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ABSTRACT

The dark matter halo sparsity, i.e. the ratio between spherical halo masses enclosing two different overdensities, provides a
non-parametric proxy of the halo mass distribution that has been shown to be a sensitive probe of the cosmological imprint
encoded in the mass profile of haloes hosting galaxy clusters. Mass estimations at several overdensities would allow for multiple
sparsity measurements, which can potentially retrieve the entirety of the cosmological information imprinted on the halo profile.
Here, we investigate the impact of multiple sparsity measurements on the cosmological model parameter inference. For this
purpose, we analyse N-body halo catalogues from the Raygal and M2Csims simulations and evaluate the correlations among six
different sparsities from spherical overdensity halo masses at A = 200, 500, 1000, and 2500 (in units of the critical density).
Remarkably, sparsities associated to distinct halo mass shells are not highly correlated. This is not the case for sparsities obtained
using halo masses estimated from the Navarro-Frenk-White (NFW) best-fitting profile, which artificially correlates different
sparsities to order one. This implies that there is additional information in the mass profile beyond the NFW parametrization
and that it can be exploited with multiple sparsities. In particular, from a likelihood analysis of synthetic average sparsity data,
we show that cosmological parameter constraints significantly improve when increasing the number of sparsity combinations,
though the constraints saturate beyond four sparsity estimates. We forecast constraints for the CHEX-MATE cluster sample and
find that systematic mass bias errors mildly impact the parameter inference, though more studies are needed in this direction.

Key words: methods: numerical — galaxies: clusters: general —large-scale structure of Universe.

Beutler et al. 2017) or Lyman-« absorbing gas (Croft et al. 2016),

1 INTRODUCTION gravitational lensing (e.g. Birrer et al. 2020; Wong et al. 2020; Gatti

At the time of writing, a heavy focus within the field of precision
cosmology is set on constraining the parameters of the ACDM
cosmological model, named according to its two main constituents:
a cosmological constant A and Cold Dark Matter (CDM), while
also exploring possible extensions to this model by investigating
alternative scenarios of dark matter (see e.g. Boyarsky et al. 2019;
Niemeyer 2020; Green & Kavanagh 2021) and dark energy (see e.g.
Copeland, Sami & Tsujikawa 2006; Brax 2018).

To this effect, many probes have been devised and applied to a
range of observations such as cosmic microwave background (CMB)
experiments (e.g Fixsen et al. 1996; Komatsu et al. 2011; Planck
Collaboration VI 2020), big bang Nucleo-synthesis estimates (e.g.
Aver, Olive & Skillman 2015; Cooke, Pettini & Steidel 2018), large-
scale structure observations through measurements of the clustering
of matter measured with various probes, such as galaxies (see
e.g. Percival et al. 2001; Tegmark et al. 2004; Cole et al. 2005;
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etal.2021), measurements of the baryonic acoustic oscillation (BAO)
scale (e.g. de Sainte Agathe et al. 2019; de Mattia et al. 2021; DES
Collaboration 2022), and tests of the Hubble diagram from SN Ia
standard-candles (e.g. Anand et al. 2022; Riess et al. 2022) to cite
but a few examples.

In this regard, galaxy clusters have proven to be a useful asset.
These structures, the most massive gravitationally bound in the
Universe, exhibit multiple properties that can be used to test the
cosmological paradigm. As an example, cosmological constraints
have been inferred from measurements of their abundance (e.g.
Planck Collaboration XX 2014a, Planck Collaboration XXIV 2016b;
Pacaud et al. 2018; Bocquet et al. 2019; Lesci et al. 2022; To et al.
2021), their spatial clustering (Planck Collaboration XXI 2014b;
Marulli et al. 2021) or the fraction of gas contained inside their
potential wells (e.g. Ettori, Tozzi & Rosati 2003; Allen et al. 2008;
Ettori et al. 2009; Mantz et al. 2014, 2022).

The possibility of extracting cosmological information from esti-
mates of the mass profiles of galaxy clusters is another probes that,
however, remains relatively unexplored (see e.g. Ettori et al. 2010).
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Historically, this approach has been built upon the remarkable result
that density profiles of dark matter haloes from N-body simulation
are described to a good approximation by a two-parameter universal
function, the Navarro-Frenk-White profile (NFW; Navarro, Frenk &
White 1997). However, the difficulty of obtaining accurate estimates
of the concentration—mass relations from galaxy cluster observations
has so far been the main limitation to the use of cluster mass profiles
as cosmological proxy (see e.g. Mead et al. 2010; King & Mead
2011; Sereno et al. 2015).

In recent years, a novel approach in this direction has been
developed around the concept of halo sparsity, which is the ratio
of halo masses measured at radii enclosing different overdensities,
as a non-parametric proxy for the internal halo mass distribution.
In the seminal work of Balmes et al. (2014), it has been shown
that halo sparsity depends on the characteristics of the underling
cosmological model. Further investigation by Corasaniti, Giocoli &
Baldi (2020) has found that the average sparsity is also sensitive to
modified gravity scenarios and can therefore be used to constrain the
latter. Recently, cosmological constraints using measurements of the
average halo sparsity of galaxy cluster samples have yielded results
competitive with other widely used probes (Corasaniti et al. 2018;
Corasaniti, Sereno & Ettori 2021).

The average halo sparsity has been shown to possess a num-
ber of interesting features (see e.g. Corasaniti et al. 2018, 2021;
Corasaniti & Rasera 2019). On one hand, it provides a simple
link between measurements of the mass profile of an ensemble
of galaxy clusters and cosmological model predictions derived
from an integral relation, involving the halo mass function at the
overdensities of interest. On the other hand, being a mass-ratio, the
average sparsity is less impacted by the systematic errors known to
affect the measurements of galaxy cluster masses (see e.g. Nagai,
Vikhlinin & Kravtsov 2007; Meneghetti et al. 2010; Rasia et al.
2012; Velliscig et al. 2014; Sereno & Ettori 2015; Biffi et al.
2016). Furthermore, the properties that characterize the halo sparsity
are independent of the specific form of the halo density profile.
As such, the use of multiple sparsity measurements from non-
parametric mass estimates opens the way to retrieving cosmological
information encoded over the entire halo mass profile rather than
from a single determination at two particular overdensities. However,
because of the gravitational assembly processes shaping the mass
distribution of haloes, we can expect these different sparsities to be
correlated.

Here, we set to evaluate the minimum number of multiple average
sparsity estimates that sample the halo mass profile at different
overdensities while providing maximal constraints on a set of
cosmological parameters. For this purpose, we perform a thorough
analysis of average sparsities and their correlations using halo
catalogues from large-volume high-resolution N-body simulations.
Building upon this numerical study, we perform a Markov Chain
Monte Carlo likelihood analysis on synthetic data sets to investigate
the level of cosmological parameter constraints that can be inferred
from different combinations of average sparsity measurements under
different fiducial cosmologies and cluster mass measurement error
assumptions.

The paper is organized as follows. In Section 2, we introduce
the basic concepts, describe the N-body simulations, and present the
results of the analysis of numerical halo catalogues. In Section 3,
we describe the cosmological parameter inference from multiple
average sparsity measurements for two distinct synthetic data sets,
while in Section 4, we present a parameter forecast analysis for a
realistic galaxy cluster sample. Finally, in Section 5, we discuss the
conclusions.
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Figure 1. 2D illustration of the spherical mass profile of a halo as probed
by multiple sparsity estimates at overdensities A < Ay < Aj. Each sparsity
sa;,a; measures the fractional mass within the spherical shell comprised
between rp; and ra ; relative to the mass enclosed in the inner radius ra;-

2 COSMOLOGY WITH HALO SPARSITY

2.1 Definition and properties

Halo sparsity is defined as (Balmes et al. 2014):
My,

Aar 1
Ma, (€))

SApAy =
where Ma, and M,, are halo masses at radii ro, and ra,, which
enclose the overdensity A; and A,, respectively, with A} < A,
(with the overdensities in units of the critical p. or background p,
density). This ratio can also be interpreted as the ratio of the mass
AM), within the radial shell Ar = r,, — ra, and of the mass within
the inner radius ra,, i.€. 5o, A, = AM|2/Ma, + 1. Hence, the values
of sparsities at multiple overdensity pairs probe the fractional mass
profile of the halo. As an example, in Fig. 1, we show a graphic
illustration of the case of halo masses at overdensities A, A,, and A3,
which allow to estimate three sparsity combinations sSa; a,s Sa;,A3»
and s Ay A3-

Quite importantly, at any given redshift, the halo sparsity is largely
independent of the outer halo mass M,, (Balmes et al. 2014;
Corasaniti et al. 2018; Corasaniti & Rasera 2019); consequently,
for a given pair of overdensities, the ensemble average value can be
obtained by integrating the equality

dn dn dIn Mu,
= SALL Ay s
dM,s,  dM, dln My,

@)

1
where dn/dMy,, is the mass function at M, of the ensemble of
haloes with mass function dn/dM,, at M, (i.e. mass functions of
matched haloes), to obtain the average sparsity relation:

/ME;X M 0 My, = | >/<M1'A2>M2§X D inm
NMp, = (Sa;.n, ) nMa,.
M dMay, (say,0,)MAY dMy,

Ay
3)

Given the functional form of dn/dM,, and dn/dM,,, the above
equation can be solved numerically to obtain the value of the average
sparsity. Corasaniti et al. (2018) has shown that equation (3) provides
predictions of the average sparsity that are accurate to a few per cent
level for sy00,500 and sso0, 1000, thus providing the foundations to
perform cosmological parameter inference using average sparsity
measurements.

Notice that equation (3) is largely insensitive to the choice of
the integration limits. Indeed, since at the high-mass end the mass
function drops exponentially, the upper limit can be set to any
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arbitrary large number; while at the low-mass end, given that the halo
sparsity is nearly constant as a function of halo mass, the integral
can be set without loss of generality to the minimum halo mass of
the halo catalogues used for the calibration of the mass functions.
Hereafter, we will test the validity of equation (3) over a wider
range of overdensities than those originally investigated in Corasaniti
et al. (2018), which is a necessary step to infer cosmological
parameter constraints from multiple average sparsity determinations.

2.2 N-body simulations

We use halo catalogues from two distinct sets of N-body simula-
tions, characterized by different cosmological model parameters, but
approximately similar mass resolution and generated with the same
simulation code. This enables us to extend our investigation of the
average sparsity correlations to the dependence upon the underlying
cosmological model (around the ACDM model best fitting to the
CMB data).

2.2.1 RayGalGroupSims

The RayGalGroupSims ACDM simulation, or simply Raygal, con-
sists of a (2.6 Gpc h~!)* volume and sampled with 40963 par-
ticles (corresponding to a particle mass resolution m, = 1.88 x
10" Mg, 1~") realized with the adaptive mesh refinement (AMR)
N-body code RAMSES (Teyssier 2002). The cosmological model
parameters have been set consistently to the WMAP-7 year data
analysis of a flat ACDM model (Komatsu et al. 2011): 2, = 0.2573,
Q, = 0.04356, h = 0.72, ny, = 0.963, and og = 0.801. We refer
interested readers to Breton et al. (2019) and Rasera et al. (2021) for
a detailed description of the RayGalGroupSims suite. Full redshift
snapshots have been stored at z = 0.00, 0.50, 0.66, 1.00, 1.14, 1.50,
and 2.00.

2.2.2 M2Csims ACDM simulation

The M2Csims ACDM simulation suite consists of three (1 Gpc A~!)3
volume boxes with 20483 particles (corresponding to a particle mass
resolution m, = 1.02 x 1094~ M) run with the AMR N-body
code RAMSES (Teyssier 2002). The cosmological model parameters
are set to the Planck-2015 ACDM cosmology (Planck Collaboration
XIIT 2016a) with €, = 0.3156, @, = 0.0492, h = 0.6727, n, =
0.9645, and o3 = 0.831. We refer interested readers to Le Brun
et al. (2018) for a more detailed description of the suite (a complete
description will appear in Le Brun et al., in preparation). Note that the
suite also contains high-resolution zooms for more than 450 massive
galaxy clusters, which will not be used here as the most important
requirement is the number of galaxy clusters over the resolution
of their profiles. Full snapshots have been stored at z = 0.00, 0.125,
0.25,0.30, 0.50, 0.60, 0.75, 0.80, 1.00, 1.25, and 1.50. In the analyses
presented here, we use catalogues from only two of the M2Csims
simulation suite corresponding to a total comoving volume of 2 (Gpc
h~13, slightly smaller than that of the Raygal simulation.

2.3 N-body halo catalogues

Halo catalogues for both simulations have been generated with the
spherical overdensity (SO) algorithm (Lacey & Cole 1994) imple-
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mented in the parallel code pSOD.! The algorithm first evaluates the
particle density in each cell, then starts from the cell with maximum
density. In each candidate cell, the centre position is chosen to be
that of the particle with the greatest number of neighbouring particles
within a sphere of a given radius. Afterwards, the SO algorithm
computes the particle density in spheres of increasing radii around
that central particle until it reaches the overdensity threshold A.
Hereafter, we will always refer to overdensities given in units of the
critical density. We focus on haloes detected with an overdensity
threshold A = 200. For each halo in the catalogues, we estimate
masses at overdensities A = 200, 500, 750, 1000, 1500, 2000, and
2500, respectively. In order to be exempt of numerical resolution
artefacts, we further select haloes with Masgp. > 10'3 Mg 27!, This
also guarantees us that we consider haloes with masses Msoo. > 10"
Mg h~', thus corresponding to haloes hosting galaxy groups and
clusters.

Since we are interested in the application of multiple average
sparsity measurements to galaxy cluster observations, we limit our
analysis to halo catalogues in the redshift range 0 < z < 1.5. This
is because the detection of clusters at higher redshifts, as well
as the estimation of the cluster masses at the level of accuracy
required, seems currently unrealistic. Also, for consistency with
the conventions of the galaxy cluster community, we focus on halo
masses at overdensities A = 200, 500, 1000, and 2500, respectively.

2.4 Halo mass function calibration

We compute the halo mass function for each of the mass overdensity
definitions in the halo catalogues as:

dn N(Ma) 1

dinMx  AlnMs L3’
where N(M,) is the number of haloes in a logarithmic mass bin of
size AlnM = 0.3 centred at M, and L is the size of the simulation
box. We use the numerical estimates of the halo mass functions to
calibrate, at each redshift snapshot, the coefficients of the Sheth—
Tormen (ST; Sheth & Tormen 1999) formula fst as given by:

dn pu 1 do
dM, — Ma \ o dM,

“

) fst(o), (5)

where p,, is the cosmic matter density, o (M,) is the root-mean-
square fluctuation of the linear density field smoothed on a scale
enclosing the mass M4, and

8. [2a apnd?\ A _aad?
for(o) = Ay 2y /22 [H( A;) }e ©)
o s o2

where A, aa, and p, are calibration parameters and .. is the linearly
extrapolated spherical collapse threshold, which we compute using
the formula by Kitayama & Suto (1996).

It is worth noticing that the functional form of the ST parametriza-
tion is the base of all the numerically calibrated formula that aim
to predict the halo mass function for any given set of cosmological
parameters (see e.g. Tinker et al. 2008; Bocquet et al. 2016; Despali
et al. 2016; Castro et al. 2021). This is because such a form of
multiplicity function manifests a high level of universality. Here,
we have explicitly kept the dependence on linear spherical collapse
threshold §,., which as shown in Courtin et al. (2011), it allows to
better account for the cosmology dependence of the multiplicity

The parallelization scheme has been adopted from the code pFOF (Roy,
Bouillot & Rasera 2014).

MNRAS 516, 437452 (2022)
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Figure 2. Average halo sparsity estimates for different overdensity configurations as a function of redshift for the Raygal (left-hand panel) and M2Csims
(right-hand panel) halo catalogues. The data points in the plots correspond to the N-body estimates, while the various lines show the analytical predictions
from the average sparsity relation of equation (3) that has been solved using the ST-parametrized mass functions calibrated on the simulations. The relative
differences between the N-body and analytical results are shown in the bottom panels, where the shaded areas delimit the regions with less than 5 per cent
relative differences. Differences between the average sparsity values from the Raygal and M2Csims halo catalogues for the same overdensity pairs pertain to

the differences of the simulated cosmological models.

function. On the other hand, a key difference among the calibrated
multiplicity functions discussed in the literature concerns the redshift
parametrization of the ST parameters. Here, we follow the approach
of Despali et al. (2016) and parametrize the redshift dependence of
the ST coefficients in terms of an expansion in logarithmic powers
of the overdensity A relative to the virial overdensity at the redshift
of interest. The intent is to capture the redshift evolution of the halo
mass function at different overdensities A for the sample of haloes
detected at A = 200. In particular, we assume a quadratic expansion,
and we refer the reader to Appendix A for a detailed description of
the fitting procedure of the halo mass functions. None the less, we
would like to stress that our calibration substantially differs from that
of Despali et al. (2016), who have provided fitting formula calibrated
on halo samples detected with different overdensities. As such, their
mass function cannot be used to predict the halo sparsity unless
corrections are taken into account for the systematic due to effect of
unmatched haloes as described in (Corasaniti et al. 2021).

Alternatively, the halo mass function for a given cosmological
setup can be predicted from emulators. These are built using halo
catalogues from suites of N-body simulations with different cosmo-
logical parameters (see e.g. McClintock et al. 2019; Nishimichi et al.
2019; Bocquet et al. 2020). In a similar manner, it should be possible
to build emulators of the average halo sparsity, a possibility which
we will investigate in a future study.

2.5 Average sparsities

Given a set of mass estimates M, measured at n overdensities A;
(in units of the critical density), we can compute up to N; = (Z) =

Z(n"—jz)! distinct sparsities. As such, if we consider a number m of them
with m < Nj, then the number of possible m sparsity combinations
o N, Ny !

is given by N,, = (ms) = N, =)

As already mentioned, here we restrict ourselves to n = 4 mass

measurements at A = 200, 500, 1000, and 2500 and for each halo in
the catalogues, we focus on the following set of Ny = 6 halo sparsities:
200, 5005 $200, 1000> $200,2500» $500, 10005 $500, 2500, and $1000, 2500- Notice

MNRAS 516, 437-452 (2022)

that in such a case, there is a total of Ny, = ZZ; | N,y = 63 possible
permutations for any number m of sparsities used in the analysis.
The factorial dependence of the number of combinations prohibits
the full exploration of this parameter space; as such, in later sections,
we will clearly quote which combinations are used. From this set,
at each redshift snapshot, we evaluate the halo ensemble average
sparsities by computing the arithmetic mean of the individual halo
sparsities:

Ny
— MAl 1 i
(Sar.aq) = <MA2> =) sk an @)

h
i

where Ny, is the total number of haloes in a catalogs at a given redshift.

In Fig. 2, we plot the average halo sparsities for the Raygal
(left-hand panel) and M2Csims (right-hand panel) halo catalogues
respectively. In the same plots, we also show the values predicted by
the solutions of equation (3) and the relative differences with respect
to the N-body estimates (bottom panels). We can see that differences
are well within 5 per cent level and in some cases even at sub-per cent
level. In Appendix A, we also show the relative differences between
the prediction from the Raygal calibrated mass functions for the
M2Csims cosmology and the M2Csims average halo sparsity and
vice versa, which we find to be < 5 per cent, consistent with those
shown in Fig. 2.

Notice that there is a systematic difference between the values
of the average sparsities obtained from the Raygal simulation and
those from the M2Csims case. This pertains to the cosmological
dependence of the sparsity originally pointed out in Balmes et al.
(2014).

The average halo sparsity is mainly sensitive to a degenerate
combination of €2, and og as given by S = 0g+/€2,,/0.3 (Corasaniti
et al. 2018, 2021). In particular, the lower the level of clustering
of a given cosmological model, i.e. the smaller the value of S, the
higher the value of the average halo sparsity. This is because cosmic
structures will form later in a cosmological model with lower Sg than
in a model with a larger value. Consequently, such structures will be
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less concentrated or equivalently more sparse than in a model with a
larger value of Ss.

Comparing the trends in Fig. 2, we can see that the Raygal average
sparsities at any given redshift are systematically larger than the
M2Csims values, which is consistent with the fact that the Raygal
ACDM model has Sg = 0.742, while in the case of the M2Csims
we have Sg = 0.852. It is also worth noticing that, among the
different sparsity estimates, the one with the largest value and the
largest variation with the underlying cosmology is associated to
(200, 2500) - In particular, the maximum relative variation of (s200, 2500)
with respect to the M2Csims case amounts to ~ 20 per cent. This is
consistent with the results of Balmes et al. (2014), who have found
that the cosmological dependence of the sparsity increases as the
difference between A, and A, increases. On the other hand, we can
also notice that sparsities for different overdensity pairs do not have
the same sensitivity to the underlying cosmology. As an example, we
find that (ss00, 1000) and (si000, 2500) vary by only a few per cent.

2.6 Average sparsities correlations

The cosmological information encoded in the estimated average
sparsities is not independent. In fact, the gravitational processes that
shape the mass assembly of the haloes correlate the properties of
the mass distribution within different radial shells. For this reason,
we use the data from the N-body halo catalogues to compute the
correlation coefficients of the different sparsity estimates, which is
given by:
Ny (k k

P iy (55— (s1)) (Sj —(s7)) ®)
SisSj — )

N k 2 M k 2

\/Zkil (s = (i) 22621 (55 = ¢s,))

where the index i, j = {(200, 500), (200, 1000),..., (1000, 2500)}
with i # j. They are shown in Fig. 3 as a function of redshift for
the Raygal and M2Csims halo catalogues, respectively. In order to
facilitate the visualization of the low correlated pairs of sparsity
configurations against the highly correlated one, we have adopted
the magma colourmap for the colours of the various lines.

First of all, from Fig. 3, we may notice that all correlations increase
from high-to-low redshifts both for the Raygal haloes and M2Csims
ones. This is a direct consequence of the mass assembly process
of haloes, which grow from inside out (Taylor 2011; Wang et al.
2011). As the haloes assemble their mass over cosmic time, the
mass distributions within different mass shells become increasingly
correlated. Secondly, we can see that the correlations are smaller for
sparsities that sample the mass profile within mass shells that are
at larger separations. As an example, $x00, 500 and sjop0, 2500 have a
maximal ~25 percent correlation at z = 0, which is not the case
for sparsities probing the mass distribution in close mass shells (or
even overlapping ones) with correlation greater than 50 per cent.
We find the redshift evolution of the correlation coefficients is to
be well-approximated by a linear regression, which we provide in
Appendix B for practical applications.

Notice that the correlation coefficients from the Raygal catalogues
slightly differ from those of the M2Csims ones. Again, this is a direct
consequence of the differences between the simulated cosmological
models. In particular, at any given redshift, the correlations from
M2Csims are slightly larger than that from Raygal, which is consis-
tent with the fact that the former has a larger Sg value than the latter.
Nevertheless, these differences are too small to have an impact on the
cosmological parameter inference, as we will discuss in Section 3.

In contrast, we would like to highlight the fact that if the density
profile of haloes was exactly described by the NFW formula (Navarro
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et al. 1997), then all the information on the halo mass profile would
be fully encoded in the values of the concentration parameter and the
overall halo mass, given that the halo mass at any other overdensities
can be derived from these two quantities. Furthermore, because of
the one-to-one relation between halo sparsity and concentration for
NFW haloes (see Balmes et al. 2014), this would imply that a single
sparsity estimate would carry all the information on the mass profile.
Hence, if the density profile of haloes exactly were to follow the NFW
model, one should find that different sparsities, even those probing
distant mass shells, are highly correlated. One may argue that, given
the fact that for each halo the best-fitting value of the concentration is
a stochastic variable characterized by a scatter and a mean that varies
with My, the correlation among the NFW inferred sparsities, e.g.
$200,a, and sa; a, (With Ay # Az # A4 > 200), may not be exactly
one. However, because the functional form of the mass profile has
to follow NFW, these should still be close to unity. This is indeed
what we find when we compute the correlations among sparsities that
have been computed using NFW inferred masses for each halo in the
catalogues, as shown in Fig. 4. More specifically, for each halo with a
given mass My, in the M2Csims catalogues, we have fit its density
profile with the NFW function and deduced the corresponding best-
fitting NFW concentration parameter cpo.. Then, given the values
of Mygo. and c¢po0., We have calculated the NFW halo mass at A =
500, 1000, and 2500 (in units of the critical density) and computed
the associated sparsities. Finally, we have estimated the correlation
coefficients among the various sparsities using equation (8). As we
can see in Fig. 4, the correlation coefficients among these NFW
estimated sparsities are all close to unity. This is in sharp contrast
with what we found from the analysis of the N-body halo masses
shown in Fig. 3.

Indeed, the fact that differently from the NFW case, the correla-
tions among different sparsities are not all clustered around » = 1, but
spread over a larger interval of values, as shown in Fig. 3, is indicative
of the fact that on average N-body haloes are not exactly described by
the NFW formula. Moreover, it clearly shows that there is additional
information about the halo mass profile, which is not captured
by the NFW profile but can be extracted using multiple sparsity
measurements, thus potentially providing additional constraints on
the cosmological parameters.

3 SYNTHETIC DATA ANALYSIS

We seek to investigate the constraints on cosmological parameters
that can be inferred from multiple sparsity measurements. To this
end, we use the average sparsity estimates from the N-body halo
catalogues as a synthetic data set and perform a Markov Chain
Monte Carlo likelihood analysis under different average sparsity
error model assumptions. Our goal is twofold. On one hand, we want
to test to which extent the analysis recovers the fiducial cosmological
parameters of the simulated cosmologies. On the other hand, we aim
to study how the inferred parameter uncertainties vary for different
sparsity configurations, uncertainties, and fiducial cosmologies.

3.1 Sparsity configurations and uncertainties

We consider the following set of average sparsity combinations:

S5

S1) (s200,2500)

S2) (s200,500)» (5200, 25005

S3) (s200,500)» {5200, 2500} {5500, 25005

S4) (Szoo, 500) (5200, 10007 (Szoo, 2500 (Ssoo, 250005
) | )5 (

5200, 500)> (5200, 1000)> (5200,250075 {8500, 10005 (S500,2500)
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1.0

1.0

rSzoo,soo. 51000, 2500

M2Csims

rszoo,soo. 5500, 2500
rszoo, 1000 51000, 2500

rszoo,soo. 5500,1000

rssoo, 1000+ 51000, 2500

rszoo, 1000+ 5500, 2500

rSzoo, 500, $200, 2500
rSzoo, 2500, $1000, 2500

rSzoo, 1000+ 5500, 1000
""""" rSsoo, 1000+ 5500, 2500
rSzoo, 1000+ 5200, 2500

rSzoo, 2500/ S500, 1000

0.0 0.5 1.0 1.5 0.0

0 5 1 0 1.5 T'$300,500, S200, 1000

zZ rSzoc,zsoo. 5500, 2500

rSsoo,zsoo. $1000,2500

Figure 3. Sparsity correlation coefficients from the Raygal (left-hand panel) and M2Csims (right-hand panel) halo catalogues, respectively. As we can see over
the redshift range 0 < z < 1.5, sparsity combinations probing the halo mass distribution in close (overlapping) mass shells are highly correlated (r = 0.5). This
is not the case of sparsities associated to mass shells that are at larger separations (» < 0.5).

1.000 M2Csims (NFW-masses)

T's300,2500, 5500, 1000
_____ Ts300,2500, 51000, 2500
rszoo, 500/ 5200, 2500

0.995+

rszou, 1000 5200, 2500

rszuu, 2500, S500, 2500

Ts500,1000, S50, 2500

Ts300,500, S500, 2500

L 0.9904

rssoo, 2500/ 51000, 2500

rsZﬂU, 1000 S500, 1000
rszuu, 1000+ 51000, 2500

0.985 T$300, 500, 5200, 1000

T'5200,1000, S500.2500

rszoo, 500, $1000, 2500

rszﬂn, 500, $500, 1000

T T T T r.
0.980 00 05 10 15 5500, 1000, 51000, 2500

Figure 4. Sparsity correlation coefficients obtained using the mass estimates
from the best-fitting NFW profiles of the M2Csims halo catalogues. As we
can see, contrary to the correlations among sparsities estimated from the SO
halo masses, assuming that the density profile of haloes is described by NFW
profile artificially correlates sparsities to order » & 1, even those probing mass
distribution in mass shells at large separations.

S6) (s200,500)> {5200, 1000)>  ($200,2500)> {5500, 1000)> {8500, 2500)>
(81000, 2500) 3

where starting from the single sparsity (s200,2500), We explore
multiple sparsity configurations up to S6, which corresponds to
the maximal number of sparsities N that can be obtained from the
estimation of halo masses at four different overdensities.

In principle, for the configurations S1-S5, we have a total of
62 possible sparsity configurations to study. Rather than a brute
force investigation, for any m < 6 number of sparsities, we have
adopted a physically motivated strategy to explore among the various
possibilities. This relies upon the observation that the cosmological
differences among single average sparsity measurements (sa, a,)
at a given redshift are maximized when the differences between
Ay and A, are the largest (Balmes et al. 2014). Hence, given the
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range of overdensities A we have considered, we set S1 to be the
sparsity associated to the largest overdensity separation A" = 200
and AJ™ = 2500. For the S2 configuration, we proceed by adding
the average sparsity that probes the average mass distribution in a
mass shell at an intermediate overdensity between A" and AT*. In
our case, we have chosen A = 500 and considered (s, 500). This is
done with the intent of investigating how the cosmological parameter
constraints vary with the addition of information encoded within an
intermediate mass shell with respect to the one already accounted
by the previous sparsity configuration. For the configuration S3, we
consider the average sparsity associated to the overdensities with the
second largest separations among those considered at S2, which is
(8500, 2500)- Then, we proceed in a similar manner for S4 and S5.

For each of the sparsity combinations in the list, we consider
two distinct synthetic data sets that consist of the average sparsity
estimates at different redshifts from the Raygal and M2Csims cata-
logues, respectively. Given the larger number of redshift snapshots
of the M2Csims simulations, this enable us to asses the impact of
additional average sparsity estimates for a larger number of redshifts
in the same redshift interval 0 < z < 1.5.

Here, we account for statistical uncertainties on average sparsity
measurements and propagate the effect of systematic errors due to
the mass function model uncertainties in predicting the redshift and
cosmological model dependence of the average sparsity. In Section 4,
we extend the analysis of systematics and present the result of
a forecast parameter inference analysis for realistic cluster survey
configurations.

Statistical errors on average sparsities are the consequence of
the propagation of the uncertainties of cluster mass measurements.>
Following Corasaniti et al. (2018), we model the error on the average
sparsity (sa, a,) at redshift z as:

(ay,2,(2))
Ois(z) = %\/eﬁm + eﬁmzv &)

2We neglect possible correlations among cluster mass determination, a
choice which makes the assumed errors on the average sparsity only more
conservative. In fact, given that the sparsity is a mass ratio, neglecting the
correlations ra,, a, between the determination of the masses M, and M4, is
equivalent to overestimating the errors on the sparsity by a factor~ 1/4/1 —r.
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where ey, and ey,, are the fractional error on the mass measure-
ments at overdensities A; and A,, respectively, and Ny (z) is the
number of clusters in the bin centred at redshift z.

We focus on a simplified configuration and consider two distinct
cases for the statistical errors: o ;) = 0.3 and 0.1. The former is a
rather conservative choice, corresponding to having ~50 clusters per
redshift bin with 30 per cent fractional mass measurement errors,
while the latter is a more optimistic assumption corresponding to
having ~100 clusters per redshift bin with 10 per cent precision on
the estimated masses.

We treat the discrepancies between the average sparsity predictions
and the N-body found in Section 2.5 and Appendix A as an intrinsic
systematic error o : " (z) on the average sparsity (sa, a,) obtained
by solving equation (3).

3.2 Priors and likelihood

We specifically focus our analysis on €2,, and g, the cosmological
parameters to which the sparsity is most sensitive, while setting 4,
2, and ny to their fiducial values. We assume uniform priors on €2,,
~ U(0.1,0.5) and og ~ U(0.2, 1.2).

We perform a Markov Chain Monte Carlo (MCMC) sampling of
the log-likelihood function:

m N;
—2InL = Z Z As;i(zx) - C;,Lj(zk) - Asj(zp), (10)
ij=1 k=1

with m < N, the number of sparsity configurations considered, N,
the number of redshift bins and

Asi(zi) = (5™ (z)) (1 + f’fk") — (si(z1)),

where (s;(zx)) is the synthetic data point at the k-th redshift bin
z; for the i-th configuration of overdensities, while (s{“f(zk)) is the
average sparsity predicted by the mass function model equation (3)
with 175; ~ N(0, ojiys(zk)) being a Gaussian random variable which
we marginalize over, characterized by zero mean and standard
deviation 0;**(z). The latter being the sum of the intrinsic scatter with
respect to the N-body average sparsities discussed in Section 2.5 and
Appendix A. The covariance matrix reads as:

C.vi,.rj (Zk) = 0(25(21{))".?,»,.?] (Zk)a (1 1)

where ry 55 (zx) 1s the correlation matrix at redshift z;, which we have
previously computed using the Raygal and M2Csims catalogues in
Section 2.6 and oy, is the statistical uncertainty on the average
sparsity estimates.

3.3 Results

We use the MCMC chains to infer marginal constraints on £2,,,
o, and Sg. For this purpose, we have implemented a Metropolis—
Hastings algorithm and tested the convergence of the chains with the
Gelman—Rubin diagnostics (see Roy 2020, for a review). We have
analysed the chains using the publicly available package GETDIST?
(Lewis 2019). The results are summarized in Table 1 where we quote
the marginalized 1o errors on the parameters as obtained from the
various cases we have considered. We plot the corresponding 1 and
20 credibility contours in the €2,, — o from the Raygal synthetic
data analysis in Fig. 5 and for the M2Csims data set in Fig. 6.

3https://getdist.readthedocs.io/
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3.3.1 Raygal synthetic data set

First, we find that for all sparsity configurations S1-S6, the best-
fitting parameters of the MCMC likelihood analysis coincide with
the values of the Raygal fiducial cosmology. Unsurprisingly, the
constraints on 2,, and og (and consequently Sg) quoted in Table 1
show that, for a given sparsity configuration, the inferred param-
eter errors obtained assuming statistical errors of o ) = 0.1 are
systematically smaller than those obtained for o ;) = 0.3. This
can also be seen by the different size of the 1 and 20 credibility
contours shown in Fig. 5. Quite interestingly, we notice that, in both
cases, the contours shrink from S1 to S4, thus indicating that using
additional sparsity measurements does improve the cosmological
constraints. On the other hand, we can see that, in the case of a
greater number of sparsity configurations S5 and S6, the contours
do not shrink further. Quite the opposite, from the marginalized
error values quoted in Table 1, we find that the constraints on the
cosmological parameters slightly degrade. This is most likely due
to the fact that the additional sparsities considered in S5 and S6,
namely (ss00, 1000) and (s1000,2500), do not vary significantly with the
cosmological parameters. As we have seen in Section 2.5, these have
variation of the order of per cent level around the fiducial cosmology,
which is of the same order of the accuracy of the cosmological model
predictions given by equation (3), using the numerical ST calibrated
mass functions. This trend can be better seen in the inset plots,
where we show the marginalized 1o error on Sg as a function of the
sparsity configurations considered. As we can see, o, diminishes
as a function of the number of sparsity configuration considered,
reaching a minimum value for S4, while increasing for S4 and S5
a possible consequence of the €2,, — og degeneracy. Indeed, taking
as figure of merit, the values of the area within the 1o credibility
contours in the €2,, — og plane highlights better the saturation of the
constraints on the cosmological parameters beyond S4. As we can
infer from the values quoted in Table 2, the area diminishes from S1
to S4 and then remains constant.

Quantitatively, we find that in the case of o) = 0.3, the
marginalized 1o error on €2,, improves by approximately a factor
of 20 from S1 to S4; similarly, the uncertainties on o'g improves by
a factor ~15. Even, considering three sparsity measurements, such
as in the S3 configuration, leads to an improvement of a factor ~5
on og,, and a factor ~4 on o,,. In the case of oy, = 0.1, we find
that the og,, reduces by a factor of ~9 from S1 to S4 and o, by a
factor of ~8. On the other hand, it is worth noticing that, for S4, the
constraints do not significantly improve when reducing the statistical
errors on the average sparsities by a factor of 3 (i.e. from o ) =
0.3 to 0.1). This suggests that the use of fours sparsity measurements
can mitigate the need for improved mass measurements.

3.3.2 M2Csims synthetic data set

The likelihood analysis of the MC2sims data set shows trends
that are similar to those we have found using the Raygal data
set. Again, we have that, in all the cases we considered, the best-
fitting parameters coincide with the values of the MC2sims fiducial
cosmology. Moreover, as it can be noticed from the values quoted
in Table 1 for o) = 0.3 and 0.1, also in these cases we find
that the uncertainties on €2,,, og (and Sg) decrease to a minimum
value as the number of sparsities increases from S1 to S4, while they
slightly increase for S5 and S6 configurations. This can also be seen
in Fig. 6, where the credibility contours shrink from S1 to S4 as we
have already found in the Raygal case. The inset plot shows oy, as
a function of the number of sparsity configurations, which reaches a
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Table 1. Marginalized 1o errors on 2, og, and Sg from the MCMC likelihood analysis of the Raygal and M2Csims synthetic
data inferred assuming average sparsity errors of o (s )y = 0.3 and 0.1, respectively, for the various sparsity configurations S1-S6.
As we can see, the constraints on the cosmological parameters improve for increasing number of sparsity configurations, reaching a

minimum for S4.

Raygal (0 (5)) = 0.3)

Raygal (0 (5)) =0.1)

M2Csims (0 (5;)y = 0.3)  M2Csims (0 (5;)) = 0.1)

Configuration 0Q,, Ogg oSy oQ,, Oog osg 0Q,, Oy Oy oQ,, Oug Osg

Sl 0.039 0.124 0.086 0.019 0.061 0.038 0.068 0.100 0.042 0.043 0.060 0.018
S2 0.037 0.109 0.072 0.016 0.049 0.030 0.061 0.086 0.037 0.034 0.047 0.015
S3 0.007 0.027 0.019 0.003 0.012 0.008 0.016 0.025 0.008 0.007 0.010 0.004
S4 0.002 0.008 0.005 0.002 0.010 0.006 0.007 0.009 0.002 0.006 0.008 0.001
S5 0.005 0.020 0.015 0.002 0.011 0.007 0.011 0.017 0.007 0.006 0.007 0.003
S6 0.005 0.020 0.015 0.002 0.011 0.007 0.011 0.017 0.007 0.006 0.007 0.003

1.2
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0.8
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Figure 5. 1 and 20 credibility contours in the €2,, — o3 plane for the Raygal synthetic data sets. The different lines correspond to the sparsity configurations
S1-S6 described in Section 3.1, assuming statistical errors on the average sparsity estimates of o (s;)) = 0.3 (left-hand panel) and o (s;)) = 0.1 (right-hand
panel). The cross corresponds to the cosmological parameter values of the fiducial Raygal cosmology. As the best-fitting parameters for the different sparsity
configurations coincide with those of the fiducial model, we do not show them in the plot to avoid cluttering. The inset plot shows the 1o error on Sg as a
function of the number of average sparsity configurations SI-S6. As we can see the uncertainties saturate beyond S4.

minimum value for S4 and slightly increase for S5 and S6. Again, we
can better appreciate the saturation of the cosmological parameter
constraints at S4 from the values of the area enclosed within the 1o
credibility contours quoted in Table 3.

Quantitatively, from the values quoted in Table 1, we find an
improvement of a factor of ~10 on og,, and o, for o (., = 0.3, and
a factor of ~7 for o (5, = 0.1.

Notice that in addition to the contours from the analysis of the con-
figurations S1-S6, in Fig. 6, we also plot the results of two additional
cases we have investigated for the S1 configuration. In particular,
we have performed an analysis of the M2Csims synthetic average
sparsity data using the covariance matrix from the Raygal simulation
such as to evaluate the impact of the cosmological dependence of
the covariance on the cosmological parameter constraints. For this
purpose, we have evaluated the covariance at the M2Csims redshift
bins using the parametrization of the Raygal sparsity correlation
coefficients given in Appendix B. We have also performed an analysis
of the M2Csims synthetics data set limited to N, = 6 redshift bins at
z = 0.00, 0.49, 0.61, 1.00, 1.27, and 1.50 (as in the Raygal case) to
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evaluate the impact of additional redshift bins on the cosmological
parameter inference. In the former case, we find that there is no effect
of using the Raygal covariance for the analysis of the M2Csims data,
which suggests that the cosmological dependence of the covariance
discussed in Section 2.6 is too small to have an impact on the
cosmological parameter inference for the level of average sparsity
uncertainty we have assumed. In the latter case, we do find that
increasing the number of redshift bins improves the constraints
on the parameters, though not significantly when compared to the
effect of using multiple sparsity measurements. As an example,
for the case o) = 0.3 with N, = 6, we find og, = 0.074 and
04, = 0.118, while in the case with N, = 11, we have og,, = 0.068
and o,, = 0.100. Similarly, for the case with o (), =0.1 and N, =6,
we have og,, = 0.047 and o, = 0.072, while in the case with N, =
11, we have og,, = 0.043 and o,, = 0.060.

Overall, comparing the results from the Raygal analysis and those
obtained from the M2Csims, we find that the inferred parameter
constraints do depend on the underlying fiducial cosmology. As
summarized by the 1o errors on Sg, we have that for a given sparsity
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Figure 6. As in Fig. 5 but for the M2Csims case. In addition to the sparsity combinations S1-S6, we also show the 1 and 2o contours for the S1 case with
N = 6 redshift bins in the redshift interval 0 < z < 1.5 (thin black-dashed lines) rather than the nominal N; = 11 (black solid line), and with covariance from

the Raygal simulation (yellow-dotted line).

Table 2. Area within the lo credibility contours shown in Fig. 5 for the
various sparsity configuration in the case of the Raygal data analysis with
(0 (sz)) = 0.3) and 0.1 statistical uncertainties. We may notice that the area
diminishes for increasing number of sparsity configurations and saturates at
S4.

Raygal analysis

Configuration Al (U(x(z)) =0.3) Al (o (s()) = 0.1)
S1 0.059 0.021
S2 0.048 0.017
S3 0.009 0.005
S4 0.006 0.004
S5 0.006 0.004
S6 0.006 0.004

Table 3. As in Table 2 for the M2Csims data analysis.

M2Csims analysis

Conﬁguration Ao (o (s()) = 0.3) Ao (o (s(2)) = 0.1)

S1 0.058 0.030
S2 0.050 0.024
S3 0.011 0.004
S4 0.007 0.003
S5 0.007 0.003
S6 0.007 0.003

configuration and given level of statistical uncertainty on the average
sparsity measurements, the value of oy, is systematically smaller
in the M2Csims case than in the Raygal case by approximately a
factor of 2. Such dependence on the fiducial cosmology of forecast
parameter error analysis is not new (e.g. we refer the readers to the
appendix B of Mukherjee et al. 2006, for a detailed discussion).
It simply reflects the amplitude of the variation of the observable
(the average sparsity in our case) across the cosmological parameter
space relative to the amplitude of the observational uncertainties at

the observed data points. This justifies the need for parameter forecast
studies performed under different model assumptions.

4 CHEX-MATE CLUSTERS FORECAST
ANALYSIS

We forecast cosmological parameter constraints from multiple aver-
age sparsity measurements for a realistic galaxy cluster data sample.
We specifically focus on cluster mass measurements as expected
from the CHEX-MATE project (CHEX-MATE Collaboration 2021),
which consists of a sample of 118 clusters from the Planck-SZ
catalogue in the redshift range 0 < z < 0.6. These are the targets of
a dedicated X-ray observing program on the XMM-Newton satellite,
which is expected to provide accurate measurements of the cluster
mass distributions and gas properties. For each cluster in the sample,
mass estimates at different overdensities will be obtained under
the hydrostatic equilibrium (HE) hypothesis. Similarly to the study
presented in Section 3, we perform a likelihood MCMC analysis
of a synthetic data set with characteristics and mass measurement
errors expected from the CHEX-MATE sample to infer constraints
on 2, and og. In the following, we set the fiducial cosmological
model to the flat ACDM best fitting to the Planck 2015 data (Planck
Collaboration XIII 2016a).

In order to build a synthetic data set of average sparsity measure-
ments that are consistent with the characteristics of the CHEX-MATE
sample, we first bin the CHEX-MATE clusters in equally spaced
redshift bins of size Az = 0.1, the corresponding number counts
N(z) are shown in Fig. 7. Then, we generate a sample of synthetic
average sparsity data (s200,500)» (5200, 1000)» {$200,2500)» and {8500, 2500)
by solving equation (3) at the central redshift of the different bins
using the M2Csims mass function parametrizations discussed in
Appendix A. We also estimate the average sparsity errors using
equation (9), where we assume cluster mass uncertainties expected
from the analysis of the CHEX-MATE observations. In particular,
thanks to the observational strategy adopted in CHEX-MATE,
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Figure 7. CHEX-MATE binned cluster counts in equally spaced redshift
bins of size Az = 0.1 in the range 0 < z < 0.6.
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Figure 8. Synthetic average sparsity data (sy00,500) (circles), (s200, 1000)
(triangles), (s200,2500) (squares), and (s500, 2500) (pentagons). The error bars
indicate the amplitude of statistical errors due to the propagation of mass
measurement uncertainties.

homogenous exposures with XMM-Newton for the entire sample
will guarantee to reach a relative error of about 15 per cent on the
hydrostatic masses measured at A = 500. Hence, by interpolating and
scaling the relative errors on hydrostatic masses obtained at different
overdensities in the X-COP project (Ettori et al. 2019), we can
reasonably assume fractional mass errors of ey, = 0.23,0.15,0.11
and 0.10 at A =200, 500, 1000, and 2500, respectively. The synthetic
data sets are shown in Fig. 8.

We consider two distinct cases: single average sparsity measure-
ments (200, 2500) (S1); four average sparsity measurements (200, 500)
(5200, 1000)> {5200,2500)> and {ss00,2500) (S4). In the latter case, we
evaluate the covariance matrix using equation (11), where we es-
timate the correlation coefficients for the different average sparsities
at the different redshifts using the linear regression obtained from
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Table 4. Percentage bias shift of the average sparsities due to the HE mass
bias (first row) and the impact of baryons (second row).

Abago,500  Ab2oo, 1000 Abaoo, 2500 Abso0, 2500
HE mass bias 0.03 0.02 0.03 0.04
Baryon mass bias 0.04 0.10 0.15 0.10

the analysis of the M2Csims halo catalogues and presented in
Appendix B.

We assume the log-likelihood function as given by equation (10).
Similarly to the analysis presented in Section 3, we propagate
the effect of systematic uncertainties by marginalizing over the
Gaussian random variable with zero mean and standard deviation
corresponding to the sum of all systematic errors we account for.
Here, in addition to the intrinsic scatters due to our data model, we
also propagate the impact of mass biases on the average sparsity
caused by the presence of baryons.

We infer constraints for three different error configurations:

(a) statistical errors due to the propagation of mass-measurement
uncertainties as estimated by equation (9) in combination with the
intrinsic data model errors;

(b) statistical errors in combination with the intrinsic systematic
errors of our data model and the systematic uncertainties due to the
effects of hydrostatic mass bias on sparsity estimates;

(c) statistical errors in combination with intrinsic systematic data
model errors and systematic uncertainties due to the effects of
baryons on sparsity estimates based on dark matter only masses.

In cases (b) and (c), we estimate the impact of mass biases on the
average sparsity by evaluating the percentage bias shift: Aba, A, =
ASA 0/ {SAy.05)

We assume the percentage bias shifts due to HE mass bias
estimated in Richardson & Corasaniti (2022), which have been
obtained from the analysis of N-body/hydro simulations of galaxy
clusters from Biffi et al. (2016). We quote these systematic bias shifts
in Table 4. Instead, we evaluate the impact of baryons on the average
sparsity estimates from dark matter-only masses using the results of
the mass biases found in Velliscig et al. (2014) from the analysis of
a combination of the OverWhelmingly Large Simulations (OWLS;
Schaye et al. 2010) and cosmo-OWLS (Le Brun et al. 2014) for the
feedback model AGN 8.0 that reproduce the observed X-ray profiles
of clusters (Le Brun et al. 2014). The corresponding percentage
bias shifts on different sparsity estimates have been estimated in
Corasaniti et al. (2018) as a function of cluster mass M»g, > 10'3
Mg h™! (see their Fig. 7). Here, we conservatively assume the largest
absolute values from Corasaniti et al. (2018), which we quote in
Table 4.

We assume priors and evaluate the likelihood as specified in
Section 3.2. From the MCMC chains, we derive the marginal
constraints on €2,,, o's, and Sg for the different sparsity configurations
and error assumptions. These are quoted in Table 5, while in Fig. 9,
we plot the corresponding 1 and 2o credibility regions in the €2, —
o plane.

First of all, we find that in all the cases the best-fitting model
parameters coincide with those of the fiducial cosmological model,
shown as a cross in Fig. 9. In the S1 case, we may notice that the
inclusion of the systematic errors due to the HE or baryon biases only
allow to infer an upper bound on o3 and a lower bound on €2,,. This
is because, for the assumed errors, a single sparsity measurements
over the range of redshift considered only constrains the degenerate
parameter combination given by Sg. In particular, we find o5, = 0.06
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Table 5. Marginalized 1o errors on €2,,, g, and Sg for the different sparsity
configurations and error assumptions. In the last column, we quote the values
of the area under the 1o credibility countour. Notice that, in the S1 case, the
propagation of systematic uncertainties due to the HE bias or the effect of
baryons only allow to infer an upper bound on o'g and a lower bound on £2,,,.

oQ, Ooy oss Al
S1 (Stats + Intrinsic Sys.) 0.07 0.08 0.04 0.014
S1 (Stats + Intrinsic Sys. + HE Bias) — — 0.06 —
S1 (Stats + Intrinsic Sys. + Baryon Bias) - - 0.10 -
S4 (Stats -+ Intrinsic Sys.) 0.04 0.05 0.02 0.021
S4 (Stats + Intrinsic Sys. + HE Bias) 0.04 0.05 0.02 0.022

S4 (Stats + Intrinsic Sys. + Baryon Bias) 0.04 0.05 0.02 0.024

== S1: Stats + Intrin. Sys. + Baryon Bias
1.4 -=+= S1: Stats + Intrin. Sys. + HE Bias
—— S1: Stats + Intrin. Sys.

: Stats + Intrin. Sys. + Baryon Bias
: Stats + Intrin. Sys. + HE Bias

: Stats + Intrin. Sys.

Figure 9. 1 and 20 credibility regions in the ,, — og plane from the
analysis of the synthetic data set with different error assumptions for the
S1 and S4 cases, respectively. The best-fitting values of €2, and og from
the different parameter inferences coincide with the values of the fiducial
cosmology marked by the cross-point. The dashed line and the green-shaded
area corresponds to curves of constant Sg = 0.852 4 0.104 values, which is
the mean and standard deviation of Sg from the MCMC chains of S1 case with
intrinsic systematic errors and baryon bias. We can see that using multiple
sparsity estimates breaks the Sg degeneracy.

for the HE bias and o5, = 0.10 for the baryon bias. The latter case
is shown in Fig. 9 as the green-shaded region around the curve of
constant best-fitting value of S = 0.85. Such a result is consistent
with the constraint obtained in Corasaniti et al. (2018) from the
analysis of ss500, 1000 of @ sample of ~100 X-ray clusters.

In the S4 case, the constraints significantly improve when com-
pared to the single sparsity measurements. As we can see in Fig. 9,
the use of additional sparsities indeed breaks the Sg degeneracy.
From the values quoted in Table 5, we notice that accounting for the
HE and baryon bias slightly alter the area under the 1o credibility
contours, with the baryon bias case corresponding to the larger value
and that with the intrinsic systematics only corresponding to the
smallest value. This is consistent with the difference in amplitude of
the systematic shifts between the HE and baryon case, respectively.
Nevertheless, we can see that such difference have no impact on the
marginalized 1o errors on the cosmological parameters.
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Nevertheless, it is important to notice that such bias effects were
estimated using results of N-body/hydro simulations that were not
specifically devoted to the study of the halo sparsity. Hence, we
advocate for a more in-depth study of the influence of baryonic
processes on the mass profile of haloes as traced by sparsity
measurements, which we leave for a future study.

Finally, we would like to stress that for this type of cosmological
parameter inference to be possible, independent cluster mass mea-
surements at multiple overdensity need to be carried out. This implies
adopting new methodologies that abandon the two-parameters NFW
fitting profile in favour of more general, non-parametric approaches
(see e.g. Ettori et al. 2013, for a review). Recent examples of these
procedures to infer the galaxy cluster mass profile with a non-
parametric method have been presented in Bartalucci et al. (2018)
to derive NFW-independent sparsity estimates of a sample of high-
redshift clusters, and in Bartalucci et al. (2019) to test against the
standard forward/backward NFW methods. More recently, Eckert
et al. (2022) have developed a forward non-parametric method to
derive mass profiles independent from any functional form of the po-
tential. Weak-lensing observations can also provide non-parametric
estimates of the mass profile (and consequently of the cluster sparsity)
through mass aperture measurements (see e.g. Debackere et al. 2022,
for a recent study).

5 SUMMARY AND DISCUSSION

The gravitational mass assembly process that leads to the formation
of dark matter haloes, which host galaxy groups and clusters, imprints
cosmological information on the halo mass profiles. This can be
retrieved through measurements of the halo sparsity, i.e. the ratio
between halo masses enclosing two different overdensities, which
has been shown to provide a non-parametric proxy for the halo
internal mass distribution (Balmes et al. 2014). In the past few years,
cosmological constraints have been inferred from measurements of
the average sparsity of galaxy cluster samples using HE masses at
A = 500p, and 1000p, from X-ray observations (Corasaniti et al.
2018) and weak-lensing masses at A = 200p, and 5000, (Corasaniti
et al. 2021). However, cosmological information is encoded over the
entire halo mass profile, rather than at only two overdensities.

Here, we have investigated the use of multiple sparsity measure-
ments from halo mass estimates at several overdensity as a probe of
the cosmological imprint on the halo mass profile. For this purpose,
we have analysed N-body halo catalogues from the Raygal and
M2Csims simulations and estimated the correlation among different
sparsities as a function of redshift. In particular, we have focused on
halo masses evaluated at four different overdensities, thus allowing
to estimate a total of six sparsities. Interestingly, we find that, among
these sparsities, those associated with the mass distribution in distinct
spherical halo shells are not highly correlated. Thus, indicating that
there is additional cosmological information encoded in the average
halo mass profile, which can be exploited through multiple sparsity
measurements. In contrast, sparsities obtained using mass estimates
derived from the NFW best-fitting density profile to the N-body
haloes result in correlations that are close to unity and significantly
different from those inferred from the analysis of the SO N-body
halo masses. This suggests that imposing a NFW profile to haloes
performs a strong compression that misses cosmological information
imprinted on different regions of the halo mass profile.

To assess the constraining power of multiple sparsity measure-
ments, we have performed an MCMC likelihood analysis of synthetic
generated data sets from the Raygal and M2Csims simulations
consisting of different number of sparsities, from a single sparsity
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case up to a total of six, and inferred cosmological parameter
constraints on €2, and og. We find the constraints to improve as
the number of sparsities used increases, with a maximal effect
for the case with four sparsities. Instead, the constraints saturates
beyond the four sparsity case, which suggest that the additional
sparsity estimates only provide redundant information. We have also
performed a forecast analysis for a synthetic data set of four average
sparsity measurements generated assuming the characteristic of a
realistic cluster sample such as that from the CHEX-MATE project.
We have inferred cosmological parameter constraints for different
errors assumptions, including the impact of systematic effects on
sparsities due to baryons or deviations from the HE, from mass bias
estimates obtained from past studies using N-body/hydrodynamical
simulations. The results show that these effects only mildly impact
the cosmological parameter inference, although dedicated numerical
studies are still needed to derive more accurate predictions for baryon
systematics on sparsity measurements.

Ithas been long considered that cosmological information encoded
in the halo density profile can be retrieved through measurements of
the concentration—mass relation (see e.g. Ettori et al. 2010). The
observational challenges posed by the necessity of having accurate
measurements of the concentration parameter of galaxy clusters has
been the primary limitation for the use of such an approach (Mead
et al. 2010; King & Mead 2011; Sereno et al. 2015).

Our study not only shows that the use of halo sparsity provides a
more direct and simpler way to access such information as already
discussed in past analyses (Corasaniti et al. 2018, 2021), but also that
multiple sparsity measurements can fully exploit the cosmological
signal imprinted in the mass profile, which would be otherwise
missed if the halo density profile was assumed to be NFW. Because
of this, we encourage the development of methodologies capable of
providing independent mass estimates at different overdensities free
of the assumption of the NFW profile.
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APPENDIX A: HALO MASS FUNCTION
BEST-FITTING COEFFICIENTS

We use the halo mass functions from the Raygal and M2Csims halo
catalogues to fit the coefficients of the mass function parametrization
given by equation (6), which we determine using a Levenberg—
Marquardt minimization scheme. The multiplicity functions at A =
200, 500, 1000, and 2500 estimated from the Raygal and M2Csims
halo catalogues are shown in Fig. Al. Given the proximity of
the simulated cosmological models, we can see that the estimated
multiplicity functions are in good agreement with one another.
Notice that since the Raygal simulation probes a slightly larger
cosmic volume than the M2Csims simulations, the correspond-
ing multiplicity functions extend over larger Ino~' values. Con-
versely, the M2Csims simulations have slightly better mass reso-
lution, thus probing smaller Ino~! values than Raygal multiplicity
functions.

In order to predict the average sparsity at redshifts different
from those probed by the simulation snapshots using equation (3),
we introduce the redshift-dependent variable x = logo(A/A i (2)),
where A,;(z) is the virial overdensity as given by the formula derived
in Bryan & Norman (1998), then following Despali et al. (2016), we
parametrize the redshift evolution of the best-fitting ST coefficients
as a quadratic function of x:

9A=co—|—c1~x+cz~x2, (A1)

where 0, = {Aa, aa, pa}. In Table Al and A2, we quote the values
of the quadratic parametrizations for the ST-coefficients.

InFig. A2, we plot the predictions from equation (3) for the Raygal
cosmology using the M2Csims calibrated multiplicity functions
against the average halo sparsity estimates from the Raygal halo
catalogues (left-hand panel) and the predictions for the M2Csims
cosmology using the Raygal calibrated multiplicity functions against
the average halo sparsity estimates from the M2Csims halo cata-
logues (right-hand panel). As we can see differences are < 5 per cent,
consistent with those shown in Fig. 2.
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Figure A1. Multiplicity function at A = 200 (top-left panel), 500 (top-right panel), 1000 (bottom-left panel), and 2500 (bottom-right panel) from the Raygal
(red points) and M2Csims (blue points) simulations, respectively at z = 0.0 (circles), 0.5 (triangles), 1.0 (squares), and 1.5 (pentagons). Given the proximity of
the simulated cosmologies, the multiplicity functions estimated from the Raygal and M2Csims halo catalogues are consistent with one another within Poisson
errors over the common range of masses probed by the simulations.
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Table Al. Coefficients of the quadratic function of x parametrizing the
redshift evolution of the ST parameters for the Raygal halo mass functions.

Cosmology with multiple halo sparsities 451

APPENDIX B: SPARSITY CORRELATION
COEFFICIENT FITTING FUNCTIONS

The redshift evolution of the average sparsity correlation coefficients
shown in Fig. 3 is well approximated by a linear relation:

co cl (63
Aso0e —0.134134392 5.018016486 —10.7419621
a0¢ 0.989977371 —0.5291517036 4.430318949
P200c —1.688969793 100338655815 22.480766636
Asooe —0.52885598 2.4986942 —1.91309251
aso0c —0.408103836 3.5426469558 —1.249831194
P00 0.380460633 —2.894905482 19075409115
Aloooe —1.20684329 3.07924433 —1.65792698
a1000¢ —1.9777704111 4.8809416194 —1.1738202399
P1000c 1.856153925 —4.089186069 1.5184593426
Ass00¢ 7.1510462212 —10.4752748702 3.96694467
ar500¢ —9.5732094279 13.1786821425 —3.257783121
Pasooe 522138579936 —77.6915082432  28.3514283168

rsl,sz(z) =q +m- 2,

(B1)

where the coefficients of the linear regression are given in Tables B1
and B2 for the Raygal and M2Csims halo catalogues, respectively.

Table B1. Linear regression parameters of sparsity correlation coefficients
from the Raygal halo catalogues.

Raygal m q
Table A2. As in Table Al but for the M2Csims halo mass functions. T 5200.500+5200. 1000 —0.032 4 0.005 0.898 £ 0.005
T5200.500+5200.2500 —0.14 +£0.01 0.71 £0.01
co cl 123 T 5500.500+5500.1000 —0.08 £ 0.01 0.48 4+ 0.01
rg ; —0.19 +0.01 0.37 £ 0.01
A00c —0.1392442736 52091790188  —11, 1511797962 #200.500,8500.2500
T5200.500+51000.2500 —0.22 +£0.01 0.24 £0.01
ax00c 0.9996830315 —0.534339383 4.4737534485 b =
P200c —1.8134201988 10.7732030454  —24.1372441776 T5200,1000-5200,2500 —0.081 + 0.002 0.902 + 0.002
75200, 1000+5500. 1000 —0.011 + 0.002 0.810 £ 0.002
Aspoc —1.88354029 7.56649037 —6.128838 200
75200, 10005500, 2500 —0.132 +0.003 0.666 + 0.003
aspoe 1.32586081 —2.18316668 2.90408494 p : —0.188 L 0.004 0461 L 0.004
D500¢ —6.74606335 21.7532933 —17.97632164 $200,1000-51000,2500 ’ ’ ’ '
A1000¢ —5.13368556 11.95696884 —6.5251012 "'5200,2500-3500, 1000 :88(3)(3) i 888§ 82(5)2 i 888§
a000c 3.98834671 —7.94206751 5.54853335 7'5200.2500-5500,2500 _0'024 n 0'005 0.784 1 0'004
P1000c —20.43015395 45.10712761 —25.21860361 '5200,2500-51000,2500 ’ ’ ’ '
A2500¢ —8.03447658 12.44996314 —4.704367 '5500.1000-3500.,2500 _8(1)33 i gggg gzig i gggé
azs00c 3.06066127 —4.70146171 3.01797036 "5500,1000-51000,2500 e : : ’
P2500¢ —42.49723101 64.44575098 —24.79541975 T'5500.2500+51000,2500 —0.006 + 0.001 0.927 £ 0.001
M2Csims MFs vs Raygal Data Raygal MFs vs M2Csims Data
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Figure A2. Left-hand panel: average halo sparsity for different overdensity configurations as a function of redshift predicted by solving equation (3) using
the M2Csims calibrated multiplicity functions for the Raygal cosmology plotted against the average sparsities from the Raygal halo catalogues. Right-hand
panel: average halo sparsities predicted by solving equation (3) using the Raygal calibrated multiplicity functions for the M2Csims cosmology plotted against
the average sparsities from the M2Csims halo catalogues. The lower panels show the relative difference between the predictions and the N-body halo catalogue
estimates.
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Table B2. Linear regression parameters of sparsity correlation coefficients

from the M2Csims halo catalogues.

M2Csims m q
7520050015200, 1000 —0.028 + 0.003 0.901 £ 0.002
7'5200.500+5200.2500 —0.134 4 0.006 0.726 & 0.005
75300.500+5500. 1000 —0.079 £ 0.004 0.48 4+ 0.01
200,500+ 5500.2500 —0.182 £ 0.003 0.395 £+ 0.003
75200.500-51000.2500 —0.212 4+ 0.004 0.262 £ 0.003
T $200,1000+5200.2500 —0.074 £ 0.001 0.909 £ 0.001
75200, 1000+5500. 1000 —0.014 £+ 0.003 0.826 4 0.003
75200,1000+5500.2500 —0.123 £ 0.003 0.685 £ 0.003
75300, 1000+51000,2500 —0.170 £+ 0.004 0.478 £ 0.003
T 5300,2500+5500. 1000 —0.028 £+ 0.002 0.870 £ 0.002
7 5200.2500+5500.2500 —0.003 £ 0.003 0.910 £ 0.002
F5200,2500-51000.2500 —0.019 £+ 0.004 0.787 £ 0.003
T 5500,1000+5500.2500 —0.070 % 0.001 0.869 4 0.001
T5500,1000-51000,2500 —0.112 £ 0.003 0.635 £ 0.002
—0.002 £ 0.001 0.926 £ 0.001

r5500,250[)151000,2500
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