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The purpose of the present study is to predict the whole chromatic path travelled by the colors of glossy anodized 
titanium samples in every specular geometry. It is based on measurements of the samples reflectance spectra in a 
limited number of specular geometries which allow to obtain the oxide layer structural parameters (thickness, 
refractive index) which are then put into an optical model to predict the samples reflectance spectra in every specular 
geometry. A good color prediction performance is obtained, with an average ઢૢࡱ૝ color distance over all samples and 
geometries of 1.9. The oxide layer structural parameters are also in good agreement with refractive index values 
extracted from the literature and thicknesses measured on electron microscopy images of samples sections.  © 2020 
Optical Society of America 
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1. INTRODUCTION Being able to characterize properly the color of gonioapparent materials (i.e. materials which colors depend on the illumination and/or observation directions) remains a challenge.  Entirely characterizing the material color appearance would require to measure its color for each illumination and observation direction in the hemisphere above the sample. As this process would be extremely time consuming, the development of models predicting the material color for any illumination/observation geometry based on color measurements in a limited number of geometries is an active research field. Color predictions of various gonioapparent materials can be found in the literature. Special-effect coatings, which are composed of interferential flakes embedded in a transparent colored substrate, are highly gonioapparent and well-known in the car paint industry. Nadal et al. [1] showed that 15 different geometries are necessary for the colorimetric characterization of such samples. All these geometries are in the incidence plane, and composed of 3 different incidence angles (15°, 45° and 65°) and a set of 5 different non-specular observation angles for each incidence angle. The authors implemented fourth-order polynomial fits of the CIELAB  [2] color 

components of a sample composed of a red-blue pearlescent coat with a bright red base. The fits were performed for each incidence angle using the 5 selected observation angles. The authors then compared the color components obtained from the fit with the color components obtained from 30 in-plane Bidirectional Reflectance Distribution Function (BRDF) measurements (2 incidence angles of 15° and 65° and 15 observation angles for each) using the ΔE CMC(2: 1) [3] color distance : an average value of 0.3 and a maximum value of 1.5 are obtained. Ferrero et al. [4] predicted the whole spectral BRDF of special-effect coatings from reflectance measurements in only 9 geometries. These geometries are all included in the incidence plane and correspond to two different incidence angles (20° and 50°) and 7 different observation angles. The authors used a principal components analysis to extract the key features of the BRDF and extract the minimum number of geometries necessary to predict the whole BRDF. They then checked the color prediction performance on 448 BRDF measurements for two samples called Arctic Fire and Lapis Sunlight. Average and maximum Δܧ௔௕ [2] color distance values are respectively 7 and 42 for the first sample, and 6.5 and 36 for the second one. Further work of Ferrero et al. [5] on 15 samples of special effect coatings compared the color prediction performance 
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index of the layers composed of a mix of two different materials. Simulated reflectance spectra are computed through an Abeles matrices based model [19] using the 6 parameters : ܮଵ, ,ଶܮ ܺ ,ଷܮ  :described above. These six parameters are obtained for each sample by fitting experimental reflectance spectra both for TE and TM polarized incident light for different sets of incidence angles. The fit procedure uses a chi-square (߯²) minimization. The ߯² parameter is computed the following way ܤ and ܣ ,
૛࣑ = ∑ ∑ ቀࡱࢀࢋ࢖࢞ࢋࡾ ,ࣅ) (࢏ࣂ − ࡱࢀ࢛࢓࢏࢙ࡾ ,ࣅ) ܑࣂࣅቁ૛(࢏ࣂ ∑ ૚࢏ࣂ  

+ ∑ ∑ ቀࡹࢀࢋ࢖࢞ࢋࡾ ,ࣅ) (࢏ࣂ − ࡹࢀ࢛࢓࢏࢙ࡾ ,ࣅ) ܑࣂࣅቁ૛(࢏ࣂ ∑ ૚࢏ࣂ  

(3)

where ߣ is the wavelength, ߠ௜  the incidence angle, ܴ௘௫௣௘்ா  (resp. ܴ௘௫௣௘்ெ ) the experimental reflectance spectrum for TE (resp. TM) polarized incident light, ܴ௦௜௠௨்ா  (resp. ܴ௦௜௠௨்ெ ) the simulated reflectance spectrum for TE (resp. TM) polarized incident light. ∑ 1ఏ೔  will be equal to the number of incidence angles chosen to fit the material parameters. To avoid issues linked to initial parameters in minimization problems, 100 ߯² minimizations were made with random initial parameters uniformly chosen in the ranges presented in Table S2Table . These ranges correspond to wide ranges of possible values for the different parameters. They have been checked a posteriori by looking at the final parameter values obtained after the fitting process. The process gives thus 100 sextuplets of result parameters. Among these sextuplets, these with a ߯² superior to 6 times the median ߯² and these with ܺ >0.5 were removed. Fig. S2 illustrates two examples of the effect of these first selection steps on the selected ߯² values. This value of 0.5 has been chosen arbitrarily. It is indeed difficult in the present model to have a precise estimation of the porosity of the layer as the same refractive index for the layer number 2 can be obtained for different sets of the parameters {ܣ, ,ܤ ܺ}. It thus implies that two samples with similar ܺ  values do note necessarily have the same porosity for layer 2, as the ܣ and ܤ parameters might already include a fraction of the porosity. Then, the most probable sextuplets were selected with the following process (see Fig. 4): for each sample, a Gaussian fit was applied to the repartition of the thickness values of each layer. Let’s denote respectively by ߤ௜ and ߪ௜ (݅ ∈ ۤ1, ݅ the average and standard deviation of the thickness values of the layer number (ۥ3 . The intervals ሾߤ௜ − ,௜ߪ ௜ߤ + :௜ሿ are represented as green lines in Fig. 4 at an amplitude equal to the Gaussian fit maximum divided by √2. Only the parameter sextuplets that fulfill the following condition were selectedߪ ଵ௝ܮ ∈ ሾߤଵ − ,ଵߪ ଵߤ + ଵሿߪ  ∩ ଶ௝ܮ  ∈ ሾߤଶ − ,ଶߪ ଶߤ ଶሿߪ+  ∩ ଷ௝ܮ  ∈ ሾߤଷ − ,ଷߪ ଷߤ + ݅ ௜௝ is the thickness of the layerܮ ଷሿ,whereߪ  of the parameter sextuplet number ݆  (with ݆ ∈  ۤ1, ,ଵܮ Then, after this selection process, the sextuplet with the lowest �² value is extracted and will give the retained values for the 6 parameters .(ۥ100 ,ଶܮ ܺ ,ଷܮ ߯ The purpose of this selection process is to obtain the best compromise between the .ܤ and ܣ , ² value and the reliability of the 6 material parameters. Examples of fit results for high ߯ ² values and for low ߯ ² values in cases where the material parameters are selected or not are presented in Fig S3 and Table S3. 

 Fig. 4. Example of selection process of the sextuplets according to the layers thicknesses values. Each histogram bin has a width of 0.5 nm. This example corresponds to the Vib 20 V sample with a fit of the material parameter done on three incidence angles (65°, 70° and 75°). 
3. RESULTS 

A. Reflectance and color prediction Once the material parameters obtained thanks to the process described in the previous section, the samples reflectance spectra are computed for all 9 incidence angles.  The material parameters fit process has been done with different sets of incidence angles:  ሼ15°ሽ,  ሼ45°ሽ,  ሼ75°ሽ,  ሼ15°, 45°ሽ,  ሼ15°, 75°ሽ,  ሼ45°, 75°ሽ,  ሼ15°, 45°, 75°ሽ,  ሼ20°, 40°, 70°ሽ,  ሼ65°, 70°, 75°ሽ, ሼ15°, 20°, 30°ሽ and ሼ15°, 30°, 45°, 60°, 75°ሽ. An example of the process flow from the reflectance measurements to the color prediction is presented in Fig. 5 in the case where the fit process is done on the angle set ሼ45°, 75°ሽ. To evaluate the performance of the prediction of the samples colors, the experimental and simulated spectra have been converted to CIELAB color coordinates ( [2] and supplemental document) assuming a D65 illuminant. Then the difference between the simulated and experimental colors have been evaluated through the Δܧଽସ  metric ( [2] and supplemental document). The Δܧଽସ metric has been preferred over the most recent CIEDE2000 metric as it is more widely used in the literature. It thus facilitates the comparison between the color prediction performances presented in the present paper and other publications. Fig. 6 represents the average and maximum Δܧଽସ values over all samples and incidence angles as a function of the set of incidence angles used to fit the material parameters.  
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variation betwmponents for (a) on of the incidenresented in Fig. mple is related l incidence anglts. Higher relate chroma C wie color chroma meter. For theibit higher relatfor incidence aw 5%, whereas elative variationAs expected froor chroma is theiations higher tho the cyclic belso to be monitobelow 10° for the

tal chromatic pathe Vib 20V andnce angle. Is also between the expemples for all 9 incnds to the xy coo
nalysis of the diors, the color coave been convepplemental docuative variation a has been comp− ห࢛࢓࢏࢙ࢄ
ࢋ +  ห espectively the࢛࢓࢏࢙ࢄ

ween experimentthe Vib 20V ance angle. 11. The good coto very low rles) of the lightntive variations ith values betw(or saturation)e Alu 90V sative variations. angles below 6the lightness s below 3% at om the CIE 193e less well-predhan 12% for allehavior of the ored: they are bee Alu 90V sampl

ths in the CIE 19d (b) the Alu 90represented on terimental (left) ancidence angles. Trdinates of the D
ifference betweomponents of therted into CIELCument). Then, f(in %) betweputed, through th

(5)

experimental an

tal and simulatnd (b) the Alu 90
olor prediction frelative variationess L and hue are nevertheleween 4% to 9%) is the less weample, all colThe color hue 60° with relatihas an opposit incidence angl1 xy chromaticidicted componenl incidence anglehue, its absoluelow 2° for the Vle. 

31 0V the nd The 65 
en the CH for en the 

nd 

 ted 0V 
for ns H ess %, ell-lor is ive ite les ity nt, es. ute Vib 

Once stwill beobtaine
B. MaThe vaprocessincidenሼ65°, 7These aall alonsets. Th3) at 37differenrefractiporositand a lparameare cleaparticusampleܮଷ (for refractisamplediscrepሼ65°, 7besidessampleindex a10V anvalues ithe Δܧଽand ሼ65sets dofocus oangle se

tudied the colore dedicated to ed through the fi
aterial parametealues of the ms are presentednce angles 70°, 75°ሽ,  ሼ15°angle sets are thng the paper a che values of the 70 nm and 800 nt values for ܣ,ive index. For ty ܺ  can give a silow porosity ܺ . eters obtained warly different froularly visible foe), for ܮଶ (for theall samples besive index at botes besides Alu pancy is also 70°, 75°ሽ angles s Alu 10V and Ves), for ܮଷ for theat both wavelennd Vib 90V). This in agreementଽସ values, with g5°, 70°, 75°ሽ ann’t give an accepon the material ets.  

r prediction perthe analysis ofit process. 
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