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Single-cell lineage tracing permits the labeling of individual cells with a

heritable marker to follow the fate of each cell’s progeny. Over the last

twenty years, several single-cell lineage tracing methods have emerged,

enabling major discoveries in developmental biology, oncology and gene

therapies. Analytical tools are needed to draw meaningful conclusions from

lineage tracing measurements, which are characterized by high variability,

sparsity and technical noise. However, the single cell lineage tracing field lacks

versatile and easy-to-use tools for standardized and reproducible analyses, in

particular tools accessible to biologists. Here we present CellDestiny, a RShiny

app and associated web application developed for experimentalists without

coding skills to perform visualization and analysis of single cell lineage-tracing

datasets through a graphical user interface. We demonstrate the functionality

of CellDestiny through the analysis of (i) lentiviral barcoding datasets of murine

hematopoietic progenitors; (ii) published integration site data from Wiskott-

Aldrich Symdrome patients undergoing gene-therapy treatment; and (iii)

simultaneous barcoding and transcriptomic analysis of murine hematopoietic

progenitor differentiation in vitro. In summary, CellDestiny is an easy-to-use

and versatile toolkit that enables biologists to visualize and analyze single-cell

lineage tracing data.
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Introduction

Single-cell lineage tracing allows the labeling of single
cells with a heritable marker to follow the fate of their
progeny (1, 2). Heritable markers can be introduced in a
variety of ways (2), most commonly by using lentiviruses
to introduce a synthetic genetic sequence (barcode) into the
genomic DNA of infected cells in an approach known as cellular
barcoding (3–6). Other labeling methods include integration
site analysis, where cells are also infected with a lentivirus, but
the heritable marker is based on the genomic location of the
viral integration rather than a unique nucleotide sequence (7).
Virus-free labeling methods include the use of CRISPR-cas9
gene-editing (8–11), as well as the Cre-Lox (12) and transposon
(13) genetic technologies. Virus-free in situ lineage-tracing
technologies are advantageous because cells are barcoded within
a living organism without the need to remove a cell from
its microenvironment, but these methods are restricted to
genetically engineered animals. To overcome this limitation,
retrospective lineage-tracing approaches have emerged for
human samples (14). This is made possible by analyzing
naturally-occurring genetic variations that accumulate over
time, for example single nucleotide polymorphisms (SNPs)
(15, 16).

Single cell lineage-tracing approaches have yielded
significant insights into the developmental history of normal,
cancerous, and gene-edited cells in vivo (14). A key area of
study where lineage-tracing has been applied is hematopoiesis
(17), the process by which new blood and immune cells are
produced in the bone marrow. In this context, the contribution
of single cell lineage-tracing ranges from revealing significant
heterogeneity in apparently homogenous cell intermediates
(18, 19), to stimulating revisions to the topology of the tree in
steady state and upon emergency hematopoiesis [Perié et al.
(20); Rodriguez-Fraticelli et al. (21); Eisele et al. (22); Wu et al.
(23); Lin et al. (24)], to comparing the dynamics of naïve versus
post-transplantation hematopoiesis (13, 25–27), to identifying
molecular regulators of cell fate (8, 28, 29). In a clinical context,
single cell lineage tracing has revealed how cellular dynamics
correlate with treatment efficacy and as well as assessing the
potential for vector genotoxicity (6, 30).

Despite the seminal contribution of single-cell lineage-
tracing, the field lacks versatile and easy-to-use tools for
standardized and reproducible analyses. This point is critical,
because the analysis of lineage tracing datasets is non-trivial,
with data characterized by high variability, sparsity and technical
noise. Complex analysis pipelines have been developed to
tackle these challenges, but they require significant expertise in
both computer programming and statistics to implement and
evaluate, precluding their usage by biologists who cannot code.
This is particularly limiting for the biological interpretation of
the data in which the biologists play an active role together with
bioinformaticians. There is therefore a need for tools that permit

the exploration of lineage tracing datasets, without needing to
write computer code. Increasing the availability of open-source
tools will make lineage-tracing analysis more reproducible,
transparent, and accessible—as well as permitting meta-analyses
across independent studies (31, 32).

Currently available software tools to perform lineage-
tracing analysis can be divided into two key categories: (1)
Preprocessing toolkits that perform recovery, filtering and
quality control of genetic sequences from raw sequencing reads
and (2) Analysis toolkits that perform visualization and analysis
of barcode abundances across biological samples (Figure 1).
Pre-processing toolkits are typically context-specific, in that
the retrieval, QC and quantification of genetic sequences will
vary depending on the nature of the barcode. The open-source
toolkit genBaRcode has been developed to address this issue,
performing sequence retrieval and processing across a range
of different genetic labeling strategies, as well as some data
visualization tools (33). Xcalibr is also a pre-processing toolkit,
that focuses only on the extraction and demultiplexing of
barcodes from sequencing data (18, 19). With regards to analysis
toolkits, barcodetrackR has been developed for the analysis of
clonal tracking data over time (31) (Figure 1). BarcodetrackR
is a versatile tool that places an emphasis on longitudinal
analyses. However it does not permit the visualization of key
QC metrics, such as the consistency of measurements across
technical replicates, which are an important consideration when
drawing biological conclusions from the data. In addition,
for parameters other than time, such as treatments or organ
localization, the visualization of the data is limited.

Here, we present a new complementary analysis toolkit
called CellDestiny, enabling the visualization and analysis of
single-cell lineage tracing data through an easy-to-use web
application. CellDestiny is an easy to use app that facilitates
data exploration and extraction of biological insights from single
cell lineage tracing data without needing to write computer
code. We envision that CellDestiny will enrich collaborations
between biologists and bioinformaticians without replacing the
crucial work of the latter. The key advantages of CellDestiny are:
(i) the ability to incorporate study metadata into the analysis
framework, (ii) the focus on experiment-level quality control
visualizations that can be used to assess the impact of technical
factors like sequencing errors and repeat-used barcodes (34),
and (iii) the visualization of data using a wide range of plotting
methods (Figure 1). Compared to other toolkits, CellDestiny
provides a greater flexibility in data plotting, in that it allows the
user to choose which data to visualize using several grouping
options, for example across individuals, organs and cell types.
To demonstrate the functionality and versatility of CellDestiny,
we analyze data from three different lineage-tracing studies,
including lentiviral barcoding analysis of murine hematopoietic
progenitor differentiation in vivo (previously unpublished),
lentiviral integration site analysis of patients undergoing gene-
therapy (30) and simultaneous barcoding and transcriptomic
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FIGURE 1

Computational tools for lineage tracing data analysis. A generalized scheme for lineage tracing data analysis highlighting the relative
contribution of experimentalists and analysts as well as the associated analysis toolkits for each step. We also provide a qualitative comparison
of the different toolkits to illustrate their key functionality. When comparing the utilty of different toolkits the term versatility refers to whether
the tool can incorporate metadata into the analysis framework, enabling comparisons across and within technical and biological replicates.
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analysis of murine hematopoietic progenitor differentiation
in vitro (35).

Results

Overview of CellDestiny

CellDestiny is a data analysis tool developed for lineage-
tracing experimentalists without coding skills. Focusing on
this user group is important as nuanced experimental details
can influence the interpretation of the results, and so

experimentalists need to play an active role in the analysis.
The purpose of this app is to provide users who cannot write
computer code with greater autonomy to analyze, explore and
extract meaningful information from lineage tracing datasets.
Cell Destiny is available as a Rshiny app or web application.
The R package associated with CellDestiny is a collection
of plotting and analysis tools available to experimentalists
who prefer to write their own code rather than using the
graphical user interface.

CellDestiny requires two key inputs: (1) a count matrix that
has undergone sequence and experiment level quality control
(QC) preprocessing where each row (x) is a unique barcode

FIGURE 2

Overview of the CellDestiny analysis toolkit. (Step 1) A count matrix containing technical replicates for each sample after data quality control
and normalization steps, for example using the genBaRcode package, can be uploaded along with associated metadata detailing the variables
used for the analysis such as organ, time point, individual etc. (Step 2) The quality of the data can be visualized to assess the correlation between
duplicates and also the frequency of repeat-used barcodes. These steps will help the user to assess the impact of technical artifacts on the
biological interpretation of the data. (Step 3) The data summed or averaged over replicates can then be uploaded and visualized through a set of
different graphs to assess clonal diversity, clone-size distribution and fate outcomes. Importantly, these graphs offer several customization
options such as grouping data across individuals, cell types and organs.
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sequence and each column (y) is a sample. The numeric value
for each x,y pairing then represents the number of times the
barcode label x was measured in sample y. (2) A metadata table
providing information about each sample which may include
the experimental timepoint, cell type and individual identity.
Additional information such as pre-calculated QC metrics and
information about experimental design such as sequencing
batch can also be uploaded through the metadata feature and
overlaid onto QC and analysis plots.

In the CellDestiny workflow (Figure 2), the user can
first visualize QC from pre-processed data for each sample
independently (see next section) before performing analyses
such as the quantification of barcode sharing, clone size, barcode
diversity and lineage biases across individuals and samples.
CellDestiny allows the user to choose which data to visualize
using several grouping options. As the grouping option depends
on the biological question being addressed by the experiment,
CellDestiny has been designed to allow greater flexibility in
data exploration than previous tools. Each graph generated can
be exported as an image, as well the associated reformatted
matrix to be uploaded for statistical analysis with external
software packages such as Prism. Cell Destiny is not tailored
for statistical analysis. A graphical overview of the package
is provided in Figure 1, and a table comparing CellDestiny
to the complementary barcodeTrackR toolkit is provided in
Supplementary Table 1.

Quality controls

Quality control (QC) is an important part of the analysis
of single-cell lineage tracing data but there is currently no
clear consensus on how data QC should be done. Different
guidelines have been published (34, 36) and while some software
packages exist to perform pre-processing of genetic sequences
(33) many pipelines are custom-built for each distinct barcode
design. It is therefore challenging to create a fully automated QC
pipeline that is applicable across all single-cell lineage tracing
technologies. While we advocate that data QC should be done
by bioinformatic experts, we believe that QC data be made
accessible to biologists with no coding skills, such that they can
better draw biological interpretations from the data.

Quality control steps for lineage tracing experiments can
be subdivided into two key sub steps: (i) sequence level
QC assesses the genetic sequences encoding heritable markers
and (ii) experiment-level QC that assesses the consistency of
results within and between biological and technical replicates
(Figure 1). To this end, CellDestiny is designed to allow
experiment-level QC visualization (Figure 2). There are two
important experiment-level QC steps before proceeding to
analysis of barcoding data, (1) the correlation between PCR
technical replicates and (2) the evaluation of repeat usage of
barcodes (34). Firstly, PCR technical replicates allow to measure

the degree of confidence in barcode detection to establish
lineage relationship between cell types. If the replicates do
not show high correlation, there may an issue with barcode
contamination or it may suggest poor recovery of daughter
cells or poor expansion of progenitors. In CellDestiny, technical
replicates can be uploaded and visualized for each sample.
Secondly, the integration of the same barcode into multiple
cells, called repeat usage, is also an important QC metric that
should be considered in a lineage tracing analysis pipeline,
as a high incidence of repeat usage may lead to false lineage
relationship assignments. The transfer of progenitors from
the same transduction batch into at least two separate mice,
followed by subsequent comparison of the barcodes recovered
from those mice, can be used to estimate the frequency of
repeat barcode use within one mouse. In CellDestiny, this QC
can be visualized with 2D plot of barcode sharing between
two mice or with a heatmap when analyzing sharing across
more than 2 mice (Figures 2A, 4). It is important to state
that PCR/sequencing errors and multiple integrations are not
the only source of confounding factors in lineage tracing
experiments. Insufficient cell sampling can lead to poor barcode
recovery and greatly influence the interpretation of the data and
so must be considered when interpreting the results. Where
available several tissue sampling replicates can be compared in
CellDestiny through the metadata functionality.

In the following sections we demonstrate the functionality
of CellDestiny through 3 case studies: (1) lentiviral barcoding of
murine hematopoietic progenitors (2) lentiviral hematopoietic
stem cell gene therapy in patients with Wiskott-Aldrich
Syndrome (3) lentivirus barcoding and transcriptomic analysis
of murine hematopoietic progenitors, cultured in vitro. A
table summarizing each dataset, along with key metadata and
information about how to access the raw data is provided in
Supplementary Table 2.

Case study 1: Lentiviral barcoding
of murine hematopoietic
progenitors

Study overview

In case study 1, we will study the development of lung-
resident conventional dendritic cells in mice. Dendritic cells
are a key component of the immune system, initiating adaptive
immune responses through the presentation of antigen (37).
DCs (CD11c+MHCII+CD24−CD64) can be further divided
into a number of sub-categories including the conventional
cDC1 and cDC2. cDC1, identified by their surface expression
of CD8α, present antigens and prime cytotoxic CD8+ T cell
responses to intracellular pathogens (37). cDC2, defined by their
surface expression of the CD11b marker, constitute a more
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FIGURE 3

Lentiviral barcoding of murine hematopoietic progenitors. (A) Our research question is to assess whether a single MPP4 can make both cDC1
and cDC2 lung-resident populations (model 1) or whether they are fate restricted to produce only one of the two cell types (model 2). (B) To
address this research question, we purified MPP4 by FACS sorting and labeled cells with a lentiviral barcoding library. Cells were then
transplanted into 3 irradiated (6Gy sub-lethal) recipients and left to engraft, divide and differentiate for 14 days. 14 days post-transplantation
lungs were harvested and GFP+ (barcode-expressing) cDC1 and cDC2 were purified by FACS sorting, and their genomic DNA was processed for
sequencing library preparation as described in the materials and methods section. After sample QC a total of 60 barcodes were recovered for
lung cDCs across 3 mice (m1 = 32 barcodes, m2 = 17 barcodes, m3 = 11 barcodes).
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heterogeneous cell population that preferentially activate CD4+

helper T cell responses (38).
Previously, lentiviral barcoding analysis has shown

that lympho-myeloid-primed progenitors (LMPPs) include
progenitors only giving rise to cDCs, suggesting that
commitment to the cDC lineage can occur very early in
hematopoiesis (18). In addition, some LMPPs were giving
rise to only one of the cDC1, cDC2 and plasmacytoid splenic
DCs subsets while very few LMPPs were producing all DC
splenic subtypes. In mice, LMPPs are a subset of a broader
hematopoietic stem and progenitor cell population known as
multipotent progenitor 4 (MPP4) (39) but it is not known if
results from Naik et al. (18) can be extrapolated to all MPP4s,
and also if this result holds across all tissues where cDC’s reside.
In this analysis, we wish to assess if a single MPP4 can produce
both the cDC1 and the cDC2 subsets in the lung or whether a
single MPP4 is fate-restricted to only produce cDC1 or cDC2
(Figure 3A).

To address this research question, we used a lentiviral
barcoding approach focusing on the differentiation of (Lin−,
Sca-1+, cKit+, Flt3+) MPP4s towards lung-resident cDCs
(Figure 3B). Specifically, MPP4s were purified from the bone
marrow of donor mice by fluorescence activated cell sorting
and infected with the LG2.2 lentiviral barcoding library (40).
Labeled cells where then injected I.V into 3 irradiated recipient
mice. Fourteen days later, lungs were isolated from the mice,
and barcoded cDC1s, and cDC2s were purified by FACS
using the gating strategy shown in Figure 3B. Samples were
then processed for barcode detection in genomic DNA by
deep sequencing as described in the Materials and Methods
section.

Data quality control

Prior to drawing biological insights from a lineage tracing
experiment, it is important to assess whether there are technical
factors that can confound the interpretation of the data
(34). Before CellDestiny, the samples have been filtered as
described in the material and methods giving a total of 60
barcodes represented in the cDC lineages for all 3 mice
(m1 = 32 barcodes, m2 = 17 barcodes, m3 = 11 barcodes).
Applying the CellDestiny workflow to our case-study lentiviral
barcoding dataset, we see a high correlation between technical
replicates (example for mouse 2 in Figure 4A) (Spearman’s
ρ = 0.85 ± 0.08, p-value = 0.01 ± 0.02). By plotting repeat
usage diagnostic plots (Figures 4B,C), very few shared barcodes
(3.4%) appear across multiple individuals (Figure 4C). Thus, the
QC visualization of CellDestiny confirms that our data are of
good quality for biological analysis. In the subsequent sections
we use CellDestiny to assess clonal diversity and clone-size
distributions, as well as lineage bias parameters to study the
developmental history of lung-resident cDCs.

FIGURE 4

Analyzing the impact of sequencing errors and repeat use
barcodes (A) comparing technical replicates for cDC1 and cDC2
samples of mouse 2 from case study 1 to control for sequencing
errors On these plots each dot represents a single barcode and
the Spearmans correlation coefficient is given at the top of each
plot (0.79 for the cDC1 sample and 0.93 for the cDC2 sample).
This is a representative plot showing data from 1 mouse, figures
for the other mice can be found in Supplementary Figure 1.
(B) Assessing repeat usage of barcodes by comparing barcode
abundances across distinct individual mice from case study 1.
(C) Same as panel (B) but using a heatmap to compare all the
mice together. Renormalized data is arcsin transformed,
clustering based on Euclidian distance and complete linkage.
The frequency of repeat use barcodes is 3.4% in this dataset.
After sample QC a total of 60 barcodes were recovered for lung
cDCs across three mice (m1 = 32 barcodes, m2 = 17 barcodes,
m3 = 11 barcodes).

Data exploration and analysis

Clonal diversity and clone size in cDC1 and
cDC2

To study the ontogeny of differentiated cell types,
CellDestiny provides functionalities to assess: (i) clone size
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distributions and (ii) clonal diversity. CellDestiny provides
visualization of how many cells are produced per single
barcoded progenitor, here referred to as clone size. Clone size
analysis allows to quantify the cellular outputs of barcoded
progenitors. In addition to clone size, clonal diversity measures
the number of progenitors that give rise to a differentiated cell
population and so gives an indication of the amount of active
progenitors contributing to differentiation. There are different
ways to estimate clonal diversity using CellDestiny, the simplest
being the total number of unique barcodes that are measured
per sample, however, more complex metrics such as Shannon
and Simpson indices that consider how frequently each barcode
is measured are also available. These more complex metrics are
useful for barcoding data where clone sizes vary significantly
amongst different cell types.

To assess clone sizes of the cDC1 and cDC2 cell types in
the lung, we plotted their barcode abundance distributions and
observed that not all MPP4 produced the same amount of cDC1
and cDC2 (Figures 5A,B) but that MPP4 had very similar clone-
size distributions for both cell types with very few MPP4 (20
barcodes) giving rise to 96% of cDC1 and cDC2 in the lung
(Figure 5B).To assess the clonal diversity of the cDC1 and cDC2
we use the Shannon diversity index and found no statistically
significant difference (p = 0.7) between the cDC1 and cDC2
cell types (Figure 5C). This suggests that a similar number of
progenitors is contributing to the production of these subsets
although care should be taken when interpreting this result as
our sample size is small (n = 3 mice, 60 unique cDC-associated
barcodes across all three samples) affecting the statistical power
of our analyses.

To summarize, we observed no differences in clone size
distributions or clonal diversity between cDC1 and cDC2,
suggesting that they have similar developmental properties. We
find that only a small subset of MPP4s will give rise to the
majority of mature cDC1 and cDC2 in the lung. In the following
section we will assess whether a single MPP4 can produce both
cDC1 and cDC2 by quantifying the proportion of barcodes that
are shared across both cell types using CellDestiny.

Barcode sharing between cDC1 and cDC2
To understand if a single MPP4 can give rise to both

cDC1 and cDC2, we assess barcode sharing across both subsets
(Figure 6A). Proportionally, 40% of barcodes (SD = 16%)were
found in both cell types while of the remaining 60%, 28%
(SD = 6.7%) of progenitors give rise to only cDC1 subtype,
and 32% (SD = 22.4%) to only cDC2 subtypes (Figure 6B).
While the majority of clones were uni-outcome, bi-outcome
progenitors had larger clone size distributions, suggesting that
the majority of cDC1s and cDC2s are derived from a subset
of high-output bi-outcome MPP4s. However, a barcoded MPP4
producing both cDC1 and cDC2 did not always produce the
same amount of each cell type. For example, an MPP4 that gave
rise to 20 cDC1 and 5,000 cDC2 is accounted as bi-outcome if

FIGURE 5

Clone size distributions and clonal diversity between
lung-resident cDC1 and cDC2. (A) Clone size histograms
highlight a similar distribution for both subtypes. (B) Cumulative
clone size diagram for cDC1 and cDC2. The concave shape
highlights a clonal composition made by few relatively big
clones with five clones accounting for 60% of the total barcode
abundance. (C) Dotplots of the Shannon diversity index within
each subtype. Each dot represents a single mouse. No statistical
difference was observed between the two subtypes (tested with
paired-Wilcoxon test, p-value = 0.7). N = 3 mice for all panels,
total of 60 barcodes (m1 = 32 barcodes, m2 = 17 barcodes,
m3 = 11 barcodes).

one considers cellular output in binary terms, but this MPP4
may also could also be considered as cDC2-biased due to its
unbalanced cellular output. To assess lineage-bias, CellDestiny
provides a threshold-based classifier (18, 19) to quantify lineage
bias. In this approach, we first calculate the proportional read
abundance of each barcode in each cell type. A barcode is then
considered biased if the proportional read abundance within a
given cell type exceeds a pre-defined threshold value. A barcode
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FIGURE 6

Barcode sharing and lineage bias across lung-resident cDC subsets. (A) The dotplot shows the arcsin transformed barcode abundance across
cDC1 and cDC2. On this visualization each dot is a distinct barcode. Shared bi-outcome barcodes are on the diagonal and uni-outcome
barcodes are on the respective X and Y axes. (B) Proportion of total unique barcodes that are shared between cDC1 and cDC2. Bi-outcome
barcodes are shown in blue while the red and green segments represent unipotent barcodes for cDC1 and cDC2, respectively. This plot
represents data pooled across all three mice. (C–E) Lineage bias classifier using different thresholds (indicated on top of the graph, 0–40%)
using data pooled from all three mice. N = 3 mice, total of 60 barcodes (m1 = 32 barcodes, m2 = 17 barcodes, m3 = 11 barcodes).

is considered multi-outcome if the proportional read abundance
exceeds the threshold value across more than one cell type. We
applied this classifier to MPP4s using thresholds ranging from
0 to 40% (Figures 6C–E). For bias thresholds ranging from 0
to 20% we found that >50% of progenitors were biased in their
production of cDCs.

In summary, CellDestiny was used to assess the ontogeny
of lung-resident cDCs. While clonal diversity and clone size
distributions were not significantly different for cDC1 and
cDC2, we find that the MPP4 population is functionally
heterogeneous with respect to lung DC production, containing
both progenitors producing one of the DC subtype or both,
as well as lineage-biased progenitors. This suggests that fate
commitment to the lung cDC cell types can occur early in
differentiation already at the MPP4 stage. In the following
section, we demonstrate the versatility of CellDestiny to analyze
other types of lineage-tracing data, focusing on integration site
analysis of patients undergoing gene-therapy.

Case study 2: Integration site
analysis of gene-therapy patients

Overview

Wiskott-Aldrich Syndrome (WAS) is a monogenic X-linked
primary immunodeficiency characterized by thrombocytopenia,
eczema, bleeding episodes, and immunodeficiency (41). The

disorder is caused by mutations in the WAS gene, which
codes for WASP, a protein that regulates the cell cytoskeleton.
A 2013 study by Aiuti et Al. assessed the dynamics and efficacy
of gene-therapy treatment in three WAS patients through
longitudinal lentiviral integration site analysis (30). In this
setting autologous CD34+ hematopoietic stem and progenitor
cells (HSPCs) harvested from patient bone marrows were
transduced with a functional WAS gene ex vivo before being
reinfused intravenously into patients. In transduced HSPCs,
lentiviruses randomly integrate into the genome. The genomic
coordinates of the lentiviral integrations are unique to each
transduced cell and are inherited by the cell’s progeny. The
integration sites thus act as heritable markers that can be used to
assess clonal dynamics of transduced HSPCs in these patients.
Here we use CellDestiny to explore clonal diversity, clone size
distributions and lineage commitment of transduced HSPCs in
WAS patients. We started our analysis with the filtered matrix
kindly provided by the authors of the paper (30) and show
how some of the authors conclusions (30) can be independently
verified using CellDestiny.

Clonal dynamics in Wiskott-Aldrich
Syndrome patients undergoing gene
therapy

To understand clonal dynamics shortly after transplantation
in patients undergoing gene therapy, we first assess clonal
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diversity at 1 month, 3 month, and 12 months post-
transplantation in bone-marrow CD34+ HSPCs and peripheral-
blood leukocytes (Figure 7). Unsupervised clustering and
heatmap visualization showed relatively few barcodes were
observed across more than one timepoint (Figure 7A). This
observation could be due to different HSPCs reconstituting the
hematopoietic system over time or could be a sampling artifact
given that only a small percentage of the total blood volume was
sampled at a given timepoint, preventing the analysis of barcode
fate over time.

Looking at the number of unique barcodes detected at
each timepoint, we observed that clonal diversity across CD34+

cells and leukocytes increases over time (Figure 7B). We
also observed lineage-specific differences in clonal dynamics,
whereby myeloid diversity remained relatively stable across all
timepoints while in lymphocytes and CD34+ progenitors’ clonal
diversity increased at each subsequent timepoint. For lymphoid
cells, this is consistent with the slower dynamics of thymic
reconstitution. At 12 months, the clonal diversity was higher in
lymphoid cells than in the other lineages, consistent with the
selective growth advantage effect of the gene corrected clones
in this lineage (6). Similar trends were also observed using
the Shannon diversity index (Figure 7C). Finally, investigating
clone size composition over time, we observe that the 25% of IS
clones with the highest rates of cellular output make up to almost
100% of the total abundances at all time points (Figure 7D).

Using CellDestiny, we show that the reconstitution in these
WAS patients was carried by an increasing number of HSPC
clones during the first 12 months post-transplantation. In the
next section, we will analyze cell production from HSPCs to
the different lineages over time to assess if reconstitution was
performed by multi-outcome or lineage-biased HPSC clones.

Lineage commitment of transduced
hematopoietic stem and progenitor
cells

To understand the cell production of transduced HSPCs
in different hematopoietic lineages, we compared IS barcodes
across peripheral-blood myeloid and lymphoid immune cells
at 1,3,12, and 24 months post-transplantation (Figures 8A, 9).
At 1 and 3 months post-transplantation, the majority of IS
were not shared between lymphoid and myeloid cells whereas
at 12 months more IS are shared between the two lineages
(Figure 8A). From 1 to 12 months post-transplantation, bi-
outcome HSPC numbers increased from representing 5% at
1 month to 20% of total IS barcodes detected. Bi-outcome
HSPC produced 24 and 56% of lymphoid and myeloid cells
respectively at 12 months post-transplantation (Figure 8B).
Overall, the majority of blood cells were produced by uni-
outcome progenitors at each time point. This shows that the first

wave of hematopoiesis in WAS patients was sustained primarily
by lineage committed progenitors.

Lastly, we observed persistent multi-outcome HSPCs from
12 to 24 months after gene therapy (27%, Figures 9A,B),
illustrating that reconstitution is stabilizing in these patient
after 12 months post-transplantation. We also observed a large
proportion of new clones that had not previously been detected
(42%, Figures 9A,B), corresponding to either the emergence of
new HSPC clones or a sampling artifact due to the low volume
of blood sampled at each timepoint. At 12 and 24 months
post-treatment, we also observed increasing numbers of multi-
outcome HSPCs (dots at the center of the triangle, Figure 8C).
Through the various graphics available in CellDestiny, we have
independently verified the major conclusions from the original
paper that hematopoietic reconstitution follows a first unstable
phase sustained by lineage committed progenitors that from
12 months post-transplantation is slowly replaced by stable
reconstitution from multi-outcome HSPCs.

Case study 3: Combining
single-cell RNA sequencing and
lineage tracing information in
single Cells

Overview

Recent technical developments in the lineage tracing
field now permit simultaneous fate and gene expression
measurements in single cells (42) (Figure 10). To illustrate
how CellDestiny can be used to analyze such datasets we
present a case study analysis wherein cKit+ (LK) and cKit+

Sca1+ (LSK) murine bone marrow cells were barcoded using
the LARRY lentiviral barcoding library and then cultured
in vitro using a cocktail of cytokines and growth factors
that support pan-myeloid differentiation (Figure 10A) (35).
In this published study, cells were processed for single cell
RNA sequencing at days 2,4, and 6 after lentiviral barcoding
and barcode information was recovered at the RNA level
directly from InDrop sequencing libraries along with associated
gene expression measurements. To convert this dataset into
a format compatible with CellDestiny we generated a count
matrix, where count values represent the number of times each
barcode was found in each cell type (refer to the materials
and methods section for further details). Cell type definitions
were taken from the original publication and were obtained by
k-means clustering of gene expression measurements and then
annotating the clusters using marker genes from the literature
(Figure 10A). This matrix was then loaded into CellDestiny
along with metadata about each starting cell population (LK and
LSK). The aim of this analysis is to visualize barcode abundance
and diversity across different cell types as well as visualising
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FIGURE 7

Clonal Diversity in WAS Patients Undergoing Gene-Therapy from 1 to 12 months post-transplantation. (A) Unsupervised hierarchical clustering
and heatmap visualization of barcode abundances across timepoints for each patient. The x-axis shows the timepoint post-transplantation. The
y-axis corresponds to each unique IS (patient 1 had a total of 4,397 unique integration sites, patient 2 had a total of 5,317 integration sites, and
patient 3 had a total of 6093 integration sites). The colors indicate the arcsin transformed read abundance. Hierarchical clustering was
performed using the Euclidian distance and complete linkage. (B) The number of unique IS per cell lineage at 1, 3, and 12 months
post-transplantation (in green, red, and blue, respectively). (C) Comparisons of Shannon Index measures across cell types and timepoints.
(D) Cumulative clone size diagram shows that 25% of clones made up to 99% of the total IS abundances for all three time points [same colors as
in panel (B)]. N = 3 patients in all graphs.

barcode clone size distributions, and patterns of barcode sharing
between myeloid cell types that are highly represented in this
dataset. This important information cannot be obtained using
standard single-cell RNA analysis toolkits such as Seurat and
scanpy.

Clonal composition of in vitro
differentiated murine progenitors

To visualize barcode expression patterns across all cell
types in the dataset we performed hierarchical clustering and

heatmap visualization in CellDestiny (Figure 10B). This analysis
showed that most barcoded progenitors differentiated into
basophils, monocytes and neutrophils in this culture system,
a result corroborated by quantifying barcode diversity in each
cell type using the Shannon Index (Figure 10C). Diversity
measures across differentiated cell types were similar for the
myeloid lineages irrespective of whether in vitro cultures were
seeded with LK and LSK starting cell populations (Figure 10C).
Larger differences were observed when assessing erythroid
and lymphoid lineages, however (Figure 10C). The heatmap
visualization and barcode diversity plots also showed that a
number of progenitors did not share barcodes with any mature
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FIGURE 8

Increased proportion of bi-outcome HSPC from 1 to 12 months after gene therapy. (A) IS abundances in lymphocytes versus myeloid cells for
each timepoint. Each dot is an IS color-coded by patient. The number of sequencing reads per IS has been renormalized and arcsin
transformed. (B) IS have been classified by presence or absence in the myeloid and lymphoid cell lineages. The total output of uni-outcome or
bi-outcome HSPCs to myeloid cells and lymphocytes is computed per patient. Here we show the mean value over the three patients. Green
and orange correspond to IS found only in the lymphoid or myeloid lineage, respectively (uni-outcome), blue corresponds to IS found in both
lineages (bi-outcome).

differentiated cell types (Figure 10B)—suggesting they may be
differentiation inactive–a progenitor phenotype that has also
been described in vivo using in situ barcoding (8, 28, 43). Lastly,
we observed that the dominant barcodes for each cell type were
typically not observed in the dominant barcodes of other cell
types. This suggests that many progenitors in this culture system
are lineage-biased (Figure 10B).

Monocytes and neutrophils lineage
commitment in vitro

Given that monocytes and neutrophils were the dominant
cell types fates in this assay, we focused our analysis of their
developmental trajectories. Firstly, both cell types had similar
diversity scores, as well as having very similar clone size
distributions (Figures 10C,D). This result suggests that similar
number of progenitors contributed to each lineage, and the
relative number of mature cells produced per progenitor were
similar. Despite these similarities there was only a small degree
of barcode (15%) sharing between monocytes and neutrophils,
suggesting that the majority of progenitors produced only one
of the two cell types (Figure 10E). Scatterplot visualization
of barcode abundances showed that shared barcodes were
not more prevalent that non-shared barcodes (Figure 10F).

This increases confidence that lineage restriction cannot be
explained by sampling biases whereby clones would appear to
be non-shared simply because they are rare and therefore more
likely to escape detection. In addition, we observed the same
pattern when analysing LSK and LK cells separately, ruling
out the hypothesis that this pattern is driven only by Sca1−

lineage-restricted progenitors such as GMPs (Figure 10F).
We corroborated this result by performing a lineage-bias
classification analysis which takes the relative abundance of each
barcode in each lineage into account. This analysis showed that
the majority of the monocytes or the neutrophils were produced
by uni-lineage progenitors, irrespective of the threshold used to
classify each progenitors (Figure 10G).

Through the various graphics available in CellDestiny, we
have independently re-analyzed a published dataset combining
lineage tracing and gene expression analysis of single cells.
Our analyses suggest that lineage decisions in this system
occur at the level of LSK cells. This is consistent with the
conclusions reached in the original study, wherein the authors
also incorporated transcriptomic and temporal information to
enrich their analyses. Importantly, key lineage tracing metrics
such as clonal diversity, clone size distributions and barcode
sharing cannot be assessed using existing single cell RNA
sequencing toolkits. This case study illustrates how CellDestiny
can be used to efficiently visualize and explore complex lineage
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FIGURE 9

Stabilization of multi-output HSPCs detected at 24 months after gene therapy. (A) IS sharing between 12 and 24 months. Heatmap done as in
Figure 6. (B) Percentage of barcodes shared between lymphocytes and myeloid cells at 24 months. (C) IS abundance in myeloid cells,
lymphocytes and CD34positive cells. Each dot represents an IS, colored coded per patient while the size of each dot represents the total
number of reads over the 3 lineages. n = 2 patients with patient 2 having in total 1,429 integration sites and patient 3 2,289.

tracing datasets, identifying key trends at the level of barcode
expression patterns to direct and inform informing downstream
statistical analyses as well as multi-omics data integration.

Discussion

To summarize, single-cell lineage tracing is a powerful tool
to study cellular genealogies in vivo, with many applications
for fundamental and applied biomedical research. In recent
years, a number of single-cell lineage tracing methodologies
have emerged, but tools to analyze such data remain limited.
This limitation is critical as lineage tracing datasets are complex
and multidimensional, characterized by high levels of variability,
sparsity and technical noise. Context-specific bioinformatics
pipelines have been developed to address these challenges,
but the lack of standardized approaches makes it difficult to
compare results across independent studies. This issue is further
exacerbated by the technical demands of lineage tracing, with
very few researchers capable of performing both experiments
and data analysis steps. User-friendly analytical software is

important for increasing the accessibility and reproducibility of
lineage-tracing, and for bridging the gap between specialists in
data generation and specialists in data analysis.

In this article we present an open-source computational
toolkit, CellDestiny, that performs visualization and analysis
of lineage-tracing datasets, complementing the existing
genBaRcode and barcodeTrackR which focus on barcode
pre-processing and longitudinal analyses, respectively. All
three toolkits address the fundamental challenge of making
single cell lineage-tracing analysis more accessible and
reproducible, while the specific advantages of CellDestiny are:
(i) the ability to incorporate study metadata into the analysis
framework permitting greater versatility, (ii) the focus on
visualizing experiment-level quality control metrics, providing
visualization tools to assess the consistency of technical
replicates, and to assess the frequency of repeat used barcodes.
Thus, prior to drawing biological conclusions from the data,
the user can assess whether or not critical data pre-processing
steps have been performed correctly. (iii) Analysis versatility,
in that CellDestiny allows the user to choose which data to
visualize using several grouping options, for example the ability
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FIGURE 10

Using CellDestiny to analyze datasets with transcriptomic and cellular barcoding measurements of single cells. (A) a UMAP visualization of gene
expression data for cKit+ (LK) and cKit+ Sca1+ (LSK) murine bone marrow cells that were barcoded and then differentiated in vitro. Each color
represents a distinct cell type as designated by the authors of the original study. These cell type references were used to generate a count
matrix by tallying the number of times each barcode occurs in each cell type (B) Hierarchical clustering of the lineage tracing data using
CellDestiny using Euclidian distance and complete linkage. Colors represent the arcsin transformed number of cells per barcode per cell type.
(C) Shannon diversity measures for all cell types. Each cell-type is represented with two points, with each point representing either the LK or LSK
starting cell population (D) cumulative clone-size distributions for the monocyte and neutrophil clusters. (E) The proportion of barcodes that
are unique to, or shared between the monocyte and neutrophil clusters. (F) A scatterplot of arcsin transformed barcode abundances for the
monocyte and neutrophil clusters for LSK and LK subsets of the data. (G) Lineage bias classifier results for barcodes of the neutrophil and
monocyte cell types using 0 and 20% thresholds. N = 3 experiments, N = 5865 barcodes.
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to assess clone sizes and clonal diversity across individuals,
organs and cell types.

The purpose of this app is to make lineage tracing analysis
more accessible to people who do not have a background in
computer programming. We anticipate that this can improve
the efficiency of interdisciplinary teamwork where in our
experience a lot of time can be wasted in generating plots that
end up not being useful because nuanced details about the
experimental design and implementation were not considered,
or in adjusting existing plots to better emphasize key results.
Importantly, this app is intended as an exploratory tool, and is
not intended to replace rigorous statistical analysis and testing of
the data which should be performed by data analysis specialists.
As a concrete example we may observe a statistically significant
difference in barcode diversity between two individuals, but
such an effect could potentially be explained by sampling biases.
We therefore strongly advocate that biological insights obtained
by using the app should be independently assessed through
rigorous statistical analysis.

Through case studies in lentiviral barcoding and lentiviral
integration site analysis we illustrate the functionality
and versatility of CellDestiny. Specifically, we show how
CellDestiny can be used to assess data quality, as well as
analyzing clonal diversity, clone-size distributions and lineage
commitment parameters. Lentiviral barcoding analysis of
murine hematopoietic progenitors leads us to conclude that
commitment to either the lung-resident cDC1 or cDC2 fate can
occur in the bone marrow, consistent with a previous barcoding
study (18). Our data brings new insights into this topic as Naik
et al. (18) studied LMPPs, which represent only a subset of the
entire MPP4 population, and did not study the development of
lung-resident cDCs. This result has important ramifications for
our understanding of immune cell development, challenging
previous studies suggesting that cDC fate-commitment was
thought to occur at later stages of hematopoiesis (44). We
complement this analysis with an additional case studies in
lentiviral integration site analysis and paired lineage tracing
and single cell transcriptomics measurements, showing how
CellDestiny can be used to analyze different types of single
cell lineage tracing data. As long as datasets are available in a
count matrix format where rows are cell identifiers (barcode
sequence, insertion site, etc.) and columns are samples, they
are compatible with CellDestiny, for example CRISPR-Cas9
barcoding (8), polylox barcoding (12), and single-cell RNA
barcoding (35).

To summarize, CellDestiny is an easy to use and versatile
open-source software toolbox that permits the visualization
and analysis of lineage tracing data. We anticipate that
CellDestiny will play a key role within a broader ecosystem of
analysis tools that increase the accessibility, reproducibility and
standardization of single cell lineage-tracing approaches with
implications for basic research and for gene therapies.

Materials and methods

CellDestiny

CellDestiny format
CellDestiny is designed for biologists without coding skills

and is available as a Rshiny app and through a web-interface. We
also make available the package – all of which can be accessed
here:

R package: https://github.com/TeamPerie/CellDestiny.
Web application: https://perie-team.shinyapps.io/CellDes

tiny/

Input data format
Lineage tracing dataset are typically organized in a matrix

of absolute read counts where rows are cell identifiers (barcode
sequence, insertion site, etc.) and columns are samples and so
this is the input format of CellDestiny. Two types of data matrix
can be loaded to CellDestiny. The first matrix is for data quality
control which requires a matrix with technical replicates across
individuals (e.g., sample1_dupA, sample1_dupB) to check for
PCR errors and repeat usage. CellDestiny also accepts as
input count matrices where technical replicates are merged
(e.g., by summing values or taking the mean value across
technical replicates).

The second type of input data is a metadata file giving
Supplementary information about study design and sample
information for instance cell types, organs, treatments, etc. An
example metadata input file can be found at: https://github.com/
TeamPerie/HadjAbed-et-al._2022.

Data preprocessing
A pre-processed count matrix can be loaded in the

QC module of the application to visualize key quality
control metrics (Figure 1). In the CellDestiny package, the
functions ReformatQCmatrix(), MakeDuplicatesMatrix() and
MakeRepeatUseMatrix() create the input matrices to check QC
by plotting the barcode sharing between duplicates using the
function PlotDuplicates() and between individuals using the
function PlotRepeatUse(). Once these QC metrics have been
visualized read counts from duplicates are summed or averaged
resulting giving a new matrix that can be loaded in the analysis
module of the application.

Barcode sharing
To explore barcode sharing across samples, CellDestiny

allows the user to visualize shared barcodes between two
cell types cell types (using the MakeDotplotMatrix() and
PlotDotplot() function in the package). In the dotplot
visualization, barcode abundances can be plotted on different
scales (logarithmic or arcsin). The dotplot can be complemented
by a piechart (using MakePieChartMatrix() and PlotPieChart()
in the package) which gives the percentage of shared and
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unshared barcodes between the two variables of choice. Shared
barcodes can also be assessed across 3 cell types cell types
with ternary dotplots (using the MakeTernaryPlotMatrix() and
PlotTernaryPlot() function in the package). In the ternary plot,
dot size varies with the total abundance of the barcodes in
the samples. Alternatively, barcode sharing between more than
three cell types can be visualized as a heatmap.

Lineage bias
To classify barcodes by their lineage bias, CellDestiny uses a

threshold based classifier lineage described (18). In summary,
an additional normalization step per barcode is applied in
each individual, thereby enabling categorization of each barcode
into classes of biased output towards the analyzed cell types.
Specifically, in our absolute count matrix where rows are
barcodes and columns are samples, we first normalize the
absolute read counts by the sample specific total number of
reads (column-wise normalization). Following this step we then
normalize each barcode such that each row sums to 1 (row-
wise normalization). This allows us to see how the barcode is
distributed across different cell types.

Barcodes are assigned a bias based on whether the % read
abundance exceeds a threshold value. If one barcode contributes
to a given lineage above the designated threshold then this
barcode is assigned to be biased towards that lineage. Barcodes
for which the % read abundance exceeds a threshold value
across multiple lineages are classified as multi-outcome. More
precisely:

Let Rbc represent the number of reads for barcode B in cell
type C, and let Pbc represent the proportional read abundance
per barcode per cell type

Pbc =
Rbc∑
i Rbc

The barcode is then classified as lineage biased if Pbc equals
or exceeds a threshold value

B =

{
unbiased, Pbc < threshold
biased, Pbc ≥ threshold

In the CellDestiny app, the threshold used for categorization
can be tuned manually. In the CellDestiny package,
MakeCategoryMatrices() prepare the data to input the
PlotCategories() and the complementary PlotCategoryCounts()
functions that output the number of barcodes per category and
the summed contribution of all the barcodes in this category. If
several individuals are present, PlotCategoryCounts() averages
the summed contribution over individuals.

Heatmap and correlogram
Similarities between samples can be visualized using a

heatmap together with hierarchical clustering. In the package,
the function MakeHeatmapMatrix() prepare the data to
plot heatmaps using the PlotHeatmap() function. Several

options are available for the distance and algorithm used
for clustering. Additionally, a correlogram can be plotted
(MakeHeatmapMatrix() and PlotCorrelogram() in the package)
that illustrates the correlation of barcode abundances between
all pairs of variables.

Clone size
CellDestiny offers two types of clone size

visualizations. The first one is a cumulative
diagram (use MakeCumulativeDiagramMatrix() and
PlotCumulativeDiagram() in the package). If the cumulative
graph has a concave shape, it means that a cell population
is dominated by a small number of large clones. On the
contrary, if the shape is linear, the sample is composed of a
number of clones which contribute equally to the cellularity
of the population. The second type of graph is a frequency
distribution plot (MakeBarcodeFrequenciesMatrix() and
PlotBarcodeFrequencies ()) in the package) where the user
can choose between histogram or density curve -based
representations of the data.

Diversity
Comparing sample diversities is a common step in

lineage tracing analysis. Diversity is computed using the
vegan R package. In the CellDestiny package, the function
CalculDiversity() calculate diversity using the number of
unique clones, the Shannon index or the Simpson index. For
vizualizing clonal diversity, PlotDiversity() computes a boxplot
of barcode diversities.

Integration site data

The data used in this article comes from reference (30). The
authors of the article provided us the data for two patients over
24 months and for 3 patients over 12 months. The data were
already filtered and samples were renormalized to 105.

Lentiviral barcoding data

Mice
Male C57BL/6J CD45.1+ and C57BL/6J CD45.2 mice were

ordered from Jackson Laboratory or bred at Institute Curie.
Mice aged between 7 and 13 weeks were used in all experiments.
All procedures were approved by the responsible national ethics
committee (APAFIS#10955-201708171446318 v1).

Barcode library, barcode reference list
The barcode library used consists of 98 bp semi-random

DNA fragments in the 3’ UTR of a GFP cassette as described
by (45) and described in detail elsewhere (46). The barcode
reference list is available on https://github.com/TeamPerie/
HadjAbed-et-al._2022.
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MPP4 isolation, transduction, and
transplantation

Isolation and labeling of cells with the barcoding library was
performed as previously described (18). Briefly, after isofluorane
anesthesia and cervical dislocation, bone marrow cells were
isolated from femur, tibia and iliac bones of 2 donor mice per
4 recipient mice by flushing, and c-Kit+ cells were enriched
by MACS with anti-CD117 magnetic beads (Miltenyi). Cells
were stained for antibodies against CD117, CD135, CD150, Sca-
1 and MPP4 were sorted using a FACSAria (BD Biosciences)
IIIu as CD117+/Sca−1+/CD150−Cd135+ (see Figure 2) and
transduced with the barcode library in StemSpanMedium SFEM
(STEMCELL Technologies) with 50 ng/ml mSCF (STEMCELL
Technologies) through 1.5 h of centrifugation at 300 g and
4.5 h incubation at 37◦C to obtain ∼10% barcoded cells. After
incubation, the cells were transplanted by tail vein injection into
recipient mice that were 6 Gy sub-lethally irradiated using an
X-ray generator 3 h prior to the transplantation.

cDC isolation
Mice were euthanized 14 days after transplantation by

cervical dislocation. Lung were flushed by transection of the
caudal vena cava followed by injection of 2 ml PBS into the
right ventricle. Lungs were excised and perfused with digestion
medium (HBSS supplemented with 13 U/ml LiberaseTM and
10 mg/ml DNAse I) by injecting medium in each lung lobe
until each lobe was fully inflated. Lungs and remaining digestion
medium were placed into GenteMACS C tubes. A single-
cell suspension was obtained by first incubating the lungs
for 15 min at 37◦C and subsequently placing them on a
GentleMACS Octo dissociator running the 37C_m_LDK_1
protocol at 37◦C according to manufacturers’ instructions.
The resulting single-cell suspension was filtered using a 100
um cell strainer and MACS enriched for CD11c+ cells using
CD11c UltraPure Microbeads (Miltenyi Biotec) according to
manufacturers’ instructions. FACS staining was performed on
CD11c-enriched single-cell suspensions by first staining dead
cells using Live/DEAD aqua in PBS, followed by 30 min
antibody staining with CD45.2 Pacific blue, CD11c APC,
MHC-II APC-eFluor780, CD3e BV510, CD19 BV510, NK1.1
BV510, Ly6G BV510, CD24 PE, CD103 PE-CF594 and CD11b
PerCP-Cy5.5 in PBS supplemented with 1% FBS. Single-cell
suspensions were washed and fixed using 1% PFA for 15 min.
Within 24 h after antibody staining GFP+/CD45.2+ cDC were
sorted (see Figure 2) using a BD Aria IIIu. After sorting, cells
were lysed in Viagen Direct PCR lysis Reagent supplemented
with 0.5 mg/ml Proteinase K at 55◦C for 2 h and 85◦C after
which Proteinase K was inactivated at 95◦C for 5min. Lysed cells
were frozen at –20◦C until further processing.

Barcode amplification and sequencing
Barcodes were amplified as published previously (46).

In short, lysed cell preparations were split to allow for

duplicate measurements. Barcodes in the preparations were
first amplified by PCR using forward tgctgccgtcaactagaaca and
reverse gatctcgaatcaggcgctta primers. Subsequently, a second
amplification step was performed using the sample primers,
but incorporating Illumina P5 and P7 flow cell sequences and
sample index primers. PCR products for sample replicates
pooled, purified with the Agencourt AMPure XP system
(Beckman Coulter), diluted to 5 nM. and sequenced on a HiSeq
system (Illumina) (SR-65bp) at Institute Curie facility with 10%
of PhiX spike-in.

Barcode sequence analysis
Sequencing results were filtered as in reference (18) and

further explained on Github.1 In brief, sequencing results were
analyzed using R-4.0.3 (R Development Core Team (47)),2

Excel, and GraphPad Prism version 8.0 for Mac (GraphPad
Software, La Jolla, CA, USA).3 Reads were first filtered for
perfect match to the input index- and common-sequences
using XCALIBR4 and filtered against the barcode reference
list. Samples were then normalized by dividing the number of
reads per barcode per sample by the total number of reads
per sample. For filtering, all samples had a Pearson correlation
between duplicates higher than 0.8 and were kept. In addition,
barcodes present in one of the two replicates were set to
zero. After filtering, read counts from duplicates are summed
and renormalized. For heatmap plotting this value was then
scaled by multiplying the column normalized read counts by
105.

Analysis of simultaneous
transcriptomic and lineage tracing
measurements in single cells

Gene expression matrices and associated metadata
from Weinreb et al. (35) were downloaded from
https://github.com/AllonKleinLab/paper-data/tree/master/
Lineage_tracing_on_transcriptional_landscapes_links_state_
to_fate_during_differentiation. This dataset comprises 130887
cells, 13920 unique genes, and 5865 unique barcodes. To
convert this data into a count matrix compatible with
CellDestiny, cells were grouped under the ‘cell type annotation’
descriptor in the project metadata and then for each cell type
we calculated the number of cells expressing each barcode.
No additional QC processing or normalization steps were
performed on the data.

1 https://github.com/TeamPerie/HadjAbed-et-al._2022

2 http://www.R-project.org

3 www.graphpad.com

4 https://github.com/NKI-GCF/xcalibr
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