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COPRIME VALUES OF POLYNOMIALS IN SEVERAL VARIABLES

ARNAUD BODIN AND PIERRE DÈBES

Dedicated to Moshe Jarden on the occasion of his 80th birthday

Abstract. Given two polynomials P (x), Q(x) in one or more variables and with integer
coefficients, how does the property that they are coprime relate to their values P (n), Q(n)

at integer points n being coprime? We show that the set of all gcd(P (n), Q(n)) is stable
under gcd and under lcm. A notable consequence is a result of Schinzel: if in addition P

and Q have no fixed prime divisor (i.e., no prime dividing all values P (n), Q(n)), then
P and Q assume coprime values at “many” integer points. Conversely we show that if
“sufficiently many” integer points yield values that are coprime (or of small gcd) then the
original polynomials must be coprime. Another noteworthy consequence of this paper is
a version “over the ring” of Hilbert’s irreducibility theorem.

Let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 polynomials in r > 1 variables x = (x1, . . . , xr) . For

n = (n1, . . . , nr) ∈ Zr, we consider the corresponding values Pi(n). Is there a connection

between (a) P1(x), . . . , Ps(x) being coprime as polynomials and (b) “many” of the values

P1(n), . . . , Ps(n) being coprime as integers? Answers exist in both directions.

Suppose that the polynomials P1(x), . . . , Ps(x) are coprime and their values have no fixed

divisors, i.e., no prime number p divides all Pi(n) (for all i, and all n). Then it is true that

for some n ∈ Zr, the integers P1(n), . . . , Ps(n) are coprime: coprime polynomials assume

coprime values. This is proved by Schinzel in [10]; Ekedahl [4] and Poonen [9] even give,

in the special case s = 2, a formula for the density of the good n; see Section 1.3 below,

and also [1] where Schinzel’s result is extended to other rings than Z, including all UFDs

and all Dedekind domains.

Here we put forward a more general property of polynomials that implies Schinzel’s coprime

conclusion. Set dn = gcd(P1(n), . . . , Ps(n)), for n ∈ Zr, the gcd of the values. We show,

even without the fixed divisor assumption, that the set D of all these dn is stable under gcd

and lcm, i.e., is a lattice for the divisibility (Theorem 1.1); the quick proof that it yields

Schinzel’s theorem is in Section 1.2. This generalizes previous results in one variable [2].

Regarding the Ekedahl–Poonen formula, we extend it to the case of s > 2 polynomials and

to the situation that several families of such polynomials are given (Section 1.3). We can

then show a version “over the ring Z” of Hilbert’s Irreducibility Theorem (Theorem 1.7).

In the reverse direction, it is not true that if P1(n), . . . , Ps(n) are coprime at one integer

point n (or even at infinitely many) then the polynomials P1(x), . . . , Ps(x) are coprime.

However we show that the coprimality of P1(x), . . . , Ps(x) does hold if “sufficiently many”

n, in a density sense, can be found such that P1(n), . . . , Ps(n) are coprime (Theorem 1.9).
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The Hilbertian specialization property has always been a central topic in Field Arithmetic.

Through his work, Moshe Jarden has constantly promoted both the area and this subtopic.

The celebrated “Fried-Jarden book”, the Field Arithmetic reference, has been quite influ-

ential to both authors. With this paper, we are happy to contribute to the Israel Journal

of Mathematics special volume dedicated to Moshe Jarden and to offer him as a final

application a version “over the ring” of Hilbert’s irreducibility theorem.

1. Presentation

Throughout the paper, we adhere to the following notation. Given s > 2 nonzero poly-

nomials P1(x), . . . , Ps(x) in Z[x] (where x = (x1, . . . , xr) with r > 1), we say that they

are coprime (over the field Q) if no polynomial D(x) ∈ Q[x] with degD > 0 divides each

of P1(x), . . . , Ps(x). In the definition of dn = gcd(P1(n), . . . , Ps(n)) (n ∈ Zr), we include

the case where P1(n) = . . . = Ps(n) = 0 by defining gcd(0, . . . , 0) = 0. Finally we set

D =
{

dn | n ∈ Zr
}

.

1.1. The stability result.

Theorem 1.1. If P1(x), . . . , Ps(x) ∈ Z[x] are s > 2 nonzero coprime polynomials, then

the set D =
{

dn | n ∈ Zr
}

is stable under gcd and lcm.

That is: if d, d′ ∈ D then gcd(d, d′) ∈ D and lcm(d, d′) ∈ D. This is a generalization of the

one variable case (r = 1) done with S. Najib [2].

Example 1.2. Let P (x, y) = x2−y3, Q(x, y) = x(y+2)+1. Let dm,n = gcd(P (m,n), Q(m,n))

and D = {dm,n}m,n∈Z. For instance P (5, 1) = 24, Q(5, 1) = 16, hence d5,1 = gcd(24, 16) =

8. For (m,n) = (1,−3), dm,n = 28. The gcd of 8 and 28 is 4, and 4 is an element of D:

d5,5 = 4. Experimentation yields an infinite set:

D = {1, 2, 4, 7, 8, 14, 16, 23, 28, 29, 32, 37, 41, 46, 47, 49,
53, 56, 58, 59, 61, 64, 67, 74, 79, 82, 83, 89, 92, 94, 97, 98, . . .}

1.2. Consequences. The following two corollaries are quick consequences of Theorem 1.1.

The first one is what we refer to as Schinzel’s result in our introduction.

Corollary 1.3. Let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 nonzero coprime polynomials. Sup-

pose that there is no prime number p that divides Pi(n) for each i = 1, . . . , s and every

n ∈ Zr. Then there exists n0 ∈ Zr such that P1(n0), . . . , Ps(n0) are coprime integers.

Moreover, the set of such n0 will be shown to be Zariski-dense in Zr (Corollary 4.2), and

even of positive density (as discussed in §1.3 below and shown in §6).

Proof of Corollary 1.3 assuming Theorem 1.1. The set D ⊂ N is not necessarily finite (for

r > 2). Let {dij}j∈N be an enumeration of D⋆ = D\{0} and set δj = gcd(di0 , . . . , dij ). The

sequence (δj)j∈N is a decreasing sequence of positive integers, hence is ultimately constant

equal to some value d⋆ ∈ N, and d⋆ = gcd(D⋆) = min(D⋆).

By Theorem 1.1, D is stable by gcd; so is D⋆. Using gcd(a, b, c) = gcd(gcd(a, b), c), we

have δj ∈ D⋆, for every j ∈ N. It follows that d⋆ ∈ D⋆. The no fixed divisor assumption

yields d⋆ = 1. Hence 1 ∈ D⋆, thus giving the conclusion. �

Corollary 1.4. Let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 nonzero polynomials with no common

zero in Cr. Then D is a finite subset of Z stable under gcd and lcm. In particular, the

smallest positive element d⋆ of D is a common divisor of all elements of D and the largest

positive element µ⋆ of D is a common multiple of all elements of D.
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Proof. Hilbert’s Nullstellensatz provides polynomials A1(x), . . . , As(x) ∈ Q[x] such that
∑s

i=1Ai(x)Pi(x) = 1. Clearing the denominators yields polynomials B1(x), . . . , Bs(x) ∈
Z[x] and ∆ ∈ Z, ∆ 6= 0, such that

∑s
i=1Bi(x)Pi(x) = ∆. It readily follows that every

element dn ∈ D divides ∆. Hence D is finite. The rest is given by Theorem 1.1. �

1.3. Ekedahl–Poonen formula. Given s > 2 nonzero coprime polynomials P1(x), . . . , Ps(x) ∈
Z[x] as in Theorem 1.1, this formula provides another refinement of Corollary 1.3: it com-

putes the density of integer points where the values are coprime. Specifically let

R =
{

n ∈ Zr | P1(n), . . . , Ps(n) are coprime
}

.

The density µ(S) of a subset S of points with non-negative integer coordinates is defined

as follows. For B > 0, set B = J0, B − 1Kr, where J0, B− 1K is the set of integers from 0 to

B − 1. Then

µ(S) = lim
B→+∞

#(S ∩ B)

#B
.

The sets we consider are subsets of Zr and our results are about their density within the

r-dimensional quadrant [0,+∞[r. For simplicity of notation, we extend the definition of

µ to subsets S ⊂ Zr by setting: µ(S) = µ(S ∩ ([0,+∞[r)). Remark 1.6 explains that, in

addition to giving the density of R, Theorem 1.5 shows that R is equidistributed among

all r-dimensional quadrants.

Denote the set of prime numbers by P.

Theorem 1.5 (Ekedahl–Poonen density formula). Let x = (x1, . . . , xr) (r > 1). Let

P1(x), . . . , Ps(x) ∈ Z[x] (s > 2) be nonzero coprime polynomials. We have:

µ(R) =
∏

p∈P

(

1− cp
pr

)

where cp = #
{

n ∈ (Z/pZ)r | P1(n) = 0 (mod p), . . . , Ps(n) = 0 (mod p)
}

.

If we assume, as in Corollary 1.3, that there is no prime p dividing all values P1(n), . . . , Ps(n)

(n ∈ Zr), we obtain that R is of positive density: all terms in the product from Theorem

1.5 are positive, and the product is convergent if r > 2 and finite if r = 1 (as shown in

Section 2.3).

Remark 1.6. It follows from the formula for µ(R) that the density of R would be the

same if computed w.r.t to any other r-dimensional quadrant, instead of [0,+∞[r: indeed

the number cp of solutions of P1(n) = · · · = Ps(n) = 0 (mod p) in a box of width p is

independent of the choice of the box. This also shows that for the density defined by

µ̃(R) = limB→+∞
#(R∩B)

#B with this time B = J−B,BKr, then µ̃(R) = µ(R).

We provide a proof of the Ekedahl–Poonen formula in Section 6. It follows Poonen’s proof

with some adjustments. In particular we consider the general case s > 2 (and not just

s = 2). We also consider in Section 6.7 the more general situation that several families

of coprime polynomials {P1i(x)}i, {P2i(x)}i,. . . , {Pℓi(x)}i are given and one looks for

the density of the set of points n ∈ Zr such that, for each j = 1, . . . , ℓ, the integers

Pj1(n), Pj2(n), . . . are coprime (Proposition 6.3). This generalization will be used to prove

the case of several polynomials in the following result.
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1.4. A version over the ring of Hilbert’s Irreducibility Theorem.

Theorem 1.7. Let y = (y1, . . . , yn) be n > 1 new variables. Let P1(x, y), . . . , Pℓ(x, y) be

ℓ > 1 polynomials, irreducible in Z[x, y], of degree > 1 in y. Assume there is no prime p

such that
∏ℓ

j=1 Pj(n, y) ≡ 0 (mod p) for every n ∈ Zr. Then the set of all n ∈ Zk such that

P1(n, y), . . . , Pℓ(n, y) are irreducible in Z[y] is Zariski-dense, and even of positive µ̃-density.

Here, for “many” n ∈ Zr, the specialized polynomials P1(n, y), . . . , Pℓ(n, y) are irreducible

in Z[y], and not only in Q[y] as Hilbert’s Irreducibility Theorem would conclude: we have

the additional conclusion that each polynomial Pj(n, y) is primitive, i.e., its coefficients are

coprime integers. The assumption on the product
∏ℓ

j=1 Pj is clearly necessary and non

void: for P (x, y) = (x2 − x)y + (x2 − x+ 2), we have P (n, y) ≡ 0 (mod 2) and so P (n, y)

is divisible by 2 in Z[y], for every n ∈ Z.

Theorem 1.7 compares to Theorem 1.6 from [1] (joint with Najib and König). The latter

considers more general rings (UFDs or Dedekind domains, with a product formula), but

does not have the density conclusion provided here in the special case of the ring of integers.

The density approach also allows a quick proof of Theorem 1.7 assuming Theorem 1.5. The

argument below is for ℓ = 1; a reduction to this case is explained in Section 6.7.

Proof. Set P = P1 and let HP be the subset of Zr of all n such that P (n, y) is irreducible

in Q[y]. From Theorem 1 of [11, §13] (a result of S.D. Cohen), HP is of density µ̃(HP) = 1

(with µ̃ the density from Remark 1.6). Denote the coefficients of P , viewed as a poly-

nomial in y, by P1(x), . . . , Ps(x) and consider the set R from Section 1.3 of all n ∈ Zr

such that P1(n), . . . , Ps(n) are coprime. The assumption of Theorem 1.7 corresponds to

P1(x), . . . , Ps(x) having no fixed divisor. From Theorem 1.5 and Remark 1.6, we have

µ̃(R) > 0. It follows that H = HP ∩ R is of positive µ̃-density, thus proving the result

since for every n ∈ H, the polynomial P (n, y) is irreducible in Z[y]. �

1.5. A criterion for coprimality. In our introduction, we raised this reverse question:

to what extent existence of coprime values forces the coprimality of the polynomials? For

one variable polynomials we have this coprimality criterion involving the gcd in Z of some

values. Define the normalized height of a degree d polynomial P (x) = adx
d + · · · + a0 by

H(P ) = maxi=0,...,d−1

∣

∣

∣

ai
ad

∣

∣

∣
.

Proposition 1.8 ([2, Proposition 5.1]). Let P1, . . . , Ps ∈ Z[x] be s > 2 nonzero polynomi-

als and H the minimum of the normalized heights H(P1), . . . ,H(Ps). Then P1, . . . , Ps are

coprime if and only if there exists n > 2H + 3 such that gcd(P1(n), . . . , Ps(n)) 6
√
n.

In particular if P1(n), . . . , Ps(n) are coprime (as integers) for some sufficiently large n

then P1(x), . . . , Ps(x) are coprime (as polynomials). We wish to generalize this result to

polynomials in several variables. But the following example proves that evaluation at one

point, however big it is, may not give information on the coprimality of the polynomials:

with P (x, y) = (x− y)x and Q(x, y) = (x− y)y, we have gcd(P (n+1, n), Q(n+1, n)) = 1,

and so infinitely many points (n + 1, n) where the gcd is small, despite the polynomials

not being coprime.

The following result however ensures that if the gcd dn is small for “sufficiently many” n,

in a stronger density sense, then the polynomials are coprime.
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Theorem 1.9. Let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 nonzero polynomials in r variables.

Let ℓ = max(degP1, . . . ,degPs) and S be a nonempty finite set of Z. Let k > 0. If

πk :=
#
{

n ∈ Sr | dn 6 k
}

#Sr
>

(2k + 1)ℓ

#S

then P1(x), . . . , Ps(x) are coprime polynomials.

For k = 1, we have π1 :=
#{n∈Sr|dn61}

#Sr . Theorem 1.9 states that if π1 > 3ℓ
#S

then

P1(x), . . . , Ps(x) are coprime polynomials; and clearly this also implies that P1(x), . . . , Ps(x)

have no fixed prime divisor. This criterion is of interest because of the Ekedahl–Poonen

density formula. If polynomials P1(x), . . . , Ps(x) are coprime and have no fixed prime di-

visor, then π1 must be positive for sufficiently large S, and so up to taking S large enough,

the criterion will indeed reach the coprimality conclusion.

Example 1.10. Let P (x, y), Q(x, y) ∈ Z[x, y] be two nonzero polynomials of degree 6 ℓ :=

10. Let S = {1, 2, . . . , 100} with #S = 100. If for more than 30% of (m,n) ∈ S2, we

have dm,n = 1 (i.e., P (m,n) and Q(m,n) coprime) or dm,n = 0 (i.e., P (m,n) = Q(m,n) =

0), then we have π1 > 30
100 , and so, from Theorem 1.9, P (x, y) and Q(x, y) are coprime

polynomials.

Proof of Theorem 1.9. It relies on the Zippel–Schwartz lemma which is usually stated as

a probability result, but in fact is an enumerative result.

Zippel–Schwartz lemma. Let P (x1, . . . , xr) be a nonzero polynomial of degree ℓ over a

field K. Let S be a nonempty finite set of K. Then

# {(x1, . . . , xr) ∈ Sr | P (x1, . . . , xr) = 0}
#Sr

6
ℓ

#S
.

Let D(x) = gcd(P1(x), . . . , Ps(x)). Then degD 6 ℓ. Note further that D(n) divides

dn = gcd(P1(n), . . . , Ps(n)), so that |D(n)| 6 dn. Now assume, by contradiction, that D

is a non constant polynomial. We use the Zippel–Schwartz lemma to bound the number

of solutions to the equations D(n) = j. Specifically we have:

πk =
#
{

n ∈ Sr | dn 6 k
}

#Sr
6

# {n ∈ Sr | |D(n)| 6 k}
#Sr

6

k
∑

j=−k

# {n ∈ Sr | D(n) = j}
#Sr

6 (2k + 1)
ℓ

#S
�

The paper is organized as follows. In Section 2, we focus on the case of polynomials

in one variable. In Section 3, we present a tool of frequent use in the paper about how

coprimality is preserved by specialization, in the vein of the Bertini–Noether and Ostrowski

theorems for irreducibility (Proposition 3.1). Section 4 is devoted to a technical lemma,

used in Section 5 for the proof of Theorem 1.1. We end in Section 6 with a proof of the

Ekedahl–Poonen formula in the case of several polynomials.

2. The one variable case

The case of one variable polynomials plays a central role: first, some of the general results

can be interestingly improved; secondly, most results in several variables will follow by

reduction from the one variable case.
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2.1. Stability by gcd and lcm.

Theorem 2.1 ([2, Prop. 3.2 and 3.3]). Let P1(x), . . . , Ps(x) ∈ Z[x] be nonzero coprime

polynomials. Set dn = gcd(P1(n), . . . , Ps(n)) (n ∈ Z). Then the set D =
{

dn | n ∈ Z
}

is

stable under gcd and lcm. Moreover there is a nonzero δ ∈ Z that is a common multiple to

all dn and such that the sequence (dn)n∈Z is periodic of period δ. Hence D is a finite set.

As P1(x), . . . , Ps(x) are coprime, note that it cannot happen that P1(n) = . . . = Ps(n) = 0.

The periodicity result is specific to the one variable case (see [2, §2.5]); δ can be taken to

be any nonzero element of the ideal 〈P1, . . . , Ps〉 ∩ Z ⊂ Z[x]. For two polynomials P (x)

and Q(x), δ can be chosen as the resultant of P and Q. More generally, as the polynomials

P1(x), . . . , Ps(x) are coprime in Q[x], one can write a Bézout identity:

A1(x)P1(x) + · · ·+As(x)Ps(x) = 1

for some A1(x), . . . , As(x) ∈ Q[x]. Then δ can be taken to be the right-hand side of the

identity obtained by clearing the denominators of the coefficients of the Ai(x): for some

B1(x), . . . , Bs(x) ∈ Z[x], we have B1(x)P1(x) + · · ·+Bs(x)Ps(x) = δ ∈ Z.

Example 2.2. Theorem 2.1 is false for non coprime polynomials. Let P (x) = 5(x2−1)(x−1)

and Q(x) = (x2−1)x2. Then D is an infinite set (because dn = gcd(P (n), Q(n)) > |n2−1|
tends to infinity as n → +∞). The set D is not stable by gcd: for instance d2 = 3 ∈ D and

d6 = 8 ∈ D, but 1 /∈ D (by contradiction, suppose that for some n ∈ Z we have dn = 1,

then |n2 − 1| = 1, so n = 0, but for n = 0, P (n) = 5, Q(n) = 0 and dn = 5). Neither D
is stable by lcm: 5 ∈ D, 8 ∈ D but 40 /∈ D (for |n| < 7 we have dn 6= 40 and for |n| > 7,

dn > |n2 − 1| > 40).

2.2. Proof of Theorem 2.1. Everything in Theorem 2.1 is proved in [2], except the

stability under lcm that was left to the reader (after the proof for the gcd was given). For

completeness we detail it here.

Let dn1
and dn2

be two elements of D and let m(n1, n2) be their lcm. The goal is to prove

that m(n1, n2) is an element of D. The integer m(n1, n2) can be factorized:

m(n1, n2) =
∏

i∈I

pαi

i

where, for each i ∈ I, pi is a prime divisor of δ (see Theorem 2.1) and αi ∈ N (maybe

αi = 0 for some i ∈ I).

Fix i ∈ I. As pαi

i divides m(n1, n2), then pαi

i divides dn1
or divides dn2

; say that pαi

i divides

dmi
with mi equals n1 or n2.

The Chinese Remainder Theorem provides an integer n, such that

n = mi (mod pαi+1
i ) for each i ∈ I.

By definition, pαi

i divides dn1
or dn2

, so pαi

i divides all integers P1(n1), . . . , Ps(n1), or divides

all integers P1(n2), . . . , Ps(n2), so that pαi

i divides all P1(mi), . . . , Ps(mi). As for each

j = 1, . . . , s, Pj(n) = Pj(mi) (mod pαi

i ), we obtain that pαi

i also divides P1(n), . . . , Ps(n).

Whence pαi

i divides dn for each i ∈ I.

On the other hand pαi+1
i does not divide dn1

nor dn2
. In particular pαi+1

i does not divide

dmi
. Hence there exists j0 ∈ {1, . . . , s} such that pαi+1

i does not divide Pj0(mi). As

Pj0(n) = Pj0(mi) (mod pαi+1
i ), then pαi+1

i does not divide Pj0(n). Hence pαi+1
i does not

divide dn.

We have proved that pαi

i is the greatest power of pi dividing dn, for every i ∈ I. As dn
divides δ, each prime factor of dn is one of the pi with i ∈ I. Conclude that m(n1, n2) = dn.
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2.3. Ekedahl–Poonen density formula in one variable. One main question is to

decide if dn = 1 for some value n ∈ Z. In Section 1.3, we discussed the Ekedahl–Poonen

density formula for any number r of variables. For r = 1, it is an exact formula.

Proposition 2.3. Let P1(x), . . . , Ps(x) ∈ Z[x] be nonzero coprime polynomials. Let δ ∈ Z

be a positive period of (dn)n∈Z. The number of n ∈ Z with 0 6 n < δ such that dn = 1 is

δ
∏

p|δ

(

1− cp
p

)

where cp is the number of n ∈ Z/pZ such that Pi(n) = 0 (mod p) for each i = 1, . . . , s.

Note that, in the one variable case, cp = 0 for all sufficiently large primes p. Namely

let δ be a nonzero element of the ideal 〈P1, . . . , Ps〉 ∩ Z ⊂ Z[x]. Thus δ is of the form

δ = B1(x)P1(x) + · · · + Bs(x)Ps(x) for some B1, . . . , Bs ∈ Z[x]. Clearly, if p does not

divide δ, then p does not divide gcd(P1(n), . . . , Ps(n)) for any n ∈ Z, hence cp = 0.

The proof of Proposition 2.3 assuming Theorem 1.5 easily follows. For r = 1, the density

formula from Theorem 1.5 is a finite product: µ(R) =
∏

p|δ

(

1− cp
p

)

. As the sequence

(dn)n∈Z is periodic of period δ (Theorem 2.1), the claimed exact formula follows, for δ

equal to the specific element of Z introduced above, or equal to any positive period.

Example 2.4. For two polynomials we recover a formula of [5]: If P (x), Q(x) ∈ Z[x] are

two monic coprime polynomials with a square-free resultant R, then

# {n ∈ J0, R− 1K | dn = 1} =
∏

p|R

(p− 1).

In fact, for two polynomials, the integer δ can be chosen to be R. And if R is square-free,

then cp = 1 for all p|R (see [5, proof of Theorem 6]).

3. A Bertini–Noether–Ostrowski property for coprimality

Proposition 3.1 below is of frequent use in this paper. It explains how coprimality of

polynomials is preserved by specialization. It is obtained in Section 3.3 as a special case

of Proposition 3.2, which is an analog for coprimality of the Bertini–Noether theorem for

irreducibility of polynomials (e.g. [6, Prop.9.4.3]). This more general result is stated and

proved in Section 3.2. Section 3.4 shows another standard special case concerned with

reduction modulo p (Corollary 3.4), which will be used later in the proof of Corollary 6.1.

3.1. Specialization and coprimality.

Proposition 3.1. Let k be an infinite field and P1(a, x), . . . , Ps(a, x) ∈ k[a, x] be polyno-

mials in the variables a = (a1, . . . , am) and x = (x1, . . . , xr) (with s > 2, m > 1, r > 1).

The following conditions are equivalent:

(i) The gcd of P1(a, x), . . . , Ps(a, x) ∈ k[a, x] is in k[a].

(ii) The polynomials P1(a, x), . . . , Ps(a, x) ∈ k[a, x] are coprime in k(a)[x].

(iii) There exists a proper Zariski-closed subset Z of km such that for all a⋆ ∈ km \ Z,

the polynomials P1(a
⋆, x), . . . , Ps(a

⋆, x) are coprime in k[x].

(iv) There exists a Zariski-dense subset Y of km such that for all a⋆ ∈ Y , the polyno-

mials P1(a
⋆, x), . . . , Ps(a

⋆, x) are coprime in k[x].



8 ARNAUD BODIN AND PIERRE DÈBES

3.2. Coprimality and reduction. Given an integral domain Z and an ideal p ⊂ Z, we

denote by zp the coset of an element z ∈ Z modulo p; we use the same notation for the

induced reduction morphisms, e.g. on polynomial rings over Z. If p ⊂ Z is a prime ideal,

we write kp for the fraction field of the integral domain Z/p.

Proposition 3.2. Let Z be a Unique Factorization Domain (UFD) with fraction field Q,

let x = (x1, . . . , xr) be r > 1 variables and let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 nonzero

polynomials. Suppose also given a Zariski-dense subset P ⊂ SpecZ 1. Then the following

five conditions are equivalent:

(i) The gcd in Z[x] of P1(x), . . . , Ps(x) is in Z.

(ii) P1(x), . . . , Ps(x) are coprime in Q[x].

(iii) There is a nonzero element R0 ∈ Z with this property: for every prime ideal p ⊂ Z

such that R
p

0 6= 0, the polynomials P1
p
(x), . . . , Ps

p
(x) are coprime in kp[x].

(iv) For every nonzero element R ∈ Z, there exists a prime ideal p ∈ P such that R
p 6= 0

and the polynomials P1
p
(x), . . . , Ps

p
(x) are coprime in kp[x].

(v) For every nonzero element R ∈ Z, there exists a maximal ideal p ⊂ Z such that

R
p 6= 0 and the polynomials P1

p
(x), . . . , Ps

p
(x) are coprime in kp[x].

Proof of Proposition 3.2. (ii) =⇒ (i). Assume on the contrary that the gcd, say D(x) ∈
Z[x], of P1(x), . . . , Ps(x) is not in Z. Then D(x) is of degree > 1 (so not a unit of Q[x])

and is a common divisor of P1(x), . . . , Ps(x) in Q[x]. This contradicts (ii).

(i) =⇒ (ii). Assume on the contrary that P1(x), . . . , Ps(x) are not coprime in Q[x], i.e.,

a nonconstant polynomial D(x) ∈ Q[x] divides all Pi(x) in Q[x]. We may assume that

D is in Z[x], and even, using that Z[x] is a UFD, that D is irreducible in Z[x]. Write

Pi(x) = D(x)P ′
i (x) with P ′

i ∈ Q[x], i = 1, . . . , s. Clearing the denominators, one obtains

polynomial equalities in Z[x]: qiPi(x) = D(x)P̃ ′
i (x), with P̃ ′

i ∈ Z[x] and qi ∈ Z, qi 6= 0,

i = 1, . . . , s. It follows that qi divides P̃ ′
i in Z[x], i = 1, . . . , s, and so that D is a common

divisor in Z[x] of all the Pi(x). This contradicts (i).

Remark 3.3. (a) The equivalence (i) ⇔ (ii) has this close variant:

P1(x), . . . , Ps(x) are coprime polynomials in Z[x] if and only if the equivalent conditions

(i), (ii) hold and the coefficients of P1(x), . . . , Ps(x) are coprime in Z.

Indeed, if P1(x), . . . , Ps(x) are coprime in Z[x], they are coprime in Q[x] (by (i) ⇒ (ii)),

and obviously, the coefficients of P1(x), . . . , Ps(x) must be coprime in Z. Conversely, if

P1(x), . . . , Ps(x) are coprime in Q[x] and their coefficients are coprime in Z, then their gcd

in Z[x] is in Z (by (ii) ⇒ (i)), so must necessarily be 1.

(iii) =⇒ (iv). For a given nonzero element R ∈ Z, let p ∈ P be a prime ideal such that

RR0
p 6= 0, where R0 ∈ Z is the nonzero element given by (iii); such a p exists as P is

assumed to be Zariski-dense. Then R
p 6= 0 and R

p

0 6= 0, and by (iii), the latter gives that

P1
p
(x), . . . , Ps

p
(x) are coprime in kp[x].

(iv) =⇒ (i). Assume that the gcd, say D(x) ∈ Z[x], of P1(x), . . . , Ps(x) is a polynomial

of degree > 1. Let R ∈ Z be a nonzero coefficient of a monomial of degree > 1 of D(x).

1The subset P ⊂ SpecZ only appears in condition (iv) below. The assumption that P is Zariski-dense
means that for every nonzero element R ∈ Z, there is a prime ideal p ∈ P such that R

p

6= 0. This is clearly
necessary for (iv) to hold. In fact (iv) reformulates as saying that, with C ⊂ SpecZ the set of primes p

such that P1

p

(x), . . . , Ps
p

(x) are coprime in kp[x], the set C ∩ P is Zariski-dense in SpecZ. In the same
vein, condition (iii) means that C contains a nonempty Zariski-open subset of SpecZ.
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Then for every prime ideal p ∈ P such that R
p 6= 0, the reduced polynomial D

p
(x) is of

degree > 1 and is a common divisor of P1
p
(x), . . . , Ps

p
(x) in kp[x]. This contradicts (iv).

(ii) =⇒ (iii). We proceed by induction on the number of variables r > 1.

1st case: r = 1, i.e. x is a single variable x. The assumption (ii) that the polynomials

P1(x), . . . , Ps(x) are coprime in the Principal Ideal Domain (PID) Q[x] provides a Bézout

identity, which after clearing the denominators, is of this form:

s
∑

i=1

Ai(x)Pi(x) = R0

with A1, . . . , As ∈ Z[x] and R0 ∈ Z,R0 6= 0.

Clearly then, for every prime ideal p ⊂ Z such that R
p

0 6= 0, the reduced polynomials

P1
p
(x), . . . , Ps

p
(x) satisfy a Bézout identity in the PID kp[x], hence are coprime in kp[x].

2nd case: r > 2. Let x = (x1, . . . , xr−1, xr) and assume that (ii) ⇒ (iii) is true for

polynomials in the r − 1 variables (x1, . . . , xr−1). We will apply the induction hypothesis

to the set of all coefficients Pi,j(x1, . . . , xr−1) of the polynomials Pi(x1, . . . , xr) viewed as

polynomials in xr.

The polynomials P1(x), . . . , Ps(x) are supposed to be coprime in Q[x1, . . . , xr]. Thus, by

the already proven implication (i) ⇒ (ii) (applied with Z being Q[x1, . . . , xr−1]), they

are coprime in Q(x1, . . . , xr−1)[xr], and their coefficients Pi,j(x1, . . . , xr−1) are coprime in

Q[x1, . . . , xr−1]. The former condition provides a Bézout identity, which after clearing the

denominators, is of this form:

s
∑

i=1

Ai(x)Pi(x) = ∆(x1, . . . , xr−1)

with A1, . . . , As ∈ Z[x] and ∆ ∈ Z[x1, . . . , xr−1], ∆ 6= 0. Let R1 ∈ Z be a nonzero

coefficient of a monomial of ∆. For every prime ideal p ⊂ I such that R
p

1 6= 0, the

polynomial ∆
p
(x) is nonzero in kp[x1, . . . , xr−1], and so, the polynomials P1

p
(x), . . . , Ps

p
(x)

are coprime in kp(x1, . . . , xr−1)[xr].

Furthermore, as the coefficients Pi,j(x1, . . . , xr−1) are coprime in Q[x1, . . . , xr−1], the in-

duction hypothesis provides a nonzero element R2 ∈ Z such that for every prime ideal p ⊂ I

such that R
p

2 6= 0, the polynomials Pi,j
p
(x1, . . . , xr−1) are coprime in kp[x1, . . . , xr−1].

Using the already proven implication (ii) ⇒ (i) (more exactly its variant from Remark

3.3), it follows that the element R0 = R1R2 satisfies the requested conclusion (iii).

Equivalence of (v) with all other conditions. This follows from the fact that (v) is the special

case of (iv) for which P is the set of all maximal ideals of Z. This subset P ⊂ SpecZ is

indeed Zariski-dense: as Z is an integral domain, the nilradical nil(Z) (consisting of all

nilpotent elements of Z) is {0}. But nil(Z) is classically the intersection of all maximal

ideals of Z. Thus if R ∈ Z, R 6= 0, there is a prime ideal p ∈ P such that R
p 6= 0 (which

is the definition of P being Zariski-dense in SpecZ). �

3.3. Proof of Proposition 3.1. Proposition 3.1 corresponds to the special case of Propo-

sition 3.2 for which Z = k[a] is a polynomial ring in m > 1 variables a = (a1, . . . , am) over

a field k. Equivalence (i) ⇔ (ii) from Proposition 3.2 exactly yields equivalence (i) ⇔ (ii)

from Proposition 3.1 in this special case; the field k need not be infinite here.
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Assume now that k is infinite and take for P the set of maximal ideals of the form 〈a−a⋆〉 =
〈a1−a⋆1, . . . , ar−a⋆r〉 with a⋆ ∈ km. With k infinite, the subset P = An(k) is indeed Zariski-

dense. Condition (iv) from Proposition 3.2 then yields condition (iv) from Proposition 3.1.

Finally note that condition (iii) from Proposition 3.2 implies condition (iii) from Proposi-

tion 3.1, which itself implies condition (iv) from Proposition 3.2, and so all three conditions

are equivalent, thus ending the proof of Proposition 3.1.

3.4. The Ostrowski corollary. For Z = Z, Proposition 3.2 yields the following result,

which is the coprimality analog of the Ostrowski theorem for irreducibility.

Corollary 3.4. Let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 nonzero polynomials. The following

four conditions are equivalent.

(i) The gcd of the polynomials P1(x), . . . , Ps(x) is in Z.

(ii) The polynomials P1(x), . . . , Ps(x) ∈ Z[x] are coprime in Q[x].

(iii) For all but finitely many primes p ∈ Z, P1
p
(x), . . . , Ps

p
(x) are coprime in Z/pZ[x].

(iv) For infinitely many primes p ∈ Z, P1
p
(x), . . . , Ps

p
(x) are coprime in Z/pZ[x].

Example 3.5. How big should a prime number p be to guarantee that two polynomials

in Z[x] that are coprime in Q[x] remain coprime modulo p? In the one variable case, it

suffices that the prime p does not divide the resultant of the two polynomials (which can

be quite large). Here is an example in two variables. Let P (x, y) = x3y−3x3−2x+3y+2

and Q(x, y) = y(2x − 11). These polynomials are coprime in Z[x, y]. For p = 5, the gcd

of P and Q modulo 5 is x + 2. For p = 271, the gcd of P and Q modulo 271 is x + 130.

Experimentation shows that for other values of p, P and Q are coprime modulo p.

4. Further tools

We prove some more tools needed to establish the stability result in the next section.

Lemma 4.1. Let P1(x), . . . , Ps(x) ∈ Z[x] be nonzero coprime polynomials in r > 2 vari-

ables. Suppose that Pi(0) 6= 0 for at least one i ∈ {1, . . . , s}. Then the polynomials

P1(ta), . . . , Ps(ta) are coprime in Q[a, t]. Consequently there is a proper Zariski-closed

subset Z ⊂ Zr such that, for all a⋆ ∈ Zr \ Z, the polynomials P1(ta
⋆), . . . , Ps(ta

⋆) are

coprime in Q[t].

This is false if P1, . . . , Ps vanish simultaneously at 0. For instance, with P (x, y) = x and

Q(x, y) = y, then P (at, bt) = at and Q(at, bt) = bt are not coprime, for any (a, b) ∈ Z2.

Corollary 4.2. Let P1(x), . . . , Ps(x) be s > 2 nonzero coprime polynomials. If dn
0
= 1

for some n0 ∈ Zr, then dn = 1 for every n in a Zariski-dense subset of Zr.

Proof of Corollary 4.2. With no loss of generality, assume that n0 = 0. By Lemma 4.1, for

all directions a⋆ in a Zariski-open set of Qr, the one variable polynomials P1(ta
⋆), . . . , Ps(ta

⋆)

are coprime. From Theorem 2.1, for each of these a⋆, we have gcdi Pi(ka
⋆) = gcdi Pi(0) = 1

for all k in some nonzero ideal δZ ⊂ Z. The set of all such ka⋆ ∈ Zr, with varying k and

a⋆, form a Zariski-dense subset of Zr. �

Proof of Lemma 4.1. We prove the first part; the second part easily follows by combining

it with Proposition 3.1. On the contrary, suppose that Pi(ta) = D(a, t) · P ′
i (a, t), (i =

1, . . . , s) with degD > 0. If degt(D) = 0, then setting t = 1 leads to a factorization

Pi(a) = D(a, 1) · P ′
i (a, 1) where degD(a, 1) > 0; changing the variable a to x proves that

the polynomials Pi(x) are not coprime.
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Suppose next that degtD(a, t) > 0. One may assume that degtD(a⋆1, a2, . . . , ar, t) > 0

for some a⋆1 ∈ k. For simplicity take a⋆1 = 1 (the general case only introduces some

technicalities). Set a′ = (1, a2, . . . , ar) and write the decomposition in Q[a′, t]:

Pi(ta
′) = D(a′, t) · P ′

i (a
′, t) (i = 1, . . . , s)

with degD(a′, t) > 0.

Set x = ta′, that is, xi = ait (and x1 = t); hence ai = xi/x1 (and a1 = 1), i = 1, . . . , r.

Using the change of variables (a′, t) 7→ x, we obtain:

Pi(x) = D

(

x

x1
, x1

)

· P ′
i

(

x

x1
, x1

)

(i = 1, . . . , s).

By hypothesis we have Pi0(0) 6= 0 for some i0 ∈ {1, . . . , s}. This is equivalent to t 6 |Pi0(ta
′)

and implies t 6 |D(a′, t) in Q[a′, t].

Write

D(a′, t) =
∑

i,j

αi,ja
′itj in Q[a2, . . . , ar, t].

As a1 = 1, the multi-index i stands for (0, i2, . . . , ir) and |i| = i2 + · · ·+ ir. Then

D

(

x

x1
, x1

)

=
∑

i,j

αi,j

(

xi

x
|i|
1

)

xj1 =
∑

i,j

αi,jx
ix

j−|i|
1

=
1

xd1

∑

i,j

αi,jx
ix

j−|i|+d
1 =

1

xd1
D̃(x)

where d ∈ Z, and D̃(x) ∈ Q[x] is not divisible by x1. A similar computation yields

P ′
i

(

x
x1
, x1

)

= 1

x
di
1

P̃ ′
i (x) with di ∈ Z, and P̃ ′

i (x) ∈ Q[x] not divisible by x1. This gives:

xd+di
1 Pi(x) = D̃(x)P̃ ′

i (x) (i = 1, . . . , s).

By definition D̃(x) is not a monomial in x1. Moreover D̃(x) is a nonconstant polynomial.

Assume on the contrary that D̃(x) is constant. Then αi,j = 0 for (i, j) 6= (0, d). This

implies D(a′, t) = α0,dt
d, in contradiction with t 6 |D(a′, t) and degD(a′, t) > 0. Conclusion:

D̃(x) is a non trivial factor of each of the Pi(x), hence P1(x), . . . , Ps(x) are not coprime. �

We end by a generalization of Lemma 4.1. Let P1(x), . . . , Ps(x) ∈ Z[x] be a family of

coprime polynomials in two or more variables (r > 2).

Lemma 4.3. Let P1(x), . . . , Ps(x) ∈ Z[x] be nonzero coprime polynomials in r > 2 vari-

ables. Let n ∈ Zr such that Pi(n) 6= 0 for at least one i ∈ {1, . . . , s}. Then the polynomials

P1(un+ta), . . . , Ps(un+ta) are coprime in Q[a, u, t]. Consequently there is a proper Zariski-

closed set Z ⊂ Zr such that for all a⋆ ∈ Zr\Z, the polynomials P1(un+ta⋆), . . . , Ps(un+ta⋆)

are coprime in Q[u, t].

Proof. For every u⋆ ∈ Q, the polynomials P̃i(x) := Pi(u
⋆n + x), i = 1, . . . , s, are coprime

in Q[x] (they are deduced from the Pi(x) by a mere translation on the variables). As

Pi(n) 6= 0 for some i, then P̃i(0) = Pi(u
⋆n) 6= 0 for all but finitely many u⋆ ∈ Q. By

Lemma 4.1, for such u⋆, the polynomials P̃1(ta), . . . , P̃s(ta) are coprime in Q[a, t], hence

so are the polynomials P1(u
⋆n+ ta), . . . , Ps(u

⋆n+ ta). It follows from Proposition 3.1 that

the polynomials P1(un+ ta), . . . , Ps(un + ta) are coprime in Q(u)[a, t].



12 ARNAUD BODIN AND PIERRE DÈBES

Assume next that their gcd in Q[u, a, t] is a nonconstant polynomial D(u) ∈ Q[u]. Thus we

have Pi(un+ ta) = D(u)P ′
i (a, u, t) for some P ′

i ∈ Q[u, a, t], i = 1, . . . , s. Choose t⋆ = 1 and

a⋆(u) = −un+ c, where c is a constant such that Pi(c) 6= 0, for at least one i ∈ {1, . . . , s}.
For this choice, we have Pi(un + t⋆a⋆(u)) = Pi(c) = D(u)P ′

i (a
⋆(u), u, t⋆). As Pi(c) is a

nonzero constant, D(u) is a constant polynomial.

By Remark 3.3(a), the polynomials P1(un+ ta), . . . , Ps(un+ ta) are coprime in Q[u][a, t].

This proves the first assertion of Lemma 4.3; the second one follows by combining it with

Proposition 3.1. �

5. Proof of the stability

This section is devoted to the proof of Theorem 1.1.

Idea of the proof. Consider two coprime polynomials P (x, y) and Q(x, y) and the special

case of two pairs (m,n1) and (m,n2) (with the same x-coordinate). We will find n3 such

that gcd(dm,n1
, dm,n2

) = dm,n3
. As P (x, y) and Q(x, y) are coprime and by Bézout, there

exist A(x), B(x), R(x) ∈ Z[x] such that:

A(x)P (x, y) +B(x)Q(x, y) = R(x).

For all m ∈ Z but finitely many, we have R(m) 6= 0. For such m, P (m, y) and Q(m, y) are

coprime (in Q[y]). By the gcd stability result in one variable (Theorem 2.1), there exists

n3 such that gcd(dm,n1
, dm,n2

) = dm,n3
.

The proof extends this idea: we need (a) to deal with the case where P (m, y) and Q(m, y)

are no longer coprime; (b) also consider pairs (m1, n1) and (m2, n2) with m1 6= m2.

Step 1. Let m ∈ Zr and n ∈ Zr. For simplicity, and with no loss of generality, we assume

m = 0. We may also assume that Pi(0) 6= 0 for at least one i ∈ {1, . . . , s}: otherwise d0 = 0

so that we can directly conclude gcd(d0, dn) = dn. We may also assume that Pi(n) 6= 0

for at least one i ∈ {1, . . . , s}. We reduce from several to one variables by restricting the

polynomials on the line passing through 0 and n. That is, we set:

P 0
i (t) = Pi(tn), i = 1, . . . , s.

Then P 0
i (0) = Pi(0) and P 0

i (1) = Pi(n). However the polynomials P 0
1 (t), . . . , P

0
s (t) are not

necessarily coprime. The following picture helps visualize the next steps of the proof.

Picture of the proof.
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0

n

Step 1. P 0
i (t)

maybe not coprime

and not stable by gcd

Step 3. P 3
i (u)

coprime and stable by gcd

Step 2. P 1
i (t)

coprime

Step 2. P 2
i (t)

coprime

same gcd

same gcd

a⋆

Step 2. By Lemma 4.1, for all a⋆ ∈ Zr but in a proper Zariski-closed set, the polynomials

P1(ta
⋆), . . . , Ps(ta

⋆) are coprime in Q[t]. Moreover, again by Lemma 4.1 centered at n, for

all a⋆ ∈ Zr but in a proper Zariski-closed set, the polynomials P1(n+ ta⋆), . . . , Ps(n+ ta⋆)

are coprime in Q[t]. Finally by Lemma 4.3, for all a⋆ ∈ Zr but in a proper Zariski-closed

set, the polynomials P1(un+ ta⋆), . . . , Ps(un+ ta⋆) are coprime in Q[u, t].

Pick a⋆ ∈ Zr such that the following conditions are satisfied:

– P 1
i (t) := Pi(ta

⋆), i = 1, . . . , s, are coprime in Q[t],

– P 2
i (t) := Pi(n + ta⋆), i = 1, . . . , s, are coprime in Q[t],

– Pi(un+ ta⋆), i = 1, . . . , s, are coprime in Q[u, t].

In the computations below, all gcds are computed with respect to the indices i = 1, . . . , s.

By the one variable case for P 1
1 (t), . . . , P

1
s (t), the corresponding sequence of gcd is periodic,

for some (nonzero) period δ1 ∈ Z (Theorem 2.1). This yields that for any k ∈ Z, we have

gcdP 1
i (0) = gcdP 1

i (0 + kδ1), and so

d0 = gcdPi(0) = gcdPi(kδ1a
⋆).

We do the same for P 2
i (t). For some period δ2 ∈ Z, for any k ∈ Z, we have gcdP 2

i (0) =

gcdP 2
i (0 + kδ2), and so

dn = gcdPi(n) = gcdPi(n+ kδ2a
⋆).

We also have P1(un+ ta⋆), . . . , Ps(un+ ta⋆) coprime in Q[u, t]. Thus, by Proposition 3.1,

for all but finitely many t⋆ ∈ Q, the polynomials P1(un + t⋆a⋆), . . . , Ps(un + t⋆a⋆) are

coprime in Q[u].

Step 3. Set t⋆ = kδ1δ2 with k ∈ Z and P 3
i (u) := Pi(un + t⋆a⋆), i = 1, . . . , s. Pick k large

enough to guarantee that P 3
1 (u), . . . , P

3
s (u) are coprime in Q[u] (Proposition 3.1).

Note that

gcdP 3
i (0) = gcdPi(t

⋆a⋆) = gcdPi(kδ1δ2a
⋆) = gcdPi(0) = d0

and

gcdP 3
i (1) = gcdPi(n+ t⋆a⋆) = gcdPi(n+ kδ1δ2a

⋆) = gcdPi(n) = dn.
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Now by the gcd stability (resp. lcm stability) assertion from Theorem 2.1, applied to the

one variable coprime polynomials P 3
1 (u), . . . , P

3
s (u), there exists ℓ ∈ Z such that

gcd
(

gcdP 3
i (0), gcd P

3
i (1)

)

= gcdP 3
i (ℓ)

(resp. lcm
(

gcdP 3
i (0), gcd P

3
i (1)

)

= gcdP 3
i (ℓ)). Setting m = ℓn+ t⋆a⋆, so P 3

i (ℓ) = Pi(m),

we obtain

gcd
(

d0, dn
)

= dm

(resp. lcm
(

d0, dn
)

= dm), which proves the stability of D by gcd (resp. lcm).

6. Proof of the Ekedahl–Poonen formula

This section is mainly devoted to the proof of the Ekedahl–Poonen formula as stated in

Theorem 1.5. While [9, Theorem 3.1] is valid over the rings Z and Fq[t], here we state

and prove Theorem 1.5 over Z only, which enables simplifications. Another simplification

is that our density is defined by squared boxes, while [9] allows rectangular ones. Another

difference (minor for the proof, but important for the applications) is that we allow any

s > 2 polynomials (instead of 2). Finally in Section 6.7, we generalize the formula to the

situation of several families of coprime polynomials (Proposition 6.3), and then use this

generalization to extend the proof of Theorem 1.7 given in Section 1.4 for one polynomial

to several polynomials.

6.1. Sets. As usual, fix s > 2 nonzero polynomials P1(x), . . . , Ps(x) ∈ Z[x]. In the follow-

ing, p is a prime number, and P the set of prime numbers.

For p ∈ P, consider the set:

Rp =
{

n ∈ Zr | p does not divide all P1(n), . . . , Ps(n)
}

.

Then, with R the set (introduced in Section 1.3) of all n ∈ Zr such that P1(n), . . . , Ps(n)

are coprime, we have:

R =
⋂

p∈P

Rp = {n ∈ Zr | gcd(P1(n), . . . , Ps(n)) = 1} .

We will approximate R by sets R6M defined by:

R6M =
⋂

p6M

Rp =
{

n ∈ Zr | for every p 6 M,p does not divide all P1(n), . . . , Ps(n)
}

.

We will also work with:

Qp = Zr \ Rp =
{

n ∈ Zr | p divides P1(n), . . . , Ps(n)
}

=
{

n ∈ Zr | p divides gcd
16i6s

Pi(n)
}

.

and

Q>M =
⋃

p>M

Qp =
{

n ∈ Zr | there exists p > M, p divides P1(n), . . . , Ps(n)
}

=
{

n ∈ Zr | there exists p > M such that p divides gcd
16i6s

Pi(n)
}

.

Here are the main steps of the proof:

– Compute the density of Qp (and Rp) in terms of cp.

– Prove that this density is in O( 1
p2
).

– Compute the density of R6M from Rp, using the Chinese Remainder Theorem.

– Prove that µ(R6M ) −−−−−→
M→+∞

µ(R).
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For r = 1, the last step is not necessary since, following notation of Section 2.3, for M > δ,

we have R6M = R.

6.2. Density of Qp and Rp. By definition, n ∈ Qp if and only if Pi(n) = 0 (mod p) for

each i = 1, . . . , s. Hence

(1) #(Qp ∩ J0, p− 1Kr) = cp

In fact, p divides Pi(n1, . . . , nr) if and only if p divides Pi(n1 + k1p, . . . , nr + krp) for any

kj ∈ Z. Hence Qp is invariant by any translation of vector (k1p, . . . , krp) (with kj ∈ Z).

Hence, as a function of B, the cardinality #(Qp ∩B) (with B = J0, B − 1Kr) is asymptotic

to cp

(

B
p

)r

as B → ∞ (this formula is exact if p divides B).

Then:

(2) µ(Qp) = lim
B→+∞

#(Qp ∩ B)

#B
=

cp
pr

As Rp = Zr \ Qp we also get:

(3) µ(Rp) = 1− cp
pr

6.3. Bound for Qp. We need to bound the number cp of solutions in (Z/pZ)r of the set

of equations Pi(n) = 0 (mod p) (i = 1, . . . , s). If r = 1, we explained in Section 1.3 that

cp = 0 for all suitably large primes p. For r > 2, one can bound cp using the Bézout

theorem over Z/pZ. For r = 2, one can use for instance [12, Theorem 4.1]. For r > 2, we

have this general version, by Lachaud–Rolland [8, Corollary 2.2]:

General Bézout theorem. Let r > 2. We have cp 6 ds · pm, where m is the dimension

of the zero-set of the polynomials P1(x), . . . , Ps(x), assumed to be of degree 6 d.

Corollary 6.1. For all sufficiently large p, we have cp 6 ds ·pr−2. Consequently, we obtain

µ(Qp) = O
(

1
p2

)

.

Proof of Corollary 6.1. The polynomials P1(x), . . . , Ps(x) are coprime in Z[x]. By Corol-

lary 3.4, they are coprime in Q[x] and the polynomials P1
p
(x), . . . , Ps

p
(x) (reduced modulo

p) are nonzero and coprime in Fp[x] for all suitably large primes p. It follows that they are

coprime in Fp[x] for the same primes p (this is explained for example in [3, §2.1]).

Fix such a prime p and consider the ideal I = 〈P1
p
, . . . , Ps

p〉 ⊂ Fp[x]. We estimate below

the dimension of the zero-set Z(I) ⊂ Fp
r

of I and then we will apply the general Bézout

theorem. Classically this dimension is also the Krull dimension dimFp[x]/I of the quotient

ring Fp[x]/I (e.g. [7, Proposition 1.7]).

By definition, dimFp[x]/I is the supremum of the heights of minimal prime ideals of Fp[x]

containing I . We may assume that degP1
p
> 1; otherwise cp = 0. Then P1

p
has at

least one irreducible factor ∆ ∈ Fp[x]. Furthermore the prime ideal 〈∆〉 ⊂ Fp[x] is not

maximal (by Nullstellensatz and r > 2), but is contained in a maximal ideal. We deduce

that height(〈∆〉) > 1, and, by [7, Theorem 1.8 A], that

dimFp[x]/I 6 dimFp[x]/〈P1
p〉 6 r − 1.

Assume that dimFp[x]/I = r − 1. Let p ⊂ Fp[x] be a minimal prime ideal containing I ;

thus dimFp[x]/p = r − 1, or, equivalently p is of height 1. By Krull’s Hauptidealsatz [7,

Theorem 1.11 A & Proposition 1.13], the variety Z(p) is a hypersurface Z(f), for some

irreducible polynomial f ∈ Fp[x]. But then it follows from 〈f〉 = p ⊃ I that f divides each

polynomial Pi
p

in Fp[x], i = 1, . . . , s, a contradiction. Conclude that dimFp[x]/I 6 r − 2.
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The first assertion of Corollary 6.1 then readily follows from the General Bézout theorem,

and the second one from this easy estimate:

µ(Qp) =
cp
pr

6
ds · pr−2

pr
=

ds

p2
= O

(

1

p2

)

.

�

6.4. The set R6M . Let M > 0, let {p1, . . . , pℓ} be the set of primes 6 M and N be the

product of these primes.

The Chinese Remainder Theorem gives an isomorphism from Z/NZ to Z/p1Z×· · ·×Z/pℓZ,

which we extend to the dimension r by

n ∈ (Z/NZ)r 7→ (n1, . . . , nℓ) ∈ (Z/p1Z)
r × · · · × (Z/pℓZ)

r,

where nj is n modulo pj. We have a 1-1 correspondence between the sets R6M and

Rp1 × · · · × Rpℓ . Namely:

n ∈ R6M ∩ J0, N − 1Kr

⇐⇒ ∀j ∈ {1, . . . , ℓ} ∃i ∈ {1, . . . , s} Pi(n) 6= 0 (mod pj)

⇐⇒ ∀j ∈ {1, . . . , ℓ} ∃i ∈ {1, . . . , s} Pi(nj) 6= 0 (mod pj)

⇐⇒ ∀j ∈ {1, . . . , ℓ} nj ∈ Rpj ∩ J0, pj − 1Kr.

Recall that Rp = Zr \ Qp. Thus, with (1), we obtain:

#(Rp ∩ J0, p− 1Kr) = pr −#(Qp ∩ J0, p− 1Kr) = pr − cp.

Whence:

#(R6M ∩ J0, N − 1Kr) =

ℓ
∏

j=1

(prj − cpj ).

This provides the density of R6M :

µ(R6M ) = lim
B→+∞

#(R6M ∩ B)

#B
= lim

B→+∞

(

B
N

)r∏ℓ
j=1(p

r
j − cpj)

Br
=

ℓ
∏

j=1

(

1−
cpj
prj

)

.

Whence:

(4) µ(R6M) =
∏

p6M

(

1− cp
pr

)

6.5. Limit of Q>M .

Lemma 6.2. We have:

(5) µ(Q>M ) −−−−−→
M→+∞

0

The proof (here, for several polynomials) is similar to [9, Lemma 5.1] (for two polynomials)

with some simplifications.

Proof. Fix M and B > M and consider the decomposition:

Q>M = Q>M,6B ∪ Q>B ,

where Q>M,6B =
⋃

M<p6B Qp and Q>B =
⋃

p>B Qp. We will prove that each term has a

relatively small cardinal compared to Br = #B, where B = J0, B − 1Kr.

Estimate of Q>M,6B.
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From Corollary 6.1, we have cp = #(Qp ∩ J0, p− 1Kr) 6 ds · pr−2, which gives #(Qp ∩B) 6

Cpr−2
(

B
p

)r

for some constant C (depending only on d and s). Thus we obtain:

(6)
#(Q>M ∩ B)

#B
6

∑

M<p6B

#(Qp ∩ B)

#B
6 C

∑

M<p6B

1

p2
6 C

∑

p>M

1

p2

The last term does not depend on B and tends to 0 as M → +∞.

Estimate of Q>B.

Preliminaries. Firstly, we may reduce to the case where each polynomial Pi is irreducible

in Z[x]. Indeed assume P1 = Q · R with Q,R ∈ Z[x]. If p|P1(n) then p|Q(n) or p|R(n).

Hence Q>B(QR,P2, . . . , Ps) ⊂ Q>B(Q,P2, . . . , Ps) ∪ Q>B(R,P2, . . . , Ps).

Secondly, we may also reduce to the case where one of the polynomials, say Ps, is a

polynomial in x1, . . . , xr−1 only. Namely, as P1, . . . , Ps are coprime, we have a Bézout

identity
∑s

i=1 Ai(x)Pi(x) = ∆(x1, . . . , xr−1) with Ai ∈ Z[x], i = 1, . . . , s and ∆ ∈
Z[x1, . . . , xr−1], ∆ 6= 0. If p|Pi(n) for i = 1, . . . , s then p|∆(n). Hence Q>B(P1, . . . , Ps) ⊂
Q>B(P1, . . . , Ps−1,∆) and P1, . . . , Ps−1,∆ are coprime polynomials (if some nonconstant

polynomial R divides P1, a polynomial where all the variables x1, . . . , xr occur, then

R = P1, up to some multiplicative constant, because P1 is irreducible, but then R cannot

divide ∆ in the variables x1, . . . , xr−1 only).

Thirdly, we may assume that the leading coefficient of Pi(x), i = 1, . . . , s − 1, seen as a

polynomial in xr, is not divisible by the last polynomial Ps(x1, . . . , xr−1). Indeed, write

Pi(x) = P 0
i (x1, . . . , xr−1)x

δi
r + · · · ∈ Z[x1, . . . , xr−1][xr]. If P 0

i = QiPs, then P ′
i = Pi −

QiPsx
δi
r is a polynomial with degxr

(P ′
i ) < degxr

(Pi). We proceed by induction on degxr
(Pi)

until Ps does not divide P 0
i (or degxr

(Pi) = 0). Note that the set Qp is preserved in this

process: p|Pi(n) and Ps(n) iff p divides (Pi − QiPsx
δi
r )(n) and Ps(n). It may then be

necessary to apply the first reduction to this new set of polynomials, to get irreducible

polynomials.

We prove below that

(7)
#(Q>B ∩ B)

#B
−−−−−→
B→+∞

0

Induction. The proof is by induction on the dimension r. For r = 1, a Bézout identity
∑s

i=1Ai(x)Pi(x) = ∆ (with Ai ∈ Z[x], ∆ ∈ Z, ∆ 6= 0) implies that if p|Pi(n) for every

i = 1, . . . , s, then p|∆ ∈ Z. Hence for B > ∆, Q>B = ∅.

For r > 1, we introduce the three following subsets S1, S2, S3 and work with the inclusion:

Q>B ∩ B ⊂ S1 ∪ S2 ∪ S3.

– S1 = {n ∈ B | Ps(n) = 0}. By the Zippel–Schwartz lemma, #S1/#B tends to 0 as

B → +∞.

– S2 = {n ∈ B | ∃p > B, p|P 0
1 (n), . . . , p|P 0

s−1(n), p|Ps(n)}. By induction, #S2/#B

tends to 0 as B → +∞.

– S3 = {n ∈ B | Ps(n) 6= 0,∃p > B, p|P1(n), . . . , p|Ps(n), p ∤ P 0
i0
(n) for some 1 6

i0 < s}. For all n ∈ B, Ps(n) = O(Bγ) with γ = deg(Ps). Fix (n1, . . . , nr−1) ∈
J0, B − 1Kr−1 and consider a r-tuple n = (n1, . . . , nr−1, nr) in the set S3. For any

sufficiently large B, there are at most γ possible primes p > B such that p divides

the nonzero integer Ps(n). Pick such a prime p and let i ∈ {1, . . . , s − 1} be an

index such that p ∤ P 0
i (n1, . . . , nr−1). Then write:

Pi(n1, . . . , nr−1, x) = P 0
i (n1, . . . , nr−1)x

δi + · · ·
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There are at most δi integers x = nr with 0 6 nr < p, hence a fortiori with 0 6

nr < B, such that p|Pi(n1, . . . , nr−1, nr). This shows that for each (n1, . . . , nr−1) ∈
J0, B− 1Kr−1, there are at most C ′ = (s− 1) ·γ · δ1 · · · δs−1 values of nr ∈ J0, B− 1K

such that (n1, . . . , nr−1, nr) ∈ S3. Hence #S3/#B 6 Br−1·C′

Br = C′

B
tends to 0 as

B → +∞.

Conclusion. As Q>M = Q>M,6B ∪Q>B , then by (6):

#Q>M

#B
6

#(Q>M,6B ∩ B)

#B
+

#(Q>B ∩ B)

#B
6 C

∑

p>M

1

p2
+

#(Q>B ∩ B)

#B
.

By (7), the last term, tends to 0 as B → +∞, and the first term tends to 0 as M → +∞.

It yields that µ(Q>M ) −−−−−→
M→+∞

0.

�

6.6. Limit of R6M . We have R ⊂ R6M . Note that R6M \ R ⊂ Q>M : in fact R6M \ R
is the set of n for which the primes p that divide all the Pi(n) verify p > M , such n are in

the union of the Qp, for p > M .

Consider the decomposition:

R6M = R∪ (R6M \ R) ⊂ R ∪Q>M .

It yields the inequalities:

µ(R) 6 µ(R6M ) 6 µ(R) + µ(Q>M ).

As, by (5), µ(Q>M ) −−−−−→
M→+∞

0, we obtain

(8) µ(R6M ) −−−−−→
M→+∞

µ(R)

As µ(R6M ) =
∏

p6M

(

1− cp
pr

)

by (4), then

µ(R) =
∏

p∈P

(

1− cp
pr

)

.

This infinite product is nonzero if no prime p divides all the values of P1(n), . . . , Ps(n) for

all n ∈ Zr, i.e., if cp 6= pr for all primes p.

6.7. Generalization to several families of polynomials. Consider ℓ > 1 families

Pj = {Pj1(x), . . . , Pjsj(x)} of nonzero coprime polynomials in Z[x], j = 1, . . . , ℓ. For

each j = 1, . . . , ℓ, consider the set

R(Pj) = {n ∈ Zr | gcd(Pj1(n), . . . , Pℓsℓ(n)) = 1} .

Our goal is to evaluate the set R =
⋂ℓ

j=1R(Pj).

Proposition 6.3. Let Π = P1 · · · Pℓ ⊂ Z[x] be the set of all possible products A1 · · ·Aℓ

with Aj ∈ Pj for j = 1, . . . , ℓ. Then we have the following:

(a) The elements of Π are nonzero coprime polynomials (in Q[x]).

(b) R = R(Π).

(c) µ(R) =
∏

p∈P

(

1− cp
pr

)

where cp = #
{

n ∈ (Z/pZ)r | Q(n) = 0 (mod p),∀Q ∈ Π
}

.

(d) For every p ∈ P, we have cp = pr if and only if for every n ∈ Zr, there exists

j ∈ {1, . . . , ℓ} such that the prime p divides all values Pj1(n), . . . , Pjsj (n).
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Note that cp can also be computed with the following formula:

cp = #
ℓ
⋃

j=1

{

n ∈ (Z/pZ)r | Pj1(n) = 0 (mod p), . . . , Pjsj(n) = 0 (mod p)
}

.

This equality follows from the relation V (I ·J) = V (I)∪V (J) for ideals and their varieties,

applied to Π = P1 · · · Pℓ.

Proof. (a) Assume that some irreducible polynomial D ∈ Q[x] divides all elements of Π.

Then the product of all ideals 〈Pj〉 ⊂ Q[x] (j = 1, . . . , ℓ), which is generated by the set

Π, is contained in the ideal 〈D〉 ⊂ Q[x]. As 〈D〉 is a prime ideal, we have 〈Pj〉 ⊂ 〈D〉 for

some j ∈ {1, . . . , ℓ}. This contradicts Pj1(x), . . . , Pjsj (x) being coprime.

(b) R(Π) ⊂ R: If n /∈ R, i.e., n /∈ R(Pj) for some j ∈ {1, . . . , ℓ}, then some prime p

divides Pj1(n), . . . , Pjsℓ(n). Clearly then, p divides all Q(n) with Q ∈ Π, i.e., n /∈ R(Π).

R(Π) ⊃ R: Let n /∈ R(Π), i.e., some prime p divides all Q(n) with Q ∈ Π. Observe that

the ideal generated by all these Q(n) is the product of the ideals 〈Pj1(n), . . . , Pjsj (n)〉 ⊂ Z

with j ranging over {1, . . . , s}. So this product is contained in pZ. But then pZ must

contain some ideal 〈Pj1(n), . . . , Pjsj (n)〉; hence n /∈ R(Pj) and so n /∈ R.

(c) Follows from (b) and the Ekedahl–Poonen formula, for the case ℓ = 1, with the poly-

nomials in Π (Theorem 1.5).

(d) We have cp = pr if and only if p divides all Q(n) with Q ∈ Π for every n ∈ Zr.

Arguing as in (b) above for each fixed n ∈ Zr, we obtain that, for each n, p divides

Pj1(n), . . . , Pjsj(n) for some j ∈ {1, . . . , ℓ}, which is the claimed condition. The converse

is clear. �

Finally we can give the proof of Theorem 1.7 in the general case ℓ > 1.

Proof of Theorem 1.7 (ℓ > 1). Let P1(x, y), . . . , Pℓ(x, y) be as in the statement. The first

point is based on the same result of Cohen used in the case ℓ = 1. Specifically let

H(P1, . . . , Pℓ) be the subset of Zr of all n such that P1(n, y), . . . , Pℓ(n, y) are irreducible

in Q[y]. From Theorem 1 of [11, §13], we have µ̃(H(P1, . . . , Pℓ)) = 1, with µ̃ the density

introduced in Remark 1.6.

For each j = 1, . . . , ℓ, denote by Pj ⊂ Q[x] the set of coefficients Pj1(x), . . . , Pjsj (x) of

Pj , viewed as a polynomial in y; these polynomials are coprime. Using then the nota-

tion of Proposition 6.3, the set R ⊂ Zr is the subset of all n such that the polynomials

P1(n, y), . . . , Pℓ(n, y) are primitive. Thus, for every n ∈ H = H(P1, . . . , Pℓ) ∩ R, the

polynomials P1(n, y), . . . , Pℓ(n, y) are irreducible in Z[y].

Observe that the assumption that there is no prime p such that
∏ℓ

j=1 Pj(n, y) ≡ 0 (mod p)

for every n ∈ Zr forbids the equivalent conditions from Proposition 6.3(d) to happen. Thus,

by Proposition 6.3(c), we have µ(R) > 0, and also µ̃(R) > 0 (as explained in Remark 1.6).

Conclude that µ̃(H) > 0 as well. �
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