inflammatory cytokine IL10
(Shouval et al., 2014), and mice invalidated for IL10 show
increased depressive-like behaviors (Mesquita et al., 2008);
Pla2g6 encodes for the iPLA2β protein, which regulates an
overall anti-inflammatory response and whose dysregulation is
associated with neurogenerative disorders (Guo et al., 2018).
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FIGURE 5 | Link between Il10rb relative level of transcriptional expression and
depressive-like behavior. Linear regressions with 95% confidence intervals (in
gray) are plotted between the depression-index and the Il10rb transcriptional
relative level obtained by RT-qPCR from blood in MS (red circles) and NS
(green triangles) adolescent mice. The Pearson correlation coefficient and the
associated p-value are indicated.

The present findings suggest an inflammatory network of
genes that most likely is involved in “depression-associated”
neuroinflammatory adaptations in the periphery and CNS.
We propose that early stressors like adversity can trigger an
imbalance between anti-inflammatory and pro-inflammatory
transcripts that may be at the origin of psychiatric symptoms
in adolescence. These transcripts might provide both
clinical biomarkers and novel targets in understanding
and preventing individual developmental trajectories of
psychiatric vulnerability.
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