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Abstract

In this paper, we explore the potential of distributed
satisfaction techniques as to provide self-regulated man-
ufacturing control. This work relies on a DisCSP-based
modeling distributed among agents (e.g. machines) having
enough and reasoning capabilities to cooperate and nego-
tiate for a committed schedule. This approach is used to
dynamically regulate the system (the network of machines)
when perturbations occur (machine break-out, operator or
container unavailability, or even priority command). Thus,
for these machines, embodied intelligence and autonomy
are a mean to provide a more flexible and adaptive man-
ufacturing network. In this paper, we present two differ-
ent multi-agent models and two extensions of well-known
DisCSP solvers. Experiments using a dedicated simulation
platform, MASC, are presented and discussed.

1. Introduction

The concept of Intelligent Factory has increased in in-

fluence these past years, and represents one of the scientific

European priorities (see MANUFUTURE1 technology plat-

form, for instance). Nowadays, this concept is integrated

at all the levels, from the design of production systems to

and the deployment of logistics systems, from the manage-

ment of supply chain to the deliverance of finalised prod-

ucts. Its objective is clear: producing faster, with a bet-

ter accuracy, with minimum cost, and with more flexibility.

Building such factories implies using new Information and

Communication Technologies (ICT) and becomes notably

possible thanks to new computational paradigms such as

ubiquitous computing, pervasive systemics, or ambient in-

telligence. In fact, numerous technologies, supporting this

development, have been the focus of several projects and

1www.manufuture.org/

technology platforms (e.g. ARTEMIS2, EPoSS3) and be-

come enough mature (e.g. Sunspot, RFID and dedicated

middlewares). As to design such factories, in an ambi-

ent intelligence context, multi-agent systems seems to be a

promising approach; this context being strongly distributed

and dynamic. More precisely, self-organising multi-agent

systems, able of self-regulation consecutive to exogenous

perturbations or endogenous dysfunctions, can be used to

answer to these non functional requirements. This is in this

context that we propose to use adaptive multi-agent systems

(AMAS) [6], based on DisCSP modelling (Distributed Con-
straint Satisfaction Problem) [16], to develop an intelligent

and adaptive distributed manufacturing control system.

Section 2 expounds the DisCSP framework, and the

multi-agent approaches to tackle these problems. Section

3 describes the manufacturing control problem. Sections

4 and 5 present the multi-agent models and the distributed

algorithms to solve task allocation problems for manufac-

turing control. Section 6 shows results and analysis from

simulations on the MASC platform, and some comparisons

with classical algorithms for solving DisCSP. These results

are discussed in section 7 before concluding in section 8.

2. DisCSP and Multi-Agent Systems

Constraint Satisfaction Problems (CSP) framework is a

means to model problem to solve in Artificial Intelligence

or Operations Research. It consists in a set of variables
to assign (X = {x1, . . . , xn}), which take values that are in

specific domains (D = {D(x1), . . . ,D(xn)}) and that are re-

stricted by several constraints (C = {c1, . . . , xk}).
Numerous algorithms exist to solve this kind of prob-

lems, having to trade off between completeness and effi-

ciency [4]. As an extension to this framework, Distributed

CSP (DisCSP) framework proposes to spread the decision

2www.artemis-office.org
3www.smart-systems-integration.org



for assigning variables to a set of agents [16]. Several works

propose distributed and asynchronous extensions of classi-

cal algorithms (backtracking, breakout, etc.), or more orig-

inal solutions, such ERA, which utilises situated agents, in-

teracting via a shared environment, to solve combinatorial

problems [8].

Nevertheless, facing dynamic environments (constraint

changes, adding or deleting variables), these algorithms

may not be adequate; either because they rely on construc-

tive algorithms (every variable has not necessarily a value at

each time t) or because they extend anytime algorithms hav-

ing difficulties to answer to dynamic perturbations. One an-

swer to this dynamic is the solution repairing by using con-

straint propagation, which is generally performed by cen-

tralised solutions as sub-procedures [4].

Distributing constraint propagation can be viewed as

a self-regulating mechanism, as soon as agents are au-

tonomous concerning their decision to propagate con-

straints, with their only acquaintances being the agents sit-

uated in their direct neighbourhood. Such self-organising

solutions have been applied with success to classical CSPs

such as frequency assignment problem [12, 11] or to con-

tinuous problems such as preliminary aircraft design [14].

3. Manufacturing Control Problems

3.1. Description

“Production planning and control is concerned with the
application of scientific methodologies to problems faced
by production management, where materials and/or other
items, flowing within a manufacturing system, are combined
and converted in an organised manner to add value in ac-
cordance with the production control policies of manage-
ment” [15]. Production planning and control can be de-

composed into several elements. Our study concerns one

of them, the manufacturing control or production activity

control, defined by [5] as “principles and techniques used
by the management to plan in the short term, control and
evaluate the production activities of the manufacturing or-
ganisation”. To sum up, manufacturing control is a means

to plan the use of resources for production by respecting

predefined constraints (delivery delays, operators schedule,

etc.). All this is deployed in a dynamic environment, in

which unpredictable perturbations may occur (breakdowns,

strikes, sick leave, etc.), generating new constraints at run-

time. Multi-agent approaches dedicated to tackle this prob-

lem exist and essentially focus on modelling (e.g. using

holonic infrastructure) or methodology, and not necessarily

on solving mechanisms, which are often delegated to Oper-

ations Research [1, 9]. Nevertheless, some approaches are

based on self-organising mechanisms like stigmergy [7].

3.2. MASC Platform

In the framework of the Colline4 working group of the

French Association for Artificial Intelligence (AFIA), a

simulation platform for manufacturing control has been de-

veloped. The goal of this platform is to encourage different

research groups to propose and implement their multi-agent

solutions, as to compare them on common scenarios. Here,

the issue is three-fold:

• implement new algorithms,

• define new scenarios for comparison,

• define new metrics and criteria for comparison.

This working group essentially interests in the imple-

mentation of techniques for self-adaptation based on multi-

agent systems, as to compare and characterise them. It is

also interesting to compare these different approaches to

more classical ones such as ABT or AWCS [16], which

seem adequate distributed solutions for manufacturing con-

trol, expressed as a constraint-based problem. MASC plat-

form concerns manufacturing control and for this it simu-

lates the functioning of a factory following a requirements

set dressed up by the Technical Forum Group on Self-

Organisation5 (TFG SO). In MASC, we consider a set of

operators, a set of stations (machines), and a set of contain-

ers to process. Stations are equipped for transforming the

content of containers, but only with the control of an opera-

tor with required skills (or qualifications). Containers must

be processed by several stations as to be completely trans-

formed and released, before a given deadline.

Algorithm 1: Main simulation loop in MASC

Build operators

Build stations

Build containers

while not (all containers are completed) do
Scheduler.executeStep(Available Stations,

AvailableOperators, AvailableContainers)
end

Thus, at the beginning of each fabrication cycle, the sim-

ulator provides:

• available stations with their qualifications (or transfor-

mation capabilities),

• available operators with their qualifications (or skills),

• containers to process,

4Collective, Interaction, Emergence: www.irit.fr/COLLINE
5http://www.irit.fr/TFGSO



• potential perturbations that occur (breakdowns, un-

availability, etc.).

Qualifications correspond to what an operator or a sta-

tion can process. For a container, qualifications are the re-

quired qualifications for both operators and stations to pro-

cess it.

MASC is provided with a benchmark greedy algorithm,

AmasCOP, that uses a heuristic based on a cooperation mea-

sure [2].

3.3. CSP Specification

Let M = {m1, . . . ,mn} be the set of stations. We have the

following objective variables:

• ∀i ∈ [1, n], ot
i is the operator assigned to the station mi

at time t,

• ∀i ∈ [1, n], ct
i is the container assigned to the station mi

at time t.

So, the problem proposed in MASC can be modelled as

a CSP at each time t:

• X = Xt
o ∪ Xt

c
where Xt

o = {ot
i |i ∈ [1, n]} and Xt

c = {ct
i |i ∈ [1, n]},

• D = {D(o1), . . . ,D(om),D(c1), . . . ,D(cp)}
where m (resp. p) is the number of operators (resp.

containers) provided as input at time t,

• C = Cdiff ∪ Cqual ∪ Ctime

where Cdiff = {alldiff(Xt
o), alldiff(Xt

c)}, Cqual =

{(q(ot
i) = q(ct

i) = q(mi))|i ∈ [1, n]} and Ctime =

{(end(ci) < tci
max) |i ∈ [1, p]}.

X is here composed of 2n variables (2 per station) to as-

sign. We have: ∀i,D(oi) ⊂ [1, n] and D(ci) ⊂ [1, n]. This

means that operators can be assigned to certain stations, and

that containers must be processed by certain stations: these

are qualifications for operators and containers that force

these assignments. Constraints in Cqual mean that an op-

erator must have the same qualification than a container on

a same station at same time t. alldiff constraints mean that

an operator or a container cannot be on two different sta-

tions at time t, and < constraints mean that a container must

be processed before the deadline tmax.

The main specificities of this CSP are:

• alldiff constraints imply a complete constraint net-

work: all the variables for a same type of entity (op-

erator or container) are linked by binary relation like

∀i, j, ot
i � ot

j and ∀i, j, ct
i � ct

j. This implies that clas-

sical distributed algorithms (e.g. ABT or AWCS) will

connect each agent with all the other agents.

• alldiff constraints are only applicable to assigned vari-

ables (e.g. if there are more stations than necessary,

there is no solution), which will require to filter before

solving processing by classical approaches.

• Temporal constraints only specify end-time (end(ci))

but not start-time. This is due to the real time dimen-

sion of the problem: the platform provides new infor-

mation at each time t.

Several solutions can be used for the multi-agent mod-

elling of this problem. We will here distinguish two families

of methods which corresponds on one hand to distributed

and asynchronous algorithms for solving DisCSP (ABT and

AWCS) and on the other hand to models based on the adap-

tive multi-agent theory (AMAS) [3].

4. Agentifying Variables

Some approaches propose a simple distribution of CSPs:

an agent is responsible for the assignment of one variable

(or more) [16]. In our problem, according to the relation be-

tween variables in Xt
o and variables in Xt

c, it is obvious that

an agent will encapsulate two variables for one station. So

there is one agent per station. For more details concerning

these approaches, we redirect the reader to [16]. Algorithms

based on such models are only solving algorithms (no repair

nor anytime properties) since they do not provide complete

assignment at any time.

4.1. Asynchronous Backtracking (ABT)

Yokoo introduced ABT in which agents are completely

ordered and own input and output links with other agents

[16]. The order is determined with different methods: do-

main sizes, number of constraints, etc. A link between two

agents represents a constraint between two variables owned

by these agents. It functions as follows.

An agent chooses a value and informs following (out-

put) agents, by using a ok? message. A recipient of such

a message will try to find its value, knowing its predeces-

sor’s tentative value. If it manages to assign its variables

to values respecting the constraints, it repeats the same pro-

cess with its successors. However, if it does not manage to

find a correct value it send back to its predecessor a nogood
message to inform it that the proposed tentative value is a

nogood value, which cannot lead to a solution. Receiving a

nogood message causes a tentative for a new chosen value.

ABT has properties of completeness and correctness,

but on large problems, it shows an exponential solving

time. Another negative characteristic of ABT is the fact

that agents needs to be totally ordered, which can be restric-

tive in dynamic environments, in which agents can appear



or disappear during the solving process –shattering the total

order.

4.2. Asynchronous Weak-Commitment Search
(AWCS)

[16] also proposed the AWCS algorithm in which prior-

ities are attached to agents (initially set to 0) and dynami-

cally changed during search. Like ABT, ok? and nogood
messages are used by agents to interact. During the search,

agents try to minimise the number of violated constraints

with agents with lower priority. If an agent has no possible

value, it increases its priority and initiates a search for a new

value.

Here again, there is a total order on the set of agents,

but unlike ABT, it is dynamic. Actually, it changes during

run-time, thanks to priority updates.

4.3 Heuristic for ABT and AWCS

To fit to the manufacturing control problem, we con-

sider a heuristic inspired from the AmasCOP approach [2],

shown in formula 1 where tr is the total remaining time, ns

(resp. no) the number of stations (resp. operators), tr(op)

the remaining time to process operation op, ncs(op) (resp.

nco(op)) the number of stations (resp. operators) compati-

bles for operation op. This formula is used to compute a

cooperation degree as to determine the order to choose con-

tainers, station and operators.

NC =
tr ∗ ns ∗ no

tr(op) ∗ ncs(op) ∗ nco(op)
(1)

Algorithm 2: Heuristic for ABT/AWCS

for compatible container c do
c.val← compute heuristic value NC

end
for compatible operator o do

o.val← max{values of containers compatible with o}

end
s.val← max{values of operators compatible with s}

Algorithm 2 shows the method to compute the degree for

a station (agent). First the non cooperation degree is com-

puted (NC) using formula 1, for every container compatible

with the station. Next, the algorithm maximize the values

for each operators, as to sort them. Therefore, this heuristic

orders agents and domains.

5. Agentifying Domain Entities

Other approaches consist in modelling agents from the

domain description, independently from any CSP formali-

sation [1, 7, 10]. Software agents represent entities of the

problem to solve (stations, operators, containers) or tools

for coordination. In this framework, we present two multi-

agent systems (ETTO4MC and DAmasCOP) based on the

Adaptive Multi-Agent Systems theory [3, 6]. This theory

relies on the principle that if every agent in a system is coop-

erative, then the system is functionally adequate and there-

fore adapted to its environment. So, they distinguish three

key notions in this theory: cooperation, self-organisation

and emergence. An agent is considered as being coopera-

tive if, at each instant, it is capable of detecting, processing

and using its skills from a received environmental signal. As

to face the dynamics of their environment, these agents are

equipped with mechanisms enabling them to modify their

organisation. This modification can only concerns parame-

ters of interaction (self-regulation) or topology of the orga-

nisation. This is generally called self-organisation, as soon

as agents are autonomous in their decision to act on the or-

ganisation. Following modifications of the organisation and

interactions, agents make the global function of the system

emerge.

In the case of manufacturing control, this approach

seems to be easily applicable: booking agents for opera-

tors and containers (mutually needing each other) explore

stations, looking for partnerships and location with respect

to their constraints and qualifications.

5.1. ETTO4MC Approach

The model we propose in this section, ETTO4MC

(Emergent Timetabling Organisation for Manufacturing
Control) is an asynchronous extension of ETTO [10] for

the manufacturing control, developed with JADE6. So, here

all domain entities are agentified: stations, operators and

containers. Two kinds of agents are considered. BookingA-
gents (BA) represents operators and containers having to

reserve a station and to sign a partnership with another BA,

for a single step. BAs memorise their partners (past and cur-

rent), and the encountered ResourceAgents (RA) as to sug-

gest them to other agents they encounter during the solv-

ing process. RAs represent stations. Contrary to ETTO,

resources are agents (and not only a cell in a grid represent-

ing the schedule). RAs memorise agent that reserve them.

Table 1 shows the messages that agents send and receive.

Initially, RAs are attached to stations and BAs are deployed

within the network to find stations and partners. This de-

ployment can be guided (e.g. pre-filtering the domains) or

random, since this approach consists in self-regulating the

current state of the system, which adapts to modifications

from the environment (constraints or actors).

This paragraph presents how the multi-agent system per-

form the solving process, with a sample execution. A BA

proposes to reserve a RA it knows (okForBooking?) for the

6http://jade.tilab.com/



Agents Messages Description
okForBooking?() Ask the RA’s availability, its state (reserved or not) and qualifications

BA→RA book(ba) Reservation of the RA by a BA
cancel(ba) Canceling of a reservation by a BA

inform?(q,s,a) Send information about a resource (qualification, state, reserving agents)
RA→BA partner(a,s) Confirmation for the partnership

cancel(a) Canceling of a partnership, with a proposal of other potential partners

BA→BA negotiate?(v) Negotiation for a partnership with a cooperation value v
result(a) Information concerning the agent that won the negotiation

Table 1. Messages in ETTO4MC

current step. This last one sends back a message inform?
containing its qualifications, its reservation state (full re-

served by two BA, half reserved by one BA, or free), and

waits for the BA’s answer. Depending on the returned qual-

ifications, the BA may either renounce (cancel) if they are

not compatible or try to reserve. Reservation can be done

either directly (book) if the BA lacks one partner of this type

(container or operator) or indirectly by negotiating with the

agent of the same type that reserves this resource (negoti-
ate?). The agents that initiates the negotiation is informed

of the result of the negotiation (result) as to reserve if it is a

success (book). In the case of a reservation, the partners of

this reservation are informed (partner). During a negotia-

tion, the agent having the highest cooperation value reserves

the RA at the expense of those having the lowest one, which

will have to search for another RA.

The cooperation value for containers is inspired by the

ones used in ETTO [10] and AmasCOP [2]. Cooperation is

pointed up during conflict between two BA for reserving a

RA. It is based on different situations depending on the state

of the examined station, container and operator. Evaluation

of the level of cooperativeness and the priority of a station

over another is done on sq, the number of shared qualifi-

cations (operator and container), and on cq, the number of

consecutive qualifications that can be processed (container):

Vs
coop = sqcq

Concerning negotiation between containers, the breath-

ing space of containers is a function of tr, the remaining

time before the deadline for the container, and δc the re-

quired time to completely process the container. tr − δc
(the absolute deadline for the container process) has priority

over tr so it is multiplied by a constant μ:

Vc
coop = μ

1

tr − δc + tr with μ > tr

For a negotiation between operators, or even different en-

tities (operator vs. container), this is the difficulty to find a

station, with respect to the available stations, that is taken

into account in the measure of cooperation. It depends on

the inverse of ms
as

, the potential of the agent to find a part-

ner (the ratio between the number of compatible stations

ms and the total number of available stations as), vs, the

number of visited stations and the inverse of
p
r , the ratio be-

tween the number of previous successful partnerships (p)

and the number of previously requested partnerships (r),

which measures the efficiency of the agent to find partners.

As used above, the constant μ is used to put priority of a

criterion over others:

Vo
coop = μ

2 as

ms
+ μ

1

vs
+

r
p

with μ > max{ 1

vs
,

r
p
}

Even if they have found a solution, agents still try to find

better partnerships, with better cooperation value. The only

termination criteria is time, which constitutes the main flaw

of ETTO(4MC). Nevertheless, following a modification in

the network, agents are capable of self-adapt and regulate

conflicts step by step. Although it is very different from

previously presented algorithms for solving DisCSP, CSP

constraints and variables are however encapsulated in the

model. Variables from Xo (resp. Xc) are distributed among

BAs representing operators (resp. containers) and RAs. In

fact, a BA owns a variable that indicates the reserved RA

and reciprocally. The consistency between these two values

is ensured by the RA. Constraints from Cdiff are managed

by BAs that reserve only one RA at the same time, only

once (otherwise they cancel a reservation before reserving

another RA). Constraints from Cqual are managed by BAs

and RAs during reservation or partnership phases. Finally,

constraints from Ctime are managed by BAs when the com-

pute their value for negotiation or reservation.

5.2. DAmasCOP Approach

In DAmasCOP (Decentralised AmasCOP) developed

with JAVAct7 containers explore stations as to process their

pieces. Stations search for operators in adequacy with the

qualifications of the current assigned container. At the be-

ginning, containers are provided with the name and the

qualification of one station of the factory. Each station has

a given neighbourhood, that regroups a set of stations, and a

list of operators having a least one qualification in common

with the station.

7http://www.irit.fr/PERSONNEL/SMAC/arcangeli/
JavAct_fr.html



Agents Messages Description
Container askToUseStation(q, p) Request for using a station with a qualification q and a priority p

askForStationNeighborhood() Request for the neighbourhood of a station

Station acceptContainer() Acceptance of a request from a container c
rejectContainer(n) Rebuttal of a request from a container and sending the neighbourhood n of the station
stationNeighborhood(n) Sending the neighbourhood n of the station
cancel() Cancelling the reservation of the container
askToUseoperator(q,p) Request for using an operator with a qualification q and a priority p
cancel() Cancelling the reservation of the operator
confirmOperator() Confirmation of the reservation of the operator

Operator acceptStation() Acceptance of the request of the station
acceptStationIfNoOneElse() Acceptance of the request of the station, if it does not find another operator
rejectStation() Rebuttal of the station
cancel() Cancelling of the reservation of the station

Table 2. Messages in DAmasCOP

Before each fabrication cycle (corresponding to the

while loop in algorithm 1), each container computes a prior-

ity level as a function of its own knowledge, qualifications

to process and the remaining time before the deadline. Dur-

ing exploration, a container memorises encountered stations

to optimise its further searches. Thus, it may ask, to the sta-

tion it evaluates as being the most relevant with respect to

its needs, either its neighbourhood (if the station does not

have the required qualification) or its usage state. When a

container asks for using a station, two cases can occur:

• The container is less priority than the other contain-

ers that have requested the station, therefore the station

sends to this agent its neighbourhood as to continue its

search with new acquaintance.

• The container is more priority, and in this case, the sta-

tion tries to find a free operator capable of processing

container’s contents. If an operator is found, the sta-

tion accepts the container, else it rejects the container

and send its neighbourhood to it.

Priority (or cooperation value) is computed as in Amas-

COP but without taking into account the number of avail-

able or matching operators (only the stations) [2]:

Vc
coop = tras − (tr − δc)ms

where tr is the time before the deadline for the container, as

is the number of available stations, δc is the time to com-

pletely process the container, ms is the number of stations

matching with the constraints of the container.

Concerning operators, they try to favour highest priority

requests. Thus, once connected with a station, there can be

several possible reactions, depending on its state:

• free: it accepts the job,

• reserved by a more priority station, perturbed or work-
ing on another station: it rejects the job,

• reserved by a less priority station: the operator informs

the new station that it can break free if no other oper-

ator is available; next, it waits an acknowledgement

from the station requesting it before cancelling its cur-

rent reservation.

Thereby an operator that has accepted to work on a sta-

tion may cancel this job as to help a more priority station.

In the same way, a station that has accepted to process a

container may cancel this reservation and process high pri-

ority containers. Containers continue their search for other

stations.

To halt this search process, measures determining stabil-

ity of system must be injected at macro level. Currently,

agents only reason on local representations, and therefore

inserting such measures is difficult. In the context of this

paper, we propose an anytime algorithm that can be halted

after a given deadline, expressed in a number of agents’ life

cycle (perception-decision-action). In the continuation of

this work, we will introduce an observing agent capable of

exploiting macro-level information as to detect the stability

and equilibrium, and to decide to stop the search process.

6 Results and Analysis

In this section, we present results for the resolution of

an task assignment problem, in an unpredictable context: at

each fabrication cycle t, agents only know current factory

orders, and not those to be done after this cycle. A fabri-

cation cycle corresponds to the execution of the procedure

executeStep (cf. Algorithm 1).

6.1. Experimental Setup

The scenario we consider concerns:

• 10 qualifications with duration between 1 and 6,

• 5 perturbations, occurring at different cycles and with

a duration between 10 and 30 fabrication cycles,

• 25 operators with 2 or 3 qualifications (except 3 oper-

ators with only 1 qualification),



• 30 stations with 2 or 3 qualifications (except 4 stations

with only 1 qualification),

• 100 containers:

– 50 at time t = 0 (deadline at t = 200),

– 25 at time t = 5 (deadline at t = 300),

– 25 at time t = 10 (deadline at t = 150).

Presented algorithms have been implemented using

the JADE platform (except DAmasCOP, developed using

JAVAct), and plugged to the MASC platform. ABT and

AWCS have been extended using the cooperation measure

used in the AmasCOP greedy algorithm, provided by de-

fault in MASC [2], for ordering domains for stations, oper-

ators and containers. To sum up, the methods experimented

(and their implementation framework in brackets) using the

presented scenario are:

• AmasCOP, the MASC greedy algorithm (Java),

• ABT, ABTCOP (ABT with the cooperation mea-

sure from AmasCOP), AWCS, AWCSCOP (AWCS

with the cooperation measure from AmasCOP) and

ETTO4MC (JADE),

• DAmasCOP (JAVAct).

In spite of the fact that most of these approaches are

developed using distributable frameworks (JADE, JAVAct),

we only proceeded to experiments on a single computer.

We next present results (over 100 simulations) conform-

ing to the following metrics:

• resolution time in milliseconds, by fabrication cycle

and total,

• number of exchanged messages, by fabrication cycle

and total,

• number of containers, processed and remaining.

6.2. Resolution Time

Figure 1 shows the time as a function of fabrication cy-

cles, needed by each presented method. Table 3 sums up the

total resolution time for each of the methods. This metric is

not the most relevant concerning adaptation. Nevertheless,

it enables us to verify whether self-organising approaches

are realistic concerning execution time. One can note that

limit time let to ETTO4MC is about 300 ms/cycle, which

partly explains its very high resolution time, compared to

other algorithms.

Resolution times are very disparate. Algorithms based

on variable agentification are very efficient, and their exten-

sions using a cooperation measure decrease the number of

fabrication cycles. However, ETTO4MC approach is not ef-

ficient at all. This is partly due to the intuitive choice made

for partnerships, and to the JADE platform which more re-

source consuming than JAVAct, concerning the manage-

ment of messages, which are far more numerous than in

ABT or AWCS approaches. Finally, DAmasCOP is very

efficient, and it seems due to the lightness of the JAVAct

middleware.
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Figure 1. Resolution time as function of fab-
rication cycles

Time (ms) Cycles Messages
AmasCOP 310 128 n/a

ABT 9325 145 14764

AWCS 6875 143 7147

ABTCOP 5965 141 5613

AWCSCOP 7470 137 7848

ETTO4MC 96468 165 147900

DAmasCOP 785 146 355906

Table 3. Total resolution time and number of
exchanged messages

6.3. Message Traffic

Figure 2 show the number of exchanged messages

(within JADE and JAVAct frameworks), whatever the type

of message (cf. Table 1 for ETTO4MC, Table 2 for DAm-

asCOP and Section 4 for ABT and AWCS), according to

fabrication cycles for each approach. Table 3 also sums up

the total number of sent messages for each approach. This

represents a relevant indicator of the network load implied

by the different methods we presented.

Variable agentification approaches required few mes-

sages, and the extensions we suggest decrease significantly
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Figure 2. Number of exchanged messages as
a function of fabrication cycles

this load. ETTO4MC and DAmasCOP hugely generates

messages between agents, that can be a real obstacle for de-

ploying these systems in ambient environments. AmasCOP

does not generate any message (n/a value) because it is only

a Java implementation of a centralised greedy algorithm led

by the cooperation measure. One can also note that even

if DAmasCOP generates more messages than all the other

experimented approaches its implementation using JAVAct

is very efficient.

6.4. Processed Containers

Figure 3 shows the evolution of container processing

during the simulation. Table 4 presents the total number

of processed containers at the end of the simulation. This is

useful to determine whether methods are efficient from the

production viewpoint.

We can observe that variable agentification approaches

are less efficient from this point of view than entity agentifi-

cation ones. Nevertheless, by adding the cooperation mea-

sure in the decision for choosing containers, operators and

stations, ABT and AWCS are enhanced; besides ABTCOP

and AWCSCOP process all the containers. We can also no-

tice that all the algorithms are equivalent considering the

number of fabrication cycles excepting ETTO4MC which

processes far less containers at the beginning of the simula-

tion than the other algorithms, but still manages to process

all the containers with a reasonable number of fabrication

cycles (t = 165); whereas ABT, at the contrary, processes a

lot of containers at the beginning but ends the process be-

fore (t = 145).
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Figure 3. Number of processed containers as
a function of fabrication cycles

Fabrications Remaining
AmasCOP 100 0

ABT 98 2

AWCS 98 2

ABTCOP 100 0

AWCSCOP 100 0

ETTO4MC 100 0

DAmasCOP 100 0

Table 4. Number of processed and remaining
containers at the end of the simulation

7 Discussion

7.1. Dynamics

The proposed scenario presents interesting dynamics

with massive incoming commands during simulation. It

is also interesting to note that methods reasoning with

the cooperation measure (AWCSCOP, DAmasCOP and

ETTO4MC) manage to process all the requested contain-

ers. This adaptation to dynamics can be explained thank

to the notion of cooperation which is at the center of peer-

to-peer negotiations, that enable agents to solve local con-

flicts; whereas global approaches (e.g. ABT) can output

solutions very far from the preceding solution, following a

perturbation. However, this has a cost for self-organising

approaches (DAmasCOP and ETTO4MC): very important

message traffic.

Nevertheless, the MASC platform limited our study of

dynamics. In fact, the only dynamics injected in the plat-

form comes by the concept of fabrication cycle. At each

cycle, MASC determines whether a container appears or an

operator is no more available, for instance. There is no real



time dimension: an algorithm plugged to MASC can pro-

vide results for each cycle without any time constraint. It

may be interesting to fix a time limit for each cycle as to test

the robustness of the methods, facing response time require-

ments. In this direction, we have experimented ETTO4MC,

for which such a time limit can be set up (e.g. 300 ms)

for every fabrication cycles. However, this reflection has

only sense for anytime algorithms, so not for ABT(COP)

nor AWCS(COP), which do not provide any results (even if

not a complete solution) before the end of the solving pro-

cess, if there is not enough time.

7.2. Distribution and Decentralisation

All the expounded approaches do not display the same

level of distribution. In fact, AmasCOP is not distributed

at all (nor directly distributable for that matter since it re-

quires global knowledge to function), for example. Dis-

tributed approaches (all the others), which are not based on

the same agentification, displays different distribution too.

Indeed, ABT and AWCS (and their extensions) distribute

decision among as many agents as stations (that is 30 sta-

tions in the scenario presented in Section 6), while DAm-

asCOP and ETTO4MC requires as many agents as entities

in the domain (that is 30 + 25 + 100 = 155). This notably

explains the increase in number of messages and therefore

of the time to process these coordination and cooperation

messages. This counterbalances the bad results concerning

resolution time obtained by ETTO4MC, which is developed

using JADE and is therefore potentially distributable, with

minimum implementation effort, at a larger scale than ABT

for instance, since it deploys more agents.

While ABT and AWCS are based on a predefined order

for responsibilities between agents (an agent is responsible

for another agent in the sense that it checks the consistency

of its assignments), self-organising approaches do not rely

on any preset hierarchy. In fact, ETTO4MC and DAmas-

COP maximise the decision distribution. Nevertheless, this

requires an important coordination, but takes advantage by

not introducing any breaking point in the system, due to

a hierarchy. In ABT, if a high priority agent disappears,

the resolution concerning the low level agent is reconsid-

ered. Since responsibilities are diffuse in self-organising

approaches, the danger of a breaking point is pushed aside.

To sum up, we can classify the different approaches by

using two criteria, distribution (utilisation of a distributed

infrastructure like JADE) and decentralisation (less hierar-

chy between agents):

• AmasCOP is centralised and non distributed,

• ABT(COP), AWCS(COP) are centralised and dis-

tributed,

• ETTO4MC and DAmasCOP are decentralised and dis-

tributed.

Among this sample group of methods, one can choose

depending on the deployment infrastructure (distributed or

not, robust network, etc.) and on the adaptation needs (more

decentralisation implies more flexibility, but more coordi-

nation time). These trade-offs are a good way the position

within the spectrum of possible applications.

7.3. Self-Organisation and Self-Regulation

Generally, multi-agent systems using cooperative local

decision (as those based on the AMAS theory) are qualified

as self-organising. Indeed, each agent has capabilities for

changing its interactions with other agents. For example,

in ETTO4MC or DAmasCOP, agents can change their part-

nerships depending on their qualifications or their priority.

This changes are only consequence of the local interactions

they have with their neighbourhood. In the manufacturing

control problem, this neighbourhood is strongly dependant

from the structure of the constraint network. As we under-

lined in section 3.3, this network is complete (each variable

is connected to all the others), contrary to other problems,

such frequency assignment in which locality principle (the

fact that agents have a limited neighbourhood) is more easy

to preserve [11]. This implies to artificially limit the neigh-

bourhood of agents in DAmasCOP and ETTO4MC: lim-

ited number of peers, randomly chosen or agents only know

other agents in connection with their current partner.

However, the current model only handle the self-

regulation dimension of self-organising systems. In fact,

agents are only able to regulate the system by changing

some peer-to-peer interactions and then by reducing global

constraint violation. We can imagine that completely self-

organising agents would be able to add/remove agents by

themselves, which can be interpreted, at the constraint net-

work abstraction level, as a change in the organisation of

the constraints.

7.4. Comparing Different Approaches

This work allows us to draw the limits of the metrics

and the platform we use. Although the primary goal of

MASC is to propose an environment for testing multi-agent

approaches on a difficult problem, the manufacturing con-

trol problem, it is fussy to compare them. Indeed, all these

approaches do not have the same level of distribution, do

not provide results with same level of quality, in an reason-

able time, or require numerous data exchanges. Moreover,

some approaches have been implemented with distributed

framework (JADE or JAVAct) whereas others only propose

multi-agent at the modeling phase (AmasCOP). In addi-



tion, even distributed frameworks display great discrepan-

cies concerning performances and services. The method-

ological dimension (advantages of an approach from a de-

velopment viewpoint) for adaptive systems remains diffi-

cult to evaluate. As we have previously underlined, MASC

platform is limited concerning dynamics and real-time mea-

surements. This narrows scenarios and tests that can high-

light the benefits of deploying self-organising multi-agent

systems.

This justifies our perspective to develop a real world am-

bient environment for tests, based on a network of devices.

It is also one of our perspectives to extend the comparison

to other approaches proposed in the Colline working group

of AFIA, and to define new scenarios and relative metrics

putting the stress on disturbances and adaptation.

8 Conclusion

In this paper we have presented several approaches for

making manufacturing control more adaptive, in a dis-

tributed context: variable agentification based approaches

(ABT and AWCS) and self-organising approaches by en-

tity agentification (ETTO4MC and DAmasCOP). These ap-

proaches differ in their way to explore the search space, in

their communication requirements, and in their capabilities

for answering to dynamics. We have also extended ABT

and AWCS with a cooperation measure between variables,

resulting on ABTCOP and AWCSCOP.

From the experiments we have made on MASC, it is

clear that classical DisCSP solvers remain relevant, but

they are improvable, as we have done by proposing ABT-

COP and AWCSCOP, which are more efficient, generate

less messages and process more containers. However, ap-

proaches agentifying entities process all the containers but

with far more time and communication charge, since they

required far more messages to coordinate the decentralised

decision process.

Therefore, thanks to MASC platform, flaws and advan-

tages of these methods have been identified. Nevertheless,

other algorithms can still be implemented (notably, paral-

lel local search [13], decentralised local search [16] or stig-

mergic ones [7]). Likewise, future works will consist in

deploying these systems on pervasive networks (composed

of Sunspots) as to evaluate their relevance in a real context,

not simulated. This stage will be eased thanks to the use

we made of distributed frameworks like JADE or JAVAct,

in this current work.
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