
HAL Id: hal-03800713
https://hal.science/hal-03800713

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Multi-Agent Systems for Multidisciplinary
Design Optimisation

Jean-Baptiste Welcomme, Marie-Pierre Gleizes, Romaric Redon

To cite this version:
Jean-Baptiste Welcomme, Marie-Pierre Gleizes, Romaric Redon. Adaptive Multi-Agent Systems for
Multidisciplinary Design Optimisation. International Conference on Engineering Design (ICED 2007),
Jul 2007, Paris, France. pp.DS42 P 51. �hal-03800713�

https://hal.science/hal-03800713
https://hal.archives-ouvertes.fr

ICED’07/51 1

Jean-Baptiste WELCOMME1,2, Marie-Pierre GLEIZES1 and Romaric REDON2

1Paul Sabatier University, Institut Recherche en Informatique (IRIT), Toulouse, FRANCE
2EADS Innavation Works, Learning Systems, Toulouse, FRANCE

ABSTRACT
This article presents a multi-agent method to tackle the difficult task of multidisciplinary
optimisation, based on the notions of cooperation and self-regulation. It is focused on the preliminary
aircraft design process which demands complex compromises between many actors. In our
approach several cooperative agents collectively act to achieve a common goal, i.e.
optimising a multi-objective function, even if the environment of the system (the user's
requirements) changes during the solving process. In MASCODE, one agent encapsulates one
discipline and is designed individually without considering the dependencies with the others. So
the computation is conceptually distributed without central control. Experimental results are
provided and efficient in comparison to the classical FSQP method.
But designing an aircraft is a complex process, and thus we show that adaptive behaviour
of MASCODE provides new capabilities to understand and to manage the preliminary aircraft design.

Keywords: Computations in Design, Artificial Intelligence in Design, Adaptive Multi-Agent Systems,
Cooperative Reasoning.

1.1 Preliminary Aircraft Design
Preliminary aircraft design involves a lot of disciplines like weight, range, aerodynamic and
operating cost estimations [1]. In addition to the multidisciplinary aspect, manufacturers and
airlines have different objectives on the product. Most of the time, manufacturers search to design
product families, whereas airlines are looking for aircraft that best satisfy their needs (number of
passengers, range, depreciation...). Thus, many compromise decisions are made in the process of
specifying the high-level design that will meet the expected aircraft performances (number of seats,
cruise range, takeoff distance, etc.). These compromises are difficult to achieve, because
constraints are numerous and dependent.
Preliminary aircraft design is organised in two steps. First, a simulation function is built. It is
obtained from the complex assembling of disciplinary models that represent physical
phenomenon as a mathematical function with a set of inputs and outputs. Then, when the
technical requirements (product performances) are known, the simulation function is used to
calculate the performances (Max Take Off Weight, Range, Operating Weight Empty); this is the
design direction. Unfortunately, a mathematical inverse problem must be solved iteratively,
because computational models are only known in the analysis direction ; computing product
performances from design parameters. In the particular case of aircraft design, a lot of parameters
are shared between disciplines. So the parameters and performances are highly interdependent, and
constrained by their mutual tradeoffs [2].

1.2 Multi-Objective Optimisation
As presented, preliminary aircraft is an optimisation problem. Mathematical tools using response
surfaces allow dealing with it. Especially the Feasible Sequential Quadratic Programming (FSQP), a
gold standard method, enables to define objectives on performances and on design parameters, and
then to find solutions to the design problem [3]. However the number of degrees of freedom and the
parameter interdependencies imply that the solution space is discontinuous. So, these traditional

ICED’07/51 2

mathematical methods are not really adapted to the preliminary aircraft design, because the
discontinuity makes difficult to find design points that satisfy all the constraints and then to optimise
them. Genetic algorithms (GA) offer very interesting robustness to tackle this problem and to find
admissible point, because they are independent of the discontinuity. However GAs optimise the design
as a global problem, and provide a limited view on compromise solution, since it is obvious that the
aircraft is never a mathematical optimum but an engineering compromise [4]. Pareto front are
computed to compensate for this lack by pointing the region of the best compromise rather than
providing only one optimal design. However if they improve the solution quality by providing more
information, they do not really offer a better understanding since they are difficult to compute and to
visualise especially when the targeted solution is really multi-objective.

1.3 Multi-Disciplinary Optimisation
Kroo defines MDO (Multi-Disciplinary Optimisation) as "a methodology for the design of complex
engineering systems and subsystems that coherently exploits the synergism of mutually interacting
phenomena" [1]. During the last three decades, various types of computational or computer-aided
design systems have been developed in MDO domain. A lot of issues were addressed like inter-
operability, problem decomposition, design robustness analysis and uncertainty propagation.
Several strategies were proposed for the global optimisation and the subsystems linkage, exploiting the
synergy of interactions through Fixed Point Iteration (FPI) algorithms [5]. Many relations between
mathematic analyser and optimiser were studied, in which an analyser defines an execution order for
computing the different models, whereas an optimiser compares their results and adapts the design
parameters to converge on target criteria, like in All At Once (AAO), Multi Disciplinary Feasible
(MDF) and Individual Disciplinary Feasible (IDF). However these strategies are finally first
decomposed in subsystems and then centralised within an optimiser. So the decomposition of the
system becomes a key point and influences the resolution. More complete approaches such as
Collaborative Optimisation (CO), Concurrent Sub-Space Optimisation (CSSO) offer multi-level
architectures, where each disciplinary has its individual optimisation strategy [1]. Analytical Target
Cascading (ATC) is another alternative, in which each component is itself an optimiser [5]. As a
consequence, the system is hierarchical and each component tries to minimise its individual objectives
and those of its neighbours. The MASCODE1 approach presented in this paper has some similitude
with it, but its processes are adaptive and dynamic.

1.4 Self-Organising Multi-Agent Approach
Distributed Constraint Optimisation Problems (DCOP) are an important research area for multi-agent
systems. Its objective is to propose an optimal assignment to a set of variables spread over a number of
agents. A number of powerful distributed algorithms such as SynchBB [6], ADOPT [7], OptAPO [8]
have been developed, and provide solutions either optimally, or close to optimality. However as these
approaches are inspired from non-distributed combinatorial optimisation, and not focused on
continuous problems, they are inadequate to solve preliminary aircraft design.
Self-organising multi-agent approach works on the apparition of a functional structure spontaneously
maintained in a dynamic equilibrium by all the participating components [9]. As described in [10],
self-organising MAS (Multi-Agent Systems) offer opportunities to simulate and solve complex
distributed systems, because as in biology the system behaviour emerges from agent interactions.
Agents ideally have autonomous behaviours; adapt constantly their state relatively to the others; learn
from experience; and create dynamically group and organisation. As said above, the preliminary
aircraft design is a complex process, because of multi-disciplinary aspects and multi-objectives
criteria. Furthermore, the interdependencies between the parameters impose to make a lot of
compromises that dynamically change the problem formulation. All these characteristics make self-
organising multi-agent approach a promising solution to support the preliminary aircraft design.
We propose to use a cooperative and self-organising multi-agent approach based on the AMAS theory
(Adaptive Multi-Agent Systems) [11] to solve the preliminary aircraft design. According to the
"organisaction" principles [12], a self-organising system is described as being able to self-regulate,
self-relate and self-product. In this paper, we focus on the description of the self-regulation process. It

1 MASCODE : Multi-disciplinary Aircraft Simulation for COnceptual DEsign

ICED’07/51 3

aims at finding a consensus on the values of interdependent parameters shared between several
disciplines.
The paper is structured as follows. First, the principle of using a MAS for enabling preliminary aircraft
design through cooperative reasoning are detailed; then, MASCODE results are described and
compared with FSQP results; finally we highlight the main long term expectations raised by the
approach compared to latest MDO research works.

2.1 Introduction

Figure 1: A simplified example of relation between models

MASCODE uses the specific resolution strategy of AMAS theory. This is a cooperative strategy,
which is focused on the identification of a set of local rules. These rules are used to minimize the Non
Cooperative Situations (NCS) and to improve the agent utility. By now in MASCODE, a cooperative
agent is assigned to a discipline and its aim is to cooperate with its neighbours to find a consensus on
the values of parameters in a given system, as shown in figure 1. Agents are drawn in square and
shared parameters in oval.
For the system, some parameters are inputs (TakeOffW, Span, Awing), outputs (TakeOffW) and
intermediates (Range, EmptyW...). Any of these parameters can be a user objective. However
regarding the characteristics of the problem, the only freedom degrees are input parameters. Due to
interdependencies between parameters, decomposition of the global problem by discipline and
subtask, it seems possible to gain advantages using a distributed resolution process that will take into
account the shared constraints between entities as in ADOPT or DPOP algorithms, or in multi-agent
approaches in general.
In MASCODE, one agent controls one discipline. Therefore, these agents are called Disciplinary
Agents (DA). The multi-agent system is a network of DA corresponding to the model hierarchy
commonly found in preliminary aircraft design. Each DA owns representation knowledge of the model
and learned knowledge from experiences, which are used through a set of behaviours to communicate
and to take decision according to environment perception.

2.2 DA's Knowledge
This knowledge is either static or dynamic and is twofold: knowledge on relations (connection with
neighbours) and knowledge on model.

Knowledge on Relations
To interact, each DA knows its provider and user agents. For example, in figure 1, for the agent
Weight the users are WeightPerformance and Mission, and the providers are Geometry, Mission and
WeightPerformance. A user agent uses the computed value of one of its output parameter, and a
provider sends the value of one of its input parameters. In addition to this static knowledge, DA learns
experiences during the execution, and builds memories. Memory is a key element in the AMAS
approach, because an agent adapts its behaviour according to the positive or negative feedbacks of the
environment and its previous decisions, (see section 2.3).

ICED’07/51 4

Knowledge on Model
In MASCODE, discipline are simulated with mathematical models. Thus, each model possesses
physical properties and hypothesis on each input of models which are specified with validity domains:
• Lower and upper bounds of the design variables define a physical validity interval (physical

limits) for each input, in which the model is computable.
• An objective validity interval (objective limits) describes a preferred interval. All the values

inside this range fit the user constraints.

Figure 2: Evaluation functions of critical values (interval validity functions).

With these intervals, we defined a parametric2 piecewise continuous mathematical function, shown in
figure 2, that enables the agent to compute a satisfaction criteria. It indicates whether the agent
respects its physical limits and its objective limits:
• when the input value is inside the objective validity interval the critical value is negative,
• when the input value is inside the physical validity interval but outside the objective validity

interval, the critical value is positive and inferior to a critical threshold, predefined by the
designer, which is the maximal critical value in the system,

• when the input value is outside the physical limits, its critical value is equal to the critical
threshold.

Finally, the non-satisfaction degree of the agent is defined as the maximum of its input critical values
from its input parameters.

2.3 DA's Behaviour
Each agent is able to receive and send messages. In a first phase, agents compute their models and
transmit, via a forward message, the value of their outputs to their user agents. This phase is
completed once an agent has received all its forward messages from its providers. Consequently to the
reception of forward messages, agents may send backward messages to inform providers when the
provided value is not relevant. This second phase is completed once the agent received all its
backward messages from its users. Thus, according to the received information in backward messages
and to its individual state, the agent sends a modification request to its providers.

2 The parameter alpha is used to indicate whether a constraint is hard or not (higher alpha is, harder the
constraint is).

ICED’07/51 5

Cooperative Reasoning
The Cooperative Reasoning is designed across Non Cooperative Situations (NCS) [11], composed of a
description (conditions, triggers) and a set of actions. The description can be viewed as a rule
containing every necessary conditions to recognise the NCS. The sets of actions describe how the
agents can improve the cooperation of their neighbourhoods. When all NCS are identified, the main
objectives and the high-level decision model of agents are known. In our cooperative approach and
due to a set of NCS, we define the aim of each agent, which consists in performing the action that
decreases the most critical situation in the system. By measuring locally a non-satisfaction degree (the
maximum of all the critical input values) in function of its objectives and of its physical limits, each
agent can compare its critical value with the critical values of its neighbours (received requests). Then,
it takes local cooperative decisions according to the following main principles:
• When the agent is the most critical, it builds a modification request for itself.
• When the agent is less critical than a modification request, it acts for the modification request.

For that it computes the Jacobian matrix of its model3 and finds the local dependencies between
the concerned output and its inputs. Thus with the modification request and with its local
dependencies, the agent is able to send a new modification request to its neighbours, that could
help the received one.

Learned Experiences and Adaptive Input Variation Steps
The reasoning can be cooperative only if the decision model takes into account the past experiences of
the agent. Without any reasoning on the past experiences the system is open to oscillations and chaotic
phenomena. However in MASCODE, the memory is quite simple. While moving to a solution, if the
modification direction of an input is successively the same, the agent considers it as a positive
feedback and increases an input variation step. Conversely, if the modification direction is changing,
agent considers it as a negative feedback, and decreases the variation step. The initial variation step is
a percentage of the total interval of the objective limits given in the figure 2. This behaviour allows a
dynamic equilibrium when the system converges to a global solution as shown in section 3.

3 The Jacobian is equivalent to a derivative of a multivariate function

Figure 3: Backward message procedure for DA.

ICED’07/51 6

Algorithm
To sum up the DA's behaviours, the backward message phase is presented in figure 3. The
modifications are propagated across the system. DA agent uses its cooperative reasoning to select the
modification requests it wants to create or transmit on each input. For each output, an agent possesses
several users, because one parameter is often shared between several disciplines. So first, it receives
the modification for each output parameter (step 1a). Then, it selects for each output the most critical
request and uses its knowledge on intput/output dependencies to build the corresponding request on its
inputs (step 1b). Then, it selects the modification to transmit to its provider. When all critical
situations have disappeared, all agents are in a satisfied state and the system has converged.

MASCODE implementation is based on JADE framework [13]. To validate the approach, some
experiments were done on a sample preliminary aircraft design case study with 10 models and 60
parameters (20 inputs, 17 outputs, 23 intermediates), in which 14 parameters are objectives (7 inputs
design freedom degrees, 7 outputs performances).

3.1 Comparison with FSQP

Figure 4: Comparison of input objectives obtained with FSQP and Mascode.

Figure 5: Comparison of output objectives obtained with FSQP and Mascode.

MASCODE solutions have been compared with FSQP in constraints satisfaction mode. For
MASCODE and FSQP, the same intervals are provided on the objective parameters. Then the system
adapts its parameters until constraints are satisfied. Experimental solutions are plotted on the figures 4

ICED’07/51 7

and 5. The input objectives of the problem are illustrated with figure 4 and output objectives with 5.
Results show that the found solutions are similar. For the same problem, two different solutions called
"MASCODE 1" and "MASCODE 2", are presented on the histograms. Solutions can be different at
each resolution, but are equivalent because they respect the problem constraints. By contrast, FSQP
provides always the same solution, because its optimisation process is deterministic.

3.2 A MASCODE Execution

Figure 6: Evolution of objective parameters during a Mascode execution

Figure 7: Evolution of critical values in the system during a Mascode execution

ICED’07/51 8

Figure 6 shows the evolution of the objectives parameters4 during the solving process. X-axis
represents the time and Y-axis the normalised parameter values. Thus, all parameters can be plotted on
a same graph. Figure 7 shows the evolution for the critical value of the system. X-axis represents the
time and Y-axis the parameter critical values. The system finds a solution, when the critical values are
all null. As shown in figure 7, the system finds four solutions during the computation. Each time a
solution is reached (see solution 1,2,3,4 on figure 7), the user introduces some new constraints in the
system, figure 8. These new constraints break the equilibrium by introducing new critical situations
(new disorders). Then a new self-adaptive process is automatically engaged, because the problem
formulation has changed. An entire scenario is explained in the next section. Figure 7 shows that the
critical values globally decrease. However this fall is sometimes discontinuous, because parameters
are more or less sensible to the modifications. So an agent can decide a modification without knowing
it would not be really a cooperative choice. However each agent learns progressively this kind of non-
cooperative situations and the system converges.

3.3 Adaptive Behaviour of MASCODE
MASCODE provides user interfaces that help to understand/manage the system. For example, it
provides a view of the system with the repartition of the critical values, individual interfaces for each
DA and various graphics to pay attention on the parameter evolutions. In this article, we are focusing
on MASCODE capabilities to provide a dynamic and adaptive system. Figures 8 and 9 detail some
parameters during a resolution, described in 3.2. These figures illustrate the dependencies between the
parameters RA (RAnge of the mission), MTOW (Max Take Off Weight) and MWE (Manufacturing
Weight Empty). Some of the relations of these parameters are illustrated on the figure 1. To provide an
example and to simplify, they could be expressed as follows:
• The range RA impacts the fuel weight and so MTOW.
• MTOW impacts the manufacturing weight empty. When MTOW increases, the aircraft

structural constraints change.
• If the aircraft structure changes, geometry could evolve.
• If the geometry of the aircraft evolves, aerodynamic forces and the range could also be

modified.

Figure 8: Values of parameters RA, MTOW and MWE

4 These values are normalised for visual representation.

ICED’07/51 9

Figure 9: Critical values of parameters RA, MTOW and MWE

During the presented process, constraints were changed by the user as follow (see figures 8 and 9):
1. At time t=84s, the objective on RA (range) was increased of 1%. It immediately introduces a new

critical value for RA. But this modification does not impact MTOW and MWE.
2. At t=100s, user asks for a diminution of the MTOW. First the critical value of MTOW increases

and then the new constraint is shared between RA, MTOW and MWE. Then system is unable to
converge, because it is over-constrained.

3. At t=146s, a modification of the MWE objective provides new freedom degrees. This modification
is not important (see figure 8) but enough to decrease MTOW without changing the mission RA.

4. At t=150s, the MTOW constraint is reinforced (a lowering of 2%).
5. At t=190s, the mission performance RA is degraded and enables the system to converge, because

of links between RA and fuel, and between fuel and MTOW.
About the results and this scenario, it is quite clear that MASCODE helps the designer to understand
and to manage the constraints in the system. Each time the problem formulation changes, the agents
adapt their behaviour and search a new equilibrium. When a new stable state is not reachable5, agents
self-regulate the critical values in the system and help the user to identify conflicting parts. Thanks to
this information, he can alter the strongest constraints and let the system converge toward another
relevant solution.

4.1 Comparison to MDO research works
In addition to the comparison to the FSQP method for the case study in the previous section,
MASCODE can be compared with other MDO approaches. This comparison is done at a relative high-
level, since existing methods are not agent-based.

5 The system is over-constrained

ICED’07/51 10

Solution quality
The quality of MASCODE solutions is equivalent to the solution found by FSQP, that is based on a
gradient descent and recognised as finding good solutions in non linear optimisation problems.
However we used FSQP only in its constrained solving mode. For a full comparison, we need to go
further in a multi-objective approach, where some parameter values are minimizing or maximizing.

Convergence speed
The time of convergence is the same as FSQP, but none systematic measure of convergence speed has
been realised for large problems, because it is not our first intention. Nevertheless as described in [5],
the convergence speed depends on the problem decomposition. Our problem decomposition is close to
AAO, which is considered as the faster in comparison with IDF and MDF.

Robustness and disciplinary knowledge integration
In MASCODE, validity intervals about physical models are local knowledge. Introducing this
knowledge in the resolution process is a first key point for improving the result consistency. Thus, it
will be possible to add other knowledge in the reasoning, and to include it in the agent decision model.
As other methods imply a mathematical formulation of the constraints, adding new knowledge implies
new constraint formulations, which is not evident in the general case since it requires multi-expertise.

4.2 Advantages of MASCODE

Parameter adjustment
In MASCODE, users can adjust values and associated validity domains of parameters in real time,
because agents will dynamically change their behaviours according to this new knowledge. By now,
this is the most relevant property of MASCODE, because it permits to find and maintain an alchemic
compromise obtained between disciplines through negotiations and to manage/adapt it dynamically to
any constraints modification. As described in 3.3, MASCODE delivers this behaviour, because it is
dynamic, self-adaptive and robust to changes.

Disciplinary openness
MASCODE requires no global information neither global decision process. Consequently, adding or
deleting physical models consists only in updating the MAS. In all other non-agent MDO approaches,
the openness capability is never invoked. But this incremental functionality can be very useful for
managing/understanding the complexity of the system, and for dynamically changing the
requirements. In example during an aircraft program, new technologies (engine, materials) can offer
new improvements on the performances. To analyse it with MASCODE, the designer
adds/exchanges/adapts the simulation models, and the system automatically reaches a new
equilibrium, showing the impacts on performances.

4.3 Perspectives
Using self-regulating behaviour, MASCODE adresses part of the multi-disciplinary and multi-
objective aspects of the design. But a complete self-organised system also requires self-relating and
self-producting behaviours [12]. The self-relating ability enables the system to build organisation and
the self-producting to evaluate and re-organise it. Such abilities are very useful in preliminary aircraft
design for two reasons :
1. The complexity of the problem goes beyond optimising the objective parameters. Choosing the

models of the simulation is also a complex problem, because the simulation function is different
for each study and the assembly difficult to build. Thus it will be relevant to assist the designer in
this task.

2. When agents negotiate objective parameters, the simulation context evolves during the resolution.
These evolutions can be of different orders, but can imply a re-organisation of the system, for
example :
a. As the fitness of the models implied in the simulation depends of the parameter values, the

model organisation can have to be dynamically change if another organisation is becoming
more relevant.

b. Once a first consensus is found on the parameter values, the agents could have to change the
granularity of the disciplinary models specifying the design, by refining the parameter

ICED’07/51 11

objectives.
Dealing with these new points implies to add other knowledge on the disciplinary models (granularity,
precision, computation time, semantic...) and to consider new cooperative situations for self-
organising the system.

This article has presented a multi-agent method to tackle multidisciplinary optimisation, based on the
notions of cooperation and self-adaptation. In MASCODE, the physical models are encapsulated in
cooperative agents which negotiate and cooperate to find a solution. This approach is efficient and
provides relevant results, in comparison to the classical FSQP method. From learned lessons, DA
approach can be considered without doubt as relevant for many reasons:
• Each disciplinary model can be design individually without considering the dependencies with its

neighbours. This ability reduces greatly the complexity of the MDO framework.
• An agent can encapsulate the disciplinary model, but also all the associated knowledge such as

critical values, execution time, precision and granularity. So the quality of the solution is
potentially better.

• The MASCODE computation is conceptually distributed without central control. Thus, the
running can be entirely concurrent leading to a time reduction.

Finally thanks to the robustness and the self-adaptive behaviour of MASCODE, the aircraft designer is
able to change the problem formulation during the resolution process. Through these interactions, the
designer faces up the complexity of the design, by understanding the parameter interdependencies.
This ability enables a living design [14] of the aircraft, and offers very promising perspective for
adaptive MAS to predict and manage the emergent behaviour of large numbers of interacting
disciplinary entities. By now, the main focus of our research is to demonstrate that others self-
organising behaviours improve the living design aspects, and promise a new paradigm for designing
complex.products.

We thank Romaric Redon (EADS CRC), Thierry Druot (Airbus France) and Philippe Mattei (Airbus
France) for providing innovative ideas and for their implication in this work. This research is funded
by EADS Corporate Research Center (France) and supported by the MIDI Pyrenees Region (France).

REFERENCES
[1] I. Kroo. Distributed Multidisciplinary Design and Collaborative Optimization. White paper,

VKI lecture series on Optimization Methods and Tools for Multicriteria/Multidisciplinary
Design, 2004.

[2] K. Fujita and H. Yoshida. Product Variety Optimization Simultaneously Designing Module
Combination and Module Attributes. Concurrent Engineering, Research and Applications,
12(2):105–118, 2004.

[3] J. L. Zhou, A. L. Tits, and Lawrence C. T. User's Guide for FFSQP Version 3.7: A FORTRAN
Code for Solving Constrained Nonlinear (Minimax) Optimization Problems, Generating
Iterates Satisfying All Inequality and Linear Constraints, 1997.

[4] C. Badufle, C. Blondel, T. Druot, and M. Duffau. Automatic satisfaction of constraints set in
aircraft sizing studies. In 6th World Congresses of Structural and Multidisciplinary
Optimization (WCSMO'05), 2005.

[5] J. T. Allison. Complex System Optimization: A Review of Analytical Target Cascading,
Collaborative Optimization, and Other Formulations. Master's thesis, Department of Mechanical
Engineering, University of Michigan, 2004.

[6] K. Hirayama and M. Yokoo. Distributed Partial Constraint Satisfaction Problem. In Principles
and Practice of Constraint Programming, pages 222–236, 1997.

[7] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous Distributed Constraint
Optimization with Quality Guarantees. Artificial Intelligence, 161(2):149–180, 2005.

[8] R. Mailler and V. Lesser. Solving Distributed Constraint Optimization Problems Using
Cooperative Mediation. In Proceedings of Third International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), pages 438–445. IEEE Computer Society, 2004.

ICED’07/51 12

[9] F. Heylighen and C. Gershenson. The meaning of self-organization in computing. IEEE
Intelligent Systems, pages 72–75, July/August 2003.

[10] G. DiMarzoSerugendo, M.-P. Gleizes, and A. Karageorgos. Self-organization in multi-agent
systems. The Knowledge Engineering Review, 20(2):165–189, 2005.

[11] C. Bernon, V. Camps, M.-P. Gleizes, and G. Picard. Engineering Self-Adaptive Multi-Agent
Systems : the ADELFE Methodology, chapter 7, pages 172–202. Idea Group Publishing, 2005.

[12] E. Morin. La méthode : La vie de la vie. 1980.
[13] F. Bellifemine, G. Caire, T. Truco, and G. Rimasa. JADE Administrators's Guide, 2002.
[14] J.-P. Georgé, G. Picard, M.-P. Gleizes, and P. Glize. Living Design for Open Computational

Systems . In 1st International Workshop on Theory And Practice of Open Computational
Systems (TAPOCS 2003 at IEEE 12th International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 2003) , Linz, Austria, 09/06/03-11/06/03,
pages 389–394. IEEE CS, juin 2003.

Contact: J. B. WELCOMME
EADS Innovation Works
ZAC de Saint Martin du Touch
18 rue Marius Terce
31300 Toulouse
Tel : +33 5 61 16 88 33
Fax : +33 5 61 16 88 05

