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A B S T R A C T 

The dark matter halo sparsity, i.e. the ratio between spherical halo masses enclosing two different o v erdensities, pro vides a 
non-parametric proxy of the halo mass distribution that has been shown to be a sensitive probe of the cosmological imprint 
encoded in the mass profile of haloes hosting galaxy clusters. Mass estimations at several overdensities would allow for multiple 
sparsity measurements, which can potentially retrieve the entirety of the cosmological information imprinted on the halo profile. 
Here, we investigate the impact of multiple sparsity measurements on the cosmological model parameter inference. For this 
purpose, we analyse N -body halo catalogues from the Raygal and M2Csims simulations and e v aluate the correlations among six 

different sparsities from spherical o v erdensity halo masses at � = 200, 500, 1000, and 2500 (in units of the critical density). 
Remarkably, sparsities associated to distinct halo mass shells are not highly correlated. This is not the case for sparsities obtained 

using halo masses estimated from the Navarro-Frenk-White (NFW) best-fitting profile, which artificially correlates different 
sparsities to order one. This implies that there is additional information in the mass profile beyond the NFW parametrization 

and that it can be exploited with multiple sparsities. In particular, from a likelihood analysis of synthetic average sparsity data, 
we show that cosmological parameter constraints significantly impro v e when increasing the number of sparsity combinations, 
though the constraints saturate beyond four sparsity estimates. We forecast constraints for the CHEX-MATE cluster sample and 

find that systematic mass bias errors mildly impact the parameter inference, though more studies are needed in this direction. 

Key words: methods: numerical – galaxies: clusters: general – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

t the time of writing, a heavy focus within the field of precision
osmology is set on constraining the parameters of the � CDM
osmological model, named according to its two main constituents: 
 cosmological constant � and Cold Dark Matter (CDM), while 
lso exploring possible extensions to this model by investigating 
lternative scenarios of dark matter (see e.g. Boyarsky et al. 2019 ;
iemeyer 2020 ; Green & Kavanagh 2021 ) and dark energy (see e.g.
opeland, Sami & Tsujikawa 2006 ; Brax 2018 ). 
To this effect, many probes have been devised and applied to a

ange of observations such as cosmic microwave background (CMB) 
xperiments (e.g Fixsen et al. 1996 ; Komatsu et al. 2011 ; Planck
ollaboration VI 2020 ), big bang Nucleo-synthesis estimates (e.g. 
v er, Oliv e & Skillman 2015 ; Cooke, Pettini & Steidel 2018 ), large-

cale structure observations through measurements of the clustering 
f matter measured with various probes, such as galaxies (see 
.g. Perci v al et al. 2001 ; Tegmark et al. 2004 ; Cole et al. 2005 ;
 E-mail: Pier-Stefano.Corasaniti@obspm.fr (PSC); amandine.le-brun@obs 
m.fr (AMCLB) 

m  

h  
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eutler et al. 2017 ) or Lyman- α absorbing gas (Croft et al. 2016 ),
ravitational lensing (e.g. Birrer et al. 2020 ; Wong et al. 2020 ; Gatti
t al. 2021 ), measurements of the baryonic acoustic oscillation (BAO) 
cale (e.g. de Sainte Agathe et al. 2019 ; de Mattia et al. 2021 ; DES
ollaboration 2022 ), and tests of the Hubble diagram from SN Ia

tandard-candles (e.g. Anand et al. 2022 ; Riess et al. 2022 ) to cite
ut a few examples. 

In this reg ard, g alaxy clusters hav e pro v en to be a useful asset.
hese structures, the most massive gravitationally bound in the 
niv erse, e xhibit multiple properties that can be used to test the

osmological paradigm. As an example, cosmological constraints 
ave been inferred from measurements of their abundance (e.g. 
lanck Collaboration XX 2014a , Planck Collaboration XXIV 2016b ; 
acaud et al. 2018 ; Bocquet et al. 2019 ; Lesci et al. 2022 ; To et al.
021 ), their spatial clustering (Planck Collaboration XXI 2014b ; 
arulli et al. 2021 ) or the fraction of gas contained inside their

otential wells (e.g. Ettori, Tozzi & Rosati 2003 ; Allen et al. 2008 ;
ttori et al. 2009 ; Mantz et al. 2014 , 2022 ). 
The possibility of extracting cosmological information from esti- 
ates of the mass profiles of galaxy clusters is another probes that,

o we ver, remains relati vely unexplored (see e.g. Ettori et al. 2010 ).

http://orcid.org/0000-0002-0936-4594
http://orcid.org/0000-0002-5002-7100
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Figure 1. 2D illustration of the spherical mass profile of a halo as probed 
by multiple sparsity estimates at o v erdensities � 1 < � 2 < � 3 . Each sparsity 
s � i ,� j 

measures the fractional mass within the spherical shell comprised 
between r � i 

and r � j 
relative to the mass enclosed in the inner radius r � j 
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istorically, this approach has been built upon the remarkable result
hat density profiles of dark matter haloes from N -body simulation
re described to a good approximation by a two-parameter universal
unction, the Navarro-Frenk-White profile (NFW; Navarro, Frenk &

hite 1997 ). Ho we ver, the dif ficulty of obtaining accurate estimates
f the concentration–mass relations from galaxy cluster observations
as so far been the main limitation to the use of cluster mass profiles
s cosmological proxy (see e.g. Mead et al. 2010 ; King & Mead
011 ; Sereno et al. 2015 ). 
In recent years, a no v el approach in this direction has been

eveloped around the concept of halo sparsity , which is the ratio
f halo masses measured at radii enclosing different o v erdensities,
s a non-parametric proxy for the internal halo mass distribution.
n the seminal work of Balm ̀es et al. ( 2014 ), it has been shown
hat halo sparsity depends on the characteristics of the underling
osmological model. Further investigation by Corasaniti, Giocoli &
aldi ( 2020 ) has found that the average sparsity is also sensitive to
odified gravity scenarios and can therefore be used to constrain the

atter. Recently, cosmological constraints using measurements of the
verage halo sparsity of galaxy cluster samples have yielded results
ompetitive with other widely used probes (Corasaniti et al. 2018 ;
orasaniti, Sereno & Ettori 2021 ). 
The average halo sparsity has been shown to possess a num-

er of interesting features (see e.g. Corasaniti et al. 2018 , 2021 ;
orasaniti & Rasera 2019 ). On one hand, it provides a simple

ink between measurements of the mass profile of an ensemble
f galaxy clusters and cosmological model predictions derived
rom an integral relation, involving the halo mass function at the
 v erdensities of interest. On the other hand, being a mass-ratio, the
verage sparsity is less impacted by the systematic errors known to
ffect the measurements of galaxy cluster masses (see e.g. Nagai,
ikhlinin & Kravtsov 2007 ; Meneghetti et al. 2010 ; Rasia et al.
012 ; Velliscig et al. 2014 ; Sereno & Ettori 2015 ; Biffi et al.
016 ). Furthermore, the properties that characterize the halo sparsity
re independent of the specific form of the halo density profile.
s such, the use of multiple sparsity measurements from non-
arametric mass estimates opens the way to retrieving cosmological
nformation encoded o v er the entire halo mass profile rather than
rom a single determination at two particular o v erdensities. Ho we ver,
ecause of the gravitational assembly processes shaping the mass
istribution of haloes, we can expect these different sparsities to be
orrelated. 

Here, we set to e v aluate the minimum number of multiple average
parsity estimates that sample the halo mass profile at different
 v erdensities while providing maximal constraints on a set of
osmological parameters. For this purpose, we perform a thorough
nalysis of average sparsities and their correlations using halo
atalogues from large-volume high-resolution N -body simulations.
uilding upon this numerical study, we perform a Markov Chain
onte Carlo likelihood analysis on synthetic data sets to investigate

he level of cosmological parameter constraints that can be inferred
rom different combinations of average sparsity measurements under
ifferent fiducial cosmologies and cluster mass measurement error
ssumptions. 

The paper is organized as follows. In Section 2 , we introduce
he basic concepts, describe the N -body simulations, and present the
esults of the analysis of numerical halo catalogues. In Section 3 ,
e describe the cosmological parameter inference from multiple

verage sparsity measurements for two distinct synthetic data sets,
hile in Section 4 , we present a parameter forecast analysis for a

ealistic galaxy cluster sample. Finally, in Section 5 , we discuss the
onclusions. 
NRAS 516, 437–452 (2022) 
 C O S M O L O G Y  WI TH  H A L O  SPARSITY  

.1 Definition and properties 

alo sparsity is defined as (Balm ̀es et al. 2014 ): 

 � 1 ,� 2 = 

M � 1 

M � 2 

, (1) 

here M � 1 and M � 2 are halo masses at radii r � 1 and r � 2 , which
nclose the o v erdensity � 1 and � 2 , respectiv ely, with � 1 < � 2 

with the o v erdensities in units of the critical ρc or background ρb 

ensity). This ratio can also be interpreted as the ratio of the mass
 M 12 within the radial shell �r = r � 1 − r � 2 and of the mass within

he inner radius r � 2 , i.e. s � 1 ,� 2 = �M 12 /M � 2 + 1. Hence, the values
f sparsities at multiple o v erdensity pairs probe the fractional mass
rofile of the halo. As an example, in Fig. 1 , we show a graphic
llustration of the case of halo masses at o v erdensities � 1 , � 2 , and � 3 ,
hich allow to estimate three sparsity combinations s � 1 ,� 2 , s � 1 ,� 3 ,

nd s � 2 ,� 3 . 
Quite importantly, at an y giv en redshift, the halo sparsity is largely

ndependent of the outer halo mass M � 1 (Balm ̀es et al. 2014 ;
orasaniti et al. 2018 ; Corasaniti & Rasera 2019 ); consequently,

or a given pair of o v erdensities, the ensemble av erage value can be
btained by integrating the equality 

d n 

d M � 2 

= 

d n 

d M � 1 

s � 1 ,� 2 

d ln M � 1 

d ln M � 2 

, (2) 

here d n/ d M � 2 is the mass function at M � 2 of the ensemble of
aloes with mass function d n/ d M � 1 at M � 1 (i.e. mass functions of
atched haloes), to obtain the average sparsity relation: ∫ M 

max 
� 2 

M 

min 
� 2 

dn 

dM � 2 

d ln M � 2 = 〈 s � 1 ,� 2 〉 
∫ 〈 s � 1 ,� 2 〉 M 

max 
� 2 

〈 s � 1 ,� 2 〉 M 

min 
� 2 

dn 

dM � 1 

d ln M � 1 . 

(3) 

iven the functional form of d n/ d M � 1 and d n/ d M � 2 , the abo v e
quation can be solved numerically to obtain the value of the average
parsity. Corasaniti et al. ( 2018 ) has shown that equation ( 3 ) provides
redictions of the average sparsity that are accurate to a few per cent
evel for s 200, 500 and s 500, 1000 , thus providing the foundations to
erform cosmological parameter inference using average sparsity
easurements. 
Notice that equation ( 3 ) is largely insensitive to the choice of

he integration limits. Indeed, since at the high-mass end the mass
unction drops exponentially, the upper limit can be set to any

art/stac2196_f1.eps
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Bouillot & Rasera 2014 ). 
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rbitrary large number; while at the low-mass end, given that the halo
parsity is nearly constant as a function of halo mass, the integral
an be set without loss of generality to the minimum halo mass of
he halo catalogues used for the calibration of the mass functions. 

Hereafter, we will test the validity of equation ( 3 ) o v er a wider
ange of o v erdensities than those originally investigated in Corasaniti
t al. ( 2018 ), which is a necessary step to infer cosmological
arameter constraints from multiple average sparsity determinations. 

.2 N -body simulations 

e use halo catalogues from two distinct sets of N -body simula-
ions, characterized by different cosmological model parameters, but 
pproximately similar mass resolution and generated with the same 
imulation code. This enables us to extend our investigation of the 
verage sparsity correlations to the dependence upon the underlying 
osmological model (around the � CDM model best fitting to the 
MB data). 

.2.1 RayGalGroupSims 

he RayGalGroupSims � CDM simulation, or simply Raygal, con- 
ists of a (2.6 Gpc h −1 ) 3 volume and sampled with 4096 3 par-
icles (corresponding to a particle mass resolution m p = 1 . 88 ×
0 10 M � h 

−1 ) realized with the adaptive mesh refinement (AMR)
 -body code RAMSES (Teyssier 2002 ). The cosmological model 
arameters have been set consistently to the WMAP-7 year data 
nalysis of a flat � CDM model (Komatsu et al. 2011 ): �m = 0.2573,
b = 0.04356, h = 0.72, n s = 0.963, and σ 8 = 0.801. We refer

nterested readers to Breton et al. ( 2019 ) and Rasera et al. ( 2021 ) for
 detailed description of the RayGalGroupSims suite. Full redshift 
napshots have been stored at z = 0.00, 0.50, 0.66, 1.00, 1.14, 1.50,
nd 2.00. 

.2.2 M2Csims � CDM simulation 

he M2Csims � CDM simulation suite consists of three (1 Gpc h −1 ) 3 

olume boxes with 2048 3 particles (corresponding to a particle mass 
esolution m p = 1 . 02 × 10 10 h 

−1 M �) run with the AMR N -body
ode RAMSES (Teyssier 2002 ). The cosmological model parameters 
re set to the Planck -2015 � CDM cosmology (Planck Collaboration 
III 2016a ) with �m = 0.3156, �b = 0.0492, h = 0.6727, n s =
.9645, and σ 8 = 0.831. We refer interested readers to Le Brun
t al. ( 2018 ) for a more detailed description of the suite (a complete
escription will appear in Le Brun et al., in preparation). Note that the
uite also contains high-resolution zooms for more than 450 massive 
alaxy clusters, which will not be used here as the most important
equirement is the number of galaxy clusters o v er the resolution
f their profiles. Full snapshots have been stored at z = 0.00, 0.125,
.25, 0.30, 0.50, 0.60, 0.75, 0.80, 1.00, 1.25, and 1.50. In the analyses
resented here, we use catalogues from only two of the M2Csims
imulation suite corresponding to a total comoving volume of 2 (Gpc 
 

−1 ) 3 , slightly smaller than that of the Raygal simulation. 

.3 N -body halo catalogues 

alo catalogues for both simulations have been generated with the 
pherical o v erdensity (SO) algorithm (Lace y & Cole 1994 ) imple-
ented in the parallel code pSOD . 1 The algorithm first e v aluates the
article density in each cell, then starts from the cell with maximum
ensity. In each candidate cell, the centre position is chosen to be
hat of the particle with the greatest number of neighbouring particles
ithin a sphere of a given radius. Afterwards, the SO algorithm

omputes the particle density in spheres of increasing radii around 
hat central particle until it reaches the o v erdensity threshold � .
ereafter, we will al w ays refer to o v erdensities giv en in units of the

ritical density. We focus on haloes detected with an o v erdensity
hreshold � = 200. For each halo in the catalogues, we estimate
asses at o v erdensities � = 200, 500, 750, 1000, 1500, 2000, and

500, respectively. In order to be exempt of numerical resolution 
rtefacts, we further select haloes with M 2500 c > 10 13 M � h 

−1 . This
lso guarantees us that we consider haloes with masses M 200 c > 10 13 

 � h 

−1 , thus corresponding to haloes hosting galaxy groups and
lusters. 

Since we are interested in the application of multiple average 
parsity measurements to galaxy cluster observations, we limit our 
nalysis to halo catalogues in the redshift range 0 ≤ z ≤ 1.5. This
s because the detection of clusters at higher redshifts, as well
s the estimation of the cluster masses at the level of accuracy
equired, seems currently unrealistic. Also, for consistency with 
he conventions of the galaxy cluster community, we focus on halo

asses at o v erdensities � = 200, 500, 1000, and 2500, respectively.

.4 Halo mass function calibration 

e compute the halo mass function for each of the mass o v erdensity
efinitions in the halo catalogues as: 

d n 

d ln M � 

= 

N ( M � 

) 

� ln M � 

1 

L 

3 
, (4) 

here N ( M � 

) is the number of haloes in a logarithmic mass bin of
ize � ln M � 

= 0.3 centred at M � 

and L is the size of the simulation
ox. We use the numerical estimates of the halo mass functions to
alibrate, at each redshift snapshot, the coefficients of the Sheth–
ormen (ST; Sheth & Tormen 1999 ) formula f ST as given by: 

d n 

d M � 

= 

ρm 

M � 

(
− 1 

σ

d σ

d M � 

)
f ST ( σ ) , (5) 

here ρm is the cosmic matter density, σ ( M � 

) is the root-mean-
quare fluctuation of the linear density field smoothed on a scale
nclosing the mass M � 

, and 

 ST ( σ ) = A � 

δc 

σ

√ 

2 a � 

π

[ 

1 + 

(
a � 

δ2 
c 

σ 2 

)−p � 
] 

e 
− a � δ

2 
c 

2 σ2 , (6) 

here A � 

, a � 

, and p � 

are calibration parameters and δc is the linearly
xtrapolated spherical collapse threshold, which we compute using 
he formula by Kitayama & Suto ( 1996 ). 

It is worth noticing that the functional form of the ST parametriza-
ion is the base of all the numerically calibrated formula that aim
o predict the halo mass function for any given set of cosmological
arameters (see e.g. Tinker et al. 2008 ; Bocquet et al. 2016 ; Despali
t al. 2016 ; Castro et al. 2021 ). This is because such a form of
ultiplicity function manifests a high level of universality. Here, 
e hav e e xplicitly kept the dependence on linear spherical collapse

hreshold δc , which as shown in Courtin et al. ( 2011 ), it allows to
etter account for the cosmology dependence of the multiplicity 
MNRAS 516, 437–452 (2022) 
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M

Figure 2. Average halo sparsity estimates for different o v erdensity configurations as a function of redshift for the Raygal (left-hand panel) and M2Csims 
(right-hand panel) halo catalogues. The data points in the plots correspond to the N -body estimates, while the various lines show the analytical predictions 
from the average sparsity relation of equation ( 3 ) that has been solved using the ST-parametrized mass functions calibrated on the simulations. The relative 
differences between the N -body and analytical results are shown in the bottom panels, where the shaded areas delimit the regions with less than 5 per cent 
relati ve dif ferences. Dif ferences between the average sparsity values from the Raygal and M2Csims halo catalogues for the same o v erdensity pairs pertain to 
the differences of the simulated cosmological models. 
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unction. On the other hand, a key difference among the calibrated
ultiplicity functions discussed in the literature concerns the redshift

arametrization of the ST parameters. Here, we follow the approach
f Despali et al. ( 2016 ) and parametrize the redshift dependence of
he ST coefficients in terms of an expansion in logarithmic powers
f the o v erdensity � relativ e to the virial o v erdensity at the redshift
f interest. The intent is to capture the redshift evolution of the halo
ass function at different o v erdensities � for the sample of haloes

etected at � = 200. In particular, we assume a quadratic expansion,
nd we refer the reader to Appendix A for a detailed description of
he fitting procedure of the halo mass functions. None the less, we
 ould lik e to stress that our calibration substantially differs from that
f Despali et al. ( 2016 ), who have provided fitting formula calibrated
n halo samples detected with different o v erdensities. As such, their
ass function cannot be used to predict the halo sparsity unless

orrections are taken into account for the systematic due to effect of
nmatched haloes as described in (Corasaniti et al. 2021 ). 
Alternatively, the halo mass function for a given cosmological

etup can be predicted from emulators. These are built using halo
atalogues from suites of N -body simulations with different cosmo-
ogical parameters (see e.g. McClintock et al. 2019 ; Nishimichi et al.
019 ; Bocquet et al. 2020 ). In a similar manner, it should be possible
o build emulators of the average halo sparsity, a possibility which
e will investigate in a future study. 

.5 Average sparsities 

iven a set of mass estimates M � i 
measured at n o v erdensities � i 

in units of the critical density), we can compute up to N s = 

(
n 

2 

) =
n ! 

2( n −2)! distinct sparsities. As such, if we consider a number m of them
ith m < N s , then the number of possible m sparsity combinations

s given by N m 

= 

(
N s 
m 

) = 

N s ! 
m !( N s −m )! . 

As already mentioned, here we restrict ourselves to n = 4 mass
easurements at � = 200, 500, 1000, and 2500 and for each halo in

he catalogues, we focus on the following set of N s = 6 halo sparsities:
 200, 500 , s 200, 1000 , s 200, 2500 , s 500, 1000 , s 500, 2500 , and s 1000, 2500 . Notice
NRAS 516, 437–452 (2022) 
hat in such a case, there is a total of N tot = 

∑ N s 
m = 1 N m 

= 63 possible
ermutations for any number m of sparsities used in the analysis.
he factorial dependence of the number of combinations prohibits

he full exploration of this parameter space; as such, in later sections,
e will clearly quote which combinations are used. From this set,

t each redshift snapshot, we e v aluate the halo ensemble average
parsities by computing the arithmetic mean of the individual halo
parsities: 

 s � 1 ,� 2 〉 ≡
〈

M � 1 

M � 2 

〉
= 

1 

N h 

N h ∑ 

i 

s i � 1 ,� 2 
, (7) 

here N h is the total number of haloes in a catalogs at a given redshift.
In Fig. 2 , we plot the average halo sparsities for the Raygal

left-hand panel) and M2Csims (right-hand panel) halo catalogues
espectively. In the same plots, we also show the values predicted by
he solutions of equation ( 3 ) and the relative differences with respect
o the N -body estimates (bottom panels). We can see that differences
re well within 5 per cent level and in some cases even at sub-per cent
evel. In Appendix A , we also show the relati ve dif ferences between
he prediction from the Raygal calibrated mass functions for the

2Csims cosmology and the M2Csims average halo sparsity and
ice versa, which we find to be � 5 per cent , consistent with those
hown in Fig. 2 . 

Notice that there is a systematic difference between the values
f the average sparsities obtained from the Raygal simulation and
hose from the M2Csims case. This pertains to the cosmological
ependence of the sparsity originally pointed out in Balm ̀es et al.
 2014 ). 

The average halo sparsity is mainly sensitive to a degenerate
ombination of �m and σ 8 as given by S 8 = σ8 

√ 

�m 

/ 0 . 3 (Corasaniti
t al. 2018 , 2021 ). In particular, the lo wer the le vel of clustering
f a given cosmological model, i.e. the smaller the value of S 8 , the
igher the value of the average halo sparsity. This is because cosmic
tructures will form later in a cosmological model with lower S 8 than
n a model with a larger value. Consequently, such structures will be
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ess concentrated or equi v alently more sparse than in a model with a
arger value of S 8 . 

Comparing the trends in Fig. 2 , we can see that the Raygal average
parsities at an y giv en redshift are systematically larger than the

2Csims values, which is consistent with the fact that the Raygal 
 CDM model has S 8 = 0.742, while in the case of the M2Csims
e have S 8 = 0.852. It is also worth noticing that, among the
ifferent sparsity estimates, the one with the largest value and the 
argest variation with the underlying cosmology is associated to 
 s 200, 2500 〉 . In particular, the maximum relative variation of 〈 s 200, 2500 〉
ith respect to the M2Csims case amounts to ∼ 20 per cent . This is

onsistent with the results of Balm ̀es et al. ( 2014 ), who have found
hat the cosmological dependence of the sparsity increases as the 
ifference between � 1 and � 2 increases. On the other hand, we can
lso notice that sparsities for different o v erdensity pairs do not have
he same sensitivity to the underlying cosmology. As an example, we 
nd that 〈 s 500, 1000 〉 and 〈 s 1000, 2500 〉 vary by only a few per cent. 

.6 Average sparsities correlations 

he cosmological information encoded in the estimated average 
parsities is not independent. In fact, the gravitational processes that 
hape the mass assembly of the haloes correlate the properties of
he mass distribution within different radial shells. For this reason, 
e use the data from the N -body halo catalogues to compute the

orrelation coefficients of the different sparsity estimates, which is 
iven by: 

 s i ,s j = 

∑ N h 
k= 1 

(
s k i − 〈 s i 〉 

) (
s k j − 〈 s j 〉 

)
√ ∑ N h 

k= 1 

(
s k i − 〈 s i 〉 

)2 ∑ N h 
k= 1 

(
s k j − 〈 s j 〉 

)2 
, (8) 

here the index i , j = { (200, 500), (200, 1000),..., (1000, 2500) }
ith i 	= j . They are shown in Fig. 3 as a function of redshift for

he Raygal and M2Csims halo catalogues, respectively. In order to 
acilitate the visualization of the low correlated pairs of sparsity 
onfigurations against the highly correlated one, we have adopted 
he magma colourmap for the colours of the various lines. 

First of all, from Fig. 3 , we may notice that all correlations increase
rom high-to-low redshifts both for the Raygal haloes and M2Csims 
nes. This is a direct consequence of the mass assembly process
f haloes, which grow from inside out (Taylor 2011 ; Wang et al.
011 ). As the haloes assemble their mass o v er cosmic time, the
ass distributions within different mass shells become increasingly 

orrelated. Secondly, we can see that the correlations are smaller for
parsities that sample the mass profile within mass shells that are 
t larger separations. As an example, s 200, 500 and s 1000, 2500 have a 
aximal ∼25 per cent correlation at z = 0, which is not the case

or sparsities probing the mass distribution in close mass shells (or
v en o v erlapping ones) with correlation greater than 50 per cent.
e find the redshift evolution of the correlation coefficients is to 

e well-approximated by a linear regression, which we provide in 
ppendix B for practical applications. 
Notice that the correlation coefficients from the Raygal catalogues 

lightly differ from those of the M2Csims ones. Again, this is a direct
onsequence of the differences between the simulated cosmological 
odels. In particular, at any given redshift, the correlations from 

2Csims are slightly larger than that from Raygal, which is consis-
ent with the fact that the former has a larger S 8 value than the latter.
e vertheless, these dif ferences are too small to have an impact on the

osmological parameter inference, as we will discuss in Section 3 . 
In contrast, we would like to highlight the fact that if the density

rofile of haloes was exactly described by the NFW formula (Navarro 
t al. 1997 ), then all the information on the halo mass profile would
e fully encoded in the values of the concentration parameter and the
 v erall halo mass, giv en that the halo mass at any other o v erdensities
an be derived from these two quantities. Furthermore, because of 
he one-to-one relation between halo sparsity and concentration for 
FW haloes (see Balm ̀es et al. 2014 ), this would imply that a single

parsity estimate would carry all the information on the mass profile.
ence, if the density profile of haloes exactly were to follow the NFW
odel, one should find that dif ferent sparsities, e ven those probing

istant mass shells, are highly correlated. One may argue that, given
he fact that for each halo the best-fitting value of the concentration is
 stochastic variable characterized by a scatter and a mean that varies
ith M 200 c , the correlation among the NFW inferred sparsities, e.g.
 200 ,� 2 and s � 3 ,� 4 (with � 2 	= � 3 	= � 4 > 200), may not be exactly
ne. Ho we ver, because the functional form of the mass profile has
o follow NFW, these should still be close to unity. This is indeed
hat we find when we compute the correlations among sparsities that
ave been computed using NFW inferred masses for each halo in the
atalogues, as shown in Fig. 4 . More specifically, for each halo with a
iven mass M 200 c in the M2Csims catalogues, we have fit its density
rofile with the NFW function and deduced the corresponding best- 
tting NFW concentration parameter c 200 c . Then, given the values 
f M 200 c and c 200 c , we have calculated the NFW halo mass at � =
00, 1000, and 2500 (in units of the critical density) and computed
he associated sparsities. Finally, we have estimated the correlation 
oefficients among the various sparsities using equation ( 8 ). As we
an see in Fig. 4 , the correlation coefficients among these NFW
stimated sparsities are all close to unity. This is in sharp contrast
ith what we found from the analysis of the N -body halo masses

hown in Fig. 3 . 
Indeed, the fact that differently from the NFW case, the correla-

ions among different sparsities are not all clustered around r = 1, but
pread o v er a larger interv al of v alues, as sho wn in Fig. 3 , is indicati ve
f the fact that on average N -body haloes are not exactly described by
he NFW formula. Moreo v er, it clearly shows that there is additional
nformation about the halo mass profile, which is not captured 
y the NFW profile but can be extracted using multiple sparsity
easurements, thus potentially providing additional constraints on 

he cosmological parameters. 

 SYNTHETI C  DATA  ANALYSI S  

e seek to investigate the constraints on cosmological parameters 
hat can be inferred from multiple sparsity measurements. To this 
nd, we use the average sparsity estimates from the N -body halo
atalogues as a synthetic data set and perform a Markov Chain
onte Carlo likelihood analysis under different average sparsity 

rror model assumptions. Our goal is twofold. On one hand, we want
o test to which extent the analysis recovers the fiducial cosmological
arameters of the simulated cosmologies. On the other hand, we aim
o study how the inferred parameter uncertainties vary for different 
parsity configurations, uncertainties, and fiducial cosmologies. 

.1 Sparsity configurations and uncertainties 

e consider the following set of average sparsity combinations: 

S1) 〈 s 200, 2500 〉 ; 
S2) 〈 s 200, 500 〉 , 〈 s 200, 2500 〉 ; 
S3) 〈 s 200, 500 〉 , 〈 s 200, 2500 〉 , 〈 s 500, 2500 〉 ; 
S4) 〈 s 200, 500 〉 , 〈 s 200, 1000 〉 , 〈 s 200, 2500 〉 , 〈 s 500, 2500 〉 ; 
S5) 〈 s 200, 500 〉 , 〈 s 200, 1000 〉 , 〈 s 200, 2500 〉 , 〈 s 500, 1000 〉 , 〈 s 500, 2500 〉 ; 
MNRAS 516, 437–452 (2022) 



442 P. S. Corasaniti et al. 

M

Figure 3. Sparsity correlation coefficients from the Raygal (left-hand panel) and M2Csims (right-hand panel) halo catalogues, respectively. As we can see over 
the redshift range 0 < z < 1.5, sparsity combinations probing the halo mass distribution in close (o v erlapping) mass shells are highly correlated ( r � 0.5). This 
is not the case of sparsities associated to mass shells that are at larger separations ( r � 0.5). 

Figure 4. Sparsity correlation coefficients obtained using the mass estimates 
from the best-fitting NFW profiles of the M2Csims halo catalogues. As we 
can see, contrary to the correlations among sparsities estimated from the SO 

halo masses, assuming that the density profile of haloes is described by NFW 

profile artificially correlates sparsities to order r ≈ 1, even those probing mass 
distribution in mass shells at large separations. 
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2 We neglect possible correlations among cluster mass determination, a 
choice which makes the assumed errors on the average sparsity only more 
conserv ati ve. In fact, gi ven that the sparsity is a mass ratio, neglecting the 
correlations r � 1 ,� 2 between the determination of the masses M � 1 and M � 2 is 
equi v alent to o v erestimating the errors on the sparsity by a factor ∼ 1 / 

√ 
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S6) 〈 s 200, 500 〉 , 〈 s 200, 1000 〉 , 〈 s 200, 2500 〉 , 〈 s 500, 1000 〉 , 〈 s 500, 2500 〉 ,
 s 1000, 2500 〉 ; 

where starting from the single sparsity 〈 s 200, 2500 〉 , we explore
ultiple sparsity configurations up to S6, which corresponds to

he maximal number of sparsities N s that can be obtained from the
stimation of halo masses at four different o v erdensities. 

In principle, for the configurations S1–S5, we have a total of
2 possible sparsity configurations to study. Rather than a brute
orce investigation, for any m < 6 number of sparsities, we have
dopted a physically moti v ated strate gy to e xplore among the various
ossibilities. This relies upon the observation that the cosmological
ifferences among single average sparsity measurements 〈 s � 1 ,� 2 〉
t a given redshift are maximized when the differences between
 1 and � 2 are the largest (Balm ̀es et al. 2014 ). Hence, given the
NRAS 516, 437–452 (2022) 
ange of o v erdensities � we have considered, we set S1 to be the
parsity associated to the largest o v erdensity separation � 

min 
1 = 200

nd � 

max 
2 = 2500. For the S2 configuration, we proceed by adding

he average sparsity that probes the average mass distribution in a
ass shell at an intermediate o v erdensity between � 

min 
1 and � 

max 
2 . In

ur case, we have chosen � = 500 and considered 〈 s 200, 500 〉 . This is
one with the intent of investigating how the cosmological parameter
onstraints vary with the addition of information encoded within an
ntermediate mass shell with respect to the one already accounted
y the previous sparsity configuration. For the configuration S3, we
onsider the average sparsity associated to the overdensities with the
econd largest separations among those considered at S2, which is
 s 500, 2500 〉 . Then, we proceed in a similar manner for S4 and S5. 

For each of the sparsity combinations in the list, we consider
wo distinct synthetic data sets that consist of the average sparsity
stimates at different redshifts from the Raygal and M2Csims cata-
ogues, respecti vely. Gi ven the larger number of redshift snapshots
f the M2Csims simulations, this enable us to asses the impact of
dditional average sparsity estimates for a larger number of redshifts
n the same redshift interval 0 ≤ z ≤ 1.5. 

Here, we account for statistical uncertainties on average sparsity
easurements and propagate the effect of systematic errors due to

he mass function model uncertainties in predicting the redshift and
osmological model dependence of the average sparsity. In Section 4 ,
e extend the analysis of systematics and present the result of
 forecast parameter inference analysis for realistic cluster surv e y
onfigurations. 

Statistical errors on average sparsities are the consequence of
he propagation of the uncertainties of cluster mass measurements. 2 

ollowing Corasaniti et al. ( 2018 ), we model the error on the average
parsity 〈 s � 1 ,� 2 〉 at redshift z as: 

〈 s( z) 〉 = 

〈 s � 1 ,� 2 ( z) 〉 √ 

N cl ( z) 

√ 

e 2 M � 1 
+ e 2 M � 2 

, (9) 
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here e M � 1 
and e M � 2 

are the fractional error on the mass measure-
ents at o v erdensities � 1 and � 2 , respectiv ely, and N cl ( z) is the

umber of clusters in the bin centred at redshift z. 
We focus on a simplified configuration and consider two distinct 

ases for the statistical errors: σ 〈 s ( z) 〉 = 0.3 and 0.1. The former is a
ather conserv ati ve choice, corresponding to having ∼50 clusters per 
edshift bin with 30 per cent fractional mass measurement errors, 
hile the latter is a more optimistic assumption corresponding to 
aving ∼100 clusters per redshift bin with 10 per cent precision on 
he estimated masses. 

We treat the discrepancies between the average sparsity predictions 
nd the N -body found in Section 2.5 and Appendix A as an intrinsic
ystematic error σ sys 

s � 1 ,� 2 
( z) on the average sparsity 〈 s � 1 ,� 2 〉 obtained

y solving equation ( 3 ). 

.2 Priors and likelihood 

e specifically focus our analysis on �m and σ 8 , the cosmological 
arameters to which the sparsity is most sensitive, while setting h ,
b , and n s to their fiducial values. We assume uniform priors on �m 

U (0.1, 0.5) and σ 8 ∼ U (0.2, 1.2). 
We perform a Markov Chain Monte Carlo (MCMC) sampling of 

he log-likelihood function: 

− 2 ln L = 

m ∑ 

i,j= 1 

N z ∑ 

k= 1 

� s i ( z k ) · C 

−1 
s i ,s j 

( z k ) · � s j ( z k ) , (10) 

ith m ≤ N s the number of sparsity configurations considered, N z 

he number of redshift bins and 

 s i ( z k ) = 〈 s mf 
i ( z k ) 〉 (1 + 

˜ Y 

s i 
z k 

) − 〈 s i ( z k ) 〉 , 
here 〈 s i ( z k ) 〉 is the synthetic data point at the k -th redshift bin
 k for the i -th configuration of o v erdensities, while 〈 s mf 

i ( z k ) 〉 is the
verage sparsity predicted by the mass function model equation ( 3 )
ith ˜ Y 

s i 
z k 

∼ N (0 , σ sys 
s i 

( z k )) being a Gaussian random variable which
e marginalize o v er, characterized by zero mean and standard 
eviation σ sys 

s i 
( z). The latter being the sum of the intrinsic scatter with

espect to the N -body average sparsities discussed in Section 2.5 and
ppendix A . The covariance matrix reads as: 

 s i ,s j ( z k ) = σ 2 
〈 s( z k ) 〉 r s i ,s j ( z k ) , (11) 

here r s i ,s j ( z k ) is the correlation matrix at redshift z k , which we have
reviously computed using the Raygal and M2Csims catalogues in 
ection 2.6 and σ〈 s( z k ) 〉 is the statistical uncertainty on the average 
parsity estimates. 

.3 Results 

e use the MCMC chains to infer marginal constraints on �m , 
8 , and S 8 . For this purpose, we have implemented a Metropolis–
astings algorithm and tested the convergence of the chains with the 
elman–Rubin diagnostics (see Roy 2020 , for a re vie w). We have

nalysed the chains using the publicly available package GETDIST 3 

Lewis 2019 ). The results are summarized in Table 1 where we quote
he marginalized 1 σ errors on the parameters as obtained from the 
arious cases we have considered. We plot the corresponding 1 and 
 σ credibility contours in the �m − σ 8 from the Raygal synthetic 
ata analysis in Fig. 5 and for the M2Csims data set in Fig. 6 . 
 https:// getdist.readthedocs.io/ 

i  

h  

a  
.3.1 Raygal synthetic data set 

irst, we find that for all sparsity configurations S1–S6, the best-
tting parameters of the MCMC likelihood analysis coincide with 

he values of the Raygal fiducial cosmology . Unsurprisingly , the
onstraints on �m and σ 8 (and consequently S 8 ) quoted in Table 1
how that, for a given sparsity configuration, the inferred param- 
ter errors obtained assuming statistical errors of σ 〈 s ( z) 〉 = 0.1 are 
ystematically smaller than those obtained for σ 〈 s ( z) 〉 = 0.3. This 
an also be seen by the different size of the 1 and 2 σ credibility
ontours shown in Fig. 5 . Quite interestingly, we notice that, in both
ases, the contours shrink from S1 to S4, thus indicating that using
dditional sparsity measurements does impro v e the cosmological 
onstraints. On the other hand, we can see that, in the case of a
reater number of sparsity configurations S5 and S6, the contours 
o not shrink further. Quite the opposite, from the marginalized 
rror values quoted in Table 1 , we find that the constraints on the
osmological parameters slightly degrade. This is most likely due 
o the fact that the additional sparsities considered in S5 and S6,
amely 〈 s 500, 1000 〉 and 〈 s 1000, 2500 〉 , do not vary significantly with the
osmological parameters. As we have seen in Section 2.5 , these have
ariation of the order of per cent level around the fiducial cosmology,
hich is of the same order of the accuracy of the cosmological model
redictions given by equation ( 3 ), using the numerical ST calibrated
ass functions. This trend can be better seen in the inset plots,
here we show the marginalized 1 σ error on S 8 as a function of the

parsity configurations considered. As we can see, σS 8 diminishes 
s a function of the number of sparsity configuration considered, 
eaching a minimum value for S4, while increasing for S4 and S5
 possible consequence of the �m − σ 8 de generac y. Indeed, taking 
s figure of merit, the values of the area within the 1 σ credibility
ontours in the �m − σ 8 plane highlights better the saturation of the 
onstraints on the cosmological parameters beyond S4. As we can 
nfer from the values quoted in Table 2 , the area diminishes from S1
o S4 and then remains constant. 

Quantitatively, we find that in the case of σ 〈 s ( z) 〉 = 0.3, the
arginalized 1 σ error on �m impro v es by approximately a factor

f 20 from S1 to S4; similarly, the uncertainties on σ 8 impro v es by
 factor ∼15. Even, considering three sparsity measurements, such 
s in the S3 configuration, leads to an impro v ement of a factor ∼5
n σ�m 

and a factor ∼4 on σσ8 . In the case of σ 〈 s ( z) 〉 = 0.1, we find
hat the σ�m 

reduces by a factor of ∼9 from S1 to S4 and σσ8 by a
actor of ∼8. On the other hand, it is worth noticing that, for S4, the
onstraints do not significantly impro v e when reducing the statistical
rrors on the average sparsities by a factor of 3 (i.e. from σ 〈 s ( z) 〉 =
.3 to 0.1). This suggests that the use of fours sparsity measurements
an mitigate the need for impro v ed mass measurements. 

.3.2 M2Csims synthetic data set 

he likelihood analysis of the MC2sims data set shows trends 
hat are similar to those we have found using the Raygal data
et. Again, we have that, in all the cases we considered, the best-
tting parameters coincide with the values of the MC2sims fiducial 
osmology. Moreo v er, as it can be noticed from the values quoted
n Table 1 for σ 〈 s ( z) 〉 = 0.3 and 0.1, also in these cases we find
hat the uncertainties on �m , σ 8 (and S 8 ) decrease to a minimum
alue as the number of sparsities increases from S1 to S4, while they
lightly increase for S5 and S6 configurations. This can also be seen
n Fig. 6 , where the credibility contours shrink from S1 to S4 as we
ave already found in the Raygal case. The inset plot shows σS 8 as
 function of the number of sparsity configurations, which reaches a
MNRAS 516, 437–452 (2022) 
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Table 1. Marginalized 1 σ errors on �m , σ 8 , and S 8 from the MCMC likelihood analysis of the Raygal and M2Csims synthetic 
data inferred assuming average sparsity errors of σ 〈 s ( z) 〉 = 0.3 and 0.1, respectively, for the various sparsity configurations S1–S6. 
As we can see, the constraints on the cosmological parameters impro v e for increasing number of sparsity configurations, reaching a 
minimum for S4. 

Raygal ( σ 〈 s ( z) 〉 = 0.3) Raygal ( σ 〈 s ( z) 〉 = 0.1) M2Csims ( σ 〈 s ( z) 〉 = 0.3) M2Csims ( σ 〈 s ( z) 〉 = 0.1) 
Configuration σ�m σσ8 σS 8 σ�m σσ8 σS 8 σ�m σσ8 σS 8 σ�m σσ8 σS 8 

S1 0.039 0.124 0.086 0.019 0.061 0.038 0.068 0.100 0.042 0.043 0.060 0.018 
S2 0.037 0.109 0.072 0.016 0.049 0.030 0.061 0.086 0.037 0.034 0.047 0.015 
S3 0.007 0.027 0.019 0.003 0.012 0.008 0.016 0.025 0.008 0.007 0.010 0.004 
S4 0.002 0.008 0.005 0.002 0.010 0.006 0.007 0.009 0.002 0.006 0.008 0.001 
S5 0.005 0.020 0.015 0.002 0.011 0.007 0.011 0.017 0.007 0.006 0.007 0.003 
S6 0.005 0.020 0.015 0.002 0.011 0.007 0.011 0.017 0.007 0.006 0.007 0.003 

Figure 5. 1 and 2 σ credibility contours in the �m − σ 8 plane for the Raygal synthetic data sets. The different lines correspond to the sparsity configurations 
S1–S6 described in Section 3.1 , assuming statistical errors on the average sparsity estimates of σ 〈 s ( z〉 ) = 0.3 (left-hand panel) and σ 〈 s ( z〉 ) = 0.1 (right-hand 
panel). The cross corresponds to the cosmological parameter values of the fiducial Raygal cosmology. As the best-fitting parameters for the different sparsity 
configurations coincide with those of the fiducial model, we do not show them in the plot to a v oid cluttering. The inset plot shows the 1 σ error on S 8 as a 
function of the number of average sparsity configurations S1–S6. As we can see the uncertainties saturate beyond S4. 
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inimum value for S4 and slightly increase for S5 and S6. Again, we
an better appreciate the saturation of the cosmological parameter
onstraints at S4 from the values of the area enclosed within the 1 σ
redibility contours quoted in Table 3 . 

Quantitati vely, from the v alues quoted in Table 1 , we find an
mpro v ement of a factor of ∼10 on σ�m 

and σσ8 for σ 〈 s ( z) 〉 = 0.3, and
 factor of ∼7 for σ 〈 s ( z) 〉 = 0.1. 

Notice that in addition to the contours from the analysis of the con-
gurations S1–S6, in Fig. 6 , we also plot the results of two additional
ases we have investigated for the S1 configuration. In particular,
e have performed an analysis of the M2Csims synthetic average

parsity data using the covariance matrix from the Raygal simulation
uch as to e v aluate the impact of the cosmological dependence of
he covariance on the cosmological parameter constraints. For this
urpose, we have e v aluated the cov ariance at the M2Csims redshift
ins using the parametrization of the Raygal sparsity correlation
oef ficients gi v en in Appendix B . We hav e also performed an analysis
f the M2Csims synthetics data set limited to N z = 6 redshift bins at
 = 0.00, 0.49, 0.61, 1.00, 1.27, and 1.50 (as in the Raygal case) to
NRAS 516, 437–452 (2022) 
 v aluate the impact of additional redshift bins on the cosmological
arameter inference. In the former case, we find that there is no effect
f using the Raygal covariance for the analysis of the M2Csims data,
hich suggests that the cosmological dependence of the covariance
iscussed in Section 2.6 is too small to have an impact on the
osmological parameter inference for the level of average sparsity
ncertainty we have assumed. In the latter case, we do find that
ncreasing the number of redshift bins impro v es the constraints
n the parameters, though not significantly when compared to the
ffect of using multiple sparsity measurements. As an example,
or the case σ 〈 s ( z) 〉 = 0.3 with N z = 6, we find σ�m 

= 0 . 074 and
σ8 = 0 . 118, while in the case with N z = 11, we have σ�m 

= 0 . 068
nd σσ8 = 0 . 100. Similarly, for the case with σ 〈 s ( z) 〉 = 0.1 and N z = 6,
e have σ�m 

= 0 . 047 and σσ8 = 0 . 072, while in the case with N z =
1, we have σ�m 

= 0 . 043 and σσ8 = 0 . 060. 
Overall, comparing the results from the Raygal analysis and those

btained from the M2Csims, we find that the inferred parameter
onstraints do depend on the underlying fiducial cosmology. As
ummarized by the 1 σ errors on S 8 , we have that for a given sparsity
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Figure 6. As in Fig. 5 but for the M2Csims case. In addition to the sparsity combinations S1–S6, we also show the 1 and 2 σ contours for the S1 case with 
N z = 6 redshift bins in the redshift interval 0 < z < 1.5 (thin black-dashed lines) rather than the nominal N z = 11 (black solid line), and with covariance from 

the Raygal simulation (yellow-dotted line). 

Table 2. Area within the 1 σ credibility contours shown in Fig. 5 for the 
various sparsity configuration in the case of the Raygal data analysis with 
( σ 〈 s ( z) 〉 = 0.3) and 0.1 statistical uncertainties. We may notice that the area 
diminishes for increasing number of sparsity configurations and saturates at 
S4. 

Raygal analysis 
Configuration A 1 σ ( σ 〈 s ( z) 〉 = 0.3) A 1 σ ( σ 〈 s ( z) 〉 = 0.1) 

S1 0.059 0.021 
S2 0.048 0.017 
S3 0.009 0.005 
S4 0.006 0.004 
S5 0.006 0.004 
S6 0.006 0.004 

Table 3. As in Table 2 for the M2Csims data analysis. 

M2Csims analysis 
Configuration A 1 σ ( σ 〈 s ( z) 〉 = 0.3) A 1 σ ( σ 〈 s ( z) 〉 = 0.1) 

S1 0.058 0.030 
S2 0.050 0.024 
S3 0.011 0.004 
S4 0.007 0.003 
S5 0.007 0.003 
S6 0.007 0.003 
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onfiguration and given level of statistical uncertainty on the average 
parsity measurements, the value of σS 8 is systematically smaller 
n the M2Csims case than in the Raygal case by approximately a
actor of 2. Such dependence on the fiducial cosmology of forecast 
arameter error analysis is not new (e.g. we refer the readers to the
ppendix B of Mukherjee et al. 2006 , for a detailed discussion).
t simply reflects the amplitude of the variation of the observable 
the average sparsity in our case) across the cosmological parameter 
pace relative to the amplitude of the observational uncertainties at 
he observed data points. This justifies the need for parameter forecast
tudies performed under different model assumptions. 

 C H E X - M AT E  CLUSTERS  FORECAST  

NALYSI S  

e forecast cosmological parameter constraints from multiple a ver - 
ge sparsity measurements for a realistic galaxy cluster data sample. 
e specifically focus on cluster mass measurements as expected 

rom the CHEX-MATE project (CHEX-MATE Collaboration 2021 ), 
hich consists of a sample of 118 clusters from the Planck-SZ

atalogue in the redshift range 0 < z < 0.6. These are the targets of
 dedicated X-ray observing program on the XMM -Newton satellite, 
hich is expected to provide accurate measurements of the cluster 
ass distributions and gas properties. For each cluster in the sample,
ass estimates at different o v erdensities will be obtained under

he hydrostatic equilibrium (HE) hypothesis. Similarly to the study 
resented in Section 3 , we perform a likelihood MCMC analysis
f a synthetic data set with characteristics and mass measurement 
rrors expected from the CHEX-MATE sample to infer constraints 
n �m and σ 8 . In the following, we set the fiducial cosmological
odel to the flat � CDM best fitting to the Planck 2015 data (Planck
ollaboration XIII 2016a ). 
In order to build a synthetic data set of average sparsity measure-
ents that are consistent with the characteristics of the CHEX-MATE 

ample, we first bin the CHEX-MATE clusters in equally spaced 
edshift bins of size �z = 0.1, the corresponding number counts
 ( z) are shown in Fig. 7 . Then, we generate a sample of synthetic
verage sparsity data 〈 s 200, 500 〉 , 〈 s 200, 1000 〉 , 〈 s 200, 2500 〉 , and 〈 s 500, 2500 〉
y solving equation ( 3 ) at the central redshift of the different bins
sing the M2Csims mass function parametrizations discussed in 
ppendix A . We also estimate the average sparsity errors using

quation ( 9 ), where we assume cluster mass uncertainties expected 
rom the analysis of the CHEX-MATE observations. In particular, 
hanks to the observational strategy adopted in CHEX-MATE, 
MNRAS 516, 437–452 (2022) 
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M

Figure 7. CHEX-MATE binned cluster counts in equally spaced redshift 
bins of size �z = 0.1 in the range 0 < z < 0.6. 

Figure 8. Synthetic average sparsity data 〈 s 200, 500 〉 (circles), 〈 s 200, 1000 〉 
(triangles), 〈 s 200, 2500 〉 (squares), and 〈 s 500, 2500 〉 (pentagons). The error bars 
indicate the amplitude of statistical errors due to the propagation of mass 
measurement uncertainties. 
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Table 4. Percentage bias shift of the average sparsities due to the HE mass 
bias (first row) and the impact of baryons (second row). 

� b 200, 500 � b 200, 1000 � b 200, 2500 � b 500, 2500 

HE mass bias 0.03 0.02 0.03 0.04 
Baryon mass bias 0.04 0.10 0.15 0.10 
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omogenous exposures with XMM-Newton for the entire sample
ill guarantee to reach a relative error of about 15 per cent on the
ydrostatic masses measured at � = 500. Hence, by interpolating and
caling the relative errors on hydrostatic masses obtained at different
 v erdensities in the X-COP project (Ettori et al. 2019 ), we can
easonably assume fractional mass errors of e M � 

= 0 . 23 , 0 . 15 , 0 . 11
nd 0.10 at � = 200, 500, 1000, and 2500, respectively. The synthetic
ata sets are shown in Fig. 8 . 
We consider two distinct cases: single average sparsity measure-
ents 〈 s 200, 2500 〉 (S1); four average sparsity measurements 〈 s 200, 500 〉 ,

 s 200, 1000 〉 , 〈 s 200, 2500 〉 , and 〈 s 500, 2500 〉 (S4). In the latter case, we
 v aluate the cov ariance matrix using equation ( 11 ), where we es-
imate the correlation coefficients for the different average sparsities
t the different redshifts using the linear regression obtained from
NRAS 516, 437–452 (2022) 
he analysis of the M2Csims halo catalogues and presented in
ppendix B . 
We assume the log-likelihood function as given by equation ( 10 ).

imilarly to the analysis presented in Section 3 , we propagate
he effect of systematic uncertainties by marginalizing o v er the
aussian random variable with zero mean and standard deviation

orresponding to the sum of all systematic errors we account for.
ere, in addition to the intrinsic scatters due to our data model, we

lso propagate the impact of mass biases on the average sparsity
aused by the presence of baryons. 

We infer constraints for three different error configurations: 

(a) statistical errors due to the propagation of mass-measurement
ncertainties as estimated by equation ( 9 ) in combination with the
ntrinsic data model errors; 

(b) statistical errors in combination with the intrinsic systematic
rrors of our data model and the systematic uncertainties due to the
ffects of hydrostatic mass bias on sparsity estimates; 

(c) statistical errors in combination with intrinsic systematic data
odel errors and systematic uncertainties due to the effects of

aryons on sparsity estimates based on dark matter only masses. 

In cases (b) and (c), we estimate the impact of mass biases on the
verage sparsity by e v aluating the percentage bias shift: �b � 1 ,� 2 =
 s � 1 ,� 2 / 〈 s � 1 ,� 2 〉 . 
We assume the percentage bias shifts due to HE mass bias

stimated in Richardson & Corasaniti ( 2022 ), which have been
btained from the analysis of N -body/hydro simulations of galaxy
lusters from Biffi et al. ( 2016 ). We quote these systematic bias shifts
n Table 4 . Instead, we e v aluate the impact of baryons on the average
parsity estimates from dark matter-only masses using the results of
he mass biases found in Velliscig et al. ( 2014 ) from the analysis of
 combination of the OverWhelmingly Large Simulations (OWLS;
chaye et al. 2010 ) and cosmo-OWLS (Le Brun et al. 2014 ) for the
eedback model AGN 8.0 that reproduce the observed X-ray profiles
f clusters (Le Brun et al. 2014 ). The corresponding percentage
ias shifts on different sparsity estimates have been estimated in
orasaniti et al. ( 2018 ) as a function of cluster mass M 200 c > 10 13 

 � h −1 (see their Fig. 7 ). Here, we conserv ati vely assume the largest
bsolute values from Corasaniti et al. ( 2018 ), which we quote in
able 4 . 
We assume priors and e v aluate the likelihood as specified in

ection 3.2 . From the MCMC chains, we derive the marginal
onstraints on �m , σ 8 , and S 8 for the different sparsity configurations
nd error assumptions. These are quoted in Table 5 , while in Fig. 9 ,
e plot the corresponding 1 and 2 σ credibility regions in the �m −
8 plane. 
First of all, we find that in all the cases the best-fitting model

arameters coincide with those of the fiducial cosmological model,
hown as a cross in Fig. 9 . In the S1 case, we may notice that the
nclusion of the systematic errors due to the HE or baryon biases only
llow to infer an upper bound on σ 8 and a lower bound on �m . This
s because, for the assumed errors, a single sparsity measurements
 v er the range of redshift considered only constrains the degenerate
arameter combination given by S 8 . In particular, we find σS = 0 . 06
8 
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Table 5. Marginalized 1 σ errors on �m , σ 8 , and S 8 for the different sparsity 
configurations and error assumptions. In the last column, we quote the values 
of the area under the 1 σ credibility countour. Notice that, in the S1 case, the 
propagation of systematic uncertainties due to the HE bias or the effect of 
baryons only allow to infer an upper bound on σ 8 and a lower bound on �m . 

σ�m σσ8 σ S 8 A 1 σ

S1 (Stats + Intrinsic Sys.) 0.07 0.08 0.04 0.014 
S1 (Stats + Intrinsic Sys. + HE Bias) − − 0.06 −
S1 (Stats + Intrinsic Sys. + Baryon Bias) − − 0.10 −
S4 (Stats + Intrinsic Sys.) 0.04 0.05 0.02 0.021 
S4 (Stats + Intrinsic Sys. + HE Bias) 0.04 0.05 0.02 0.022 
S4 (Stats + Intrinsic Sys. + Baryon Bias) 0.04 0.05 0.02 0.024 

Figure 9. 1 and 2 σ credibility regions in the �m − σ 8 plane from the 
analysis of the synthetic data set with different error assumptions for the 
S1 and S4 cases, respectively. The best-fitting values of �m and σ 8 from 

the different parameter inferences coincide with the values of the fiducial 
cosmology marked by the cross-point. The dashed line and the green-shaded 
area corresponds to curves of constant S 8 = 0.852 ± 0.104 values, which is 
the mean and standard deviation of S 8 from the MCMC chains of S1 case with 
intrinsic systematic errors and baryon bias. We can see that using multiple 
sparsity estimates breaks the S 8 de generac y. 
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or the HE bias and σS 8 = 0 . 10 for the baryon bias. The latter case
s shown in Fig. 9 as the green-shaded region around the curve of
onstant best-fitting value of ˆ S 8 = 0 . 85. Such a result is consistent
ith the constraint obtained in Corasaniti et al. ( 2018 ) from the

nalysis of s 500, 1000 of a sample of ∼100 X-ray clusters. 
In the S4 case, the constraints significantly impro v e when com-

ared to the single sparsity measurements. As we can see in Fig. 9 ,
he use of additional sparsities indeed breaks the S 8 de generac y.
rom the values quoted in Table 5 , we notice that accounting for the
E and baryon bias slightly alter the area under the 1 σ credibility

ontours, with the baryon bias case corresponding to the larger value 
nd that with the intrinsic systematics only corresponding to the 
mallest value. This is consistent with the difference in amplitude of
he systematic shifts between the HE and baryon case, respectively. 
evertheless, we can see that such difference have no impact on the
arginalized 1 σ errors on the cosmological parameters. 
Nevertheless, it is important to notice that such bias effects were
stimated using results of N -body/hydro simulations that were not 
pecifically devoted to the study of the halo sparsity. Hence, we
dvocate for a more in-depth study of the influence of baryonic
rocesses on the mass profile of haloes as traced by sparsity
easurements, which we leave for a future study. 
Finally, we would like to stress that for this type of cosmological

arameter inference to be possible, independent cluster mass mea- 
urements at multiple o v erdensity need to be carried out. This implies
dopting new methodologies that abandon the two-parameters NFW 

tting profile in fa v our of more general, non-parametric approaches
see e.g. Ettori et al. 2013 , for a re vie w). Recent examples of these
rocedures to infer the galaxy cluster mass profile with a non-
arametric method have been presented in Bartalucci et al. ( 2018 )
o derive NFW-independent sparsity estimates of a sample of high- 
edshift clusters, and in Bartalucci et al. ( 2019 ) to test against the
tandard forw ard/backw ard NFW methods. More recently, Eck ert 
t al. ( 2022 ) hav e dev eloped a forward non-parametric method to
erive mass profiles independent from any functional form of the po-
ential. Weak-lensing observations can also provide non-parametric 
stimates of the mass profile (and consequently of the cluster sparsity)
hrough mass aperture measurements (see e.g. Debackere et al. 2022 ,
or a recent study). 

 SUMMARY  A N D  DI SCUSSI ON  

he gravitational mass assembly process that leads to the formation 
f dark matter haloes, which host galaxy groups and clusters, imprints
osmological information on the halo mass profiles. This can be 
etrieved through measurements of the halo sparsity, i.e. the ratio 
etween halo masses enclosing two different o v erdensities, which 
as been shown to provide a non-parametric proxy for the halo
nternal mass distribution (Balm ̀es et al. 2014 ). In the past few years,
osmological constraints have been inferred from measurements of 
he average sparsity of galaxy cluster samples using HE masses at
 = 500 ρc and 1000 ρc from X-ray observations (Corasaniti et al.

018 ) and weak-lensing masses at � = 200 ρc and 500 ρc (Corasaniti
t al. 2021 ). Ho we v er, cosmological information is encoded o v er the
ntire halo mass profile, rather than at only two o v erdensities. 

Here, we have investigated the use of multiple sparsity measure- 
ents from halo mass estimates at several overdensity as a probe of

he cosmological imprint on the halo mass profile. For this purpose,
e have analysed N -body halo catalogues from the Raygal and
2Csims simulations and estimated the correlation among different 

parsities as a function of redshift. In particular, we have focused on
alo masses e v aluated at four dif ferent o v erdensities, thus allowing
o estimate a total of six sparsities. Interestingly, we find that, among
hese sparsities, those associated with the mass distribution in distinct 
pherical halo shells are not highly correlated. Thus, indicating that 
here is additional cosmological information encoded in the average 
alo mass profile, which can be exploited through multiple sparsity 
easurements. In contrast, sparsities obtained using mass estimates 

erived from the NFW best-fitting density profile to the N -body
aloes result in correlations that are close to unity and significantly
ifferent from those inferred from the analysis of the SO N -body
alo masses. This suggests that imposing a NFW profile to haloes
erforms a strong compression that misses cosmological information 
mprinted on different regions of the halo mass profile. 

To assess the constraining power of multiple sparsity measure- 
ents, we have performed an MCMC likelihood analysis of synthetic 

enerated data sets from the Raygal and M2Csims simulations 
onsisting of different number of sparsities, from a single sparsity 
MNRAS 516, 437–452 (2022) 
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ase up to a total of six, and inferred cosmological parameter
onstraints on �m and σ 8 . We find the constraints to impro v e as
he number of sparsities used increases, with a maximal effect
or the case with four sparsities. Instead, the constraints saturates
eyond the four sparsity case, which suggest that the additional
parsity estimates only provide redundant information. We have also
erformed a forecast analysis for a synthetic data set of four average
parsity measurements generated assuming the characteristic of a
ealistic cluster sample such as that from the CHEX-MATE project.

e have inferred cosmological parameter constraints for different
rrors assumptions, including the impact of systematic effects on
parsities due to baryons or deviations from the HE, from mass bias
stimates obtained from past studies using N-body/hydrodynamical
imulations. The results show that these effects only mildly impact
he cosmological parameter inference, although dedicated numerical
tudies are still needed to derive more accurate predictions for baryon
ystematics on sparsity measurements. 

It has been long considered that cosmological information encoded
n the halo density profile can be retrieved through measurements of
he concentration–mass relation (see e.g. Ettori et al. 2010 ). The
bservational challenges posed by the necessity of having accurate
easurements of the concentration parameter of galaxy clusters has

een the primary limitation for the use of such an approach (Mead
t al. 2010 ; King & Mead 2011 ; Sereno et al. 2015 ). 

Our study not only shows that the use of halo sparsity provides a
ore direct and simpler way to access such information as already

iscussed in past analyses (Corasaniti et al. 2018 , 2021 ), but also that
ultiple sparsity measurements can fully exploit the cosmological

ignal imprinted in the mass profile, which would be otherwise
issed if the halo density profile was assumed to be NFW. Because

f this, we encourage the development of methodologies capable of
roviding independent mass estimates at different o v erdensities free
f the assumption of the NFW profile. 

C K N OW L E D G E M E N T S  

he authors are thankful to Romain Teyssier for his role in the
evelopment of the M2Csims simulations suite. AMCLB is grateful
o Christian Arnold and Baojiu Li for granting access to their
irac allocation on COSMA for running PSOD on the M2Csims

imulations. AMCLB was supported by the French Agence Na-
ionale de la Recherche under grant ANR-11-BS56-015 and by
he European Research Council under the European Union Seventh
ramework Programme (FP7/2007-2013) / ERC grant agreement
umber 340519 while conducting the M2Csims simulation pro-
ramme. AMCLB is currently supported by a fellowship of PSL
niversity at the Paris Observatory. PSC, TR and YR acknowl-

dge support from the DIM ACAV of the Region Ile-de-France.
E acknowledges financial contribution from the contracts ASI-
NAF Athena 2019-27-HH.0, ‘Attivit ̀a di Studio per la comunit ̀a
cientifica di Astrofisica delle Alte Energie e Fisica Astroparticellare’
Accordo Attuativo ASI-IN AF n. 2017-14-H.0), IN AF mainstream
roject 1.05.01.86.10, and from the European Union Horizon 2020
rogramme under the AHEAD2020 project (grant agreement no.
71158). This research was supported by the Munich Institute
or Astro- and Particle Physics (MIAPP), which is funded by
he Deutsche Forschungsgemeinschaft (DFG, German Research
 oundation) under German y’s Excellence Strate gy - EXC-2094 -
90783311. The work presented here was granted access to HPC
esources of TGCC/CINES through allocations made by GENCI
Grand Equipement National de Calcul Intensif) under the alloca-
ions 2016-042287, 2017-A0010402287, 2018-A0030402287, 2019- 
NRAS 516, 437–452 (2022) 
0050402287, and 2020-A0070402287 for RayGal and of CINES
nder allocations 2015-047350, 2016-047350, 2017-A002047350,
018-A004047350, 2019-A006047350, and 2020-A008047350 for
2Csims, respectively. This work used the DiRAC@Durham fa-

ility managed by the Institute for Computational Cosmology on
ehalf of the STFC DiRAC HPC Facility ( www.dirac.ac.uk). The
quipment was funded by BEIS capital funding via STFC capital
rants ST/P002293/1, ST/R002371/1, and ST/S002502/1, Durham
niversity and STFC operations grant ST/R000832/1. DiRAC is part
f the National e-Infrastructure. 

ATA  AVAI LABI LI TY  

he data which were used in the study presented here will be made
vailable upon reasonable request to the corresponding authors.
ata from the Raygal simulation suite, including light-cone halo

atalogues accounting for relativistic effects, are publicly available
t https:// cosmo.obspm.fr/public-datasets/ . 

EFERENCES  

llen S. W., Rapetti D. A., Schmidt R. W., Ebeling H., Morris R. G., Fabian
A. C., 2008, MNRAS , 383, 879 

nand G. S., Tully R. B., Rizzi L., Riess A. G., Yuan W., 2022, ApJ , 932, 15
v er E., Oliv e K. A., Skillman E. D., 2015, J. Cosmol. Astropart. Phys., 2015,

011 
alm ̀es I., Rasera Y., Corasaniti P. S., Alimi J. M., 2014, MNRAS , 437, 2328
artalucci I., Arnaud M., Pratt G. W., Le Brun A. M. C., 2018, A&A , 617,

A64 
artalucci I., Arnaud M., Pratt G. W., D ́emocl ̀es J., Lovisari L., 2019, A&A ,

628, A86 
eutler F. et al., 2017, MNRAS , 466, 2242 
iffi V. et al., 2016, ApJ , 827, 112 
irrer S. et al., 2020, A&A , 643, A165 
ocquet S., Saro A., Dolag K., Mohr J. J., 2016, MNRAS , 456, 2361 
ocquet S. et al., 2019, ApJ , 878, 55 
ocquet S., Heitmann K., Habib S., Lawrence E., Uram T., Frontiere N., Pope

A., Finkel H., 2020, ApJ , 901, 5 
oyarsky A., Drewes M., Lasserre T., Mertens S., Ruchayskiy O., 2019, Prog.

Part. Nucl. Phys. , 104, 1 
rax P., 2018, Rep. Prog. Phys. , 81, 016902 
reton M.-A., Rasera Y., Taruya A., Lacombe O., Saga S., 2019, MNRAS ,

483, 2671 
ryan G. L., Norman M. L., 1998, ApJ , 495, 80 
HEX-MATE Collaboration, 2021, A&A , 650, A104 
astro T., Borgani S., Dolag K., Marra V., Quartin M., Saro A., Sefusatti E.,

2021, MNRAS , 500, 2316 
ole S. et al., 2005, MNRAS , 362, 505 
ooke R. J., Pettini M., Steidel C. C., 2018, ApJ , 855, 102 
opeland E. J., Sami M., Tsujikawa S., 2006, Int. J. Mod. Phys. D , 15, 1753
orasaniti P. S., Rasera Y., 2019, MNRAS , 487, 4382 
orasaniti P. S., Ettori S., Rasera Y., Sereno M., Amodeo S., Breton M. A.,

Ghirardini V., Eckert D., 2018, ApJ , 862, 40 
orasaniti P. S., Giocoli C., Baldi M., 2020, Phys. Rev. D , 102, 043501 
orasaniti P.-S., Sereno M., Ettori S., 2021, ApJ , 911, 82 
ourtin J., Rasera Y., Alimi J. M., Corasaniti P. S., Boucher V., F ̈uzfa A.,

2011, MNRAS , 410, 1911 
roft R. A. C. et al., 2016, MNRAS , 457, 3541 
e Mattia A. et al., 2021, MNRAS , 501, 5616 
e Sainte Agathe V. et al., 2019, A&A , 629, A85 
ES Collaboration, 2022, Phys. Rev. D , 105, 043512 
ebackere S. N. B., Hoekstra H., Schaye J., Heitmann K., Habib S., 2022,

MNRAS , 515, 3383 
espali G., Giocoli C., Angulo R. E., Tormen G., Sheth R. K., Baso G.,

Moscardini L., 2016, MNRAS , 456, 2486 

file:www.dirac.ac.uk
https://cosmo.obspm.fr/public-datasets/
http://dx.doi.org/10.1111/j.1365-2966.2007.12610.x
http://dx.doi.org/ 10.3847/1538-4357/ac68df
http://dx.doi.org/10.1093/mnras/stt2050
http://dx.doi.org/10.1051/0004-6361/201732458
http://dx.doi.org/10.1051/0004-6361/201935984
http://dx.doi.org/10.1093/mnras/stw3298
http://dx.doi.org/10.3847/0004-637X/827/2/112
http://dx.doi.org/10.1051/0004-6361/202038861
http://dx.doi.org/10.1093/mnras/stv2657
http://dx.doi.org/10.3847/1538-4357/ab1f10
http://dx.doi.org/10.3847/1538-4357/abac5c
http://dx.doi.org/10.1016/j.ppnp.2018.07.004
http://dx.doi.org/10.1088/1361-6633/aa8e64
http://dx.doi.org/10.1093/mnras/sty3206
http://dx.doi.org/10.1086/305262
http://dx.doi.org/10.1051/0004-6361/202039632
http://dx.doi.org/10.1093/mnras/staa3473
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
http://dx.doi.org/10.3847/1538-4357/aaab53
http://dx.doi.org/10.1142/S021827180600942X
http://dx.doi.org/10.1093/mnras/stz1579
http://dx.doi.org/10.3847/1538-4357/aaccdf
http://dx.doi.org/ 10.1103/PhysRevD.102.043501
http://dx.doi.org/10.3847/1538-4357/abe9a4
http://dx.doi.org/10.1111/j.1365-2966.2010.17573.x
http://dx.doi.org/10.1093/mnras/stw204
http://dx.doi.org/10.1093/mnras/staa3891
http://dx.doi.org/10.1051/0004-6361/201935638
http://dx.doi.org/ 10.1103/PhysRevD.105.043512
http://dx.doi.org/ 10.1093/mnras/stac1687
http://dx.doi.org/10.1093/mnras/stv2842


Cosmology with multiple halo sparsities 449 

E  

E
E  

E  

E

E
F  

G
G
K
K
K
L
L  

L  

L
L
M  

M
M

M
M  

M  

M  

N
N
N
N
P
P
P
P
P
P
P
R
R
R
R
R
R
S
S

S
S
T
T
T
T  

T
V  

W
W

A
B

W  

c
g
M
2  

h  

t
m
N
c
i
v
l
f

f  

w  

w  

i  

p
a

θ

w  

o
 

c
a
c
c
t
l  

c

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/437/6656000 by guest on 21 April 2024
ckert D., Ettori S., Pointecouteau E., van der Burg R. F. J., Loubser S. I.,
2022, A&A , 662, A123 

ttori S., Tozzi P., Rosati P., 2003, A&A , 398, 879 
ttori S., Morandi A., Tozzi P., Balestra I., Borgani S., Rosati P., Lovisari L.,

Terenziani F., 2009, A&A , 501, 61 
ttori S., Gastaldello F., Leccardi A., Molendi S., Rossetti M., Buote D.,

Meneghetti M., 2010, A&A , 524, A68 
ttori S., Donnarumma A., Pointecouteau E., Reiprich T. H., Giodini S., 

Lovisari L., Schmidt R. W., 2013, Space Sci. Rev. , 177, 119 
ttori S. et al., 2019, A&A , 621, A39 
ixsen D. J., Cheng E. S., Gales J. M., Mather J. C., Shafer R. A., Wright E.

L., 1996, ApJ , 473, 576 
atti M. et al., 2021, MNRAS, preprint ( arXiv:2110.10141 ) 
reen A. M., Kavanagh B. J., 2021, J. Phys. G Nucl. Phys. , 48, 043001 
ing L. J., Mead J. M. G., 2011, MNRAS , 416, 2539 
itayama T., Suto Y., 1996, MNRAS , 280, 638 
omatsu E. et al., 2011, ApJS , 192, 18 
acey C., Cole S., 1994, MNRAS , 271, 676 
e Brun A. M. C., McCarthy I. G., Schaye J., Ponman T. J., 2014, MNRAS ,

441, 1270 
e Brun A. M. C., Arnaud M., Pratt G. W., Teyssier R., 2018, MNRAS , 473,

L69 
esci G. F. et al., 2022, A&A , 659, A88 
ewis A., 2019, preprint ( arXiv:1910.13970 ) 
antz A. B., Allen S. W., Morris R. G., Rapetti D. A., Applegate D. E., Kelly

P. L., von der Linden A., Schmidt R. W., 2014, MNRAS , 440, 2077 
antz A. B. et al., 2022, MNRAS , 510, 131 
arulli F., Veropalumbo A., Garc ́ıa-Farieta J. E., Moresco M., Moscardini 

L., Cimatti A., 2021, ApJ , 920, 13 
cClintock T. et al., 2019, ApJ , 872, 53 
ead J. M. G., King L. J., Sijacki D., Leonard A., Puchwein E., McCarthy I.

G., 2010, MNRAS , 406, 434 
eneghetti M., Rasia E., Merten J., Bellagamba F., Ettori S., Mazzotta P.,

Dolag K., Marri S., 2010, A&A , 514, A93 
ukherjee P., Parkinson D., Corasaniti P. S., Liddle A. R., Kunz M., 2006,

MNRAS , 369, 1725 
agai D., Vikhlinin A., Kravtsov A. V., 2007, ApJ , 655, 98 
avarro J. F., Frenk C. S., White S. D. M., 1997, ApJ , 490, 493 
iemeyer J. C., 2020, Prog. Part. Nucl. Phys., 113, 103787 
ishimichi T. et al., 2019, ApJ , 884, 29 
acaud F. et al., 2018, A&A , 620, A10 
erci v al W. J. et al., 2001, MNRAS , 327, 1297 
lanck Collaboration XX, 2014a, A&A , 571, A20 
lanck Collaboration XXI, 2014b, A&A , 571, A21 
lanck Collaboration XIII, 2016a, A&A , 594, A13 
lanck Collaboration XXIV, 2016b, A&A , 594, A24 
lanck Collaboration VI, 2020, A&A , 641, A6 
asera Y. et al., 2022, A&A , 661, A90 
asia E. et al., 2012, New J. Phys. , 14, 055018 
ichardson T. R. G., Corasaniti P. S., 2022, MNRAS , 513, 4951 
iess A. G. et al., 2022, ApJ , 934, L7 
oy V., 2020, Annu. Rev. Stat. Appl. , 7, 387 
oy F., Bouillot V. R., Rasera Y., 2014, A&A , 564, A13 
chaye J. et al., 2010, MNRAS , 402, 1536 
ereno M., Ettori S., 2015, MNRAS , 450, 3633 
ereno M., Giocoli C., Ettori S., Moscardini L., 2015, MNRAS , 449, 2024 
heth R. K., Tormen G., 1999, MNRAS , 308, 119 
aylor J. E., 2011, Adv. Astron. , 2011, 604898 
egmark M. et al., 2004, ApJ , 606, 702 
eyssier R., 2002, A&A , 385, 337 
inker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G.,

Gottl ̈ober S., Holz D. E., 2008, ApJ , 688, 709 
o C. et al., 2021, Phys. Rev. Lett. , 126, 141301 
elliscig M., van Daalen M. P., Schaye J., McCarthy I. G., Cacciato M., Le

Brun A. M. C., Dalla Vecchia C., 2014, MNRAS , 442, 2641 
ang J. et al., 2011, MNRAS , 413, 1373 
ong K. C. et al., 2020, MNRAS , 498, 1420 

PPENDI X  A :  H A L O  MASS  F U N C T I O N  

EST-FITTING  COEFFI CI ENTS  

e use the halo mass functions from the Raygal and M2Csims halo
atalogues to fit the coefficients of the mass function parametrization 
iven by equation ( 6 ), which we determine using a Levenberg–
arquardt minimization scheme. The multiplicity functions at � = 

00, 500, 1000, and 2500 estimated from the Raygal and M2Csims
alo catalogues are shown in Fig. A1 . Given the proximity of
he simulated cosmological models, we can see that the estimated 

ultiplicity functions are in good agreement with one another. 
otice that since the Raygal simulation probes a slightly larger 

osmic volume than the M2Csims simulations, the correspond- 
ng multiplicity functions extend over larger ln σ−1 values. Con- 
ersely, the M2Csims simulations have slightly better mass reso- 
ution, thus probing smaller ln σ−1 values than Raygal multiplicity 
unctions. 

In order to predict the average sparsity at redshifts different 
rom those probed by the simulation snapshots using equation ( 3 ),
e introduce the redshift-dependent variable x = log 10 ( � / � vir ( z)),
here � vir ( z) is the virial o v erdensity as given by the formula derived

n Bryan & Norman ( 1998 ), then following Despali et al. ( 2016 ), we
arametrize the redshift evolution of the best-fitting ST coefficients 
s a quadratic function of x : 

� 

= c 0 + c 1 · x + c 2 · x 2 , (A1) 

here θ� 

= { A � 

, a � 

, p � 

} . In Table A1 and A2 , we quote the values
f the quadratic parametrizations for the ST-coefficients. 
In Fig. A2 , we plot the predictions from equation ( 3 ) for the Raygal

osmology using the M2Csims calibrated multiplicity functions 
gainst the average halo sparsity estimates from the Raygal halo 
atalogues (left-hand panel) and the predictions for the M2Csims 
osmology using the Raygal calibrated multiplicity functions against 
he average halo sparsity estimates from the M2Csims halo cata- 
ogues (right-hand panel). As we can see differences are � 5 per cent ,
onsistent with those shown in Fig. 2 . 
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M

Figure A1. Multiplicity function at � = 200 (top-left panel), 500 (top-right panel), 1000 (bottom-left panel), and 2500 (bottom-right panel) from the Raygal 
(red points) and M2Csims (blue points) simulations, respectively at z = 0.0 (circles), 0.5 (triangles), 1.0 (squares), and 1.5 (pentagons). Given the proximity of 
the simulated cosmologies, the multiplicity functions estimated from the Raygal and M2Csims halo catalogues are consistent with one another within Poisson 
errors o v er the common range of masses probed by the simulations. 
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Table A1. Coefficients of the quadratic function of x parametrizing the 
redshift evolution of the ST parameters for the Raygal halo mass functions. 

c 0 c 1 c 2 

A 200 c −0.134134392 5.018016486 −10.7419621 
a 200 c 0.989977371 −0.5291517036 4.430318949 
p 200 c −1.688969793 10.0338655815 22.480766636 

A 500 c −0.52885598 2.4986942 −1.91309251 
a 500 c −0.408103836 3.5426469558 −1.249831194 
p 500 c 0.380460633 −2.894905482 1.9075409115 

A 1000 c −1.20684329 3.07924433 −1.65792698 
a 1000 c −1.9777704111 4.8809416194 −1.1738202399 
p 1000 c 1.856153925 −4.089186069 1.5184593426 

A 2500 c 7.1510462212 −10.4752748702 3.96694467 
a 2500 c −9.5732094279 13.1786821425 −3.257783121 
p 2500 c 52.2138579936 −77.6915082432 28.3514283168 

Table A2. As in Table A1 but for the M2Csims halo mass functions. 

c 0 c 1 c 2 

A 200 c −0.1392442736 5.2091790188 −11, 1511797962 
a 200 c 0.9996830315 −0.534339383 4.4737534485 
p 200 c −1.8134201988 10.7732030454 −24.1372441776 

A 500 c −1.88354029 7.56649037 −6.128838 
a 500 c 1.32586081 −2.18316668 2.90408494 
p 500 c −6.74606335 21.7532933 −17.97632164 

A 1000 c −5.13368556 11.95696884 −6.5251012 
a 1000 c 3.98834671 −7.94206751 5.54853335 
p 1000 c −20.43015395 45.10712761 −25.21860361 

A 2500 c −8.03447658 12.44996314 −4.704367 
a 2500 c 3.06066127 −4.70146171 3.01797036 
p 2500 c −42.49723101 64.44575098 −24.79541975 
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Figure A2. Left-hand panel: average halo sparsity for different overdensity confi
the M2Csims calibrated multiplicity functions for the Raygal cosmology plotted 
panel: average halo sparsities predicted by solving equation ( 3 ) using the Raygal c
the average sparsities from the M2Csims halo catalogues. The lower panels show th
estimates. 
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PPENDI X  B:  SPARSITY  C O R R E L AT I O N  

OEFFI CI ENT  FITTING  F U N C T I O N S  

he redshift evolution of the average sparsity correlation coefficients 
hown in Fig. 3 is well approximated by a linear relation: 

 s 1 ,s 2 ( z) = q + m · z, (B1) 

here the coefficients of the linear regression are given in Tables B1
nd B2 for the Raygal and M2Csims halo catalogues, respectively. 

able B1. Linear regression parameters of sparsity correlation coefficients 
rom the Raygal halo catalogues. 

aygal m q 

 s 200 , 500 ,s 200 , 1000 −0.032 ± 0.005 0.898 ± 0.005 
 s 200 , 500 ,s 200 , 2500 −0.14 ± 0.01 0.71 ± 0.01 
 s 200 , 500 ,s 500 , 1000 −0.08 ± 0.01 0 . 48 + 0 . 01 
 s 200 , 500 ,s 500 , 2500 −0.19 ± 0.01 0.37 ± 0.01 
 s 200 , 500 ,s 1000 , 2500 −0.22 ± 0.01 0.24 ± 0.01 

 s 200 , 1000 ,s 200 , 2500 −0.081 ± 0.002 0.902 ± 0.002 
 s 200 , 1000 ,s 500 , 1000 −0.011 ± 0.002 0.810 ± 0.002 
 s 200 , 1000 , s 500 , 2500 −0.132 ± 0.003 0.666 ± 0.003 
 s 200 , 1000 ,s 1000 , 2500 −0.188 ± 0.004 0.461 ± 0.004 

 s 200 , 2500 ,s 500 , 1000 −0.030 ± 0.002 0.855 ± 0.002 
 s 200 , 2500 ,s 500 , 2500 −0.003 ± 0.003 0.905 ± 0.003 
 s 200 , 2500 ,s 1000 , 2500 −0.024 ± 0.005 0.784 ± 0.004 

 s 500 , 1000 ,s 500 , 2500 −0.076 ± 0.002 0.858 ± 0.001 
 s 500 , 1000 ,s 1000 , 2500 −0.127 ± 0.003 0.619 ± 0.003 

 s 500 , 2500 ,s 1000 , 2500 −0.006 ± 0.001 0.927 ± 0.001 
MNRAS 516, 437–452 (2022) 

gurations as a function of redshift predicted by solving equation ( 3 ) using 
against the average sparsities from the Raygal halo catalogues. Right-hand 
alibrated multiplicity functions for the M2Csims cosmology plotted against 
e relative difference between the predictions and the N -body halo catalogue 
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Table B2. Linear regression parameters of sparsity correlation coefficients 
from the M2Csims halo catalogues. 

M2Csims m q 

r s 200 , 500 ,s 200 , 1000 −0.028 ± 0.003 0.901 ± 0.002 
r s 200 , 500 ,s 200 , 2500 −0.134 ± 0.006 0.726 ± 0.005 
r s 200 , 500 ,s 500 , 1000 −0.079 ± 0.004 0 . 48 + 0 . 01 
r s 200 , 500 ,s 500 , 2500 −0.182 ± 0.003 0.395 ± 0.003 
r s 200 , 500 ,s 1000 , 2500 −0.212 ± 0.004 0.262 ± 0.003 

r s 200 , 1000 ,s 200 , 2500 −0.074 ± 0.001 0.909 ± 0.001 
r s 200 , 1000 ,s 500 , 1000 −0.014 ± 0.003 0.826 ± 0.003 
r s 200 , 1000 , s 500 , 2500 −0.123 ± 0.003 0.685 ± 0.003 
r s 200 , 1000 ,s 1000 , 2500 −0.170 ± 0.004 0.478 ± 0.003 

r s 200 , 2500 ,s 500 , 1000 −0.028 ± 0.002 0.870 ± 0.002 
r s 200 , 2500 ,s 500 , 2500 −0.003 ± 0.003 0.910 ± 0.002 
r s 200 , 2500 ,s 1000 , 2500 −0.019 ± 0.004 0.787 ± 0.003 

r s 500 , 1000 ,s 500 , 2500 −0.070 ± 0.001 0.869 ± 0.001 
r s 500 , 1000 ,s 1000 , 2500 −0.112 ± 0.003 0.635 ± 0.002 

r s 500 , 2500 ,s 1000 , 2500 −0.002 ± 0.001 0.926 ± 0.001 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/437/6656000 by guest on 21 April 2024


	1 INTRODUCTION
	2 COSMOLOGY WITH HALO SPARSITY
	3 SYNTHETIC DATA ANALYSIS
	4 CHEX-MATE CLUSTERS FORECAST ANALYSIS
	5 SUMMARY AND DISCUSSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: HALO MASS FUNCTION BEST-FITTING COEFFICIENTS
	APPENDIX B: SPARSITY CORRELATION COEFFICIENT FITTING FUNCTIONS

