
HAL Id: hal-03800718
https://hal.science/hal-03800718

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Living Design: Simulation for Self-Designing Agents
(ESM 2007)

Sylvain Lemouzy, Carole Bernon, Marie-Pierre Gleizes

To cite this version:
Sylvain Lemouzy, Carole Bernon, Marie-Pierre Gleizes. Living Design: Simulation for Self-Designing
Agents (ESM 2007). 21st annual European Simulation and Modelling Conference (ESM 2007), Oct
2007, San Julian, Malta. pp.432-436. �hal-03800718�

https://hal.science/hal-03800718
https://hal.archives-ouvertes.fr


LIVING DESIGN: SIMULATION FOR
SELF-DESIGNING AGENTS�

Sylvain Lemouzy
Carole Bernon

Marie-Pierre Gleizes
email: {lemouzy, bernon, gleizes}@irit.fr

IRIT - Paul Sabatier University
118 route de Narbonne

31062 Toulouse cedex 09
France

Abstract. Today’s challenge is to design complex systems that operate
within evolving environments. Self-organisation is a promising paradigm
to make these systems adapt to changing conditions. The collective func-
tion arises from local interactions and the system design becomes thus
bottom-up. The difficulty rests then in defining and coding behaviours at
the bottom level in order to make the adequate global function emerge.
Multi-agent systems (MAS) are an answer to implement such systems
and many agent-oriented methodologies are proposed to guide designers.
However few help designers by providing them with tools that build or
improve the behaviour of agents. The aim of the work presented here is
to reduce the workload of a MAS designer with a simulation tool that
would give agents the ability to self-design their behaviour considering
that (i) a behaviour can be expressed as a set of rules and (ii) agents
interact in the (social and physical) dynamic environment they are sit-
uated in. The long-term objective is to improve the development phase
of the ADELFE methodology by integrating this tool into it. This paper
shows how simulation has contributed to this tool and how applying it
has improved the behaviour of simulated foraging ants.

1 INTRODUCTION

Nowadays, computer systems and applications have to cope with a great number
of functionalities and a great diversity of users but also they have to operate in
environments that are more and more complex and dynamic. Consequently, they
have to deal with unexpected situations that prevent their functionality to be
totally a priori defined and make their requirements stay vague. Therefore clas-
sical software engineering methods are no longer applicable making designing

� Extended version of the paper plublished in European Simulation and Modelling
Conference (ESM 2007), Malte, 22-24 octobre 2007, Eurosis, J. Sklenar, A. Tanguy,
C. Bertelle, G. Fortino (Eds), pp. 432–436.



such systems a more complex and difficult task. The challenge today is find-
ing new ways to ease designers’ task for such systems. A possible answer to
implement them are Multi-Agent Systems (MAS) which are made up of inter-
acting autonomous entities which have dynamic relationships. They are mainly
inspired from natural systems, composed of autonomous individuals with sim-
ple behaviours, that exhibit aptitudes to carry out complex tasks without any
global knowledge (for instance, colonies of social insects such as termites and
ants [1]). In MAS a non-supervised central control enables a global distributed
functionality which essentially depends on the organisation of agents. We are
especially interested in a kind of systems in which this global collective function
is not a priori given and what makes this organisation appear is the way in which
agents interact. Letting agents modify their relationships in an autonomous way,
using self-organisation principles, is a means to change their organisation and
therefore a way to adjust the global function of the system they belong to. This
system becomes then self-adaptive and its design all the more problematical as
the complexity of interactions between agents grows. A top-down approach is no
longer useful and a bottom-up one has to be adopted: agents have to be thought
up before being gathered within a shared system. Helping designers to enable
them to think differently becomes mandatory. Several agent-oriented methodolo-
gies are offered for guiding MAS designers, however very few focus on adaptive
systems and emerging functionalities [2, 3].

We focus this study on self-organising systems design and more especially
on those in which agents try to avoid, detect and remove situations (called non
cooperative situations, NCS) that prevent them from staying cooperative to-
ward others or themselves [4]. A first work has been done with ADELFE for
helping a designer to identify and implement such agents [5, 6]. However, the
core difficulty lies in identifying non cooperative situations and [7] proposed an
approach, based on simulation, to automatically identify these situations while
a prototype of a targeted MAS is executing. Designers had then to manually
improve the behaviour of involved agents to remove the detected NCS. However,
the long-term objective is to make these modifications in an automatic way in
order to reduce a designers’ workload. Thus, the work presented here is about
giving agents the ability to self-design their behaviour considering that this be-
haviour can be expressed as a set of rules and that the agents interact in the
(social and physical) dynamic environment they are situated in.

The paper is then organised as follows. Self-organising systems we consider
and the ADELFE methodology dedicated to their design are presented in the
first section. The second section introduces in a more detailed manner the prob-
lem we want to solve. How simulation is used to enable agents to self-design
their behaviour and related experiments are given in the two following sections.
Before drawing some conclusions and envisaging some perspectives, this work is
positioned in relation to other existing works.



2 CONTEXT OF THE WORK

As already said, multi-agent systems are a recognised paradigm to deal with the
complexity and openness of today’s computer systems. Furthermore adaptation
is a mandatory characteristic of these systems to make them able to stay opera-
tional in today’s evolving environments. A possible way for a system to achieve
this adaptation ability is to self-organise [8, 9] that is to change its internal or-
ganisation without an explicit external control during its execution time.

The work presented in this paper has been done in the context of self-
organising systems design, more especially on those that are based on the Adap-
tive Multi-Agent System (AMAS) theory and designed using the ADELFE
methodology. These two concepts are then detailed hereafter.

2.1 Self-organising Systems and AMAS Theory

Let us suppose that agents of a system are endowed with the ability to au-
tonomously and locally modify their interactions in order to react to changes in
their environment. These alterations also transform their collective function i.e.
the function performed by the multi-agent system they belong to. This latter is
a self-organising system and becomes then able to adapt to changes in its envi-
ronment. This assumption is the foundation of the AMAS theory that considers
that “cooperation” is the criterion for self-organisation [4]. Actually, every agent
pursues a local objective and interacts with others while respecting cooperative
rules that make it changing its interactions in order to avoid and possibly remove
situations that are judged as non cooperative from its local point of view (these
situations are called non cooperative situations or NCS).

Roughly, applying the AMAS theory consists then on the one hand in trying
to anticipate NCS and to avoid them and on the other hand, when NCS cannot
be avoided, to process them to come back to a cooperative state. Therefore a
designer has to enumerate, according to the current problem to solve, all the
cooperation failures that can appear during a MAS functioning and then to
define actions cooperative agents have to apply to stay in or to come back to a
cooperative state. However, building self-organising systems this way is not so
easy and tools are required to help designers enforcing this theory.

2.2 ADELFE Methodology

The ADELFE agent-oriented methodology [5, 6] aims at guiding AMAS design-
ers through a development process based on the RUP (Rational Unified Process)
[10]. This process has been modified to take into account specific features of
AMAS, especially those concerning cooperation. In particular, during the final
requirement phase, designers are invited to think about the situations that can
be “unexpected” or “harmful” for the system because they can lead to NCS at
the agent level. These situations can be then expressed in use case diagrams.
Modifications in the design phase essentially concern the design of cooperative



agents. The most difficult point here is to find local cooperation rules for guid-
ing the behaviour of agents in order to have the best consistent behaviour at
the system level. A fast prototyping activity is then provided for testing the
behaviour of agents mainly during interaction protocols. However, according to
the AMAS theory, designers have to find all non cooperative situations an agent
may encounter and provide, for every detected NCS, all actions this agent has
to do to stay cooperative toward others and itself.

A first additional tool was then added during the implementation phase to
help designers finding NCS not taken into account yet for an agent. This sim-
ulation tool [7] based on SeSAm platform [11] enables designers to observe a
prototype of the targeted MAS while running and automatically detects some
kinds of NCS. Designers are then able to change accordingly the behaviour of
the concerned agents.

These modifications are still done manually and further help would be re-
quired to allow an agent to always choose the action which can be qualified as
the best cooperative one. Our final objective is to enhance ADELFE with such
a tool and the work presented in this paper is the first step in this direction.

3 PROBLEM STATEMENT

Most of the existing agent-oriented methodologies [2] use interaction protocols
and roles in order to design the decision process of agents. How to find the
algorithm applied by an agent is generally not well described and most of the
task falls on designers. The aim of the work presented in this paper is to alleviate
this task by providing designers with a means for automatically designing an
agent behaviour considering the following context:

– This behaviour can be expressed with a set of behavioural rules which follow
this pattern:

if premise then consequent

where premise is a logical predicate made up of elements coming from agent
perceptions or characteristics and consequent activates one of the possible
actions this agent may perform. All the rules needed to design the deci-
sion process are given by a designer that is the agent does not learn new
rules during the process and the set of given rules is complete and correctly
written.

– The system interacts with a dynamic environment.

Therefore, an agent behaviour consists in executing some rules of a set of
executable rules at a given time in the decision process. Modelling this kind of
behaviour was inspired by the subsumption architecture where an agent executes
the rule with the highest priority if several rules are executable. A subsumption
architecture [12] is a way to express the behaviour of an agent by using rules
represented by (conditions, action) tuples. Such a tuple represents the action to
do when the related conditions are true. In a general way, conditions are linked



to environmental perceptions of the agents. These tuples are ordered depending
on the level of priority of an action relatively to another one; the action on
the hierarchy top-level has then priority over the actions of the lower levels.
Generally in the subsumption architecture from Brooks, agents have no memory
and only one rule is executed at a time. These assumptions were modified in our
model in the following way: an agent may have a memory and several rules, i.e.
a set of rules, can be executed at the same time. However the priority between
the sets of rules, which gives the algorithm executed by an agent, was retained
from the subsumption concept. This subsumption-inspired hierarchy is used in
our model as follows.

An agent for which the behaviour has to be enhanced is simulated under
SeSAm by reusing the cooperative agent model described in [7] to implement a
prototype of the targeted MAS this agent is part of. This agent runs, interacts
with its environment and gives its conclusions (drawn from interpreting and
reasoning about its perceptions) to its Behaviour Self-Design Module (BSDM)
Considering what this agent knows, its BSDM gives it back a list of actions to be
executed which corresponds to those of the top-level set of rules of the current
hierarchy.

A Behaviour Self-Design Module inside an agent is implemented as an adap-
tive MAS, behavioural rules forming it have to collectively adapt to the agent’s
environment and are then considered as agents. They are called rule-agents for
not confusing them with the agent which contains the module, this latter agent
is called a simulated agent.

Our aim is to enable the rules inside the BSDM to self-organise in order to
find the best hierarchy of rules that is to say the most efficient behaviour for
the simulated agent it belongs to. At the beginning of the implementation, the
designer supplies the BSDM with all the behavioural rules put in a random order.
By forming sets of rules which have to be executed simultaneously and then by
prioritizing these different sets according to what its simulated agent perceives,
the BSDM provides this agent with the ability to self-design its behaviour.

The next section describes the adopted approach to implement a BSDM.

4 SELF-DESIGNING AGENT BEHAVIOURS USING
SIMULATION

The aim of this section is to describe the AMAS that enables a simulated agent
to design its behaviour by itself. The right collective function this AMAS has to
perform is to produce the hierarchy that gives the simulated agent its most effi-
cient behaviour. According to the AMAS theory, an AMAS carries out the right
functionality if agents composing it cooperate in the right manner. Therefore,
this section describes first the rule-agents that make up the self-design mod-
ule and then how these rules cooperate in order to find their right place in the
subsumption-inspired hierarchy presented above.



4.1 Structure of Behavioural Rules and their Relationships

As said before, the pattern followed by the behavioural rules of a simulated
agent can be summarized by: if conditions then actions. [7] considered conditions
written with propositional logic formulae, this work was reused and generalised
in order to consider conditions and actions as logical predicates that may be
parameterised. A rule is still triggered if all its conditions are satisfied and actions
are still described using a set of preconditions (i.e. conditions that trigger them),
a set of additional effects (predicates added when these actions are executed) and
a set of removal effects (predicates removed when these actions are executed). A
rule is then structured in this way:

Cond1([args]) ∧ . . . ∧ Condn(args]) → Action([args]) :
+{Add1([args]), . . . , Addm([args])}
−{Rem1([args]), . . . , Remp([args])}

This structure allows us to identify two types of relations between agents repre-
senting these rules:

– A rule-agent R1 interferes with another rule-agent R2 because (1) R1 per-
forms an action which contains effects that are opposite to those of R2 or
(2) by executing an action, R1 removes at least one of the conditions of
R2. This relation is called inhibition of effects in the first case and is writ-
ten: InhibitsE(R1, R2); inhibition of activation in the second case which is
written: InhibitsA(R1, R2).

– A rule-agent R1 helps another rule-agent R2 because it makes at least one of
the conditions of R2 appear. This relation is called permission and is written:
Permits(R1, R2).

As a simulated agent executes, it gives its conclusions to the BSDM expressed
as logical predicates. If conditions of a rule-agent R can be instantiated by these
predicates, R may be triggered and this state is written: MayBeTriggered(R).
R is actually triggered (and possibly executed by the simulated agent) if when R
has to act, depending on its level in the hierarchy, its conditions are still satisfied,
this is written: IsTriggered(R).

We also consider that a rule-agent R1 knows whether it is situated above
another one R2 in the hierarchy, this is written: Above(R1, R2).

For performance reasons and because the solving process in AMAS is a lo-
cal one, cooperative agents have only a local view of their environment. Conse-
quently, a rule-agent only knows some other rule-agents, called neighbours: those
which may be triggered, those which are actually triggered and the rule-agent
which is situated just immediately above it.

Finding the right hierarchy is to find the right organisation between the rule-
agents composing the self-design module. By definition this organisation has to
emerge from the cooperative interactions between rule-agents. Cooperation rules
that must be obeyed by rule-agents have then to be defined considering the above
relationships.



4.2 Non Cooperative Situations Encountered by Rule-Agents

Hints for finding the cooperation rules that govern rule-agents can be discovered
considering the assumptions that make a hierarchy being the right one:

– Rules that are triggered have to always be consistent because a simulated
agent cannot execute some actions which inhibit each other,

– Rules that have little probability to be executed have to be given priority
because it was assumed that every rule is useful,

– Considering that this last point remains satisfied, a maximum number of
rules has to be executed making the simulated agent the most efficient pos-
sible.

If one of these criteria is not satisfied, the order of the hierarchy is not optimal
i.e. at least two rule-agents are in a NCS.

All the kinds of NCS that can theoretically appear in an AMAS [4] were
studied with respect to these previous assumptions and three potential NCS
were identified between rule-agents:

– Theoretically a conflict may appear when two agents have antinomic effects.
A conflict occurs then if two rule-agents R1 and R2 are triggered but R1 pre-
vents R2 from being expressed i.e. InhibitsE(R1, R2) ∧ IsTriggered(R1) ∧
IsTriggered(R2).

– Another conflict is possible if R1 is above R2, R2 could be activated but
is not triggered and R1 inhibits R2 because it is actually triggered i.e.
InhibitsA(R1, R2) ∧ IsTriggered(R1) ∧ MayBeTriggered(R2)∧
¬IsTriggered(R2) ∧ Above(R1, R2).

– An NCS of uselessness may occur when a cooperative agent believes what it
is going to do is not beneficial for others or itself. A uselessness situation will
then appear if a rule-agent R1 is triggered, another one R2 situated above
R1 is not and R1 considers that it could have helped R2 to be triggered i.e.
IsTriggered(R1)∧Above(R2, R1)∧¬IsTriggered(R2)∧Permits(R1, R2)∧
¬InhibitsA(R1, R2) ∧ ¬InhibitsE(R1, R2).

In order to detect possible NCS, a rule-agent learns by observing the relation-
ships it has with its neighbouring rule-agents. To always stay in a cooperative
state, this agent has then to remove the NCS it has detected.

4.3 Solving NCS by Moving in the Hierarchy

Rule-agents autonomously change their interactions by going up or down the
hierarchy in order to avoid or remove NCS. For simplifying the behaviour of
these agents, they can only move from one position to the adjacent one at the
same time. Furthermore, considering that when “R2 is above R1”, “R1 moves
up just above R2” is equivalent to “R2 moves down just below R1”, giving the
ability to move in only one direction is enough (for instance, upwards). A rule-
agent that succeeds in climbing the hierarchy by only local ascents had then



all the legitimate reasons to be there. Therefore a rule-agent is going to move
upwards for solving NCS.

If several NCS are encountered by a cooperative agent, this latter is not
always able to remove them all and a priority to process them has to be given: a
rule-agent tries first to avoid interfering with others and then tries to help them.
A rule-agent is then going to try to avoid conflicts before solving situations of
uselessness.

Let us suppose now that a rule-agent R1 is above another rule-agent R2.
If R2 moves above R1, it prevents it from going up. In order to stay the most
cooperative possible, a rule-agent can move up only if it has at least as many
reasons to go up than the rule-agent just above. Another criterion is then taken
into account for allowing rules to move: the priority they have to do this. This
priority is inversely proportional to the number of times a rule-agent R verified
MayBeTriggered(R).

To sum up, a rule-agent R1 decides to go up considering the rule R2 just
below it as follows:

– If R1 wants to move up because of a conflict and R2 wants also to go up
because of a situation of uselessness, then R1 has priority over R2; solving
a conflict is more important than removing a uselessness situation.

– If R1 and R2 are motivated to move up by the same kind of NCS, then the
rule with the highest priority does.

– If R1 wants to go up for solving an NCS and R2 has detected no NCS, then
R1 is free to move up.

4.4 Mechanism of Self-Organisation

The mechanism that makes rule-agents reorganise their interactions in an au-
tonomous way is a loop made up of two steps:

1. In the first one, each rule-agent of the hierarchy which is possibly and/or
actually triggered learns the new relationships it has with its neighbours
considering the execution of the current hierarchy.

2. In the second step, each rule-agent (from the one on top of the hierarchy to
the one at the bottom) which is possibly and/or actually triggered, reasons
and decides to move (up) in the hierarchy or to stay where it is depending
on the relationships it has previously learned and the NCS it has therefore
may be detected.

Because rule-agents have only a local view, they do not have a way for know-
ing whether the current hierarchy they belong to is the right one i.e. the be-
haviour they have collectively found is the best one for the simulated agent they
are working for. To be stopped, this mechanism needs therefore an external in-
tervention, coming from a designer who observes the simulation and the dynamic
structuring of the hierarchy and decides that the obtained hierarchy is steady
and efficient enough for forming the behaviour he/she was seeking.



This module has been implemented as a plug-in for the SeSAm simulation
platform [11]. In order to validate the approach proposed above, experiments
were carried out on a MAS aimed at simulating a society of foraging ants.

5 EXPERIMENTS ON SELF-DESIGN OF ANTS
BEHAVIOUR

This MAS was implemented using SeSAm and the ant agents composing it use
this module to automatically find their behaviour. The set of rules, in which the
order of rules is completely arbitrary, initially given to the simulated ant-agents
is the following:

R1 AvailableT ime() ∧ FullLoaded() ∧ Nest(X) ∧ On(X) → DropFood(X)
R2 AvailableT ime() ∧ FullLoaded() ∧ NoCollision() ∧ Nest(X)

→ MoveTowards(X)
R3 AvailableT ime() ∧ Foraging() ∧ Food(X) ∧ On(X) → PickUpFoop(X)
R4 AvailableT ime() ∧ Foraging() ∧ NoCollision() ∧ Food(X) ∧ Near(X) →

MoveTowards(X)
R5 AvailableT ime()∧Foraging()∧NoCollision()∧Pheromone(X)∧Near(X)

→ MoveTowards(X)
R6 AvailableT ime() ∧ Foraging() ∧ NoCollision() → FreeMove()
R7 AvailableT ime() ∧ Collision() → DodgeObstacle()
R8 FullLoaded() → DropPheromone()

Where the meaning of the conditions are the following:

– AvailableT ime(): means that the ant has time to execute an action
– Collision(): the ant collides with an obstacle (another ant is also considered

as an obstacle)
– Foraging(): the ant forages (searches randomly after food)
– Food(X): X is an item of food
– FullLoaded(): the ant has picked up some food and cannot pick up more
– Near(X): the ant has detected X which is near it
– Nest(X): X is a nest of a colony of foraging ants
– NoCollision(): the ant has no risk of collision with an obstacle
– On(X): the ant is on X
– Pheromone(X): X is some pheromone item

Effects of actions a simulated ant-agent can take are described as follows:

A1 DropFood(X) : +{Foraging()};
− {AvailableT ime(), FullLoaded()} This means that the effect of dropping
food enables the ant to forage again (+Foraging()) and implies the ant has
no time to do another action during this step (−AvailableT ime() and it is
no more full loaded (−FullLoaded()).

A2 MoveTowards(X) : +{};−{AvailableT ime()} Effect of moving towards
another location implies the ant has no time to do another action during
this step (−AvailableT ime()).



A3 PickUpFood(X) : +{FullLoaded()};
− {AvailableT ime(), Foraging(), Food(X), On(X)} When an ant picks up
food this implies that this ant is full loaded (+FullLoaded()), it has no
time to do another action during this step (−AvailableT ime()), it cannot
continue to forage (−Foraging()), the food X exists no more (−Food(X))
and the ant is no more on X (−On(X)).

A4 FreeMove(X) : +{};−{AvailableT ime()} The effect of moving anywhere
for an ant implies this ant has no time to do another action during this step
(−AvailableT ime()).

A5 DodgeObstacle(X) : +{NoCollision()};
− {AvailableT ime(), Collision()} This means that the effect of avoiding an
obstacle implies there is no more collision (+NoCollision()), the ant has
no time to do another action during this step (−AvailableT ime()) and the
collision is avoided (−Collision()).

A6 DropPheromone(X) : +{};−{} This means that dropping pheromone has
no effect.

For example, according to the rule R3 if an ant is foraging (randomly moving)
and is situated on X where X is recognised as food, then this ant acts to pick
up the food it has found. Acting for picking up the food (A3) makes this ant
full loaded, and removes the time allocated to the ant for this step, its foraging
state, the food from the environment and the fact that the ant is on a piece of
food. Almost all the actions of the given rules consume the time allocated to an
ant-agent for the current step, almost all the rules are therefore going to inhibit
each other. Some rules are helping each other, for instance, R3 permits R8.

Among the different experiments that were carried out to evaluate and val-
idate the proposed approach to implement the module, only the ordered set of
rules obtained and the convergence study are presented here. In these exper-
iments, ant-agents are using the self-design module in order to automatically
reorganise their set of rules and improve their behaviour.

5.1 Final Order of Rules

The first experiments done enable us to observe the evolution of the self-orga-
nising mechanism and to ensure that the ordered set of rules obtained is stable
and functionally adequate with the simulation environment. Because the rule-
agents have no knowledge of the global system and process, an observer has to
decide that the solution has reached a stable and proper state. This observer can
estimate that the system is steady enough when the order between rules does
not change for around 100 cycles. During a cycle, every rule-agent of the BSDM
behaves by detecting NCS and deciding to change its location. The functional
adequacy is judged by the observer by analysing the behaviour of one ant in its
environment (see figure 1).

The experiment with the same initial unordered list of rules (section 5) was
done 50 times. At the end of each series of experiments, it can be seen that rules
are ordered in the same way with the exception of the last two rules (R2, R7)



(see below). This can be explained because rules R2 and R7 have no inhibition
link and their order is not significant. We can assume that the solution obtained
by the BSDM is quasi-unique.

The ordered rules obtained at the end of the self-organising process with R2
above R7 is the following:

SET 0
/* rules which can be executed with all other sets if their conditions are
satisfied*/
R8 FullLoaded() → DropPheromone()

SET 1
R3 AvailableT ime()∧Foraging()∧Food(X)∧On(X) → PickUpFoop(X)

SET 2
R4 AvailableT ime()∧Foraging()∧NoCollision()∧Food(X)∧Near(X) →
MoveTowards(X)

SET 3
R5 AvailableT ime() ∧ Foraging() ∧ NoCollision() ∧ Pheromone(X)
∧ Near(X) → MoveTowards(X)

SET 4
R6 AvailableT ime() ∧ Foraging() ∧ NoCollision() → FreeMove()
R1 AvailableT ime()∧FullLoaded()∧Nest(X)∧On(X) → DropFood(X)

SET 5
R2 AvailableT ime() ∧ FullLoaded() ∧ NoCollision() ∧ Nest(X)
→ MoveTowards(X)
R7 AvailableT ime() ∧ Collision() → DodgeObstacle()

Fig. 1. Environment in the considered experiments (with 4 ants in this case)



In this list, during a cycle, the set i-1 subsumes the set i (except set 0 for
which rules can be executed with all the others) and all the rules in a same set
are triggered during the same cycle.

5.2 Study of Convergence

The following experiment studies how fast an accurate solution is found. The
number of cycles required to have a steady hierarchy is measured for four different
situations: when 1, 2, 4 or 8 ants are evolving in the simulated MAS and are
simultaneously using the BSDM to learn their own behaviour (see table 1).

Number of cycles
With 1

ant
With 2
ants

With 4
ants

With 8
ants

Minimum number 401 410 384 389

Maximum number 2561 1997 1843 1285

Mean number 803 643 584 508
Table 1. Number of simulation cycles before reaching a steady herarchy

These results show that the learning time (number of needed cycles) is rel-
atively short compared to the number of cycles of a simulation, in the best
case, 400 cycles are enough to make ant-agents have a steady behaviour. We can
observe that the mean number of cycles diminishes when the number of ants
increases, this can be explained by the fact that the more ants there are and the
more they can be aware of new situations and the faster they can “learn”.

6 SIMULATION AND SOFTWARE ENGINEERING

Other works that use simulation for designing agent-based systems or multi-
agent systems exist and this section places our work with regard to them.

Gardelli et al. assess that simulation could provide a substantial added-value
when applied to support the development process of self-organising systems [13].
Simulation is used to detect abnormal agents’ behaviours in a system in order
to improve security. Authors took inspiration from the human immune system
and exploit Pi-Calculus in the TucSoN infrastructure for simulating the security
system. Unlike the aim of the work proposed here, the use of formal simulation
is intended to let designers detect abnormal behaviours at the early stages of
design before implementing any prototype. In our work, simulation is used at a
different level of the development process, not in the early stage but during the
implementation stage.

Rhl and Uhrmacher propose a modelling and simulation framework called
JAMES, based on the discrete event formalism DYNDEVS for supporting the
development process of multi-agent systems [14]. Agents’ behaviour is validated
on a model in a virtual environment and the real implementation starts when



the model is mature. Sierra et al. develop an Integrated Development Environ-
ment to design e-institutions [15]. Within this environment, a simulation tool
SIMDEI is used to dynamically verify the specifications and the protocols to
be implemented. Fortino et al. propose a simulation-driven development process
[16, 17] and enrich the PASSI (Process for Agent Societies Specification and Im-
plementation) methodology with the simulation tool called MASSIMO (Multi-
Agent System SIMulation framewOrk), a Java-based discrete event simulation
framework [18]. Authors propose a semi-automatic translation of the agent im-
plementation model provided by PASSI in the distilled statecharts specification
of a multi-agent system needed by MASSIMO. At present, the simulation is used
for validating the requirements of the system and evaluating some performances.

In these last three works, the simulation is more used to analyse the running
system and to verify the behaviours of agents and system. In our work, the
simulation is also used to verify the global behaviour but also for taking a part
to the design process itself. The main objective is to help designers to adjust
and to build the behaviour of agents.

De Wolf et al. combine agent-based simulations with scientific numerical
algorithms for dynamical systems design [19]. In this approach, designers have
to define the results that are expected from the analysis, the parameters of the
simulation are then initialised and simulations are launched. Finally, results of
the simulation are analysed and depending on the outcomes, the next initial
values are determined. The analysis approach is integrated into the engineering
process in order to achieve a systematic approach for building self-organising
emergent systems. In this way this work is probably the most close to ours.

7 CONCLUSION AND PERSPECTIVES

This article has studied how simulation could be used to alleviate designers’ task
when building complex multi-agent systems that have to operate in evolving and
open environments. The approach adopted here proposes to implement a proto-
type of the targeted MAS under the SeSAm platform in which each (simulated)
agent uses a Behaviour Self-Design Module to find the most efficient behaviour.

The BSDM is designed, following the AMAS theory we presented, as an
adaptive MAS made up of agents that represent the behavioural rules of the
simulated agent. An organisation of this AMAS represents a certain behavioural
hierarchy and therefore a certain behaviour for the simulated agent that uses the
BSDM. The objective of a rule-agent within the BSDM is to find its right place
in the behavioural hierarchy i.e. to establish the relationships with other rules
that make it stay the most cooperative possible. We studied and enumerated the
possible relationships between rule-agents to determine the cooperative attitude
of a rule-agent and the actions a rule-agent could do to remove the situations
that prevented it from staying cooperative toward others and itself. This has
enabled us to describe the self-organisation mechanism used by the BSDM to
establish the subsumption-like hierarchy of behavioural rules used by a simulated
agent.



The BSDM was implemented as a plug-in for SeSAm and experiments were
carried out to validate the proposed approach. Even if more experiments are still
needed, preliminary results show that this approach is feasible and can help a
designer in three different ways:

– Simulation may make him/her saving time. Behavioural rules can be given
in any order enabling him/her to observe their impact on the individual
behaviours (agent level) or on the collective one (system level).

– Simulation may assist him/her by proposing a behavioural strategy that is
efficient and adapted to the simulated environment.

– Simulation can be used for any application based on such a kind of reactive
behavioural rules. The self-organisation process of rules is not based on their
semantics but on their relationships that are automatically detected by the
provided plug-in.

However a great number of improvements have to be made yet. For instance,
this study was limited to a complete set of consistent rules. Even if this limita-
tion does not prevent the module from providing a designer with a consistent
hierarchy, always supplying such a complete set may represent a difficult task for
this designer. The mechanism of self-organisation used by the BSDM could also
be improved by giving it the ability to judge the impact of a triggered rule on
the environment of the simulated agent that uses this module. NCS encountered
by this latter agent should then be taken into account and used by the BSDM to
question the place of the involved rule. The work presented in [7] could be used
to detect NCS, however integrating this detection in the current module seems
to be a difficult but interesting perspective at the present time.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence - from Natural to
Artificial Systems. Oxford University Press (1999)

2. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Group
Pub (2005)

3. Bergenti, F., Gleizes, M.P., Zambonelli, F.: Methodologies and Software Engineer-
ing for Agent Systems. Kluwer Publishing (2004)

4. Capera, D., Georgé, J.P., Gleizes, M.P., Glize, P.: The AMAS Theory for Complex
Problem Solving Based on Self-organizing Cooperative Agents. In: 12th IEEE In-
ternational Workshops on Enabling Technologies, Infrastructure for Collaborative
Enterprises, Linz, Australia, IEEE Computer Society 2003 (2003) 383–388

5. Picard, G., Gleizes, M.P.: The ADELFE Methodology - Designing Adaptive Coop-
erative Multi-Agent Systems. In Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.:
Methodologies and Software Engineering for Agent Systems. Kluwer Publishing
(2004) 157–176

6. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering Adaptive Multi-
agent Systems: the ADELFE Methodology. In Henderson-Sellers, B., Giorgini, P.,
eds.: Agent-Oriented Methodologies. Idea Group Pub (2005) 172–202

7. Bernon, C., Gleizes, M.P., Picard, G.: Enhancing Self-Organising Emergent Sys-
tems Design with Simulation. In 2006, E., ed.: 6th International Workshop Engi-
neering Societies in the Agent World, Dublin, Ireland (2006) 284–299



8. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-Organization and
Emergence in Muli-Agent Systems. The Knowledge Engineering Review 20(2)
(2005) 165–189

9. Heyligen, F.: The Science of Self-organization and Adaptivity – Knowledge Man-
agement, organizational Intelligence and Learning, and Complexity. In: The En-
cyclopedia of Life Support Systems. Publishers (2003)

10. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Addison-Wesley (1999)

11. Klügl, F., Herrler, R., Oechslein, O.: From Simulated to Real Environments: How
to use SeSAm for Software Development. In Schillo, M., Klusch, M., Müller,
J.P., Tianfield, H., eds.: Multiagent System Technologies - 1st German Confer-
ences MATES. Volume 2831 of LNCS., Springer-Verlag (2003) 13–24

12. Brooks, R.: A Robust Layered Control System for a Mobile Robot. IEEE Journal
of Robotics and Automation 2(1) (1986) 14–23

13. Gardelli, L., Viroli, M., Omicini, A.: On the Role of Simulations in the Engineering
of Self-Organising MAS: the case of an intrusion detection system in TuCSoN. In:
3rd International Workshop Engineering Self-Organising Applications. (2005) 161–
175

14. Röhl, M., Uhrmacher, A.: Controlled Experimentation with Agents - Models and
Implementations. In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.: 5th Interna-
tional Workshop Engineering Societies in the Agent World. Volume 3541 of LNAI.,
Springer-Verlag (2005)

15. Sierra, C., Rodriguez-Aguilar, J., Noriega, P., Esteva, M., Arcos, J.: Engineering
Multi-Agent Systems as Electronic Institutions. Novatica 170 (2004)

16. Fortino, G., Garro, A., Russo, W.: A Discrete-Event Simulation Framework for
the Validation of Agent-based and Multi-Agent Systems. In: Workshop on Objects
and Agents, Camerino, Italia (2005)

17. Fortino, G., Garro, A., Russo, W., Caico, R., Cossentino, M., Termine, F.:
Simulation-Driven Development of Multi-Agent Systems. In: Workshop on Multi-
Agent Systems and Simulation, Paermo, Italia (2006)

18. Cossentino, M.: From Requirements to Code with the PASSI Methodology. In
Henderson-Sellers, B., Giorgini, P., eds.: Agent-Oriented Methodologies. Idea
Group Pub (2005) 79–106

19. De Wolf, T., Samaey, G., Holvoet, T.: Engineering Self-Organising Emergent Sys-
tems With Simulation-Based Scientific Analysis. In Brueckner, S., Di Marzo Seru-
gendo, G., Hales, D., Zambonelli, F., eds.: the Third International Workshop on
Engineering Self-Organising Applications, Utrech, Netherlands (2005) 146–160

View publication statsView publication stats




