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Sarah Bertrand† Lionel Robinault?† Laure Tougne?

? Univ Lyon, Lyon 2, LIRIS, F-69676 Lyon, France, firstname.lastname@liris.cnrs.fr
† FOXSTREAM, Vaulx-en-Velin, France, f.lastname@foxstream.fr

ABSTRACT

Perimeter intrusion detection (PID) deals with the detection
of intruders displacing in a protected perimeter. In the video
surveillance domain, deep learning has shown tremendous
progresses. Existing deep learning based PID systems (PIDS)
are supervised and thus require a lot of annotated data. How-
ever, since intrusions are rare events, there are very few pos-
itives in datasets, thus making them highly imbalanced. Fur-
thermore, a PIDS must adapt to varying real-life scene dy-
namics, like weather, light, environmental conditions, etc. To
address these issues, we propose an autoencoder-based, end-
to-end trainable, unsupervised PIDS with a module that can
adapt to long-term variations in scene dynamics. Our results
show competitive performance of the proposed system on the
standard i-LIDS dataset.

Index Terms— Perimeter intrusion detection, deep learn-
ing, unsupervised, adaptive, i-LIDS dataset.

1. INTRODUCTION

The task of perimeter intrusion detection (PID) consists in
detecting unauthorized objects entering in a protected area
[1, 2]. These objects are defined by users and can vary from
one site to another, e.g., for one site cars can be intruders
while not for others. Furthermore, they must displace on the
site, e.g., the cars parked on a site cannot be treated as an in-
trusion while an incoming moving car is an intrusion. The
movement of trees and animals, changing weather and light-
ing conditions further makes this task difficult.

In the past few years, deep learning has shown tremen-
dous achievements on video surveillance tasks like object de-
tection [3], tracking [4], anomaly detection [5], etc. Like
other tasks, deep learning also positively influenced the PID
task [6, 7, 8]. Most deep learning based PIDS rely on anno-
tated intrusion classes [2, 6, 7]. However, since intrusions oc-
cur very rarely, recorded videos mostly contain non-intrusion
frames. In other words, PID datasets are highly imbalanced
[8] with very few true positives, i.e., intrusions. To work
around these machine learning issues, some works [6, 7] iden-
tify classes of intruders and use a pre-trained object detector
to detect intrusions. These supervised approaches assume that

all potential intrusion classes are known, and that they can be
detected by pre-trained object detectors. Other works take
non-intrusion frames from videos and learn normality from
them [9, 8], acting like a one-class classifier, modelling nor-
mality and detecting abnormal frames as intrusion. These un-
supervised approaches do not make any assumptions on the
intrusion classes. Lohani et al. [8] introduced an autoencoder
to learn normality from non-intrusion videos and detect intru-
sions by thresholding reconstruction error. However, they do
not propose a strategy to select the threshold. This inhibits
the real-life deployment of the PIDS because we must fix a
threshold to raise alarms.

Monitoring a site continuously for days or weeks, ac-
counts to changing weather, light, and environmental con-
ditions. The PIDS must adapt itself to these conditions in
order to protect the site efficiently. One solution, dominantly
used for the task of video anomaly detection [5, 9], con-
sists in rescaling values towards a known interval, where a
fixed threshold can be chosen. This strategy works well on
very short length videos (less than 1 minute) with still scene
dynamics; however, it struggles on long videos as it is not
sufficiently adaptive when scene dynamics vary considerably.

Our main contributions are summarized as follows: (i)
we design an unsupervised, end-to-end trainable, 3D convo-
lutional autoencoder architecture; (ii) we provide an adaptive
thresholding strategy that can adapt to long-term variations
in scene dynamics; (iii) we analyze our approach and com-
pare it on a standard dataset. In a nutshell, this work validates
a new deployable unsupervised perimeter intrusion detection
pipeline, available here: https://gitlab.liris.cnr
s.fr/dlohani/pyPID.

The article is organized as follows: Section 2 highlights
related work, Section 3 describes details of our method, Sec-
tions 4 and 5 presents experiments and results for different
PIDS, and Section 6 concludes this work.

2. RELATED WORK

Detecting intrusion is a crucial task in intelligent surveillance
systems [10]. Traditionally, this task was addressed by de-
tecting a moving object using background modeling methods
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Fig. 1. Overall schema of proposed PIDS: input window is reconstructed after going through a 4 layered 3D convolutional
autoencoder. The reconstruction error is fed to a moving z-score module where it is thresholded to raise an alarm.

[11] like frame differencing [12] or mixtures of Gaussians [2],
tracking it using Kalman or particle filtering [13], and raising
an alarm using some fixed rules [14].

Recently, supervised deep learning has been used for PID.
Kim et al. [6] proposed a system where background modeling
was used for movement detection and a convolutional neu-
ral network for classifying moving objects as intruders or not.
Nayak et al. [7] used a pre-trained YOLOv2 object detector to
detect potential intruders and track them using the simple on-
line and real-time tracking [15]. These supervised approaches
assume that the intrusion object classes are known a priori.
Furthermore, they rely on object detectors trained on datasets
like COCO [16] where objects are not representative for in-
trusion task, e.g., nobody crawls in COCO images whereas a
real intruder might.

Alternatively, unsupervised deep learning uses the abun-
dant non-intrusion frames of the video for PID. Lohani et
al. [8] proposed a deep spatio-temporal convolutional autoen-
coder which learns “normality” from non-intrusion frames.
While testing, frames having high reconstruction errors are
considered as intrusions. They however, did not propose a
strategy to choose the threshold for raising alarms, which is
essential for real-life PIDS deployment.

Since each video can record different weather, luminosity
and climate conditions, thresholding the raw reconstruction
error directly does not work well [17]. To resolve this issue,
most works rescale the frame reconstruction error for each
video [5, 17], usually using the min-max (MM) rescaling that
forces the error values to be in the [0,1] interval. The under-
lying assumption is that the maximum value must be abnor-
mal (intrusion) and minimum value must be normal [9]. This
method is offline, since it requires the complete video to ap-
ply rescaling, and it can fail if max or min values are outliers.
It can work well in short videos where there is no big change
in scene dynamics. But in the case of PID, videos are long
with continuously changing scene dynamics.

In this work, we address all these issues, proposing an un-
supervised intrusion detector, where an adaptive thresholding
strategy is updated online with the scene dynamics.

3. PROPOSED PIDS

In our PIDS (Fig. 1), we propose a new 3D convolutional au-
toencoder (3DCAE) to learn normality, coupled with an adap-
tive thresholding strategy to detect intrusions.

3.1. 3D convolutional autoencoder

The proposed autoencoder takes a video window I (a volume
of time x width x height) as input and outputs a reconstructed
window O. The idea is to minimize the error between these
windows so that the autoencoder learns representative “nor-
mal” spatio-temporal features from non-intrusion videos.

Each encoder layer consists of a strided 3D convolu-
tion while each decoder layer uses a strided 3D deconvo-
lution [18], with kernel size of 5x3x3 and stride 2 in both
cases. Encoder (resp. decoder) is composed of two layers
containing (16, 8) (resp. (8, 16)) filters, with a ReLU activa-
tion between each layer. The output layer consists of a 3D
convolution with stride 1, followed by a tanh activation. A
dropout layer with dropout probability of 0.25 is applied after
the first layer. Overall, we have a light architecture with only
15, 889 parameters (1011 MB size).

The proposed 3DCAE is trained only on normal videos,
i.e. without any intrusion, using Adadelta optimizer until the
mean squared error loss converges.

3.2. Detecting intrusion

Once we have a trained model, we use it during testing phase
with the hypothesis that the intrusion frames will be badly
reconstructed, i.e., with a high reconstruction error.

3.2.1. Frame level reconstruction error

Given ith input window Ii and its reconstruction Oi, the win-
dow level reconstruction error (RE) is calculated as:

wi =
1

N

N∑
j=1

‖Ii,j −Oi,j‖2F , (1)



where j in Ii,j and Oi,j corresponds to jth frame of the win-
dow i, N is the temporal window size and ‖ · ‖F denotes the
Frobenius norm.

For real-time application, we need a reconstruction error
for each frame that the system encounters. Therefore, we
need to extract per-frame error from the window level recon-
struction error. The reconstruction error rt for frame t is de-
fined as: rt = wt−N+1 with t ≥ N . This signifies that for
each video, we have per-frame reconstruction error from N th

frame onwards.

3.2.2. Adaptive thresholding using moving z-score

We propose an adaptive mechanism which follows the recon-
struction error along time and trigger an alarm as soon as it is
deviated from the normal behavior and then continue adapt-
ing to the new values. We compute the moving z-score (MZ)
of reconstruction errors in order to provide a temporal stan-
dardization of values [19]. Once standardized, values can be
easily compared to a fixed threshold zth.

Being initialized on first few frames, µt and σt are re-
spectively the mean and standard deviation of reconstruction
errors at frame t. For the frame t+1, z-score of reconstruction
error rt+1 is computed as:

zt+1 =
rt+1 − µt

σt
, (2)

and the system raises an alarm when zt+1 ≥ zth. The moving
mean and standard deviation are then updated as:

µt+1 = α rt+1 + (1− α) µt

σt+1 =

√
α (rt+1 − µt+1)

2
+ (1− α) σ2

t ,
(3)

where α ∈ [0, 1] defines the speed of the exponential update.
This process with Eq. (2) and Eq. (3) is used for each new
frame of the video.

4. EXPERIMENTS

4.1. Dataset and evaluation protocol

Methods are evaluated on the i-LIDS sterile zone dataset [20]
as it is the only publicly available dataset for the PID task.
It includes videos captured by two cameras (named as view 1
and view 2), with a frame resolution of 720x576. It consists of
people approaching a fence in various ways like walking, run-
ning, crawling, etc. Furthermore, it captures different time of
the day like dawn / day / night, weather conditions like cloudy
/ rainy / snowy and distractions like bats / birds / wild animals.
The training set consists of intrusion and non-intrusion videos
for both views, with 10 non-intrusion videos (29 min. average
length) per view. The testing set contains 17 and 16 videos of
view 1 and view 2, with 7 and 6 videos containing intrusions
respectively (from 36 to 92 minutes in length).

Methods View 1 View 2
Pre Rec F1 Pre Rec F1

Nayak [7] 0.26 0.92 0.41 0.28 0.94 0.43
Lohani [8] 0.57 0.49 0.53 0.61 0.48 0.54
Lohani [8] + MZ 0.87 0.82 0.84 0.82 0.77 0.79
Ours 0.87 0.83 0.85 0.85 0.74 0.79

Table 1. Results on the two views of the i-LIDS dataset. MZ
stands for moving z-score thresholding.

We use the evaluation protocol proposed by i-LIDS
dataset [20], defining a correct detection when the system
raises at least one alarm within 10 seconds from the start of
the intrusion. All alarms raised after this delay are defined as
incorrect detections. Finally, to provide quantitative results,
we use precision, recall and F1 score.

4.2. Compared methods and implementation details

We compare with work of Nayak [7] and the upsampling vari-
ant of the autoencoder proposed by Lohani [8]. Both shared
the source code publicly and we applied it on the i-LIDS
dataset. Unfortunately, no other method provides source code
or reports performance on the i-LIDS dataset.

We train and test on each view of the dataset separately.
For both views of the dataset, we draw a protection perimeter
following the fences. Our method and that of Lohani [8] are
implemented similarly. Non-intrusion videos from training
set of each view are used for training, using one Nvidia RTX
3090 GPU, with a batch size of 32. Each frame is converted
to grayscale, pre-processed using histogram equalization and
pixels were rescaled to [-1, 1]. For each video, input win-
dow is constructed using 8 frames with temporal stride of one
frame, leading to an input of shape 8x720x576x1. For Lo-
hani [8], threshold is applied on frame reconstruction error
(RE). For our work, adaptive thresholding is done on moving
z-score of RE. Initialized with reconstruction errors of first 10
frames, moving z-score is used with zth = 4.5 and α = 0.01.
Thresholds in all cases were chosen from validation set while
training.

For Nayak [7], we use person as intrusion class with the
default detection threshold of 0.25. Their method provides a
binary response of intruder or otherwise, and does not require
training on the i-LIDS dataset.

5. RESULTS AND DISCUSSION

5.1. Results for perimeter intrusion detection

Overall results are presented on Table. 1. We can observe that
method of Nayak [7] has the highest recall regardless of the
dataset view. This means that it detects most of the intrusions.
But we also observe a very poor precision for both views, sig-
nifying a large number of false alarms. Since their system de-



Fig. 2. Qualitative comparison of thresholding strategies on a
video, with ground-truth (GT) in blue, thresholds in green and
alarms in red. Fixed threshold on reconstruction error (RE) of
3DCAE (top); fixed threshold on min-max rescaled RE (mid-
dle); adaptive threshold by moving z-score of RE (bottom).

pends on object detection, each time an object track is lost, the
object is re-detected and it raises an extra unnecessary alarm
which is counted as a false positive. The method of Lohani [8]
performs slightly better than that of Nayak [7] but still has
an overall poor performance. Adding moving z-score boosts
their results, signifying importance of adaptive strategy. Our
proposed PIDS has a lower recall than that of Nayak [7], indi-
cating it misses some intrusions. These missed intrusions are
usually far from camera (accounting for few pixels in video
frame), camouflaged with scene background and in low lu-
minosity (e.g., during night). But we have a high precision
value regardless of the dataset view, signifying fewer false
alarms (caused by birds and insects on camera). Each time
we have a detection, our adaptive strategy adapts the new val-
ues and thus our system is ready for the next intrusion without
re-detections. Our method and method of Lohani [8] with z-
score have close performances but our method is 1.5x faster
due to strided convolutions. Overall, our proposed unsuper-
vised system has highest performance on both camera views.

5.2. Comparison of thresholding strategies

Fig. 2 shows impact of various thresholding strategies. We
can observe that the RE varies a lot from one intrusion to
another. Therefore, thresholding on it can lead to ambiguous
results, e.g., false alarms before and after 1st intrusion. After
min-max rescaling, we obtain a similar conclusion as only the
range of values have changed to [0,1], without any significant
difference in threshold choosing strategy. We can see that the
moving z-score adapts itself with the reconstruction error. It
detects beginning of each intrusion and then adapts itself.

In Table 2, we provide quantitative comparison of thresh-

Methods Prec Rec F1

3DCAE 0.54 0.44 0.49
3DCAE + MM 0.48 0.59 0.53
3DCAE + MZ 0.87 0.83 0.85

Table 2. Quantitative comparison of thresholding strategies,
on View 1 of i-LIDS dataset. 3DCAE stands for proposed
autoencoder with frame reconstruction error, MM for min-
max scaling, and MZ for moving z-score.

olding strategies on proposed 3DCAE. We can observe that
the direct outcome from the autoencoder leads to a poor per-
formance. As expected, it is difficult to choose a threshold
when the error varies due to scene dynamics. Rescaled re-
construction error using min-max (MM) scheme augments
the overall result by only 4%. Since i-LIDS test-set videos
are very long, the rescaling scheme did not work well. We
can clearly observe that adding an adaptive thresholding with
moving z-score (MZ) almost doubles the overall performance
from F1 of 0.49 to 0.85. These results strongly support our
proposition that an adaptive component is necessary for the
deployment of a PIDS in real-life scenes.

5.3. Discussion

Method of Nayak [7] is good for detections but it suffers from
massive false alarms. Further their system relies on a limited
number of pre-trained classes, implying if a new category of
object appears, their system will fail to detect it. Our proposed
autoencoder and that of Lohani [8] performed similarly, hav-
ing exactly the same number of parameters, but our method
was much faster both in training and testing. These autoen-
coder based methods struggle when the intrusion account for
few frame pixels and is in low luminosity. Furthermore, they
still lack semantics to differentiate between a human intruder
with animals or birds.

Thresholding directly on reconstruction error of autoen-
coder leads to poor performance. The rescaling schemes also
suffer with long length videos and so we found that an adap-
tive thresholding is essential for a PIDS.

6. CONCLUSION

In this work, we proposed an unsupervised perimeter intru-
sion detection system where a 3D convolutional autoencoder
learned normality from non-intrusion videos while training,
and detected intrusions with an adaptive thresholding using
moving z-score. Our method is robust with the changing
scene dynamics, allowing a real-life deployment of the PIDS.
Experiments on the i-LIDS dataset showed that our approach
outperformed recent approaches: supervised detector relying
on limited classes and fixed threshold based unsupervised de-
tector. In future work, we would like to further strengthen our
model with attention modules.
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