
HAL Id: hal-03800704
https://hal.science/hal-03800704v1

Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ADELFE Design, AMAS-ML in Action
Sylvain Rougemaille, Jean-Paul Arcangeli, Marie-Pierre Gleizes, Frédéric

Migeon

To cite this version:
Sylvain Rougemaille, Jean-Paul Arcangeli, Marie-Pierre Gleizes, Frédéric Migeon. ADELFE Design,
AMAS-ML in Action. 9th International Workshop on Engineering Societies in the Agents World
(ESAW 2008), Sep 2008, Saint-Etienne, France. pp.105-120, �10.1007/978-3-642-02562-4_6�. �hal-
03800704�

https://hal.science/hal-03800704v1
https://hal.archives-ouvertes.fr

ADELFE Design, AMAS-ML in Action
A Case Study

Sylvain Rougemaille, Jean-Paul Arcangeli, Marie-Pierre Gleizes, and Frédéric Migeon

IRIT - SMAC
118, route de Narbonne

F-31062 Toulouse Cedex 9
{sylvain.rougemaille,jean-paul.arcangeli,marie-pierre.gleizes,

frederic.migeon}@irit.fr

Abstract. The complexity of engineers tasks leads us to provide means to bring
the Adaptive Multi-Agent Systems (AMAS) design to a higher stage of automa-
tion and confidence thanks to Model Driven Development (MDD). This paper
focuses on a practical example and illustrates the modifications that have been
done to the ADELFE methodology. In the Design phase, we propose to use a Do-
main Specific Modeling Language (DSML) for the specification of cooperative
agents. We also, add a Model Diven Implementation phase using model trans-
formation, DSMLs and code generation. These phases carry out a model centric
process to produce and partially generate the system code. We present the use of
our MD process applied to a simple, but very illustrative example: the foraging
ants simulation.

1 Introduction

Our team works both on adaptation and Multi-Agent Systems, the result is that we
propose paradigms to manage adaptation at different conceptual levels. We propose an
approach which introduces adaptation following three independent axes [1]. The first
one differentiates system level adaptation, achieved according to AMAS principles [2],
from agent adaptation, allowed by a flexible agent architecture [3]. The second axis dis-
tinguishes functional adaptation (which concerns the system expected functionality, i.e.
the service performed) and operational adaptation (which concerns execution mecha-
nisms, i.e. means to perform services independently of the functionality itself). Finally,
the third one concerns adaptation time. Adaptation is qualified as dynamic when it oc-
curs at runtime and static when it occurs at design time. As the system is designed to
provide a function for the user and that it is responsible for that, system level adaptation
deals with means to preserve dynamically the adequacy between the function the sys-
tem offers and user requirements. Concerning agent adaptation, it is important to notice
that, as long as agents execute, they may encounter various operating systems config-
urations. Therefore, flexible agent architecture is a way of defining and maintaining
agent skills up-to-date in order to keep it playing its role.

The combined capacities of these approaches, AMAS principles and flexible agent
architecture, enable to deal with systems which can be characterized as complex, due
to the complexity of the domain (coupling with the environment, numerous interact-
ing entities) or the one coming from the execution layer. Our proposal is to ease the

design of such systems by combining different adaptation kinds (system/agent, func-
tional/operational) within a tool that would assist the engineers all along the design.
This assistant would reduce domain complexity by automating the implementation of
the system, letting engineers focus on business concerns. Moreover, complexity of the
execution support would be totally hidden thanks to generative tools.

This is the goal of our research, in which we try to combine several software tech-
nologies such as reflection, aspect orientation, components, software architectures for
implementation issues, as well as AMAS which ease to handle system complexity. In
order to make all these technologies cooperate, we use a model driven approach that
allows us to integrate modelling and implementation tasks in a common environment,
such as Eclipse. All these ”good practices” and principles are specified and gathered
in a methodology called ADELFE, which is a development process based on the RUP
(Rational Unified Process) and specialised for AMAS developing.

In this paper, we present a practical example of the join use of both AMAS and flex-
ible agent principles within the ADELFE Design and Implementation phases applied to
a simple, but very illustrative example: the foraging ants simulation. The following of
the paper is organised as follows. First is presented the context of this paper: section 2
for the ADELFE methodology and its adaptation to a MD approach and section 3 for
the case study. Thereafter, the paper focuses in section 4 on the several phases where
model transformations and code generations are used. In section 5, we analyse the work
presented according to engineers points of view. Finally, we discuss some related works
and lastely we conclude.

2 ADELFE 2.0

ADELFE1 is an agent-oriented methodology for designing Adaptive Multi-Agent Sys-
tem (AMAS) [2]. The MAS developed according to ADELFE provides an emergent
global function [4]. What we call the global function is the function the system is in
charge of, whereas what we call local function is one provided by one agent. The global
function is qualified as emergent because it is not coded inside the agent. The agents
are not aware of this global function. Let’s take the example of the robot transportation
application developed with ADELFE [5] where agents have to transport boxes from
a room to another one by passing through narrow corridors (agents cannot pass each
other). The agents have to move in an environment containing 2 rooms, 2 corridors,
boxes, walls, others robots. Each agent’s local behaviour consist in avoiding collision
and in trying to be cooperative. Being cooperative means for the agent maximising its
utility in the system. Therefore, it tries to avoid situations of concurrency, uselessness,
ambiguity and other kind of conflicts. The global phenomena not coded inside the agent
is that a traffic direction emerges. To obtain this emergent behaviour, the system follows

1 ADELFE is a French acronym for ”Atelier de Développement de Logiciels à Fonction-
nalité Emergente”. It was a French RNTL-funded project (2000-2003) which partners
were: ARTAL Technologies (http://www.artal.fr) and TNI-Valiosys (http://
www.tni-valiosys.com) from industry and IRIT (http://www.irit.fr/SMAC)
and L3I (http://www-l3i.univ-lr.fr) from academia. See http://www.irit.
fr/ADELFE

Fig. 1. The ADELFE 2.0 phases

the AMAS theory [6] in which the agents are endowed with the ability to autonomously
and locally modify their interactions in order to react to changes in their environment.
These alterations transform their collective function i.e. the global function performed
by the MAS they belong to. This system is self-organising and is able to adapt to its en-
vironment. According to the AMAS principles, interactions between agents depend on
their local view and on their ability to ”cooperate” with each other. Every internal part
of the system (agent) pursues an individual objective and interacts with agents it knows
by respecting cooperative techniques which lead to avoid Non Cooperative Situations
(NCS) like conflict, concurrence etc. Facing a NCS, a cooperative agent acts to come
back to a cooperative state and permanently adapts itself to unpredictable situations
while learning on others.

2.1 Adelfe 1.0

The ADELFE agent-oriented methodology aims at guiding AMAS designers through
a development process based on the RUP (Rational Unified Process) [7], a standard
process of object-oriented methodology. ADELFE covers the phases of usual software
design from the requirements to the design; it uses UML notation and extension of
UML already done in AUML, in particular the AIP (Agent Interaction Protocols) nota-
tions [8]. Our aim is not to add one more methodology to existing ones but to work on
some aspects not already taken into account such as complex environment, dynamics,
and adaptation. As this methodology concerns only applications designed following the
AMAS principles, some activities or steps have been added to the RUP in order to be
specific to adaptive multi-agent systems. In the preliminary and final requirements, the
environment modelling and the expression of the situations that can be “unexpected” or
“harmful” for the system have been added. In the analysis phase, two activities are dedi-
cated to the AMAS. First, ADELFE helps the designer to decide if the use of the AMAS
principles is required to implement his application. ADELFE provides also guides to
identify cooperative agents among all the entities defined during the final requirements.
Concerning the design phase, three activities are added. The first concerns the rela-
tionships between agents. The second is about the agent design. In this activity, the
cooperation failures are defined. Then, a fast prototyping activity helps to build and
verify the agent behaviour.

2.2 Extending Adelfe 1.0

Rationale. The design phase of ADELFE was previously carried out using UML1.4
profile, to take into account cooperative agents and their specificity. Moreover, the
AUML AIP has been extended to integrate cooperation failure. However, since its last

version, UML2.0 [9] has integrated many of the desired features of the FIPA for AUML,
making a step further in the AIP direction (adding the concepts of Combined Fragments
to the sequence diagram, for instance). As a consequence, the profiles based on the pre-
vious UML version was kind of “deprecated notations”. In the purpose of updating the
ADELFE methodology, we begun a metamodeling process to characterise as precisely
as possible the concepts involved in the AMAS principles and mandatory for ADELFE.
With this metamodel, we made the choice of developing our own DSML (Domain Spe-
cific Modeling Language) [10], considering that the AMAS approach constitutes a do-
main on its own. We called this language AMAS-ML (AMAS-Modeling Language).
All along the metamodeling process, we had in focus that this specific language would
be used in the ADELFE methodology for the purpose of specific design. Besides this
fact, the abstraction and the concepts that it brought have been used to initiate a model
driven implementation phase.

It is important to notice what are the advantages of using a DSML (whether it is a
profile of UML or obtained from Model-Driven approach). The main benefit is about
semantics. What can be expressed by designer becomes closer to the concepts of the
domain whereas the use of a general-purpose language (like UML or a OO program-
ming language) introduces a gap between ideas and description. Another advantage of
Model-Driven Engineering lies in automation. By extracting the information the de-
signer has already given in previous diagrams, model transformations allow not only
to speed up development but especially to reduce design complexity, which is inher-
ent to the systems we deal with. For example, we are able to separate behavioural or
functional concerns form operational ones which will be implemented transparently,
keeping designer focused on business concerns (see figure 2).

In the ADELFE V.2, the design phase has been improved and an implementation one
has been added.

Fig. 2. Separation of concerns

Fig. 3. Phases and diagrams in ADELFE

Design. AMAS-ML is used in several steps of the design phase, from the detailed agent
structure design to the definition of the agent cooperative behaviour. This is done thanks
to specialised diagrams:

– The agent diagram: it is used to model the cooperative agent structure, as well as
its relationship with environmental entities. It defines all the specific features of a
cooperative agents, its Representations, Characteristics, Skills and Aptitudes.

– The behavioural rules diagram: it allows the specification of rules involved in the
decision process of an agent. It is expressed with the cooperative agents features.
Based on their representations and perceptions, agents have to decide next actions
to lead. These actions may be done in the purpose of NCS recovering (Coopera-
tiveRule) or not (StandardBehaviorRule).

– The interaction diagram: for the moment it corresponds to the UML 2.0 sequence
diagram. We have defined a transformation which allows us to integrate the proto-
cols and messages defined in the UML model into our AMAS-ML model. However,
we are studying the interest of developing our own diagram editor.

The next implementation phase takes as input the result of the design, that is the AMAS-
ML model (see figure 3).

Implementation. As we have presented it in [1], this phase is guided by one main
idea: the separation of concerns. More precisely, we want to separate all that constitutes
the “operating” concerns (basic mechanisms of the agent), from all specific behaviour
concerns (the way agents use their tools to achieve their goals). To do so, we based
this phase on a specific tool which we have developed: MAY (Make Agents Yourself).

It allows developper to describe agent micro-architecture (operating mechanisms)
thanks to a DSML: μADL (micro-Architecture Description Language). The architec-
tural style of the micro-component assembly and the MAY generation process give a
kind of “abstract agent machine” (we could say a application-dedicated API) which can
be used by the developer as an abstract layer to implement the behaviour of agents.
This phase involves several generation or transformation steps which are illustrated in
figure 4 with SPEM 2.0 (Software and system Process Engineering Metamodel) [11]:

– Micro-Architecture Extraction : this is the first model to model transformation,
from AMAS-ML to μADL, which has been implemented with ATL [12]. It eases
the Agent Architecture Analyst tasks by creating a μADL model from the AMAS-
ML model elements that we consider as “operating mechanisms” (see further sec-
tion 4.3).

– Abstract Micro-Architecture Code Generation : this first step of code generation
gives code skeletons. Once the architecture is sufficiently refined and consistent,
the Java Developer may implement micro-components services.

Fig. 4. The ADELFE 2.0 Implementation phase in SPEM 2.0

– API generation : at this point, MAY generates the whole API, that is, tools to exe-
cute, create and deploy the specific agent models.

– Behavioural code generation : from the behavioural rules expressed in the design
phase with AMAS-ML, we proposed to generate a code skeleton to ease the task
of the AMAS developer. The aim is to provide some hints to achieve the decision
process of each agent in the system.

3 Case Study: The Foraging Ants

ADELFE has been used to develop a simulation of foraging ants, on one hand, for
providing a tool for ethologists and on the other hand, for testing that cooperative ants
following AMAS approach provide correct results. The application was chosen because
the behaviour of foraging ants is quite simple and allows to focus on development tech-
niques. The environment is composed of the nest, some obstacles, pheromone, patches
of food and ants. The pheromone self-evaporates during time and can be accumulated
when several ants drop pheromone at the same place. The foraging ants have several
characteristics. They have different degrees of perception for obstacles, other ants, food,
and pheromone. They always know where their nest is located. They can carry a given
quantity of food. They go out of the nest for a given duration and at the end of this
duration, they go back to the nest and rest in the nest for an amount of time. The for-
aging ant behaviour consists first in exploring the environment. When it encounters an
obstacle, it avoids it. When it encounters food, it can harvest it. When it is loaded, it
goes back to nest in dropping a given quantity of pheromone on the ground. By conse-
quence, tracks of pheromone appear in the environment. During its exploration, an ant
is attracted by pheromone and leads to follow pheromone track. This behaviour implies
a reinforcement of the existing tracks.

4 Applying Adelfe 2.0

This section depicts the way the application described above can be implemented thanks
to ADELFE and its model driven implementation phase. Thus, we focus mainly on the
last steps of the methodology, the first ones are summarised as they do not constitute a
new proposition.

4.1 Preliminary Steps: Requirements

These steps are devoted to the establishment of requirements and are usual in software
development methodology. They consist in a description of the problem domain as it is
demanded to be solved, as well as a specification of the final user needs. The first phase,
namely the Preliminary requirements phase, has already been completed. Although it
is not formalised, the brief description of the section 3 could be considered as its result.
It constitutes an overview of the requirements (user needs, key-words and limits).

Concerning the next phase, Final requirements, it is involved in the description of the
system environment and in the identification of the different elements which populate
it. From the requirements previously established we determine the following entities:

– Passive Entities (resources for the system): the pheromone, obstacles, the food and
the nest,

– Active Entities (entities that could act autonomously): foraging ants.

Furthermore, from the requirements already presented we have characterised the envi-
ronment of the system as:

– Accessible: its state is known by the system (simulation purpose);
– Non-deterministic: ants actions could have different results;
– Discret: as a simulated environment it is defined as a grid;
– Dynamic: ants actions modify continuously its state.

From a more common point of view the Use cases identified for the system are all
related to the management of a simulation tool: configuration of the ants parameters
and observation of the results, and so on. Thus they are not extensively exposed in this
paper.

4.2 Analysis

After we have described the requirements, we proposed a first analysis which is in-
tended to allow us to determine whether an AMAS approach is convenient or not. For-
tunately it does! In fact, from global to local point of view and focusing on the ants
activity observation, we can say that:

– There is no obvious way to define the task of the colony;
– The global task (food gathering) is performed by a great number of interacting

entities;
– These entities are conceptually distributed;
– The environment is evolving during time;
– Each ant possesses a limited perception of its environment, as well as a limited range

of actions. Moreover they have to adapt themselves to an ever changing context.

By analysing these few sentences, it seems that the AMAS approach is particularly well
adapted to our problem. It also seems obvious that the agent in the previously identified
entities could be none but the ant, in fact:

– it is the only entity possessing an autonomous activity and trying to reach a personal
goal (harvest food);

– it has a partial vision of its environment, which moreover is evolving;
– it has to deal with other entities and thus with potential cooperation failures.

To sum-up the results obtained at this phase, we have determined that AMAS approach
is appropriate to the problem we want to solve and thanks to the requirements too, we
have identified the agent within the AMAS: the foraging ant. Since this point, and for
the following steps we are focussing on the design and implementation of the coopera-
tive agent. To do so, we have adopted a model driven approach rather than a code-centric
one.

4.3 Model Driven Design and Implementation

The beginning of the ADELFE methodology is based upon the RUP which is intrin-
sically bound to the UML notation. Information contained by the model resulting of
the preliminary steps of the method is necessary for the following phases. But, we also
assume that UML models aren’t as specific as we want models to be for the design of
cooperative agents. To cope with this lack of specialisation, we have proposed our own
DSML (Domain Specific Modeling Language) based on an AMAS meta-model and
called AMAS-ML (AMAS-Modeling Language) [1]. However, this choice does not
prevent us for bridging UML preliminary models with AMAS-ML, in fact, we gather
their information to feed our AMAS specific model thanks to transformations. Further-
more, we use UML 2.0 sequence diagrams [9] to specify agent protocol [13] as well as
entities interaction, we extract from it the relevant information thanks to model transfor-
mations to. The next section presents the models which have been defined in the scope
of the foraging ants simulation tool design.

Agent Diagram. For the precise design of the agents, we use the AMAS-ML agent
diagram (see figure 5 for details). According to the cooperative agent paradigm, an
agent is made up with several parts and modules. They represent its main abilities or
specificities such as : Representations, Characteristics, Skills and Aptitudes; they also
represent the way it interacts with its environment: action module, perception module,
action, perception and the means it involves actuators and sensors. In our example,
an ant does not use direct communication; it only deposes pheromone which could be
sensed by other ants (stigmergy), that is why no communication action could be noticed
in the figure 5. The perception consists in filling the different representations with fresh
values. For instance, the food array corresponds to the position where food has been
perceived. With these gathered positions and its skills (favour(), etc.), the ant agent
has to determine the better way to go. To do so, it fills the interpretedSurroundings
grid with integer values (the more appealing a position is, bigger is the integer value).
This decision process consists in the choice of the favourite positions. It is expressed
as rules and is described in the next section. As it has been presented in section 3, the
ants have to depose pheromone tracks in order to communicate the place where food
has been discovered. This task involved the use of a specific action dropPheromon()
which is fulfilled thanks to the ExocrynGland actuator. This information is useful for the
“extraction” of the agent architecture, it indicates which part of the agent is responsible
for the performing of an action (see section 4.3). The other specific features of the
ForagingAnt cooperative agent are shown in the figure 5 those features are used in the
next design step.

Behavioural rules diagram. We distinguish two kinds of rules the Standard behaviour
which constitutes the local function or goal assigned to an agent; and the Cooperative
behaviour rules which are intended to manage Non Cooperative Situations. At this
step in the methodology, we are designing these rules as being triggered from an agent
state, which is itself characterized by a logical expression over the Representations,
Characteristics and Skills of the agent. A rule result in a set of actions, or skills that
have to be accomplished in order to reach a local goal or to recover a cooperative state.
The figure 6 shows an example of a graphical representation of those rules. The left

Fig. 5. AMAS-ML Agent Diagram: foraging ant cooperative agent detailed design

Fig. 6. AMAS-ML Behaviour Rules Diagram: concurrence avoidance cooperative rule and re-
turning

hand side presents states that triggered the actions at the right hand side. The rule binds
a state with actions and is labelled by a rectangle (in the middle of the figure) which
is also used to specify the kind of behaviour it is related to, cooperative or standard.
Actually, the figure 6 presents the avoidance of concurrence that could appear when
ants are lusting for the same food patch and the standard ant behavior that consist in
going back to the nest while deposing a pheromone track when food has been collected
(in fact, destinations are only favoured as a Monte-Carlo algorithm introduces non-
determinism in moves).

μADL. From the design phase and the AMAS-ML agent diagram, we propose to gen-
erate automatically an abstract agent architecture. This architecture is made up with
micro-components which specification could be edited and modified with the μADL
language. The result of this step is called the “Agent model”; it is used to generate a
specific API which is given to the developer in order to complete the following stages
of this phase. In the figure 7, the ant cooperative agent is shown as the result of a model
to model transformation from the AMAS-ML model of the figure 5. From this point,
another model driven tool is used to proceed the last generation step, which is called
MAY (Make Your Agents Yourself); it is described in the next section.

MAY results. MAY generates an dedicated API providing the agents modelled thanks
to μADL. In our case the agent model has been extracted from the results of the AMAS-
ML design (see 4.3). The abstract agent architecture has to be implemented, by reusing
micro-components or developing new ones. In our case, we choose to re-use micro-
components devoted to the interaction with a grid with a graphical representation which
was developed for a previous project. Once this task is completed, MAY can generate
the agent specific API that will be used for the development of the agent behaviour. Of
course, designer may also combine generation steps and manual modifications. Com-
piler makes uses of Java interfaces to specify architcture while implementation is done
with classes. MAY generates all interfaces features and ask the user to decide which
classes are implementation in order to avoid conflicts.

Fig. 7. μADL diagram of the Ant cooperative Agent

4.4 Application Code

At this stage, the work that still have to be done by the developer is the implementation
of the ant agent behaviour. We already possess some interesting information concern-
ing this behaviour which is contained by the AMAS-ML model (see section 4.3). There
is another code generation step which allows us to generate code skeletons and hints
for the implementation of the decision module. Concerning our example, the ant deci-
sion module consists in detecting patterns which modify the value of the interpretation
grid. This grid is given to the monteCarlo aptitude, which selects the next position to be,
thanks to a randomised algorithm. Thus the decision of the ant can be summarised as the
ponderation of this grid as well as the positioning of the headingToNestFull boolean,
thereafter the ant moves to the randomly determined position dropping pheromone if
necessary. We implemented the decide and the act methods wich are called by the Life-
Cycle micro-component.

5 Experiments Analysis

From the example presented here, and even if it does not constitute a “real world” or
industrial software development experiment, we can draw some conclusions at different
levels.

5.1 From the Designer Point of View

We have not presented here, for space saving convenience, the detailed design phase
as it has been done for the implementation phase. However, the use of the AMAS-ML
diagram has shown its interest in the cooperative agents design. Actually, the expres-
sion of behaviour as rules over the agent knowledge and characteristics has naturally
induced an incremental and iterative process in the precise design of agents features
and behaviour. Thus these two tasks benefit one from the other. For example, while ex-
pressing the cooperative behaviour of an agent a designer could need some new useful
skills. Conversly the adding of elements to the agent during detailled design could lead
to new states that need to be handled by new behavioural rules.

5.2 From the Developer Point of View

The introduction of a model driven phase has brought a higher level of automation to the
AMAS development. Developers profit from model driven tools which help them in the
production of agent oriented software, domain they are probably not familiar with. In fact,
MAY offers to developers a way to produce their own agent oriented API with a minimum
of effort. In the mean time, this code generation process can still be manually conducted
by a MAS expert who would control every part of his/her code. The implementation
phase is a real model-driven process which keeps models and code consistent.

To give concrete values,we can emphasize the following results. It took 3 days to
develop the entire prototype shown in figure 8 where only half a day was spent for
behavioural part. Ant API is only 53ko weight, with 17 classes and 9 interfaces. For
environment, 29 classes were designed for a total of 69ko. Finally, behaviour and main
are contained in 2 classes (6ko).

Fig. 8. Ant simulation prototype

5.3 From the Method Engineer Point of View

We advocate that the implementation phase, thanks to its model driven approach, only
depends on the input “domain” model (AMAS-ML model in our case). Consequently,
it could be considered as a method fragment [14], parameterized by the domain model
and of course the associated transformation. One can object that this transformation
could be a problem, but we assume that MDD already offers means to assist its defini-
tion2. Furthermore, the target model, namely μADL, offers a reduced set of concepts
that could be mapped easily. However, transformation generation still constitutes a chal-
lenging issue in the MD world.

6 MAS and MDE Related Works

Currently, some existing agent-based methodologies INGENIAS [15], PASSI [16], and
TROPOS [17] use model transformations in order to design MAS. These methods and
the associated tools coming from MDE are reviewed and briefly analysed in this section.
Few works on MAS engineering have involved the use of tools coming from MDE, and
the most advanced are: MetaDIMA [18], INGENIAS, TROPOS and SODA [19].

2 http://www.eclipse.org/gmt/amw/

MetaDIMA helps the designer to implement MAS on the DIMA platform using
MetaGen which is a MDE tool dedicated to the definition of metamodels and models.
DIMA is a development and implementation platform developed in Java where agents
are seen as a set of dedicated modules (perception, communication, etc.). MetaDIMA
provides a set of metamodels and a set of knowledge-based systems on top of DIMA to
ease the design of MAS by providing languages more specific than Java code.

INGENIAS proposes to transform the MAS expressed in the INGENIAS metamodel
in code dedicated to a given platform using the modelling language of INGENIAS and
the implementation model of the platform. Its main originality consists in providing
evolutionary tools. Because tools used for transforming specification in code are based
on metamodels, if the metamodel specifications evolve, the tools can also evolve. More-
over, these transformations are expressed as templates which also can be tuned for spe-
cific purposes.

In TROPOS, all the phases use different models which are described by metamod-
els; it also uses UML notation and automatic transformations. For example, it translates
plan decomposition into a UML 2.0 activity diagram by using a transformation lan-
guage based on the following three concepts: pattern definition, transformation rules
and tracking relationships.

Molesini et al. [19] propose to fill the gap between methodologies and infrastructures
by using metamodelling for mapping the abstractions at the AOSE methodology level
onto the abstractions at the infrastructure level. They provide guides for mapping SODA
concepts onto three different infrastructures: TuCSoN, CArtAgO and TOTA.

Our work pursues the same objective as the works described previously although
it addresses adaptation issue from both system and agent points of view. In fact, we
aim at taking it into account and providing design and generation tools to implement
such adaptive systems. For this purpose, we propose to generate an adapted execution
platform for AMAS, using MDE tools and principles as well as the flexibility provided
by MAY.

7 Conclusion

In this paper, we have presented an example of the practical use of Domain Specific
Languages, model transformations, and code generation in the scope of a dedicated
methodology. That is to say, a whole Model Driven Engineering process devoted to the
implementation of an AMAS. The benefits of such an approach have been analysed
from several points of view, and even if some technical works still have to be done to
integrate this approach in a specific tool, we assume that the results are quite satisfying.
The implementation phase process still needs some adjustments, nevertheless the expe-
rience gained from its further practical application should bring us useful material to
do so. Moreover, the ADELFE v.2 methodology has been applied to other projects (for
example a Manufacturing Control Simulation) from which we already gather interest-
ing information about the implementation phase. Finally, our team is leading works on
the definition of specialised micro-architectures and micro-components that are going
to enrich the MAY library and thus favour reusability.

References

1. Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M.P.: Model Driven Engineering for De-
signing Adaptive Multi-Agent Systems. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros,
G. (eds.) ESAW 2007. LNCS, vol. 4995, Springer, Heidelberg (2008),
http://www.springerlink.com (online)

2. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering Adaptive Multi-Agent Sys-
tems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-
Oriented Methodologies, pp. 172–202. Idea Group Pub. (2005); ISBN: 1-59140-581-5

3. Leriche, S., Arcangeli, J.P.: Adaptive Autonomous Agent Models for Open Distributed Sys-
tems. In: International Multi-Conference on Computing in the Global Information Technol-
ogy (ICCGI), Guadeloupe, March 4-9, 2007, pp. 19–24. IEEE Computer Society, Los Alami-
tos (2007), http://www.computer.org

4. Georgé, J.P., Edmonds, B., Glize, P.: Making self-organising adaptive multiagent systems
work. In: Bergenti, F., Gleizes, M.P., Zombonelli, F. (eds.) Methodologies and Software
Engineering for Agent Systems, pp. 319–338. Kluwer Academic Publishers, Dordrecht
(2004)

5. Picard, G., Gleizes, M.P.: Cooperative Self-Organization to Design Robust and Adaptive Col-
lectives. In: International Conference on Informatics in Control, Automation and Robotics
(ICINCO), Barcelona, Spain, September 14-17, 2005, pp. 236–241. INSTICC Press (2005),
http://www.insticc.net/

6. Capera, D., Georgé, J.P., Gleizes, M.P., Glize, P.: The AMAS Theory for Complex Problem
Solving Based on Self-organizing Cooperative Agents. In: TAPOCS 2003 at WETICE 2003,
Linz, Austria, June 09-11, 2003, IEEE CS, Los Alamitos (2003)

7. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

8. Odell, J., Parunak, H., Bauer, B.: Representing Agent Interaction Protocols in UML.
Springer, Heidelberg (2000)

9. Object Management Group, Inc.: Unified Modeling Language (UML) 2.0 Superstructure
Specification, Final Adopted Specification (2003)

10. France, R.B., Rumpe, B.: Domain specific modeling. Software and System Modeling 4(1),
1–3 (2005)

11. Object Management Group, Inc.: Software & Systems Process Engineering Metamodel
Specification v2.0. Omg edn. (2007)

12. Jouault, F., Kurtev, I.: Transforming models with ATL (atlas transformation language). In:
Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg
(2006)

13. Bauer, B., Odell, J.: UML 2.0 and agents: how to build agent-based systems with the new
UML (unified modeling language) standard. Engineering Applications of Artificial Intelli-
gence 18(2), 141–157 (2005)

14. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design
methodologies: from standardisation to research. Int. J. of Agent-Oriented Software Engi-
neering 1, 91–121 (2007)

15. Pavón, J., Gómez-Sanz, J.J.: Agent oriented software engineering with INGENIAS. In:
Mařı́k, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691, pp. 394–
403. Springer, Heidelberg (2003)

16. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The PASSI and Agile PASSI MAS
Meta-models Compared with a Unifying Proposal. In: Pěchouček, M., Petta, P., Varga, L.Z.
(eds.) CEEMAS 2005. LNCS, vol. 3690, pp. 183–192. Springer, Heidelberg (2005)

17. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

18. Jarraya, T., Guessoum, Z.: Towards a Model Driven Process for Multi-Agent System. In:
Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS,
vol. 4696, pp. 256–265. Springer, Heidelberg (2007)

19. Molesini, A., Denti, E., Omicini, A.: From AOSE methodologies to MAS infrastructures:
The SODA case study. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G. (eds.) ESAW
2007. LNCS, vol. 4995, pp. 300–317. Springer, Heidelberg (2008),
http://www.springerlink.com (online)

