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BILIPSCHITZ EQUIVALENCE OF POLYNOMIALS

ARNAUD BODIN

Abstract. We study a family of two variables polynomials having moduli up to bilips-

chitz equivalence: two distinct polynomials of this family are not bilipschitz equivalent.

However any level curve of the first polynomial is bilipschitz equivalent to a level curve

of the second.

1. Global bilipschitz equivalence

Let K be R or C. For polynomial maps f, g : Kn → K we introduce two notions of

bilipschitz equivalence: a level equivalence (a hypersurface (f = c) is sent to a hypersurface

(g = c′)) and a global equivalence (any level (f = c) is sent to another level (g = c′)).

– Kn is endowed with the Euclidean canonical metric.

– A map Φ : Kn → Kn is Lipschitz if there exists K > 0 such that for all x, y ∈ Kn:

‖Φ(x)− Φ(y)‖ 6 K‖x− y‖.

– A map Φ : Kn → Kn is bilipschitz if it is a homeomorphism, Lipschitz and Φ−1

is also Lipschitz. Equivalently, Φ is bijective and there exists K > 0 such that
1
K ‖x− y‖ 6 ‖Φ(x)− Φ(y)‖ 6 K‖x− y‖.

– Two sets C and C′ of K2 are bilipschitz equivalent if there exists a bilipschitz map

Φ : Kn → Kn such that Φ(C) = C′.
– Two functions f, g : Kn → K are right-bilipschitz equivalent if there exists a bilips-

chitz map Φ : Kn → Kn such that g ◦Φ = f .

– Two functions f, g : Kn → K are left-right-bilipschitz equivalent if there exist a

bilipschitz map Φ : Kn → Kn and a bilipschitz map Ψ : K → K such that g ◦ Φ =

Ψ ◦ f .

Kn Kn

K K

Φ

id

f g

Kn Kn

K K

Φ

Ψ

f g

Figure 1. Two commutative diagrams. On the left: right-bilipschitz

equivalence. On the right: left-right-bilipschitz equivalence.
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– A map Φ : Kn → Kn can be C1 but not Lipschitz. Hence (bi-)Lipschitz is not

an intermediate case between smooth and continuous. This is due to the non-

compactness: for instance Φ : R → R, x 7→ x2 is C1 but not Lipschitz.

– For similar reasons an algebraic automorphism of Kn does not necessarily provide

a bilipschitz equivalence. For instance f(x, y) = y and g = y+ x2 are algebraically

equivalent using the map Φ : (x, y) 7→ (x, y − x2), but Φ is not bilipschitz.

It is clear that bilipschitz equivalence implies topological equivalence (i.e. when Φ and

Ψ are only homeomorphisms). The main question is: does topological equivalence implies

bilipschitz equivalence? The answer is negative.

We will actually prove more. A theorem of Fukuda asserts that in a family of poly-

nomials there is only a finite number of different types, up to topological equivalence, see

[4], [3]. However the following theorem proves that the family of polynomials fs(x, y) =

x(x2y2 − sxy − 1) has moduli for bilipschitz equivalence, i.e. any two polynomials in this

family are not right-bilipschitz equivalent.

Theorem 1. Consider the family of polynomial in K[x, y]:

fs(x, y) = x(x2y2 − sxy − 1).

– K = R. Any two polynomials fs and fs′ with s, s′ ∈ R, s 6= s′ are not right-

bilipschitz equivalent. However the special levels (f0 = 0) and (f1 = 0) are bilips-

chitz equivalent and the generic levels (f0 = 1) and (f1 = 1) are bilipschitz equiva-

lent.

– K = C. Fix s ∈ C, with s2 + 3 6= 0. For all but finitely many s′ ∈ C, fs and fs′

are not right-bilipschitz equivalent. However, if s2 + 4 6= 0 and s′2 + 4 6= 0, the

polynomials fs and fs′ are topologically equivalent.

This is a version at infinity of a result by Henry and Parusiński, [5]. Our polynomials

fs have only one special level (fs = 0) which plays the role of the singular level of the

local examples of [5]. We recall that for a polynomial map f : Kn → K there is a notion

of generic levels (f = c) and a finite number of special levels whose topology is not the

generic one. Special levels can be due to the presence of a singular point or to singularity at

infinity as this the case in our examples. We will in fact prove a non bilipschitz equivalence

“at infinity”, after defining that two functions are bilipschitz equivalent at infinity if they

are bilipschitz equivalent outside some compact sets.

Acknowledgments. I thank Vincent Grandjean, Anne Pichon and Patrick Popescu-

Pampu for their encouragements and the referees for their comments.

2. Levels are bilipschitz equivalent

Lemmas 2 and 3 in this section will prove the bilipschitz real equivalence of theorem 1.

Let

fs(x, y) = x(x2y2 − sxy − 1)

which, in this section, is considered as a family of polynomials in R[x, y].

Lemma 2. The levels (f0 = 0) and (f1 = 0) are bilipschitz equivalent, that is to say there

exists a bilipschitz map Φ : R2 → R2 such that Φ((f0 = 0)) = (f1 = 0).

In other words, the (unique) special fibers of f0 and f1 are bilipschitz equivalent.
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Proof.

Definition of Φ.

– Let σ =
√
5+1
2 be the positive root of z2 − z − 1 = 0. Let τ =

√
5−1
2 be the positive

root of z2 + z − 1 = 0.

– We define a map Φ : R2 → R2 by the following formulas:

– For (x, y) ∈ (xy = 1) we define:

Φ(x, y) = (ax, by) with ab = σ,

such that (a, b) depends on (x, y) in the following way:
{

(a, b) = (σ, 1) if |x| 6 1
2

(a, b) = (1, σ) if |x| > 2

and extended to a smooth map for 1
2 6 |x| 6 2 so that the relation ab = σ is

always satisfied on (xy = 1).

– For (x, y) ∈ (xy = −1) we similarly define Φ(x, y) = (ax, by) with ab = τ , and

(a, b) = (τ, 1) for |x| 6 1
2 , (a, b) = (1, τ) for |x| > 2 and extended in a smooth

map for 1
2 6 |x| 6 2.

– Φ(0, y) = (0, y) for all y ∈ R.

– Φ(x, y) = (x, y) for (x, y) outside a neighborhood N of radius 1 of (xy =

1) ∪ (xy = −1).

– Φ is extended on N to a bilipschitz homeomorphism Φ : R2 → R2.

y

x

(f0 = 0)

N

y

x

(a, b) = (1, σ)

(a, b) with ab = σ

(a, b) = (σ, 1)

(a, b) = (1, τ)

(a, b) with ab = τ

(a, b) = (τ, 1)

(a, b) = (1, σ)

(a, b) with ab = σ

(a, b) = (σ, 1)

(a, b) = (1, τ)

(a, b) with ab = τ

(a, b) = (τ, 1)

Figure 2. The definition of Φ. Left: the level, a neighborhood of the level.

Right: the values (a, b) for the definition of Φ(x, y) = (ax, by) on the level.

– The only point to prove is that the formulas actually yield a bilipschitz map around

the axis. For instance let (x1, y1) ∈ (xy = 1) with x1 > 2, so that Φ(x1, y1) =

(x1, σy1) and (x2, y2) ∈ (xy = −1) with x2 > 2 and Φ(x2, y2) = (x2, τy2). Then

‖Φ(x1, y1)− Φ(x2, y2)‖ = ‖(x1 − x2, σy1 − τy2)‖
6 ‖(x1 − x2, 2σ(y1 − y2)‖
6 2σ‖(x1 − x2, y1 − y2)‖

(using that y1 − y2 = |y1|+ |y2|). A similar bound holds for Φ−1 on this branch.

Then Φ : R2 → R2 is a bilipschitz homeomorphism.
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Equivalence.

– Let f(x, y) = f0(x, y) = x(x2y2 − 1) and g(x, y) = f1(x, y) = x(x2y2 − xy − 1).

– By definition of Φ, Φ(0, y) = (0, y) so that the component (x = 0) ⊂ (f = 0) is

sent by Φ to (x = 0) ⊂ (g = 0).

– Let (x, y) ∈ (xy = 1) ⊂ (x2y2 = 1) ⊂ (f = 0). For such (x, y), Φ(x, y) = (ax, by)

with ab = σ.

– Let g̃(x, y) = x2y2 − xy − 1:

g̃ ◦Φ(x, y) = g̃(ax, by) = a2b2x2y2 − abxy − 1 = σ2(xy)2 − σxy − 1.

As xy = 1 we get:

g̃ ◦ Φ(x, y) = σ2 − σ − 1 = 0,

by definition of σ. Then Φ(x, y) ⊂ (g̃ = 0) ⊂ (g = 0). A similar reasoning holds

for (xy = −1).

�

We now prove that two generic fibers are also bilipschitz equivalent.

Lemma 3. The levels (f0 = 1) and (f1 = 1) are bilipschitz equivalent, that is to say there

exists a bilipschitz map Φ : R2 → R2 such that Φ((f0 = 1)) = (f1 = 1).

Proof.

– Parameterization of (f0 = 1). The curve (f0 = 1) has equation x3y2−x−1 = 0

and a parameterization (x, y) is given by

y+ =

√

1

x2
+

1

x3
or y− = −

√

1

x2
+

1

x3
for x ∈]−∞,−1] ∪ ]0,+∞[.

y

x

(f0 = 0)

(f0 = 1)

A

B

γ

y

x

(f1 = 0)

(f1 = 1)

Ã

B̃
γ̃

Figure 3. The levels (f0 = 1) and (f1 = 1).

– Parameterization of (f1 = 1). The curve (f1 = 1) has equation x3y2 − x2y −
x− 1 = 0, a parameterization is given by:

Y+ =
1

2x
+

1

2

√

5

x2
+

4

x3
or Y− =

1

2x
− 1

2

√

5

x2
+

4

x3
for x ∈]−∞,−5

4 ] ∪ ]0,+∞[.

– Definition of Φ.
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– Case x > 0. Φ is defined on (f0 = 1) using the parameterization by the

formula Φ(x, y) = (x, Y+), for (x, y) ∈ (f0 = 1) with x > 0 and y > 0;

Φ(x, y) = (x, Y−), for (x, y) ∈ (f0 = 1) with x > 0 and y < 0.

– Case x 6 −2. Φ is defined by the same formulas Φ(x, y) = (x, Y+) (for y > 0)

or Φ(x, y) = (x, Y−) (for y < 0).

– Case −2 6 x 6 −1. (Note: we do not use the above formulas in the neighbor-

hood of the point (−1, 0) because the map y+ 7→ Y+ is not bilipschitz near this

point.) Let A,B be the two points of (x = −2) ∩ (f0 = 1). Let Ã, B̃ be their

images by Φ (i.e. A,B belong (x = −2)∩(f1 = 1)). Let γ be the compact part

of (f0 = 1) between A and B and γ̃ be the compact part of (f1 = 1) between

Ã and B̃. We extend Φ in a bilipschitz way from γ to γ̃. This is possible as γ

and γ̃ are two compact connected components of a smooth algebraic curve. Φ

is now defined everywhere on (f0 = 1).

– We extend Φ on R2 to a bilipschitz map Φ : R2 → R2. For instance we

may suppose Φ is the identity outside a tubular neighborhood or radius 1 of

(f0 = 1).

– Bilipschitz on (f0 = 1). It remains to justify that Φ is actually a bilipschitz map

from (f0 = 1) to (f1 = 1).

– Case x > 0 and x→ 0. Hence y → ±∞. Then y+ ∼ 1
x3/2 and Y+ ∼ 1

x3/2 ∼ y+
so that the map Φ(x, y+) = (x, Y+) is bilipschitz. The same applies for y− and

Y−.

– Case x→ +∞. Hence y → 0. Then y+ ∼ 1
x and Y+ ∼

√
5+1
2 · 1

x ∼ σy+. Then,

as in the proof of proposition 2, Φ(x, y+) = (x, Y+) is bilipschitz. The same

applies for y− and Y− ∼ τy− with τ =
√
5−1
2 .

– Case x→ −∞. It is similar to the previous case: Y+ ∼ τy+, Y− ∼ σy−.

�

3. Moduli

The following theorem proves that under bilipschitz equivalence at infinity a family

of polynomials can have moduli. It is a version at infinity of the example of Henry and

Parusiński [5]. Two functions f, g : Kn → K are right-bilipschitz equivalent at infinity if

there exist compact sets C,C ′ and a bilipschitz map Φ : Kn \ C → Kn \ C ′ such that

g ◦ Φ = f .

Using this notion, we will prove the moduli affirmation of theorem 1 with the following

refinement.

Theorem 1’.

fs(x, y) = x(x2y2 − sxy − 1) ∈ K[x, y].

– K = R. Any two polynomials fs and fs′ with s, s′ ∈ R, s 6= s′ are not right-

bilipschitz equivalent at infinity (hence not globally right-bilipschitz equivalent).

Moreover they are also not left-right-equivalent if we assume Φ analytic at infinity.

– K = C. Fix s ∈ C, with s2 + 3 6= 0. For all but finitely many (explicit) s′ ∈ C,

fs and fs′ are not right-bilipschitz equivalent at infinity (hence not globally right-

bilipschitz equivalent).

3.1. Preliminaries.

– Let fs(x, y) = x(x2y2 − sxy − 1) = x3y2 − sx2y − x.
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– Then ∂xfs(x, y) = 3x2y2 − 2sxy − 1.

– The equation 3z2 − 2sz − 1 = 0 has discriminant ∆ = 4(s2 + 3) and two solutions:

αs =
s+

√
s2 + 3

3
and βs =

s−
√
s2 + 3

3
.

– The polar curve Γs : (∂xfs = 0), associated to the projection on the y-axis, has two

components:

(xy = αs) and (xy = βs),

parameterized by:
(

αst,
1

t

)

and

(

βst,
1

t

)

t ∈ K \ {0}.

– We compute the values of fs on the polar components. Near the point at infinity

(0 : 1 : 0), that is to say for t → 0, we compute the values of fs on each branch of

Γs:

fs

(

αst,
1

t

)

= αs(α
2
s − sαs − 1)t,

and

fs

(

βst,
1

t

)

= βs(β
2
s − sβs − 1)t.

– We compare theses values for two branches at a same y-value:

fs
(

αst,
1
t

)

fs
(

βst,
1
t

) =
αs(α

2
s − sαs − 1)

βs(β2s − sβs − 1)
.

– Our arguments will only focus on a neighborhood of a the point (0 : 1 : 0) at

infinity. More precisely we will say that an analytic curve (x(t), y(t)) tends to the

point at infinity (0 : 1 : 0) if y(t) → +∞ and |x(t)|
|y(t)| → 0 as t→ 0.

3.2. Proof in the real case.

– Fix t > 0. Let A,B,C,D,E be the following points having all y-coordinates equal

to 1
t :

– A ∈ (fs = 0) with xA > 0,

– B ∈ Γs : (∂xfs = 0) with xB > 0,

– C = (0, 1t ) ∈ (fs = 0),

– D ∈ Γs : (∂xfs = 0) with xD < 0,

– E ∈ (fs = 0) with xE < 0.

– Let us fix s, s′ ∈ R. By contradiction let us assume that there exists a bilipschitz

homeomorphism Φ : R2 → R2 such that fs′ ◦ Φ = fs. Let K be its bilipschitz

constant. Let Ã, B̃, . . . be the image by Φ of A,B, . . . Let γ be the segment [AB]

and γ̃ = Φ(γ).

– Φ sends (fs = 0) to (fs′ = 0) and, as it is a homeomorphism, it should send the

component (x = 0) of (fs = 0) to the component (x = 0) of (fs′ = 0). Hence

xC̃ = 0.

– A,B,C,D,E and γ are all included in the disk of radius rt centered at C, where r

is a constant that depends only on the fixed value s. Hence by the bilipschitz map

Φ, Ã, B̃, C̃, D̃, Ẽ and γ̃ are all included in a disk of radius Krt centered at C̃.

– There is an issue: the point B is on the polar curve Γs but B̃ has no reason to be

on Γs′ . We will replace B̃ by a point B′ satisfying this condition.
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ABCDE

(fs = 0) (fs = c)(fs = c′)

Γs

Figure 4. The situation for fs.

γ̃

(fs′ = 0) (fs′ = c)(fs′ = c′)

Ã

B̃

B′

C̃

(fs′ = 0) (fs′ = c)

Γs
′

Figure 5. The situation for fs′.

– Let c = fs(B). Let X̃c be the part of (fs′ = c) in the ball of radius Krt centered

at C̃. As fs′(B̃) = fs(B) = c, then B̃ ∈ X̃c and X̃c is non empty. Moreover

X̃c is contained between two components of (fs′ = 0): (x = 0) and one branch

of (x2y2 − s′xy − 1 = 0). Moreover X̃c is strictly below γ̃ except at B̃ (because

(f = c) is below γ = [AB] and intersects it only at B).

– Let B′ be the point of X̃c such that yB′ is maximal among points of X̃c. Then the

tangent at B′ is horizontal, that is to say ∂xfs′(B
′) = 0, hence B′ ∈ Γs′ . Remember

also that B′ ∈ X̃c so that fs′(B
′) = c.

– Partial conclusion: we constructed a point B′ ∈ Γs′∩(fs′ = c) such that ‖B′−C̃‖ 6

Krt (with xB′ > 0).

– We carry on the same proof for the other side. Let c′ = fs(D), we find a point

D′ ∈ Γs′ ∩ (fs′ = c′) such that ‖D′ − C̃‖ 6 Krt (with xD′ < 0).

– Now both these points B′ and D′ are in the same disk of radius Krt centered at

C̃. In particular:

yD′ − 2Krt 6 yB′ 6 yD′ + 2Krt.
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– Let B′ = (αs′t
′, 1t′ ) be the coordinates of B′ on the first branch of Γs′ and D′ =

(βs′t
′′, 1

t′′ ) be the coordinates of D′ on the second branch of Γs′ . The former in-

equalities rewrite:
1

t′′
− 2Krt 6

1

t′
6

1

t′′
+ 2Krt.

We consider t → 0, so that t′ → 0, t′′ → 0 (a neighborhood of (0 : 1 : 0) is send to

a neighborhood of (0 : 1 : 0)). Hence t′′ = t′ +O(tt′t′′) = t′ +O(tt′2).
– Now

fs′
(

αs′t
′, 1t′

)

fs′
(

βs′t′′,
1
t′′

) =
αs′t

′ (α2
s′ − s′αs′ − 1

)

βs′t′′
(

β2s′ − s′βs′ − 1
)

=
αs′t

′ (α2
s′ − s′αs′ − 1

)

βs′(t′ +O(tt′2))
(

β2s′ − s′βs′ − 1
) −→ αs′(α

2
s′ − s′αs′ − 1)

βs′(β
2
s′ − s′βs′ − 1)

as t′ → 0.

– On the other hand:

fs′(B
′)

fs′(D′)
=
c

c′
=
fs′(B̃)

fs′(D̃)
=
fs(B)

fs(D)
=
αs(α

2
s − sαs − 1)

βs(β2s − sβs − 1)
.

Finally:
αs(α

2
s − sαs − 1)

βs(β2s − sβs − 1)
=
αs′(α

2
s′ − s′αs′ − 1)

βs′(β
2
s′ − s′βs′ − 1)

.

– The map s 7→ αs(α2
s−sαs−1)

βs(β2
s−sβs−1)

= 2(s2+3)αs+s
2(s2+3)βs+s

is strictly decreasing for s ∈ R so that

s = s′.
– Conclusion: if s, s′ ∈ R, with s 6= s′, then there exists no bilipschitz homeo-

morphism sending fs to fs′ . Since our arguments only care about situation near

(0 : 1 : 0) fs and fs′ are not right-bilipschitz equivalent at infinity.

3.3. No left-right-equivalence. We now prove that for s 6= s′ fs and fs′ are not left-

right-equivalent, if we ask the homeomorphism Φ to be analytic near the point at infinity

(0 : 1 : 0). By contradiction we suppose that there exist bilipschitz homeomorphisms Φ

and Ψ such that fs′ ◦Φ = Ψ ◦ fs and Φ is analytic near the point at infinity (0 : 1 : 0). We

continue with the same notation as above, but we cannot conclude as before because we

no longer have
fs′ (B

′)
fs′(D

′) equal to fs(B)
fs(D) .

– Let C = (0, 1t ) and Φ(C) = C̃ = (0, 1
t̃
) (t > 0). The map 1

t 7→ 1
t̃

is a bilipschitz

homeomorphism. We will assume Φ(0, 0) = (0, 0) so that 1
K

1
t 6 1

t̃
6 K 1

t hence
1
K t 6 t̃ 6 Kt. Define χ(t) = t̃, for t > 0, and set χ(0) = 0. In the following we will

actually only need the relation 1
K t 6 χ(t) 6 Kt, but in fact the map t 7→ χ(t) is a

bilipschitz homeomorphism (with the constant K3).

– We assumed that the map Φ is analytic at infinity around (0 : 1 : 0). It implies

that the map t 7→ χ(t) is analytic for t > 0: χ(t) = a0t
r0 + a1t

r1 + · · · The map χ

being bilipschitz it implies r0 = 1 so that χ(t) = a0t+ a1t
r1 + · · · with r1 > 1.

– Notice that the relation fs′ ◦Φ = Ψ ◦ fs implies that the map Ψ is also an analytic

map.

– Recall that B = (αst,
1
t ) and fs(B) = c = αs(α

2
s − sαs − 1)t, D = (βst,

1
t ) and

fs(D) = c′ = βs(β
2
s − sβs − 1)t. Φ(B) = B̃ and fs′(B̃) = c̃ = Ψ(c), Φ(D) = D̃

and fs′(D̃) = c̃′ = Ψ(c′). We found B′ = (αs′t
′, 1

t′ ) close to B̃ such that fs′(B
′) =

fs′(B̃) = c̃. Hence c̃ = αs′(α
2
s′ − s′αs′ − 1)t′. Similarly D′ = (βs′t

′′, 1
t′′ ) is close to

D̃ and fs′(D
′) = fs′(D̃) = c̃′. Hence c̃′ = βs′(β

2
s′ − s′βs′ − 1)t′′.
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B′ is close to B̃ actually means
∣

∣

∣

1
t′ − 1

t̃

∣

∣

∣
6 Krt, that implies |t′ − t̃| 6 Krtt′t̃.

That implies t′ = χ(t) +O(t3). Similarly t′′ = χ(t) +O(t3).

– The map Ψ is defined, for negative values, by c 7→ c̃ that is to say αs(α
2
s−sαs−1)t 7→

αs′(α
2
s′ − s′αs′ − 1)t′. It implies that, for u < 0, the map Ψ is defined by

Ψ : u 7→ αs′(α
2
s′ − s′αs′ − 1)χ

(

u

αs(α2
s − sαs − 1)

)

+O(u3).

Hence, as χ(t) = a0t+ o(t):

Ψ : u 7→ αs′(α
2
s′ − s′αs′ − 1)

αs(α2
s − sαs − 1)

u+ o(u).

Similarly Ψ(d) = d̃ so that for u > 0:

Ψ : u 7→ βs′(β
2
s′ − s′βs′ − 1)

βs(β2s − sβs − 1)
u+ o(u).

– By analycity of Ψ, it implies that the coefficients of u are equal, whence

αs(α
2
s − sαs − 1)

βs(β2s − sβs − 1)
=
αs′(α

2
s′ − s′αs′ − 1)

βs′(β
2
s′ − s′βs′ − 1)

,

which is impossible for s 6= s′ as we have seen before in section 3.2.

3.4. No left-right-equivalence (again). It is not clear whether fs and fs′ (s 6= s′) are

or not left-right bilipschitz equivalent when no restriction is made on Φ. However we can

complicate our example in order to exclude left-right equivalence.

Lemma 4. Let

fs(x, y) = x(x4y4 − 3sx2y2 + 1)

be a family of polynomials in R[x, y]. Then for s, s′ > 1, with s 6= s′, the polynomials fs
and fs′ are not left-right bilipschitz equivalent.

Proof. The proof is similar to the proof of section 3.3.

– The equation 5z4 − 9sz2 + 1 = 0 has 4 real solutions −αs < −βs < βs < αs

corresponding to 4 branches of the polar curve (∂xfs = 0).

– We use the same method as before in section 3.3 with B = (−αst,
1
t ), fs(B) =

−αs(α
4
s − 3sα2

s + 1)t = cst > 0 and D = (βst,
1
t ), fs(D) = βs(β

4
s − 3sβ2s + 1)t =

dst > 0 (with t > 0).

– This times for u > 0 we have two formulas for Ψ :

Ψ(u) = cs′χ

(

u

cs

)

+O(u3),

and

Ψ(u) = ds′χ

(

u

ds

)

+O(u3).

– It implies that the bilipschitz map χ verifies

χ

(

cs
ds
v

)

=
cs′

ds′
χ(v) +O(v3)

for all v > 0 near 0.

– Then by lemma 5 below, it implies p = cs
ds
> 1 is equal to q =

cs′
ds′

> 1 which is

impossible if s 6= s′.

�
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Lemma 5. Let χ : R → R be a bilipschitz map such that

χ(pv) = qχ(v) +O(v3)

for some constant p, q > 1 and all v near 0. Then p = q.

Proof. We have χ(v) = qχ(v/p) + v3η(v), where η(v) is a bounded function for v near 0.

By induction it yields χ(v) = qnχ(v/pn) + v3
∑n−1

k=0 η(v/p
k)(q/p3)k. Hence, except for the

special case p3 = q that would be treated in a similar way, we have:

(1)

∣

∣

∣

∣

χ(v)− qnχ

(

v

pn

)∣

∣

∣

∣

6 Cv3
1− (q/p3)n

1− q/p3
.

Let K > 0 be a bilipschitz constant for χ. As χ(0) = 0 we have K−1 < |χ(v)|
|v| < K for

all v 6= 0. In particular K−1 < pn |χ(v/pn)|
|v| < K.

Case p > q. Then we have qnχ(v/pn) → 0 as n → +∞. At the limit, when n → +∞,

inequality (1) gives |χ(v)| 6 C ′v3, which contradicts that χ is bilipschitz.

Case p < q. Inequality (1) gives
∣

∣

∣

∣

pn

qn
χ(v)− pnχ

(

v

pn

)
∣

∣

∣

∣

6 C ′v3
(

pn

qn
− 1

p2n

)

Fix v 6= 0. As n→ +∞, the term pnχ( v
pn ) does not tend towards 0, it contradicts that all

the other terms pn

qnχ(v),
pn

qn and 1
p2n

tends towards 0.

Conclusion: p = q.

�

We completed the proof of theorem 1 in the real setting.

4. Proof in the complex case

The proof in the complex case at infinity is an adaptation of the local proof of Henry

and Parusiński [5].

4.1. Notations.

– Let g : C2 → C be a polynomial map and p = (x, y) be a point near the point at

infinity (0 : 1 : 0), that is to say |y| ≫ 1 and |x| ≪ |y|.
– Fix p0, let c = g(p0). Denote B(p0, ρ) the open ball centered at p0 of radius ρ and

X(p0, ρ) = (g = c) ∩B(p0, ρ).

– Fix K > 0 and denote distp0,ρ,K(p, q) the inner distance of p and q supposed to be

in the same connected component of X(p0,Kρ).

– Let

φ(p0,K, ρ) = sup
distp0,ρ,K(p, q)

‖p − q‖
be the ratio between the inner and outer distances.

– Denote

ψ(p0,K, ρ) = sup
ρ′6ρ

φ(p0,K, ρ
′).

– Finally let

Y (ρ,K,A) = {p | ψ(p,K, ρ) > A}.
be the set of points p where the curvature of the curve (g = c) is large.

– Let Φ : C2 → C2 be a bilipschitz homeomorphism at infinity such that g̃ ◦ Φ = g.

Let L be a bilipschitz constant of Φ.
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– Once Φ is fixed, we add a tilde to denote an object in then target space, for instance

Ỹ (ρ,K,A) = {p̃ | ψ(p̃,K, ρ) > A}
is the set of points p̃ in the target space where the curvature of the curve (g̃ = c̃)

is large.

We have the following lemma saying that points with large curvature are sent to points

of large curvature by a bilipschitz map:

Lemma 6 ([5], Lemma 2.1). For K > L2:

Ỹ (L−1ρ,K,AL2) ⊂ Φ(Y (ρ,K,A)) ⊂ Ỹ (Lρ,K,AL−2).

And a variant:

Lemma 7 ([5], Lemma 2.2). Let δ > 0 and

Y (δ,K,M,A) = {p | ψ(p,M‖p‖−1+δ ,K) > A}.
If K > L2 then:

Ỹ (δ,K,ML−δ , AL2) ⊂ Φ(Y (δ,K,M,A)) ⊂ Ỹ (δ,K,ML+δ , AL−2).

Remarks:

– There are two distinct uses of the norm:

– ‖p− q‖: distance between two “near” points: a “small” number.

– ‖p‖: distance to the origin: a “large” number. We will use it for 1
‖p‖ in order

to get a “small” number.

– If we denote p̃ = Φ(p), then the bilipschitz property implies: L−1‖p‖ 6 ‖p̃‖ 6 L‖p‖
for some bilipschitz constant L, hence also:

L−1‖p‖−1 6 ‖p̃‖−1 6 L‖p‖−1.

– Notice that in our definition of Y (δ,K,M,A) of lemma 7 there is a term in ‖p‖−1+δ

while in [5] the term is ‖p‖1+δ. After this modification, the proof is the same as in

[5].

– We will restrict ourselves to a neighborhood of the point at infinity (0 : 1 : 0), in

particular we may suppose |y| ≫ |x| so that morally ‖p‖ = ‖(x, y)‖ ≃ |y| (this is

an equality in the case ‖ · ‖ = ‖ · ‖∞).

Fix s ∈ C and denote fs(x, y) = x(x2y2− sxy−1). Let us denote U = {(x, y) | |∂xfs| <
|∂yfs|}.
Lemma 8 (compare to [5], Lemma 3.2). Let (x(t), y(t)) ∈ U with y(t) = 1

t . Then for

s2 + 3 6= 0:

x(t) = γt+O(t3) and fs(x(t), y(t)) = γ(γ2 − sγ − 1)t+O(t3),

with

γ = αs or γ = βs a solution of 3z2 − 2sz − 1 = 0.

In this section we now suppose s2 + 3 6= 0.

Proof. Let u = xy. On U the inequality |∂xfs| < |∂yfs| yields |3u2−2su−1| < |x|2|2u−s|.
In a neighborhood of the point at infinity (0 : 1 : 0) we first prove that |x(t)| is bounded

as t → +∞. If this is not the case, then write x(t) = a0t
r0 + a1t

r1 + · · · with ri ∈
Q, ri < ri+1 and here r0 < 0. As y(t) = 1/t, then u(t) ∼ a0t

r0−1 → +∞. Then

|3u2 − 2su − 1| < |x|2|2u − s| implies r0 6 −1 in contradiction with x(t)
y(t) → 0. Now,
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as |x(t)| is bounded, inequality |3u2 − 2su − 1| < |x|2|2u − s| implies that |u(t)| is also

bounded. Write again x(t) = a0t
r0 + a1t

r1 + · · · and using that u(t) is bounded gives

r0 > 1: x(t) = a0t+ a1t
r1 + · · · and u(t) = a0 + a1t

r1−1 + · · · (a0 ∈ C). We plug u(t) in

the inequality |3u2 − 2su− 1| < |x|2|2u− s|:
∣

∣3(a0 + a1t
r1−1 + · · · )2 − 2s(a0 + a1t

r1−1 + · · · )− 1
∣

∣ = O(t2).

It implies:

3a20 − 2sa0 − 1 = 0

and

6a0a1t
r1−1 − 2sa1t

r1−1 = O(t2).

We may suppose a1 6= 0 and we now prove r1 > 3. Otherwise 6a0 = 2s, that is to say

s = 3a0, but a0 is a solution of 3z2 − 2sz − 1 = 0. This is only possible if s2 + 3 = 0.

So that x(t) = γt + O(t3) as required, where γ is a solution of 3z2 − 2sz − 1 = 0. Then

fs(x(t), y(t)) = γ(γ2 − sγ − 1)t+O(t3). �

Lemma 9 (compare to [5], Lemma 3.3). Let 0 < δ < 1 and C > 0. On the set:

{p = (x, y) | ∃p0 = (x0, y0) ∈ U, fs(p) = fs(p0), |y − y0| 6 C|y0|−1+δ},

if we denote y(t) = 1
t , then

(2) x(t) = O(t)

and

(3) fs(x(t), y(t)) = γ(γ2 − sγ − 1)t+O(t2−δ).

Proof. We denote y(t) = 1
t and y(t0) =

1
t0

. As |y − y0| 6 C|y0|−1+δ, we have |1t − 1
t0
| 6

C|t0|1−δ hence |t0/t− 1| 6 C|t0|2−δ hence t0/t → 1, i.e t ∼ t0. Then |t0/t− 1| 6 C ′|t|2−δ

so that t0 = t+O(t2−δ).

Now by hypothesis and by lemma 8,

fs(x(t), y(t)) = fs(x(t0), y(t0)) = γ(γ2 − sγ − 1)t0 +O(t30) = γ(γ2 − sγ − 1)t+O(t2−δ).

So that

fs(x(t), y(t)) = x(t)(x(t)2y(t)2 − sx(t)y(t)− 1) = γ(γ2 − sγ − 1)t+O(t2−δ).

We start over the computations of lemma 8. Set x(t) = a0t
r0+a1t

r1+· · · and y(t) = 1/t.

Then

(4)
x(t)

t

(

x(t)2

t2
− s

x(t)

t
− 1

)

= γ(γ2 − sγ − 1) +O(t1−δ)

We cannot have r0 > 1 since we would have x(t)
t → 0 (as t → 0) and the left-hand side of

equation (4) would also tends to 0. We cannot either have r0 < 1, since we would have
∣

∣

∣

x(t)
t

∣

∣

∣
→ +∞ and the left-hand side of equation (4) would also tends to infinity. Then

r0 = 1 and a0(a
2
0 − sa0 − 1) = γ(γ2 − sγ − 1), so that x(t) = O(t).

�

Lemma 10 (compare to [5], Corollary 3.4). Let Y = Y (δ,K,M,A) = {p | ψ(p,M‖p‖−1+δ ,K) >

A} where 0 < δ < 1, M > 0 and A, K are sufficiently large constants. Then the formulas

(2) and (3) holds for (x(t), y(t)) ∈ Y with y(t) = 1
t .
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Proof. The proof is the same as in [5]: for p0 = (x0, y0) ∈ Y there exists p = (x, y) ∈ U

such that

‖p − p0‖ 6 KM‖p0‖−1+δ.

As 1
2 |y0| 6 ‖p0‖ 6 2|y0| (since x0 6 y0), it implies |y − y0| 6 C|y0|−1+δ and lemma 9

applies. �

Lemma 11 (compare to [5], Proposition 3.5). Let Y = Y (δ,K,M,A), where 0 < δ < 1,

M > 0 and A, K are sufficiently large constants. Suppose that p1 and p2 are in Y and

there exists a 0 < δ1 < 1 such that ‖p1 − p2‖ 6 ‖p1‖−1+δ1 . Then for max{δ, δ1} < δ2 < 1

and in a sufficiently small neighborhood of the point at infinity (0 : 1 : 0):
∣

∣

∣

∣

fs(p1)

fs(p2)
− a

∣

∣

∣

∣

6 ‖p1‖−1+δ2 ,

with

a ∈
{

1,
αs(α

2
s − sαs − 1)

βs(β2s − sβs − 1)
,
βs(β

2
s − sβs − 1)

αs(α2
s − sαs − 1)

}

.

Proof. Let p1 = (x1(t), y1(t)) and p2 = (x2(t
′), y2(t′)) be two points in Y . Then by lemma

10

fs(x1(t), y1(t)) = γ(γ2 − sγ − 1)t+O(t2−δ),

fs(x2(t
′), y2(t

′)) = γ′(γ′2 − sγ′ − 1)t′ +O(t′2−δ),

where γ and γ′ are in {αs, βs}.
Now as ‖p1−p2‖ 6 ‖p1‖−1+δ1 it implies |y1−y2| 6 2|y1|−1+δ1 , as in the proof of lemma

9 we get t′ = t+O(t2−δ1). Whence

fs(x2(t
′), y2(t

′)) = γ′(γ′2 − sγ′ − 1)t+O(t2−δ1) +O(t2−δ).

Then
fs(p1)

fs(p2)
=

γ(γ2 − sγ − 1)

γ′(γ′2 − sγ′ − 1)
+O(t1−δ1) +O(t1−δ).

Then for δ2 > max{δ, δ1} with δ2 < 1 and in neighborhood of the point at infinity

(0 : 1 : 0) we get:
∣

∣

∣

∣

fs(p1)

fs(p2)
− a

∣

∣

∣

∣

6
1

2
|t|1−δ2 6 ‖p1‖−1+δ2 ,

where a = γ/γ′.
�

Lemma 12 (compare to [5], Lemma 3.6). Let K and A sufficiently large and 0 < δ < 1.

Fix s with s2 + 3 6= 0. Then Y = Y (δ,K,M,A) is nonempty and contains the polar curve

Γs. Moreover all the limits of fs(p1)/fs(p2) given in lemma 11 can be obtained by taking

p1 and p2 along the branches of Γs associated to the point at infinity (0 : 1 : 0).

Proof. Fix δ and K. Let πc : (fs = c) → C be the projection (x, y) 7→ y. It is a triple

covering branched at the points Γs ∩ (fs = c). These points are of coordinates

(αst,
1

t
) and (βst

′,
1

t′
) with fs(αst,

1

t
) = fs(βst

′,
1

t′
) = c.

As fs(αst,
1
t ) = αst(α

2
s − sαs − 1) it implies

t =
c

αs(α2
s − sαs − 1)

and similarly t′ =
c

βs(β2s − sβs − 1)
.

For s2+3 6= 0, αs 6= βs and it also implies t 6= t′ hence |y(t)−y(t′)| is of order y(t), that is to

say two points of ramifications are far enough. Let p0 = (x0, y0) be a point of ramification
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of πc. Let V = {y | |y−y0| 6 ǫ|y0|}, with ǫ sufficiently small such that no other ramification

point projects in V. For a sufficiently large p0 (i.e. small c), X(p0,KM‖p0‖−1+δ) ⊂ π−1
c (V).

Now let p = (x, y) such that:

|y − y0| 6 |y0|−1+δ,

then by lemma 9, x = O( 1y ) whence

‖p − p0‖ 6 2‖p0‖−1+δ.

Let Vδ = {y | |y−y0| 6 ǫ|y0|−1+δ}, by the above inequality we get π−1
c (Vδ) ⊂ X(p0,KM‖p0‖−1+δ).

We restrict the triple branched covering πc to a map π̃c from π−1
c (Vδ) composed by only

two components of the triple cover. Let y ∈ Vδ such that |y − y0| = 1
2 |y0|−1+δ. Let

p1 = (x1, y), p2 = (x2, y) be the two points of π̃−1
c (y). These two points are in π̃−1

c (Vδ)

which is a connected set. Any curve γ in π̃−1
c (Vδ) from p1 to p2 passes through p0, hence

the projection of γ by π̃c passes through y0. Hence the inner distance (in (fs = c)) of p1
and p2 is greater or equal than 2|y − y0|, it yields:

distp0,M‖p0‖−1+δ,K(p1, p2) > 2|y − y0| = |y0|−1+δ = |t|1−δ ,

where we denote y0 =
1
t . By lemma 9 we have x1 = O(t) and x2 = O(t), so that

‖p1 − p2‖ 6 C|t|.

Then
distp0,M‖p0‖−1+δ ,K(p1, p2)

‖p1 − p2‖
>

1

C|t|δ −−→
t→0

+∞.

Then ψ(p0,M‖p0‖−1+δ ,K) → +∞, as p0 tends to the point at infinity (0 : 1 : 0). It means

that the branch of Γs near this point at infinity is included in Y (δ,K,M,A).

Finally we have already proved in subsection 3.1 that the list of values fs(p1)/fs(p2) on

Γs is the required one. �

We conclude by the proof of the theorem in the complex case.

Proof of theorem 1’. Fix s. By lemma 7 the set Y for fs is sent into a set Ỹ for fs′ . The

polar curve Γs is included in Y (lemma 12) and on this polar curve fs(p1)/fs(p2) tends

to a αs(α2
s−sαs−1)

βs(β2
s−sβs−1)

for instance (lemma 11). On the one hand fs′(p̃1)/fs′(p̃2) tends to the

same value, because the bilipschitz homeomorphism Φ sends the levels of fs to the levels

of fs′. On the other hand p̃1, p̃2 are in Ỹ so that fs′(p̃1)/fs′(p̃2) is in
{

1,
αs′(α

2
s′ − s′αs′ − 1)

βs′(β
2
s′ − s′βs′ − 1)

,
βs′(β

2
s′ − s′βs′ − 1)

αs′(α
2
s′ − s′αs′ − 1)

}

.

This is only possible for a finite set of values s′. �

5. Topological equivalence

To complete the complex part of theorem 1 we prove the topological equivalence of any

two polynomials.

Lemma 13. Consider the following family of polynomials in C[x, y]:

fs(x, y) = x(x2y2 − sxy − 1)

with s2 + 4 6= 0. For any s and s′ the polynomials fs and fs′ are topologically equivalent.
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This family is similar to examples in [1] of polynomials that are topologically equivalent

but not algebraically equivalent. Recall that two polynomials f, g : Kn → K are topo-

logically equivalent if there exist a homeomorphism Φ : Kn → Kn and a homeomorphism

Ψ : K → K such that g ◦Φ = Ψ ◦ f . We will use the following result that is global version

of Lê-Ramanujam µ-constant theorem. See [2] for the two variables case and [3] for any

number of variables.

Theorem 14. Let {fs}s∈[0,1] be a continuous family of complex polynomials with isolated

singularities (in the affine space and at infinity), with n 6= 3 variables. Suppose that the

following integers are constant w.r.t. the value of s:

– deg fs, the degree,

– #Bs, the number of irregular values,

– χ(fs = cgen), the Euler characteristic of a generic fiber.

Then f0 and f1 are topologically equivalent.

Proof of lemma 13.

– Degree. It is clear that the degree of the fs is independent of s.

– Affine singularities. We search for points (x, y) where both derivatives vanish.

∂xfs(x, y) = 3x2y2 − 2sxy − 1 and ∂yfs(x, y) = x2(2xy − s). If x = 0 then

∂xfs(x, y) 6= 0. So that ∂yfs(x, y) = 0 implies 2xy − s = 0. We plug xy = s/2 in

∂xfs(x, y) = 0 and get s2 + 4 = 0. Notice that s2 + 4 = 0 gives also the values

where fs is not a reduced polynomial. Conclusion: for s2 +4 6= 0, the polynomials

fs has no affine singularities (nor affine critical values), so that its global affine

Milnor number is µs = 0.

– Singularities at infinity. The two points at infinity for this family are P1 = (0 :

1 : 0) and P2 = (1 : 0 : 0). Let Fs(x, y, z) = x(x2y2 − sxyz2 − z4) − cz5 be the

homogenization of fs(x, y)− c.

– Milnor number at P1. We localize Fs at P1 = (0 : 1 : 0) to get gs(x, z) =

Fs(x, 1, z) = x(x2 − sxz2 − z4) − cz5. We compute the local Milnor of gs at

(0, 0). For instance we may use the Newton polygon of gs and Kouchnirenko

formula. We get, for any s (with s2 + 4 6= 0) and depending on c:

µ(gs) = 8 if c 6= 0 and µ(gs) = 10 if c = 0.

Hence the value 0 is an irregular value at infinity and the jump of Milnor

number is λP1
= 10− 8 = 2.

– Milnor number at P2. At P2 = (1 : 0 : 0) we get hs(y, z) = Fs(1, y, z) =

y2 − syz2 − z4 − cz5. The local Milnor number of hs at (0, 0) is independent

of s and c:

µ(hs) = 3.

So that there is no irregular values at infinity for this point and λP2
= 0.

– Then the Milnor number at infinity is λs = λP1
+ λP2

= 2 and the only

irregular value at infinity is 0.

– Conclusion. For all s the only irregular value is 0: Bs = {0}, the Euler charac-

teristic of a generic fiber given by χs = 1 − µs − λs = −1 is also constant. Then

by theorem 14 any fs and fs′ are topologically equivalent.

�
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x

z

x3

sx2z2

xz4
cz5

Newton polygon of gs(x, z)

y

z

y2

syz2

z4

cz5

Newton polygon of hs(y, z)

Figure 6. Computation of Milnor number at infinity.
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