
HAL Id: hal-03801001
https://hal.science/hal-03801001v1

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An analysis of software design understanding &
motivation of engineering students

Jean-Christophe Bach, Antoine Beugnard, Jean-Loup Castaigne, Julien
Mallet, Salvador Martínez, Maria-Teresa Segarra

To cite this version:
Jean-Christophe Bach, Antoine Beugnard, Jean-Loup Castaigne, Julien Mallet, Salvador Martínez, et
al.. An analysis of software design understanding & motivation of engineering students. MODELS
2022 Educators Symposium, Oct 2022, Montreal, Canada. �hal-03801001�

https://hal.science/hal-03801001v1
https://hal.archives-ouvertes.fr

An analysis of software design understanding & motivation of
engineering students

Jean-Christophe Bach
IMT Atlantique

Lab-STICC, UMR 6285
Brest, France

jc.bach@imt-atlantique.fr

Antoine Beugnard
IMT Atlantique

Lab-STICC, UMR 6285
Brest, France

antoine.beugnard@imt-atlantique.fr

Jean-Loup Castaigne
EVS-LAURe, UMR 5600

IMT Atlantique
Nantes, France

jean-loup.castaigne@imt-
atlantique.fr

Julien Mallet
IMT Atlantique

Lab-STICC, UMR 6285
Brest, France

julien.mallet@imt-atlantique.fr

Salvador Martínez
IMT Atlantique

Lab-STICC, UMR 6285
Brest, France

salvador.martinez@imt-atlantique.fr

Maria-Teresa Segarra
IMT Atlantique

Lab-STICC, UMR 6285
Brest, France

mt.segarra@imt-atlantique.fr

ABSTRACT
Software engineering is now a well-recognized discipline in higher
education. One challenge of software engineering education is to
design teaching activities that empower students motivation and
engagement. In this paper we present a study aimed at evaluating
the understanding, motivation and perception of students with re-
spect to software design activities. We first describe a project-based
course currently taught to second-year students at IMT Atlantique,
a French engineering school, and then present a questionnaire-
based experiment. We asked the 44 students enrolled to the afore-
mentioned course in the 2021 edition to answer three questionnaires
(before and after the design activities and at the end of the course).
The objective of this experiment is threefold: 1) evaluate the stu-
dent’s perception of the usefulness of the software design phase
and the activity of modeling of software systems; 2) assess the evo-
lution, if any, of this perception along the course; 3) evaluate if our
course fosters student engagement. Results show that students are
motivated with a good engagement all along the project and the
perception of usefulness and pertinence of software design evolves
in a slightly positive way.

CCS CONCEPTS
• Social and professional topics → Software engineering edu-
cation; • Software and its engineering → Designing software.

KEYWORDS
software design, student engagement, empirical study

1 INTRODUCTION
Software engineering is now a well-recognized discipline in higher
education. Students enrolled in software engineering courses learn
how to design, build, test, and maintain software products [2]. One
of the challenges of software engineering education is to design
teaching activities that empower students motivation and engage-
ment [11]. One effective way to achieve this is to propose project-
based learning activities [8]. Indeed, while traditional lessons (e.g.,
lectures, recitations, and labs) may be used to provide students
the required theoretical knowledge, activities where students are
actively involved in the design and implementation of a software
solution to a given problem are known to be more engaging [1, 6].
Coming up with a project that allows students to actively work on
a software solution, fosters engagements and produces good learn-
ing outcomes may not be very difficult per se. However, academic
projects tend to be small, short-term and defined in a controlled
environment [10], which not really require software engineering
concepts, methods and tools. As a consequence, it is difficult to
determine if the students really understand the importance of soft-
ware engineering goals, concepts and practices.

To set the context, students at IMT Atlantique, a French engineer-
ing, school follow a common first year devoted to basic engineering
foundations. Afterwards, the students specialize in different en-
gineering fields such as telecommunications, energy, electronics,
industry or computer science. The aforementioned common first
year includes 90 hours of training on the basic engineering foun-
dations of computer science. From these 90 hours, 30 are devoted
to object-oriented programming in Java and basic UML notations.
More than 1/3 of the 90 hours in the first year are dedicated to
project-based learning activities. This ratio is maintained in the
second and third year for the students that specialize in computer
science. Although different stages of a software product life cycle
are addressed in our projects, we pay special attention to the design
stage so as to convince students that reasoning on models is key to
control software quality.

Our observation, after more than 10 years of applying this ap-
proach, is still uncertain. Some students appear to be convinced
of the interest of software design in the early steps of the projects,
others seem to understand the interest only when they make the

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada J.-C. Bach, A. Beugnard, J.-L. Castaigne, J. Mallet, S. Martínez, and M.-T. Segarra

Figure 2: PNEditor graphical interface

Place Arc Transition

InArc

OutArc
*

-out

*

-in

*

-out

*

-in

Figure 3: An example of an initial design

connection between the code and the model (after the code is pro-
duced), a few appear to remain unconvinced. This uncertainty leads
us to undertake a more controlled experiment. In this sense, we
have designed a questionnaire-based experiment with students en-
rolled in a second-year course at IMT Atlantique. The goal of this
experiment is three-fold:

G1 Evaluate the students perception of the usefulness and per-
tinence of the software design phase and the activity of
modeling of software systems.

G2 Assess the evolution, if any, of this perception along the
course.

G3 Evaluate if our approach fosters student engagement.
In this paper we present this experiment and our analysis of the

results.
The rest of the paper is structured as follows. Section 2 presents

the structure of the course. Section 3 describes the experiment
and an overview of the questionnaires submitted to the students.
Section 4 contains the results and the analysis of the experiment.
In Section 5, we discuss related work. We conclude and give some
insights on future work in Section 6. The questionnaires are in the
Appendix A.

2 COURSE DESCRIPTION
The experiment was conducted with students on the second year
of IMT Atlantique engineering school. Their common knowledge
and skills in computer science are those developed in the first year
at IMT Atlantique (last year bachelor’s degree), where 90 hours
are devoted to the discovery of programming through: graph the-
ory in Python (25 hours); object-oriented programming in Java to-
gether with basic UML notations (30 hours); and combined human-
machine interface (HMI) and database foundations (35 hours).

In this context, we applied our experiment to a 60-hour course
dedicated to introduce object-oriented (implemented in Java) and

software engineering concepts. Object-oriented concepts concern
40 hours of traditional lectures which include interfaces, exceptions,
types and genericity, lambda expressions and streams. Software
engineering concepts are mainly introduced in a 22-hours-long
project (𝜇P) organized as a simplified V life-cycle software develop-
ment project where students work in pairs. Design, implementation
and tests, and integration phases are sequentially covered in the 𝜇P
(see figure 1). Analysis was discarded as we considered that teach-
ers know exactly what they want. Although an agile or iterative
life-cycle process may be better suited for this project, we believe
a V life-cycle is better adapted to a sequential agenda where each
time slot is clearly associated with a phase. Understanding of the
roles, objectives and tools of each phase is eased as well.

Figure 1: Stages of the 𝜇P

As in [15] and [7], the project consists in the implementation of a
Petri net model [13]. Additionally, students are required to integrate
their model with an existing graphical interface (see figure 2). A
Petri net is a simple mathematical model that can be implemented
using a few classes. It offers limited but significant variability so
that object-oriented overriding and late binding appear as natural
mechanisms to deal with it. The graphical interface is an adaptation
of the open-source project PNEditor1, that has been modified to
accept different Petri net models by using the Adapter design pat-
tern [9]. A specific menu allows users to switch from one model to
another. Two default models of a Petri net are included in PNEditor
so that students can run them in order to better understand how a
Petri net works.

A 16-page document briefly introduces the main characteristics
of a basic Petri net model, and the goal of the 𝜇P. Then, it describes
each phase, including its duration, goals, and outcomes.

The agenda, and development phases are as follows:
Design (5h15). In this phase, students use UML models to

represent structural (class diagrams) and temporal behavior
(sequence diagrams) of their solution to a given problem
(Petri net). Teachers give advice, and ask questions but do
not dictate (neither prescribe) a solution even if they can
anticipate implementation issues. In order to highlight the
consequences of a poor model, the phase is divided into three
well-defined activities (represented in figure 1):
• Initial Design (1h45). In this activity, students should de-
sign a basic Petri net. Both, structural and temporal models
have to be delivered and made choices explained in terms
of their advantages and drawbacks. An example of a class
diagram provided by students as their initial design is
shown in figure 3.

• Extended design (1h45). Requirements of the Petri net are
modified: inhibitor arcs and reset arcs may be used. Again,
the class diagram, a sequence diagram representing how

1https://pneditor-org-hrd.appspot.com

https://pneditor-org-hrd.appspot.com

An analysis of software design understanding & motivation of engineering students MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

PetriNetImpl

« interface »

PetriNet

+ add(Place)
+ fire(Transition)
+ remove(Place) ...

implements

Transition

+ fire()

Arc

- value : int

+ trigger()

Place

- token : int

+ remove(int)
+ add(int)

InArc

+ trigger()

OutArc

+ isTriggerable() : bool
+ trigger()

ZeroArc

+ isTriggerable() : bool
+ trigger()

EmptyArc

+ isTriggerable() : bool
+ trigger()

-transitions *

* -places

*

-out

*

-in

*

-out

*

-in

Figure 4: An example of a design for Petri net extensions

the model works when a transition is fired, and explana-
tions for the choices made should be provided by students.
Depending on the initial design, taking into account the
new requirements may be straightforward or a challenge
leading to an entirely new model. Figure 4 shows a class
diagram resulting from the extension of Figure 3’s model.

• Design Review (1h45). Teachers select two to four models
produced by students to be discussed by the whole class
in terms of the concepts they reified, the relationships
between concepts, and the identified methods (services).
Students can then reconsider their model in order to take
into account lessons learned from the activity.

Implementation (6h30). In the implementation phase, stu-
dents proceed to write Java code to implement their model.
The resulting code may not be consistent with the model, but
students should explain the reasons of the inconsistencies.
Once the code is finished and tested, students exchange their
code, and review it. The code, along with the inclusion (or ab-
sence) of comments and the respect for good programming
practices are open to positive evaluation or constructive
criticism.

Integration (11h). Once their model is implemented, students
are asked to integrate it with the PNEditor. First, they are
invited to explore its source code in order to identify how
their code may be integrated with the PNEditor. Although
they are guided by teachers, much of the work is done by
using a particular tool, STAN2, a structure analyzer for Java.
Once the main components of the PNEditor are understood,
the adapter design pattern is used.

As seen from figure 1, software design and modeling is an impor-
tant task all along the project: considering the whole design phase
2https://marketplace.eclipse.org/content/stan-structure-analysis-java
and the reverse engineering stage during the integration phase,

it comprises a total of 9h45 from the 22h of the project. During
the design phase, the introduction of the new requirements makes
students focus on the importance of software evolution when con-
sidering a solution. During the integration phase, software models
are used to help with the comprehension of a given code (PNEditor).
In neither phase, teachers give ready-to-go solutions to students:
they act as guides to help students identify their own solutions
even if they may lead to implementation issues.

3 EXPERIMENT DESCRIPTION
Two groups of students (A & D) participated in the experiment.
They had slightly different profiles. Group A concerned students
who specialized in software engineering, while students in group
D specialized in other engineering domains that need some founda-
tions on software engineering such as collaborative HMI, embedded
systems or smart objects. Despite these different profiles, the orga-
nization of the project-related activities was similar : a simplified
V life-cycle software development project that covers design, im-
plementation, tests, and integration of a Petri net model. The main
difference concerns the amount of time dedicated to the project:
+20% of time for students in group D. The rationale behind this is
that, as for the students in group D the main focus is not software
development itself, they may need more time to achieve a similar
result as students in group A. However, we believe such (small)
differences should not influence the results of the experiment. We
verify this intuition in Section 4.

The experiment was designed to provide us with insights on
whether and how project-related activities impact the understand-
ing of software design. Therefore, it is structured as a three-staged
survey (see red arrows in the figure 1). We collected information:

• Before starting any project-related activity in order to iden-
tify students that are already familiar with software design.
For these students, our course may not bring significant
improvement on their knowledge.

• After the design phase, but before implementation, to un-
derstand if design activities have a positive impact on the
understanding of the importance of software design.

• At the end of the project when the impact of design choices
become apparent on the product code.

Each stage consisted in a 5–10 minutes Moodle individual ques-
tionnaire. For anonymity purposes, each student was identified
by a randomly selected number. This number allowed us to asso-
ciate responses from one student to the same question at different
stages. In particular, a set of five questions on software design was
included in all three questionnaires to observe the evolution of
software design understanding (goals G1 & G2):

(1) When should software design take place during development
life-cycle?

(2) What are the expected results (artifacts) of software design?
(in a few words)

(3) What are the benefits of software design?
(4) What are the drawbacks of software design?
(5) List a few tools used during software design? (do not restrict

your answers to software tools)
In addition to these five design-related questions (𝐷-series ques-

tions in the appendices) each stage included a set of four to five

https://marketplace.eclipse.org/content/stan-structure-analysis-java

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada J.-C. Bach, A. Beugnard, J.-L. Castaigne, J. Mallet, S. Martínez, and M.-T. Segarra

% B2 B3 B4
++ 39 0 71
+ 52 93 18
- 9 5 11
- - 0 2 0

Table 1: Answers to background questions (in percentage)

% M1 M2 M3
strongly agree 83 74 51
agree 9 20 40
disagree 3 0 3
strongly disagree 5 6 6

Table 2: Answers to motivation questions (in percentage)

other questions with different goals depending on the question-
naire:

• Questionnaire 1 collects general information like student
background, interest in CS or programming skills self assess-
ment (𝐵-series questions in appendices)

• Questionnaire 2 focuses on student engagement (goal G3) on
software design activities (𝑀-series questions in appendices).
For these questions, we used the motivation framework pro-
posed by Viau ([12]) that identifies three axis to consider an
activity as engaging: the value of the activity for the student;
the confidence of the student to successfully finish it; and,
the challenge it poses to the student.

• The last questionnaire completes the 𝐷-series questions
(goals G1 & G2) with a level of confidence. Finally it asks
students whether they are convinced that software design
must precede programming and if so, when they realized
about that (𝐹 -series questions).

More details on the questionnaires are included in appendices.

4 RESULTS AND ANALYSIS
We had 44 students answering the three questionnaires in two
groups (A & D). We could collect only 10 + 7 “full answers”, respec-
tively. A “full answer” is a sequence of three questionnaire answers
from the same (anonymous) student. We analyze results in two
different ways: the 44 answers per questionnaire without the time
aspect, and the 17 timed-and-sequenced-answers (“full answers”).
The first one gives us information concerning perception of soft-
ware design usefulness and student engagement, while the second
one gives us insights on the evolution of both.

Table 1 shows the profile of the 44 students (in percentage)
regarding their interest in computer science (column B2), self-
estimated skills in programming (column B3), and intended en-
gagement in the course (column B4). As seen in the table, the
student sample is homogeneous and very broadly interested in
computer science and the course itself (++ and + responses). Their
self-estimated programming skills are also homogeneous; 93% are
mostly able to write small object-oriented programs.

4.1 Results
Table 2 presents the results of the students’ motivation for software
design activities. Column M1 concerns interest in the activity (92

% agree or strongly agree). Column M2 deals with the students’
ability to succeed the activity (94 % agree or strongly agree). Col-
umnM3 addresses the perceived students’ challenge for the activity
(91 % agree or strongly agree). This result clearly shows that soft-
ware design activities proposed in the course satisfy the Viau three
axis for an engaging activity [12]: value (interest), confidence, and
challenge.

Table 3 presents the results concerning the understanding of soft-
ware design and its evolution from questionnaire 1 to questionnaire
3. The table includes answers to 5 questions (columns D1 to D5)
and, for each question, three sub-columns, one per questionnaire.
Four types of answers are possible: ✓ if the answer is correct, ? if
the student does not know, ✗ if the answer is not correct, and - if
the student answered but the response is ambiguous.

The answers to the question associated with column D1 (“when
should software design take place during a development life-cycle?”)
are circa 90% correct. In addition, there was little variation over time
(from questionnaire 1 to questionnaire 3). Therefore, when is that
the software design activity must take place within the development
life-cycle seems clear to a vast majority of students.

Regarding the questions associated with columns D2 to D5 (ex-
pected outcomes of software design, benefits and drawbacks, and
tools to be used during design, respectively), the initial correct an-
swers (questionnaire 1) are below or much below 50 %. They are
even lower (18%) w.r.t. the question associated with column D4.
However, after software design activities, this number increases
by 15 to 30 points. For the question associated with columns D2
and D3 (expected outcomes and benefits of software design, respec-
tively), the number of correct answers continues to grow for the
third questionnaire while for D5 (tools for software design) and
especially D4 (drawbacks of software design), it is not the case.

This can also be seen in table 4. This table presents results con-
cerning the 17 “full answers” collected in our experiment. Column
identifies the student. Columns D1 to D5 are the answers to the
same questions discussed in table 3. A new question from the third
questionnaire is presented in the table (F2): “when did you realize
that software design must precede programming?”. Numbers in
this column correspond to types of activities in the course: non-𝜇P
activities (number 2), 𝜇P activities (software design (3), implemen-
tation (4), and integration (5)), when answering the survey (number
6). Number 1 stands for “before the beginning of the course”.

Desirable trends (from ? (“don’t know”) or ✗ (“incorrect answer”)
to ✓ (“correct answer”)) for each D-series question (columns D1 to
D5) are presented in green in the table. We identify such trends be-
tween the first and the second questionnaire (for example, student
#3 for the question associated with column D2) and also between
the first and third one (for example, student #1 for the question
associated with column D3). Also, the 17 “full-answered” students
know when software design should take place from the first ques-
tionnaire (results in column D1). However, this result is not always
consistent with answers in column F2 (e.g., student #2 indicates
that the final questionnaire helped her to understand it).

Finally, for columns D2 to D5, there are 68 (17 × 4) “full answers”:
23 (34%) are correct (i.e., answers are always ✓ in the table) and
21 (31%) represent a desirable trend (11 (52%) from the first to

An analysis of software design understanding & motivation of engineering students MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

% D1 D2 D3 D4 D5
✓ 84 89 87 32 51 57 43 57 63 18 46 30 48 71 70
? 7 0 0 48 26 13 32 26 10 57 40 13 11 14 7
✗ 7 11 13 20 23 20 18 9 23 16 6 23 20 11 17
- 2 0 0 0 0 10 7 8 4 9 8 34 21 4 6
Table 3: Answers to software design related questions (in percentage)

D1 D2 D3 D4 D5 F2
1 ✓ ✓ ✓ ? ? ✓ ? ? ✓ ? ? ✓ ✗ ✗ ✓ 1
2 ✓ ✓ ✓ ? ✗ ✓ ? ? ? ? ? ? ✓ - - 6
3 ✓ ✓ ✓ ? ✓ ✗ ✓ ✓ ✗ - ✓ ? ✗ ✓ ✓ 1
4 ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ 1
5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ 1
6 ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ? ? ? ✓ ✓ ✓ 1
7 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3
8 ✓ ✓ ✓ ✓ ✓ ? ✗ ✗ ? ? ✓ ? ✓ ✓ ? 1
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ? ? - ✓ ✓ ✓ 1
10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ 2
11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✗ ✓ ✓ ✓ 1
12 - ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ? ? ? ? ✗ ✓ 1
13 ✓ ✓ ✓ ? ✓ ✗ ✓ ✓ ✓ ✗ ✗ ? ✓ ✓ ✓ 3
14 ✓ ✓ ✓ ? ? ? ? ? ? ? ? ? ? ? ? 4
15 ✓ ✓ ✓ ? ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 4
16 ✓ ✓ ✓ ? ? ? ? ? ✓ ? ? ? ? ? ? 1
17 ✓ ✓ ✓ ? ✗ ? ✓ ✓ ✗ ? ? ✓ ✓ ✓ ✓ 2

Table 4: “Full answers” collected in our survey

the second questionnaire and 10 (48%) from the first to the third
questionnaire).

4.2 Analysis
Concerning goal G3 (“Evaluate if our course fosters student engage-
ment”), results in table 2 clearly shows that our course motivates
students for software design activities. Students found the proposed
software design activities interesting and-or useful, they felt confi-
dent to successfully complete them, and felt challenged by them.
Furthermore, the course is mainly based on project-based activ-
ities which promotes students’ motivation [8]. The pedagogical
approach is, for teachers, to guide students without ever imposing
one solution. This approach is relevant and fosters autonomy and
engagement. Regarding the differences between the two groups
of students (A & D), we expected students in the group A to be
more motivated skilled. However, the𝑀-series and 𝐵-series ques-
tions show that this assumption was not founded, as results about
motivation and background are similar for both groups.

Results for question D1 are good to very good, particularly for
“full answers” (table 4). From figures in table 3, most of the students
correctly placed software design in a software development life-
cycle. This knowledge is acquired from the beginning of the course
and evolves slightly over time. The practical application of this
activity in a concrete project roots it for the long term.

Figures for D2, D3, and D4 in table 3 show that initial global
understanding of the software design role and value is quite low but

significantly improves after design activities. Moreover, for D2 and
D3, in the third questionnaire, the results further improved. This
indicates that some of the students learn software design value,
only when the implementation is done. It should be noted that
understanding that different diagrams allow to compare code-to-be-
later-written without writing it is a non-obvious mental exercise
that not all students are able to do. Moreover, being able to recog-
nize properties (such as evolution, modularity or extensibility) on
diagrams requires training.

As for D4 (software design drawbacks), very few students are
able to mention drawbacks at the beginning of the project (18%).
Although results improve in the second questionnaire (28 points),
they drop again for the third one (30%). These results can be ex-
plained by the fact that all software design activities in our course
are intended to make students aware of the importance of design
concerning desirable software properties such as extensibility or
modularity. However no insights on drawbacks are explicitly given
nor time for students to reflect upon such drawbacks allocated in
the course.

With respect to D5 (tools for design) in questionnaire 1, one
half of the students answers the question correctly. Once software
design activities are completed, this number increases to 70% and
does not progress anymore. The knowledge of the tools is acquired
naturally through the activities themselves and this acquisition
seems long-term. For the sake of simplicity and time restrictions,
we do not compel students to use a software tool for the design

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada J.-C. Bach, A. Beugnard, J.-L. Castaigne, J. Mallet, S. Martínez, and M.-T. Segarra

activities. Teaching in a school not specialized in computer science
leaves little time for tool discovering and understanding. That is
why we allow (and prefer) the use of paper and pencil as a means
to understanding the purpose of software design. Once this step
is assimilated, we think it is easier to justify efforts in learning
complex but powerful tools.

“Full answers” (table 4) clearly show an individual improvement
in software design purpose understanding: 34% are correct answers,
i.e., answers that are always ✓ in the table and 31% represent a
desirable trend. Table 4 also shows that even after the software
design activities, students may improve their understanding (48%
of desirable trends concern changes on answers from the first to
the third questionnaire). However, this overall understanding is
difficult for students even through this specially tailored course.
It can also be noted that 5 “full answers” (7%) with a trend in the
right direction from the first to the second questionnaire, show a
non-desirable trend on answers from the second to the last one (i.e.,
? or ✗). This again highlights how difficult is for students to obtain
an overall understanding of the usefulness of software design.

In conclusion, for goal G1 (“Evaluate the students perception
of the usefulness and pertinence of the software design phase”),
students have a satisfactory overall understanding of software de-
sign activities. However, this understanding is complex to acquire
and some students only master it partially. For goal G2 (“Assess
the evolution, if any, of this perception along the course”), after the
design activities, students clearly improve their overall understand-
ing. The coding activities that follow the design phase allow this
understanding to be rooted in a long-term way.

4.3 Threats to validity
As for internal validity, we can note:

• The number of “full answers” is quite low (17). However, we
have at least as many students as they have in other similar
studies (see Section 5). Nevertheless, we aim at renewing the
experiment in the future with more students.

• The 𝐷-series questions were open and subject to interpreta-
tion. However, the teaching team agreed on an interpreta-
tion of the questions. For instance, the answer “Java” in the
software design expected outcomes (𝐷2) was considered as
wrong, even if the eventual goal is to produce Java code.

• Questions 𝐷3 & 𝐷4 went beyond the course objectives. We
hoped/expected from students a step back and an analysis
from their project experience. Results are mixed.

• The repetition of questions may have led to weariness. Few
late wrong responses may illustrate this.

Regarding external validity, i.e., the understanding of our results
in another context, we can note that:

• Even if our context is very specific (a French postgraduate
non- computer science engineering school), we believe that
our teaching approach may be general enough to be applied
in the early stage of a computer science curriculum with
similar results. Nevertheless, additional experiments would
need to be conducted in order to confirm this intuition.

• 𝐵-series questions show a poor diversity of backgrounds.
This is generally what is observed in this kind of school

(French Grande École). Whether greater diversity would
change results is an open question.

5 RELATEDWORK
There is a plethora of studies evaluating the usefulness, advantages
and disadvantages of using diverse tools, methodologies and course
organizations for teaching software design and modeling in general.
This is less so for studies evaluating the perception students have on
the usefulness and pertinence of modeling itself and its evolution
as a consequence of training.

In [3] the authors report on a survey of 47 instructors in order
to capture the current status of modeling and model-driven en-
gineering (MDE) teaching. Our course organization, content and
use of modeling (focused on software engineering and design),
matches some of the described courses, which places it among cur-
rent practices. Instructors also report on negative aspects, such as:
the students have difficulties with understanding abstraction; mod-
eling is conceived to be too different from programming; purpose
of models is unclear. One of the main objective of our study is to
evaluate whether such negative aspects get alleviated over time as
training takes place. In the following we focus on works that report
on modeling and model-driven engineering courses which include
surveys to students.

In [5], the authors present ClassCompass, a system to facilitate
the evaluation of software design assignments, and evaluate how
it helps students understand design principles whereas in [16] the
authors discuss the rationale behind the redesign of a software
design course (the refactored course is very similar to ours, focusing
on a course-long main project). Both studies present the students
with a questionnaire. However, they evaluate primarily the course
(perceived load, difficulty, etc.) and less the perception of students
w.r.t. the usefulness of modeling and design which is our focus.
Some questions are similar to ours but they are less explicit and
there is no tracking of the evolution of the students’ opinion over
time.

More focused on MDE (in the sense of rigorous models used in
later stages for automatic tasks such as model evaluation, model
transformation or code generation), in [4] the authors discuss the
integration of MDE (including code generation) into a software
design course. A survey is presented to the students with questions
mainly related to usefulness of using MDE for better understanding
software design. They do not take into account the evolution of
answers over time. Our course does not use any automatic manipu-
lation of models. In this sense it can be seen as a more classical use
of modeling and thus complementary to their results. Close to the
aforementioned work, in [14] the authors report on a new MDE
course and on a set of surveys presented weekly to the students
but the evolution of answers is not tracked.

More similar to our study, in [7] the authors present the students
with three surveys with the objective of evaluating the evolution
of their perception w.r.t. the purpose of models and its usefulness.
However, their course is more focused in model transformation and
the use of a number of modeling tools whereas our study focuses
on the design phase of a software engineering lifecycle with no
emphasis on the influence of tooling. Besides, their course is not
based on a somehow large project but in smaller assignments. In
that sense, our studies can be seen as complementary as well.

An analysis of software design understanding & motivation of engineering students MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

6 CONCLUSION AND FUTUREWORK
In this paper we have presented a study aimed at evaluating the
understanding, motivation and perception of students with respect
to software design. We have first described a project-based course
currently taught to second-year students at IMT Atlantique and
then presented three questionnaires we passed to the students
enrolled to the aforementioned course in 2021. The answers to these
questionnaires allowed us to analyze: 1) the students’ perception
of the usefulness and pertinence of the software design phase and
the activity of modeling of software systems; and 2) the evolution
of this perception. Results hint towards a positive evolution of the
students perception on the usefulness and pertinence of software
design. For some students, the design goal is difficult to understand
until the effects on the code are observed. They realize, late, that
things could have been anticipated in the design models.

In the future, we plan to continue this line of work by looking
into the following directions of further work. First, we intend to
continue the experiment with the future editions of the course
in order to verify whether the results remain consistent and if
modifications introduced to the course and/or the questionnaires
positively affect the outcomes. We intend as well to refine our
survey to better understand where the importance of design choices
appear more evident. Is it for reification purpose? (the choice of
entities that become classes) for association variants? (cardinality,
level of abstraction of roles), or for method localization in classes
and code distribution? Finally, we plan as well to study the influence
of using different tools. E.g., would the use of a full-fledged UML
editor help students better understand the usefulness of models or
would it hamper it by distracting themwith tools induced accidental
complexity?

ACKNOWLEDGMENTS
We thank all teachers involved in teaching MAPD throughout the
years for their contribution in improving this course. We also thank
all students answering the surveys.

REFERENCES
[1] A. Frank Ackerman. 2014. An active learning module for an introduction to

software engineering course. In 2014 IEEE 27th Conference on Software Engineering
Education and Training (CSEE T). IEEE, 190–191.

[2] Pierre Bourque and Richard E. Fairley (Eds.). 2014. SWEBOK: Guide to the Software
Engineering Body of Knowledge (version 3.0 ed.). IEEE Computer Society, Los
Alamitos, CA. http://www.swebok.org/

[3] Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sebastien
Mosser, Richard F Paige, Alfonso Pierantonio, Arend Rensink, Rick Salay, Gabi
Taentzer, et al. 2018. How do we teach modelling and model-driven engineering?
A survey. In Proceedings of the 21st ACM/IEEE international conference on model
driven engineering languages and systems: Companion proceedings. 122–129.

[4] Peter J Clarke, Yali Wu, Andrew A Allen, and Tariq M King. 2009. Experiences
of teaching model-driven engineering in a software design course. In Online
Proceedings of the 5th Educators’ Symposium of the MODELS Conference. 6–14.

[5] Wesley Coelho and Gail Murphy. 2007. ClassCompass: A software design men-
toring system. Journal on Educational Resources in Computing (JERIC) 7, 1 (2007),
2–es.

[6] Padmashree Desai and G.H. Joshi. 2012. Activity based teaching learning in
software engineering - An experience. In 2012 IEEE International Conference on
Engineering Education: Innovative Practices and Future Trends (AICERA). IEEE,
1–6. https://doi.org/10.1109/AICERA.2012.6306729

[7] Huseyin Ergin, Isaac L Walling, Kate P Rader, and D Joshua Dobbs. 2019. A study
of modeling perception in a first-time modeling class. In 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). IEEE, 680–689.

[8] Scott Freeman, Sarah L. Eddy, Miles McDonough, Michelle K. Smith, Nnadozie
Okoroafor, Hannah Jordt, and Mary Pat Wenderoth. 2014. Active learning in-
creases student performance in science, engineering, and mathematics. Pro-
ceedings of the National Academy of Sciences 111, 23 (2014), 8410–8415. https:

//doi.org/10.1073/pnas.1319030111
[9] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. 1994. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional.

[10] Damla Oguz and Kaya Oguz. 2019. Perspectives on the Gap Between the Software
Industry and the Software Engineering Education. IEEE Access 7 (2019), 117527–
117543. https://doi.org/10.1109/ACCESS.2019.2936660

[11] Sofia Ouhbi and Nuno Pombo. 2020. Software Engineering Education: Chal-
lenges and Perspectives. In 2020 IEEE Global Engineering Education Conference
(EDUCON). IEEE, 202–209.

[12] Thierry Pelaccia and RollandViau. 2017. Motivation inmedical education.Medical
Teacher 39, 2 (2017), 136–140.

[13] Carl Adam Petri. 1962. Communication with automata. PhD thesis (1962).
[14] Eric J Rapos. 2018. We’ll make modelers out of’em yet: introducing modeling

into a curriculum. In Proceedings of the 21st ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings.
130–134.

[15] Pieter Van Gorp, Hans Schippers, Serge Demeyer, and Dirk Janssens. 2007. Stu-
dents can get excited about Formal Methods: a model-driven course on Petri-Nets,
Metamodels and Graph Grammars. In Proc. 3rd MODELS Educators Symposium,
Vol. 7. 19–28.

[16] Ian Warren. 2005. Teaching patterns and software design. In Proceedings of the
7th Australasian conference on Computing education-Volume 42. 39–49.

A QUESTIONNAIRES
The following text was presented to the students at the beginning of
each survey: “This survey is anonymous. Teachers will not access
the answers before the publications of final course results. The
purpose of this research survey is to investigate your interest in
programming and design evolution during the course.”

A.1 First
Before Initial Design (the beginning of the course).

B1 How did you enter IMT-Atlantique? AST/Concours/Other
B2 What is your interest for computer science? No interest at

all/As little as needed to succeed/Moderate/Eager
B3 What is your self-estimated level in programming? Begin-

ner/Capable to write a small program (not object-oriented)/
Capable to write a small Object-Oriented program/ I’m com-
fortable with all kinds of Object-Oriented program

B4 MAPDA: You are doing the DCL TAF. Please check the
sentence that applies. I didn’t choose it/It was not my preferred
option/It was my number one option
MAPDD: What is your current TAF? I didn’t choose it/It was
not my preferred option/It was my number one option

B5 Concerning MAPD UE. Check the sentence that applies.
I’m willing to deeply understand/I’ll do what is expected by
the teachers, no more, no less/I’ll study to succeed the exams

1D1 When should software design take place during develop-
ment lifecycle? Before analysis and before realization/Before
analysis and after realization/After analysis and before real-
ization/After analysis and after realization/I do not know

1D2 What are the expected results (artifacts) of software de-
sign? (in a few words). Answer ’I don’t know’ if you have
really no idea.

1D3 What are the benefits of software design? (in a few words).
Answer ’I don’t know’ if you have really no idea.

1D4 What are the drawbacks of software design? (in a few
words). Answer ’I don’t know’ if you have really no idea.

1D5 List a few tools used during software design? (do not
restrict your answers to software tools)

http://www.swebok.org/
https://doi.org/10.1109/AICERA.2012.6306729
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1109/ACCESS.2019.2936660

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada J.-C. Bach, A. Beugnard, J.-L. Castaigne, J. Mallet, S. Martínez, and M.-T. Segarra

A.2 Second
Halfway through the course.

2D1 When should software design take place during develop-
ment lifecycle? Before analysis and before realization/Before
analysis and after realization/After analysis and before real-
ization/After analysis and after realization/I do not know

2D2 What are the expected results (artifacts) of software de-
sign? (in a few words). Answer ’I don’t know’ if you have
really no idea.

2D3 What are the benefits of software design? (in a few words).
Answer ’I don’t know’ if you have really no idea.

2D4 What are the drawbacks of software design? (in a few
words). Answer ’I don’t know’ if you have really no idea.

2D5 List a few tools used during software design? (do not
restrict your answers to software tools)

M1 MAPDA: I think that software design activities are inter-
esting and-or useful Strongly agree/Agree/Disagree/Strongly
disagree
MAPDD: Working on software design is interesting and-or
useful Strongly agree/Agree/Disagree/Strongly disagree

M2 I felt confident to successfully complete the software design
activities of MAPD. Strongly agree/Agree/Disagree/Strongly
disagree

M3 I felt challenged by the software design activities of MAPD.
Strongly agree/Agree/Disagree/Strongly disagree

M4 Free comments about your motivation for the software
design activities in MAPD:

A.3 Third
After the end of the course.

3D2 What are the expected results (artifacts) of software de-
sign? (in a few words). Answer ’I don’t know’ if you have
really no idea.

3.2 Indicate your level of confidence for the previous answer.
100% sure/75% sure/50% sure/ 25% sure/0% sure

3D3 What are the benefits of software design? (in a few words).
Answer ’I don’t know’ if you have really no idea.

3.4 Indicate your level of confidence for the previous answer.
100% sure/75% sure/50% sure/ 25% sure/0% sure

3D4 What are the drawbacks of software design? (in a few
words). Answer ’I don’t know’ if you have really no idea.

3.6 Indicate your level of confidence for the previous answer.
100% sure/75% sure/50% sure/ 25% sure/0% sure

3D5 List a few tools used during software design? (do not
restrict your answers to software tools)

3D1 When should software design take place during develop-
ment lifecycle? Before analysis and before realization/Before
analysis and after realization/After analysis and before real-
ization/After analysis and after realization/I do not know

F1 Are you convinced that software design must precede pro-
gramming? 100% sure/75% sure/50% sure/ 25% sure/0% sure

F2 When did you realize that? I knew it before starting the
course / During lectures / During the design phase of the 𝜇P /
During the implementation of the 𝜇P / After the 𝜇P has been
completed/Right now, thanks to the survey

	Abstract
	1 Introduction
	2 Course Description
	3 Experiment Description
	4 Results and Analysis
	4.1 Results
	4.2 Analysis
	4.3 Threats to validity

	5 Related work
	6 Conclusion and Future work
	References
	A Questionnaires
	A.1 First
	A.2 Second
	A.3 Third

