
HAL Id: hal-03800710
https://hal.science/hal-03800710

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Agent-Oriented Model Driven Engineering
Ivan Garcia-Magarino, Sylvain Rougemaille, Rubén Fuentes Fernand, Frédéric

Migeon, Juan Pavón-Mestras, Marie-Pierre Gleizes

To cite this version:
Ivan Garcia-Magarino, Sylvain Rougemaille, Rubén Fuentes Fernand, Frédéric Migeon, Juan Pavón-
Mestras, et al.. Towards Agent-Oriented Model Driven Engineering. 6th European Workshop on
Multi-Agent Systems (EUMAS 2008), EURAMAS, Dec 2008, Bath, United Kingdom. pp.(electronic
medium). �hal-03800710�

https://hal.science/hal-03800710
https://hal.archives-ouvertes.fr


Towards Agent-Oriented Model Driven Engineering

Iván Garcı́a-Magariño1, Sylvain Rougemaille2, Rubén Fuentes Fernández1, Frédéric

Migeon2, Juan Pavón Mestras1, and Marie-Pierre Gleizes2

1 D. Software Engineering and Artificial intelligence

Facultad de Informatica

Univesidad Complutense Madrid, Spain

{ivan gmg,juan.pavon,ruben}@fdi.ucm.es
2 Institut de Recherche en Informatique de Toulouse

SMAC Team

Université de Toulouse, France

{rougemai,migeon,Marie-Pierre.Gleizes}@irit.fr

Abstract. This work gathers the experience of two different research groups that

developed the agent-oriented methodologies INGENIAS and ADELFE. The par-

ticular features of the agent paradigm makes that the application of MDE ap-

proaches to it has to consider certain issues that are not common in mainstream

Software Engineering. In particular, MAS methodologies usually consider sev-

eral abstraction levels and perspectives, producing a richer modelling than for

instance object-oriented approaches. Besides, the agent research is still object

of important evolution with changing and growing conceptual frameworks. The

view of these MAS research groups is promoting model transformations to bridge

these gaps between perspectives in modelling, and to support the change in the

modelling languages and their corresponding tools. This focus on transformations

should also allow taking advantage of the semantic richness of MAS concepts in

code generation, producing software that is closer to the final product since the

meaning of the concept and its related behaviour are more precise.

1 Introduction

Developing Multi-Agent Systems (MAS) in the scope of modern information systems

is a complex activity. Different proposals have been made to alleviate the designer’s

work, mainly through methodologies and their support tools. Among them, we are par-

ticularly involved in the methodologies INGENIAS [23] and ADELFE [3]. Both of them

share a software engineering approach based on Model Driven Engineering (MDE). We

have gathered our experience in the definition of each methodology and the develop-

ment of their tools in order to highlight the benefits and challenges of this approach for

MAS development. Of course, synthesis presented here gains also from related works

which are quickly surveyed before conclusion. However, our true background, and pre-

cise technical use of MDE, is limited to the scope of INGENIAS and ADELFE, which

therefore constitute the focus of the paper.

The paper analyzes the particular requirements of Agent Oriented Model Driven

Engineering (AOMDE), term that we propose to express the application of MDE to

the development of MAS. These requirements mainly rise from the need of dealing



with rich, heterogeneous, and changing conceptual frameworks, which makes necessary

to consider the evolution of the modelling languages and their related tools, the links

between different perspectives, and also the possibility of carrying out sophisticated

processes over the models that take advantage of that conceptual richness.

The organization of the paper is as follows. Section 2 describes the works that have

been used as the basis for this paper. It begins describing the principles of MDE and

then introduces the INGENIAS and ADELFE agent-oriented methodologies. Section 3

discusses the application of MDE in the scope of our methodologies by focusing on

meta-modelling and model transformations. This application has shown benefits of the

approach but also limitations that Section 4 discusses. Section 5 broadens the discussion

about agent-oriented methodologies and MDE with some related work, the methodolo-

gies Tropos [5] and Prometheus [21], that also adopts a model-driven approach. Finally,

Section 6 draws some conclusions about the concept of AOMDE and the future work

that agent researchers must consider in its application.

2 Background

2.1 Model Driven Approach

Model Driven Engineering (MDE) [17] is a software development approach that con-

siders models as first class citizens. Model transformations are the means to automate

the life-cycle from early design tasks to the implementation. Likewise, maintenance of

systems can benefit from keeping a correlation between models and code.

Specifically, the OMG Model Driven Architecture (MDA) [17] is one of the most

broadly promoted model-driven approaches. Its principles involve the UML standard

[18] and a set of automatic processing languages to produce code. Starting with a re-

quirements model called the Computation Independent Model (CIM), an abstract Plat-
form Independent Model (PIM) is created. The idea is to produce automatically a Plat-
form Specific Model (PSM) thanks to model transformations. A mapping between the

PIM and the PSM is created according to the Platform Model (PM) and implemented

as a transformation. The specific model is then used to generate the application code.

The main advantage of the MDA approach is that whenever the platform supporting

the application changes, the abstracts models do not have to be modified. The transfor-

mations between PIM and PSM are the only part that have to be specified again.

As a recent initiative, Model transformation By-Example (MTBE) [32] is defined

as the automatic generation of transformations from source and target model pairs. The

common steps of MTBE are the following:

1. Manual set-up of prototype mapping models. The transformation designer assem-

bles an initial set of interrelated source and target model pairs.

2. Automated derivation of rules. Based upon the available prototype mapping mod-

els, the transformation framework should synthesize (see Figure 1(a)) the set of

model transformation rules. These rules must correctly transform (see Figure 1(b))

at least the prototypical source models into their target equivalents.

3. Manual refinement of rules. The transformation designer can refine the rules manu-

ally at any time. However, MTBE recommends these modifications to be included



in the pairs of models, so the alterations are not overwritten the next time the trans-

formation is generated.

4. Automated execution of transformation rules. The transformation designer val-

idates the correctness of the synthesized rules by executing them on additional

source-target model pairs as test cases.

(a) The inputs and outputs of MTBE (b) The Behavior of the Generated Transforma-

tion

Fig. 1: Description of the Model Transformation By-Example (MTBE)

The MTBE approach overcomes the hard-coding of transformations, which fre-

quently hinders the principles of MDE. MTBE follows MDE principles because its

main products are models and transformations. In addition, transformation designers in

MTBE do not need to learn a new model transformation language; instead they only

use the concepts of the source and target modelling languages.

2.2 INGENIAS and the IDK

The INGENIAS methodology for the development of MAS was founded on the use of

meta-modelling technique [23]. It covers the whole development cycle, from analysis to

implementation, and provides tool support with the INGENIAS Development Kit (IDK).
The user defines with the IDK the specification of the MAS, which is the basis of its

development. Figure 2 shows some relevant elements of the INGENIAS notation. To

create this specification, the user has the specification editor of the IDK. This editor

works as a host for plugins that format documentation, verify specifications and gener-

ate code. The key plugin for code generation is the INGENIAS Agent Framework (IAF)

that produces code for the JADE platform [2] according to an architecture designed in

INGENIAS that supports, among several features, deliberative and reactive agents, and

a simplified management of protocols. This code generator has been introduced previ-

ously in the literature in [10, 9]. Therefore the IDK provides a way to develop MAS

following the principles of Model-Driven Development [25]. The user defines the spec-

ification with the IDK Editor. This specification represents the model, which is the basis

for developing the MAS.



This MDE approach provides to the INGENIAS methodology a robust and quick

technique for the development of MAS. As a matter of fact, INGENIAS and the IDK

have been applied successfully in several areas; for instance, in surveillance [24], knowl-

edge management system [30] and social simulation [22].

Fig. 2: The Most Relevant INGENIAS Notation.

2.3 ADELFE

ADELFE 3 defines an agent-oriented methodology for designing Adaptive Multi-Agent

Systems (AMAS) [6]. ADELFE is mainly involved in the specification of systems in-

tended to deal with complex environment dynamics and self-adaptation. The ADELFE
methodology [3] aims at guiding AMAS designers through a development process

based on the standard Unified Process (UP) [11] for object-oriented methodologies.

ADELFE has been recently improved with the use of UML 2.0 for the specification

of interactions [1]. It also integrates a new model-driven implementation phase based

on specific modelling languages and model transformations [28]. Therefore, the last

ADELFE version covers the whole software development process, from early require-

ments to the implementation.

AMAS-ML (AMAS Modelling Language) is used in several steps of the ADELFE
design phase, from the detailed agent structure design to the definition of its cooperative

behaviour. The resulting model is used as an input for the implementation phase. By

means of several model transformations, this phase allows generating the code of both

the agents behaviour and the specific API supporting them [29]. Therefore, ADELFE
provides a MDE process : from an abstract model defined with AMAS-ML it generates

the application code.

3 Model-Driven from experience

3.1 Meta-modelling

MDE is based on models. Models have to be specified conforming to one meta-model.

This meta-model could be considered as the abstract syntax of a modelling language.

Both INGENIAS and ADELFE defines their own meta-models and each one are used as

a basis for Domain Specific Modelling Languages (DSML).

3 ADELFE (”Atelier de Développement de Logiciels à Fonctionnalité Emergente”) is toolkit

for designing softwares with emergent functionalities. It was a French RNTL-funded project

(2000-2003)



ADELFE proposes two meta-models corresponding to specific modelling languages :

AMAS-ML and μADL. AMAS-ML focuses on general AMAS specification and μADL
in a specific architecture.

AMAS-ML formalizes concepts of the AMAS theory. It provides modelling ele-

ments to support the design of cooperative agents. A cooperative agent is specified

as made up of various modules. Each module manage an aspect of its activities and

life-cycle. Typically, the AMAS agent life-cycle is defined according to three main

phases: perception, decision and action. The AMAS-ML meta-model considers the needs

in these stages in terms of environmental interactions, knowledge, representation, non-

cooperative situations avoidance, etc. For example, to carry out its perception and action

phases, an AMAS agent requires environmental interactions. They are represented by

perception and action on entities (elements of the environment) as well as the means to

carry them out (actuator and sensor). These concepts appear in specific modules of the

agent and are mandatory elements of AMAS-ML models. Thus, it ensures that designed

agents are aware of their execution environment.

One important point for AMAS agents is their cooperative behaviour. In AMAS-ML,

the decision module is a container for rules that describe the agent behaviour. Each rule

is triggered by a particular state of the agent and implies several actions. The states

are defined as logical conditions expressed over the agent knowledge. With AMAS-ML
designer, the user can define the behaviour of cooperative agents and consequently, the

emergent behaviour of the system.

μADL defines a flexible agent architectural style [15]. An architectural style [16]

of a software unit is a set of rules and constraints that specifies its composition and

evolution features. Here, software units are agents. These agents conform to an ar-

chitectural style derived from the architecture of the agents in JAVACT, which is a

Java middleware for programming adaptive mobile agents4 developed by the SMAC

research team. Its main characteristic is the separation of concerns between the func-

tional level related with the agents’ behaviour and the operating level related with the

internal mechanisms necessary for the execution of the functional code. This separation

of concerns is provided at the operating level via fine-grained software components

called micro-components. Those micro-components are connected to a mediator in a

star-like topology according to the design pattern Mediator [8]. μADL is a language for

micro-architecture modelling based on the architectural concepts previously explained.

It guaranties several structural properties at design time, like consistency of service

invocation between components or respect of the topology. It provides concepts such

as micro-architecture, micro-component and interfaces for the connection between the

micro-components and the Mediator. Thus, a micro-architecture consists in a micro-

components assembly defined by means of the interfaces they provide to the Mediator.

Any μADL model is an abstraction of a micro-architecture, that is, a type of agent, and

is the source of a code generation process.

The INGENIAS meta-model was originally defined with the Graph Object Property
Relationship Role (GOPRR) [13] meta-modelling language, which was supported by

the MetaEdit+ tool. However, GOPRR did not have a standard notation and its support

has decreased in comparison with other meta-modelling alternatives. For this reason,

4 http://www.irit.fr/PERSONNEL/SMAC/arcangeli/JavAct.html



the INGENIAS meta-model was migrated to ECore. Since the INGENIAS meta-model

is large, it contains 88 objects, 89 relationships and 98 roles, the Grasia group defined an

automatic translation GOPRR-to-ECore for the meta-modelling support in the IDK. The

remaining drawback, is that existing models that are conform to the GOPRR version of

the INGENIAS meta-model, have to be also translated. An experimental implementation

of the IDK 2.7 can serialize with instances of both GOPRR and ECore meta-models

enabling model transformations according to the meta-model translation.

The use of meta-models in these methodologies facilitates the creation and the main-

tenance of design tools; either by being a preliminary tool architecture definition (in

the scope of INGENIAS) or by being the basis for editors generation (in the scope of

ADELFE). This point is specially significant in MAS domain. As a matter of fact, MAS

concepts are still evolving, since no consensus has been yet reached on what should

be called an agent or not. Meta-models constitute a flexible means to integrate new

concepts in the design without changing the whole tool.

Meta-modelling helps to define precisely some concepts that are parts of modelling

languages. Moreover, we have defined our meta-models using the wide spread Eclipse

meta-modelling language ECore. It constitutes a “de facto standard” with many model

driven tools compliant with it (ATL, GMF, GEF, EMF, etc.).

Although meta-models facilitate the evolution of design tools, maintaining models

conformance whenever the meta-models change is still a challenging problem. In our

experience, this constitutes a problem that is not well solved in MDE. Both INGENIAS
and ADELFE meta-models are starting points for tool definition or generation. How-

ever, some parts have to be manually developed because of the advanced functionality

they imply.

3.2 Model to Model transformations

Model-to-model transformations can be useful for different tasks in the Agent Oriented

Software Engineering. Some of these usages currently done in ADELFE are:

– To integrate various modelling languages in the same frame. In particular, ADELFE
uses the UML sequence diagram for the design of interaction protocols. The mes-

sages exchanged in these protocols are automatically integrated to the AMAS-ML

model within the cooperative agent specification by means of a transformation.
– To separate different concerns. The ADELFE implementation uses a specific lan-

guage, μADL (micro-Architecture Description Language) [29] to express operating

mechanisms of agents (similar to non-functional concerns). The behaviour of co-

operative agents, defined in the the AMAS-ML model, is separated of the operating

concern. This concern consists in all the concepts that are involved in the creation

and maintenance of the agent knowledge (perceptions, actions over environmental

entities, and so on).

Model-to-model transformations are useful to gather good practises or designer ex-

perience. They allow to automate processes that have to be done by domain experts,

as the translation of UML sequence diagrams into AMAS-ML communication actions.

Designers who are not familiar with both domains can benefit from the knowledge em-

bodied within this transformation. Moreover, these transformations guaranty that tasks



are done in the way they have to be. For instance, ADELFE proposes to transform the

AMAS-ML model into a specific μADL model. This transformation is the result of our

experience on programming cooperative agents. We propose to separate the behavioural

concerns (all that is related to the decision process) from the other part of the coopera-

tive agents [29]. On one hand, it provides an abstraction level to the AMAS developer

who can focus on the cooperative behaviour of the agent without getting involved, for

instance, in the communication mechanisms. On the other hand, it allows assigning

the development of fundamental services, such as communications, to developers who

are not necessary AMAS experts. Therefore, this separation task is enforced within

a model-to-model transformation that ensure the respect of our proposition. In INGE-

Fig. 3: General overview of ADELFE model driven implementation phase. Each arrow

represents either a transformation or a generation step.

NIAS, model-to-model transformations are still not used. Currently, the code generation

process uses templates. However, model-to-model transformations could be used as in-

termediate steps in the INGENIAS code generation. The Grasia research group is work-

ing on the application of model transformations for the improvement of meta-models,

model transformations are planned to be created with an MTBE generator tool, whose

prototype is available for practitioners (in Grasia web 5). The application of this MTBE

tool for INGENIAS is described later in this paper.

In the context of MAS, transforming agent concepts is more efficient because of

the semantic of agent, MAS concepts raise the level of abstraction over implementa-

tion concepts or even Object Oriented concepts. The abstraction gap between Agent

5 http://grasia.fdi.ucm.es



Oriented Modelling and Object Oriented Modelling makes difficult to map these two

technical spaces. In our experience, model-to-model transformations are used to narrow

this gap in several steps. Moreover, the automation of this task increase the productivity

because model transformations are defined once and used several times.

3.3 Model to Text transformations

Model-to-text transformations make it possible to generate the programming code of

systems from models. In the experience of both agent-oriented methodologies INGE-
NIAS and ADELFE, these transformations have saved time and effort in academic and

industrial projects. However, these transformations also have some drawbacks, such as

maintaining the consistency between models and code.

There is a part of code that is very similar from one MAS to another and can con-

stitute an architecture. For instance, the code related to triggering agents or the com-

munication among them is very similar and frequently part of a platform. Although the

extension of this code, varies from one platform to another, the automatization of this

task has saved time and effort in all the agent-oriented technologies (JADE, JavaLeap,

web services, etc. for INGENIAS; Java classes for ADELFE).

In INGENIAS, code templates are linked to the key concepts of INGENIAS meta-

model. The information of models instantiates code-templates for the code generation.

For some years, IDK generates code for several platforms: JADE, JavaLeap, Prolog,

Servlets Soar. However, the improvements in both INGENIAS meta-model and the code

generator, made it expensive to maintain the support for all the platforms. For this rea-

son, at the current version of INGENIAS, only the JADE platform is supported.

In ADELFE, there are two different code generation aspects. The first one is provid-

ing a specific platform for the execution of the application code. This platform is based

on flexible agent principles [14]. The generation of this platform takes as input the

μADL model (arrows numbered 3 in the figure 3) and is performed by the MAY Eclipse

plugin (Make Agents Yourself) [28]. MAY involves several phases of generation in

which user’s intervention is required, for example to choose pre-existing implementa-

tions of micro-components. The result of these generations is a platform consisting in

a Java archive containing classes (factories, agents type, etc.) to create and support

agents whose architectures were defined with μADL. Moreover, the resulting library is

compliant with the standard JRE. The second aspects aims at providing the behavioural

code of agents (arrow number 2 in the figure 3). This generation is achieved thanks

to model to text ATL queries. From the decision module of each AMAS-ML agent, it

generates Java conditional instructions which represent the different situations that the

agent have to face and the actions that have to be performed in each situations. This

portion of code is contained by a Java class which extends the agent type generated by

MAY with the corresponding μADL model (see section 3.2).

The consistency between models and code is critical in MDE. In the INGENIAS
methodology, the MAS designers agree that the best mechanism for the consistency is to

keep some programming code at the model. Otherwise, the code would be overwritten

each time the code is generated. This programmers’ code is inserted in the model by

means of a modelling concept called INGENIAS CodeComponent. The CodeUploader
tool performs the reverse engineering. This tool receives the programmers’ code that



is embedded in the system code, and the tool inserts back this code in the model. The

maintenance of models consistency is summarised with the following steps.

1. Developers design models expressed with the INGENIAS modelling language, by

means of the IDK editor.
2. The IAF generates the system code from the models.
3. Developers write code within the systems code.
4. The CodeUploader tool uploads the written code in the models.
5. The cycle comes back to first step, if necessary.

In ADELFE, a reverse-engineering text-to-model transformation has been defined

to maintain the consistency between μADL models and the agents of the generated plat-

form. Technically, it uses the Java Development Tool (JDT) Eclipse plugin to navigate

Java source code and the μADL plugin based on the Eclipse Modeling Framework

(EMF) to create the model. The result is a plugin that contains the algorithm written in

Java to maintain the consistency between μADL models and the platform code.

A key advantage of the model-to-text transformations is that they reduce the cou-

pling between models and their implementation. Whatever are the changes made in the

code generation it is still possible to regenerate the code with the same models. For ex-

ample, migration from a platform to another only implies to modify the transformation,

the models do not have to be modified. A drawback is that the consistency between

the generated code and the models has to be managed. For this purpose INGENIAS
use the Code Up-loader and ADELFE the reverse engineering. It is also important to

notice that enabling source code modification is often a matter of efficiency for de-

veloppers. As long as MAS developers are computer scientits, they prefer to describe

behaviours or algorithms in programming languages , which therefore require text-to-

model loader. However, when MDE users would be business specialists, the odds are

that they will prefer to integrate this precise part within the model, even thought it re-

quires to use graphical algorithmic language (like NXT-G graphical language of the

LEGO R© Mindstorms R© NXT system)6.

4 Challenges for Agent-Oriented Model Driven Engineering

AOMDE faces some challenges that researchers need to address. Some of them are the

model transformation by-example and the model upgrade.

4.1 Model Transformation By Example

The application of MTBE to agent-oriented software engineering can improve and fas-

ten the AOMDE. MAS designers are hardly never used to model-transformation lan-

guages. Existing agent-oriented tools can be used to specify MAS models from which

a MTBE approach can generate model transformations.

In particular, this work proposes that model transformations can be generated from

examples in INGENIAS modelling. The MTBE approach is specially useful for gener-

ating these model transformations, because both source and target model examples can

6 http://www.ortop.org/NXT_Tutorial/



be defined with INGENIAS. Figure 4 shows some pairs of models, from which model

transformations can be generated for INGENIAS methodology. The generated model

transformation creates the agent specification (AgentModel diagram) from use cases

(UseCase diagrams). As one can observe, this example needs to transform patterns of

several modelling elements instead of simple one-to-one transformations.

Fig. 4: Model transformations for generating the Specification of Roles. Each square

represent a model example for MTBE. Each pair of models is related with an arrow and

a number, in which the source model and target model are respectively situated at both

sides of the arrow.

Existing MTBE algorithms and tools [32, 33] are only able to generate one-to-one

transformations. For this reason, Grasia research group has defined an algorithm for

MTBE that overcomes this limitation. This algorithm can generate many-to-many trans-

formations and, in addition, it can create the appropriate mapping of attributes so the

generated transformation propagate the information from the source to the target. A

prototype tool (see Figure 5) implements this algorithm for generating ATL transfor-

mations from INGENIAS model, this tool is called MTGenerators.

The tool provides an interface (GUI) in which the user can select the input and out-

put meta-models of the transformation. The user must define the meta-models with the

ECore language and select the corresponding location paths in the top-left area of the

GUI. The user can add the pairs of model with the top-right area of the generator tool,

by selecting the corresponding location paths and adding them. After the automatic gen-

eration, the tool shows some logs in the Logs text area, confirming that the generation

has finished successfully. The generated model transformation is shown in the bottom

text area of Figure 5. In this manner, the user can examine the generated transformation.

In brief, the presented MTGenerator tool automatically generates a model transfor-

mation. Even if the user wants to manually improve the generated transformation, the



tool saves time for the user because it provides a generated transformation as a basis for

the final model transformation.

Fig. 5: Model-Transformation Generator Tool

4.2 Transformations for Model Upgrades

MAS languages and tools are usually not stable because of continuous evolution. When

meta-models of MAS modelling languages change, the existing models need to be up-

graded for become conform to the new meta-model. This work proposes to use model

transformations to the model upgrade. This section discusses some our experience in

model upgrades.

First model upgrade relates to the multiplicity of the agent interactions in INGE-
NIAS. IDK 2.6 interactions among agents were only one-to-one. IDK 2.7 supported

one-to-many and one to one. In the update, the old interactions added a new attribute

indicating their multiplicity. This kind of model update could be manually defined or

generated with MTBE.

The second upgrade to introduce the notation for iterative interactions will soon be

necessary. Currently, IDK 2.8 iterative interactions are not supported with a specific

notation. In the IDK 2.8 models, the FrameFacts are used to repeat an interaction. A

new IDK version will include soon the specification of iterative interactions without

any ad-hoc mechanism. A transformation can achieve the mentioned update detecting

a pattern of an iterative interaction and, substituting the mentioned patter with the new

representation.

In INGENIAS, the kinds of diagram slightly evolves over time. Therefore, the mod-

els must change according to the new set of diagram types. The diagrams of the removed



types must change to another similar diagram types. These transformations depend on

the differences between the old and new sets of diagram types. For instance, if no dia-

gram type is removed then, likely, no transformation is needed. If the diagram types are

renamed or changed, a simple transformation is needed. If the diagrams types become

more restricted (less entity or relationship types are allowed in a diagram type), then a

more complex transformation is needed since some elements of the diagrams must be

changed to other diagrams. The transformation must decide which diagram contains the

changed elements or create a new diagram if necessary.

5 Related Work

The MDE principles are spreading in the AOSE community. This section presents some

works that are particularly representative of this spread. However, it is not intended to

present an exhaustive survey of the domain.

Tropos7 is a agent oriented development process [5] that emphasis the expression

of requirements. It is divided into five phases covering the whole life-cycle from the

definition of early requirements to the implementation. Tropos is associated with a de-

sign tool called TAOM4E (Tool for visual Agent Oriented Modelling for the Eclipse

platform) and based on the Eclipse plugins EMF and GEF (Graphical Editing Frame-

work) [4]. TAOM4E uses a specific modelling language which was previously defined

in the TAOM tool. Tropos also introduces a model driven approach based on the MDA

principles proposed by the OMG (see section 2.1). [27] presents the different types of

transformation which were implemented in Tropos for model refinement and transla-

tion of preliminary UML2.0 models into Tropos models. TAOM4E offers additional

code generation tool8 for the agent platform JADEX [26]. However, for the moment

TAOM4E do not provide means to keep model and code consistent.

Prometheus is a agent oriented methodology [21] which is related to a specific de-

sign environment : the Prometheus Design Tool (PDT)9 [19]. Prometheus covers all

phases since the specifications of the system to test or debugging. However, PDT pro-

vides means to achieve the three main phases related to system design: the system spec-

ification, the architectural design and the detailed design. In the first step designers

determine system scenarios, actors interacting with the system in these scenarios, goals

of the system, the different roles, their perceptions, their actions, data, etc. The sys-

tem specification is a preliminary view of the system focussing on goals, roles and

scenarios. This first modelling phase is followed by a more precise design that leads

to the definition of the agent playing as well as their relationship. Finally, the last step

describes the internal structure of the agents in terms of capability, behaviour and proto-

cols in which they play a role. PDT allows cross-checking model verification to ensure

the consistency of its models (system specification, architectural and detailed design).

Moreover, a mapping between the Prometheus models and the JACK platform has been

defined [31]. This mapping is implemented in the PDT to generate code [20].

7 http://www.troposproject.org/
8 http://se.itc.it/morandini/home.html
9 http://www.cs.rmit.edu.au/agents/pdt/



MDAD (Model Driven Agent Development) is a development process that applies

MDA principles (see section 2.1) for the development of MAS [12]. The PIM is defined

thanks to UML based meta-models (profile), covering aspects such as the domain, the

agents and the organisation. In MDAD the PIM is transformed into a PSM conforming

to the INteractive Agent Framework (INAF) meta-model. Jarraya in [12] presents im-

perative rules to generate the code of the application from the PSM. The generated code

is compliant with the INAF architecture.

ASPECS is a model driven methodology based on PASSI and dedicated to the de-

velopment of complex systems [7]. It is specially dedicated to the design of holonic

systems. It proposes a meta-model separated in three related viewpoints, inherited from

PASSI, the problem, the agency and the solution domain. The application of the process

result in a specific model (PSM) that can be use to generate the code of the application.

The code is compliant to the Janus execution platform10 which shared the same holonic

system principles that the solution domain meta-model.

All the aforementioned projects adopt a Model Driven approach to facilitate MAS

development. Most of them used model-to-text transformations and some of them de-

fine model-to-model transformations to refine PIM into PSM. However, INGENIAS and

ADELFE propose to deal with a wide range of abstraction levels, reverse engineering,

re-factoring and are initiating works on MTBE to automate the definition of model

transformations. We advocate that these issues that led us to AOMDE should profit to

all the MAS methodologies and design tools.

6 Conclusion

Agent-Oriented Model-Driven Engineering (AOMDE) proposes the application of Model-

Driven Engineering principles to MAS development. AOMDE is grounded in the fol-

lowing statements. First of all, MAS deals with a wide range of abstraction levels, model

transformations can bridge the gap between these levels. Secondly, MAS concepts are

continually evolving, meta-models can precisely describe this evolution and support the

maintenance of design tool. Finally MAS languages are semantically richer than object

oriented languages for instance. Thus, code generation result is larger than the code

generate from UML model and the productivity is higher.

Nevertheless, there is still some challenges in AOMDE to cope with. The MTBE is

the process of generating model transformations from examples, which is specially rel-

evant for AOMDE since this approach deals with complex transformations between pat-

terns of model elements. The model upgrade is also a mandatory challenge of AOMDE

because of the frequent changes in MAS modelling languages.

AOMDE rises specifics needs for which specific solutions are required. These solu-

tions can also profit the whole model-driven community.

10 http://www.janus-project.org



References

1. B. Bauer and J. Odell. Uml 2.0 and agents: how to build agent-based systems with the new

uml standard. Engineering Applications of Artificial Intelligence, 18(2):141–157, March

2005.

2. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a FIPA-

compliant agent framework. Software-Practice and Experience, 31(2):103–28, 2001.

3. C. Bernon, V. Camps, M.P. Gleizes, and G. Picard. Engineering Adaptive Multi-Agent Sys-

tems: The ADELFE Methodology . In Brian Henderson-Sellers and Paolo Giorgini, editors,

Agent-Oriented Methodologies, volume ISBN 1-59140-581-5, pages 172–202. Idea Group

Pub, NY, USA, June 2005.

4. D. Bertolini, L. Delpero, J. Mylopoulos, A. Novikau, A. Orler, L. Penserini, A. Perini,

A. Susi, and B. Tomasi. A tropos model-driven development environment. In Nacer Boudjl-

ida, Dong Cheng, and Nicolas Guelfi, editors, CAiSE Forum, volume 231 of CEUR Workshop
Proceedings. CEUR-WS.org, 2006.

5. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Systems,

8(3):203–236, May 2004.

6. D. Capera, J.P. Georgé, M.P. Gleizes, and P. Glize. The AMAS Theory for Complex Problem

Solving Based on Self-organizing Cooperative Agents . In TAPOCS 2003 at WETICE 2003,
Linz, Austria, 09/06/03-11/06/03. IEEE CS, June 2003.

7. M. Cossentino, N. Gaud, G. Stéphane, V. Hilaire, and A. Koukam. A holonic metamodel for

agent-oriented analysis and design. Holonic and Multi-Agent Systems for Manufacturing,
Lecture Notes in Computer Science, 4659:237–246, 2007.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, MA, USA, 1995.

9. J.J. Gómez-Sanz, R. Fuentes, and J. Pavón. Enabling Rapid Prototyping using Decoupling

of Code Skeletons and Code generation Process. INFOCOMP Journal of Computer Science,

February:26–34, 2006.

10. J.J. Gómez-Sanz and J. Pavón. Defining coordination in multi-agent systems within an agent

oriented software engineering methodology. Proceedings of the 2006 ACM symposium on
Applied computing, pages 424–428, 2006.

11. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.

Addison-Wesley, 1999.

12. T. Jarraya and Z. Guessoum. Towards a model driven process for multi-agent system. Multi-
Agent Systems and Applications V, Lecture Notes in Computer Science, 4696:256–265, 2007.

13. S. Kelly. GOPRR Description. PhD dissertation, Appendix 1, 1997.

14. S. Leriche and J.P. Arcangeli. Adaptive Autonomous Agent Models for Open Dis-

tributed Systems. In International Multi-Conference on Computing in the Global
Information Technology (ICCGI), Guadeloupe, 04/03/2007-09/03/2007, pages 19–24,

http://www.computer.org, March 2007. IEEE Computer Society.

15. S. Leriche and J.P. Arcangeli. AGENTφ: A Tool for Modeling Composite Self-Adaptive

Agents. International Transactions on Systems Science and Applications, 4(2):130–138,

May 2008.

16. N. Medvidovic and R.N. Taylor. A classification and comparison framework for software

architecture description languages. IEEE Transactions on Software Engineering, 26(1):70–

93, 2000.

17. Object Management Group. MDA Guide Version 1.0.1, OMG document ad/2002-04-10
(2002), June 2003.



18. Object Management Group. Unified Modeling Language (UML) 2.0 Superstructure Specifi-
cation, OMG edition, August 2003. Final Adopted Specification.

19. L. Padgham, J. Thangarajah, and M. Winikoff. Tool support for agent development using the

prometheus methodology. In Evolvable Hardware, pages 383–388. IEEE Computer Society,

2005.

20. L. Padgham, J. Thangarajah, and M. Winikoff. AUML protocols and code generation in

the Prometheus design tool. Proceedings of the 6th International Joint Conference on Au-
tonomous Agents and multiagent systems, pages 1379–1380, 2007.

21. L. Padgham and M. Winikoff. Prometheus: A methodology for developing intelligent agents.

Proceedings of the 3rd International Workshop on Agent Oriented Software Engineering
(AOSE 2002), Lecture Notes in Computer Science, 2585:174–185, 2003.

22. J. Pavon, M. Arroyo, S. Hassan, and C. Sansores. Agent-based modelling and simulation for

the analysis of social patterns. Pattern Recognition Letters, 29(8):1039–1048, June 2008.

23. J. Pavón and J. Gómez-Sanz. Agent Oriented Software Engineering with INGENIAS. Multi-
Agent Systems and Applications III, Lecture Notes in Computer Science, 2691:394–403,

2003.

24. J. Pavón, J.J. Gómez-Sanz, A. Fernández-Caballero, and J.J. Valencia-Jiménez. Develop-

ment of intelligent multisensor surveillance systems with agents. Robotics and Autonomous
Systems, 55(12):892–903, 2007.

25. J. Pavón, J.J. Gómez-Sanz, and R. Fuentes. Model Driven Development of Multi-Agent

Systems. ECMDA-FA, Proceedings of Model Driven Architecture-Foundations and Applica-
tions, Second European Conference, ECMDA-FA 2006, Bilbao, Spain, 4066:284–298, 2006.

26. L. Penserini, A. Perini, A. Susi, M. Morandini, and J. Mylopoulos. A design framework for

generating bdi-agents from goal models. In Edmund H. Durfee, Makoto Yokoo, Michael N.

Huhns, and Onn Shehory, editors, AAMAS, pages 610–612. IFAAMAS, 2007.

27. P. Perini and A. Susi. Automating model transformations in agent-oriented modelling.

Agent-Oriented Software Engineering VI, Lecture Notes in Computer Science, 3950:167–

178, 2005.

28. S. Rougemaille, J.P. Arcangeli, M.P. Gleizes, and F. Migeon. ADELFE Design, AMAS-

ML in Action. In International Workshop on Engineering Societies in the Agents World
(ESAW), Saint-Etienne, 24/09/08-26/09/08, http://www.springerlink.com/, September 2008.

Springer-Verlag.

29. S. Rougemaille, F. Migeon, C. Maurel, and M.P. Gleizes. Model Driven Engineering for De-

signing Adaptive Multi-Agent Systems. In The 8th annual International Workshop on Engi-
neering Societies in the Agents World: ESAW, page (on line), http://www.springerlink.com,

October 2007. Springer.

30. J.P. Soto, A. Vizcaı́no, J. Portillo, and M. Piattini. Modelling a Knowledge Management

System Architecture with INGENIAS Methodology. Proceedings of the 15th International
Conference on Computing, 2006.

31. J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf. Evaluation of agent-oriented

software methodologies - examination of the gap between modeling and platform. Agent-
Oriented Software Engineering V, Lecture Notes in Computer Science, 3382:126–141, 2004.

32. D. Varró and Z. Balogh. Automating model transformation by example using inductive logic

programming. Proceedings of the 2007 ACM symposium on Applied computing, pages 978–

984, 2007.

33. M. Wimmer, M. Strommer, H. Kargl, and G. Kramler. Towards Model Transformation Gen-

eration By-Example. Proceedings of the 40th Annual Hawaii International Conference on
System Sciences (HICSS 2007, 40(10):4770, 2007.


