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NEAR PARABOLIC RENORMALIZATION FOR UNICRITICAL

HOLOMORPHIC MAPS

ARNAUD CHÉRITAT

Abstract. Inou and Shishikura provided a class of maps that is invariant by
near-parabolic renormalization, and that has proved extremely useful in the

study of the dynamics of quadratic polynomials. We provide here another

construction, using more general arguments. This will allow to extend the
range of applications to unicritical polynomials of all degrees.
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We give here a brief summary of frequently used notations whose meaning or
symbol know some variations among different authors: D refers to the unit disk
in the complex plane and H to the upper half plane. The translation by 1 in C is
denoted by T1 : z 7→ z + 1. By convention, N includes 0 and N∗ denotes the set
of positive integers. We will often make use of the map E(z) = e2iπz. We adopt
the following convention for open and semi-open intervals: ]a, b[ , [a, b[ , ]a, b]. The
notation SL refers to the class of Schlicht maps, i.e. holomorphic injective maps
φ : D→ C with φ(0) = 0 and φ′(0) = 1. There are a lot of more specific notations
in this article, and a (partial) summary of symbols has been added near the end.

1. Introduction

This article has a long introduction and the main theorem appears only on
page 10.

1.1. Structure of the paper. In Section 1 we sum up the structure of the paper
(the present section); we give a definition of a notion we call structural equivalence
and which, though not strictly necessary, philosophically underlines of this work
(Section 1.2); for maps with a structure that is complete in some sense (f ∈ Sd),
we recall the classical results Shishikura, Lanford and Yampolsky: universality and
renormalization invariant class and restate renormalization invariance unsing the
language of structural equivalence (Section 1.3); we restate the Inou Shishikura
theorem (Section 1.4) using this language; finally we state the main theorem (Sec-
tion 1.5).

In Section 2 we explain how to understand an visualize the structure of a horn
maps and other objects associated to parabolic points, using the chessboard graphs.
Some of these chessboards are invariant by the dynamics, and we call them dynam-
ical chessboards. The others are called structural chessboards. These chessboards
are a crucial tool in the proof of the main theorem. By universality, to describe the
structure of objects assocaited to maps f ∈ Sd we can focus on a particular map.
For this we choose Blaschke products (Sections 2.1 and 2.2). Chessboards are in-
troduced in Section 2.3. In Section 2.4, we describe and show a computer generated
image of the structure associated to the Inou-Shishikura class. This section shows
many illustrative pictures.

In Section 3 we prove the main theorem. The titles of its sub-sections are self
explanatory and we refer the reader to Section 3.2 for an overview of the proof.

In Appendix A we fix notations and conventions for the objects associated to
parabolic points: Fatou coordinates, horn maps, normalizations, parabolic renor-
malizations, iterative residue, etc. In Appendix B we motivate the study of horn
maps by giving examples of what they can be used for. In Appendix C we recall
the definition and elementary facts, for singular values.

1.2. Structural equivalence. In the breakthrough by Inou and Shishikura [IS04],
they make use of a class of maps defined as follows (notations and details may differ):
FIS is the set of maps of the form f = P ◦ φ−1 where φ varies among the univalent
maps on V such that φ(z) = z + O(z2) at the origin. Here P (z) = z(1 + z)2 and
V is a specific open subset of C containing 0 defined in their article. The set FIS

is better thought of as the set of maps that cover the plane in a specific way, and
with f(z) = z+O(z2). They are not covers because they have ramification points.
And they are not even ramified covers, because the cardinality of the preimage of
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a point is not constant, even when counted with multiplicity. This class FIS comes
in fact from another class of maps, invariant by parabolic renormalization (defined
later in this section), with a much richer ramified cover structure, but which was
too rigid for their purposes, which was to have a class invariant by near parabolic
renormalization. They extracted a carefully chosen subset of this structure to define
their class FIS.

We are going to use the same idea, but we will keep more of the original ramified
cover structure. Let us formalize the notion of structure:

Definition 1. Let X1, X2, Y be dimension one analytic manifolds. Consider an
index set I, and two collections of marked points ai ∈ X1 and bi ∈ X2 indexed
by i ∈ I. We denote a : I → X1 and b : I → X2 defined by a(i) = ai and
b(i) = bi. Consider also two analytic maps which are nowhere locally constant
f1 : X1 → Y and f2 : X2 → Y . We will say that the pairs (a, f1) and (b, f2) are
structurally equivalent if there exists an analytic isomorphism φ : X1 → X2 such
that f1 = f2 ◦ φ and b = φ ◦ a i.e. such that the following diagram commutes

I

a

��
b

��
X1

φ //

f1 ��

X2

f2��
Y

i.e. such that φ sends the marked point ai to bi and such that it sends the fiber
f−1

1 (y) in the fiber f−1
2 (y) for all y ∈ Y . Note that this requires that f2 ◦ b = f1 ◦ a.

Structural equivalence is an equivalence relation, which depends on I and Y . To
specify them, we will sometimes use the terminology (I, Y )-structurally equivalent
or structurally equivalent over Y with marker I. The equivalence classes will be
called structures (or (I, Y )-structures).

The restriction on these structures (without losing marked points) induces a
preorder on structures as follows:

Definition 2. With the same definition as above, but assuming φ analytic injective
instead of analytic isomorphism (thus dropping the surjectivity assumption), we will
say that the structure of (a, f1) is a sub-structure of that of (b, f2): this is indeed
independent of the choice of representatives in their equivalence classes. We will
also say that (b, f2) has at least the structure of (a, f1). It is equivalent to the
following: (a, f1) is structurally equivalent to (b, g2) where g2 is a restriction of
f2 to a set containing the image of b. In other words sub-structures of (b, f2) are
equivalence classes of restrictions of f2 to open sets containing the marked points.

This preorder is not always an order: for instance if I = ∅ , and the sets X1 ⊂ C
defined by Re (z) > 0 and X2 defined by Re (z) > 1/2 are both mapped to C/Z
using the canonical projection from C to the quotient, then each has at least the
structure of the other (take φ1(z) = z + 1 and φ2(z) = z), while they are not
equivalent. However:

Proposition 3. On the subclass of structures with connected X and at least one
marked point, this preorder is an order.

Proof. Assume each of (a, f1) and (b, f2) has at least the structure of the other
and assume that both Xi are connected and I 6= ∅. Call φ1 : X1 → X2 and φ2 :
X2 → X1 the two analytic injections. We have to prove that (a, f1) is structurally
equivalent to (b, f2). It is sufficient to prove that φ2 is surjective (the inverse of an
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analytic bijection is analytic). Call ζ = φ2 ◦ φ1. It is injective, satisfies f1 ◦ ζ = f1

and fixes the marked points of f1. The map f1 being not locally constant at the
marked points, each marked point has a neighborhood on which some iterate ζm

of the map ζ is the identity, where m is the local degree of f1 at the marked point.
Since there is at least one marked point and since X1 is connected, ζm = id holds
everywhere by analytic continuation. Hence φ2 is surjective. The proof is analogous
for φ1. �

1.3. Universality and maps with all “the” structure. In Appendix A, we fix
notations and conventions concerning parabolic points, their Fatou coordinates, the
extensions thereof, their horn maps and renormalization. In Appendix C, we give
a reminder on singular values.

For d ≥ 2 an integer, let

Bd(z) =

(
z + a

1 + az

)d
with a = ad =

d− 1

d+ 1
.

Let

B∞(z) = exp

(
2
z − 1

z + 1

)
.

They induce unisingular self maps of D with a unique singular value z = 0 in D and
they have a non-linearizable parabolic fixed point on the boundary at z = 1 with
two attracting petals. Interestingly:

Bd −→
d→+∞

B∞

uniformly on compact subsets of D.
The unit disk is the (immediate) basin of one of the two petals. The inverse of

the unit disk is the basin of the other. We let Φattr[Bd] : D → C be the extended
attracting Fatou coordinate for the first petal. The map has also two repelling
petals, with vertical axes. We choose the one on the top and let Ψrep[Bd] denote
the corresponding extended repelling Fatou coordinate. We let h[Bd] = Φattr◦Ψrep.
It is defined on an upper half plane.

The following theorem is an interpretation of a classical theorem of Fatou.

Theorem 4 (Fatou+folk). Let f : U ⊂ Ĉ → Ĉ a holomorphic map with a non-
linearizable parabolic fixed point. Let A be a cycle of immediate parabolic basins
associated to this fixed point. Then

• either U = Ĉ and f is a homography
• or there is a singular value in A of the restriction of f to A.

Proof. (Sketch) Assume that the second point does not hold. Since the set of
singular values is the closure of the union of the set of critical values of and asymp-
totic values, it follows that A contains no asymptotic nor critical values of f |A. In
particular there is no critical point of f in A so Φattr has no critical point either.

From the absence of singular value one get the following path-lifting property:
Given a close-ended path γ : [0, 1] → A and a point a ∈ A such that f(a) = γ(0),
there exists a lift γ̃ by f that starts from a and such that γ̃([0, 1]) ⊂ A.

Let Φattr : A → C be the attracting Fatou coordinate extended to A. One can
then prove that Φattr also has a path lifting property: Given a path γ : [0, 1] → C
and a point a ∈ A such that Φattr(a) = γ(0), there exists a lift γ̃ by Φattr that starts
from a and such that γ̃([0, 1]) ⊂ A. The proof consists in finding n ≥ 0 such that
fn(a) is in an attracting petal P and n+ γ is contained in Φattr(P), then applying
the first path lifting proprery n times.

One deduces that Φattr has no asymptotic values. Since Φattr cannot have critical
values either, it has no singular values and hence it is a covering from A to C. Since
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C is simply connected, each connected component of A is conformally isomorphic

to C. So each component is Ĉ minus one point, so there is only one such component

and the parabolic point p is the missing point, so U = Ĉ. The isomorphism Φattr is
a homography, and f restricted to C \ {p} is the conjugate of a translation by this

homography, hence f is a homography of Ĉ. �

Proposition 5 (Complement of Theorem 4). In the second case of Theorem 4, at
least one of the two statements below is true

• there is a critical point of f in A,
• or there is an open ended path in γ : [0, 1[→ A which leaves every compact

of U and whose image f ◦ γ tends to a point of A.

Proof. Indeed the set of singular values of f |U is the closure of the set of its critical
values and of its asymptotic values. In the case of an asymptotic value v, we will
repeat here the analysis done in the proof of Lemma 86: there is a path γ : [0, 1[→ A
that leaves every compact of A and with f ◦ γ(t) −→ v as t→ 1. Such a path must
also leave every compact of U for otherwise:

– either γ(t) converges in U to a point a that must then be in ∂A but also must
satisfy f(a) ∈ A, hence a whole neighborhood of a in U is contained in the basin,
but it also contains points of A so a ∈ A, leading to a contradiction.

– or γ(t) has an accumulation set that is bigger than one point. But since f is
holomorphic and nowhere constant, this would contradict that f ◦ γ(t) converges.

�

The following theorem treats the case when there is only one such singular value.

Theorem 6 (folk). Let f be as in Theorem 4 and A a cycle of immediate basins
of its parabolic fixed point. Denote by p the period of A. Assume that one and only
one singular value of the restriction of f to A lies in A. Then the restriction of fp

to any connected component of A is analytically conjugated to the restriction of Bd
to D for some d ∈ {2, 3, . . .} ∪ {∞}.

See for instance [DH85], exposé IX or [LY14], Theorem 2.9 for similar statements.
We will be mainly interested by the case p = 1. This has the following consequences,
discovered by several authors, including Shishikura (see [Shi98]), and Lanford and
Yampolsky (see [LY14]). See also Part 3 of [Ché01].

Corollary 7 (S., L.-Y.). With the same notations, call ζ : A → D the conjugacy
from fp to Bd. Then there exists a constant τ ∈ C (which depends on the normal-
izations of the Fatou coordinates) such that Φattr[Bd] ◦ ζ = τ + Φattr[f

p], where the
right hand side is restricted to A.

Thus in particular, using the terminology introduced here, τ+Φattr[f
p] restricted

to A is structurally equivalent to Φattr[Bd] over C. This is illustrated on Figures 2
and 3, using a widespread visualization technique explained in Section 2.

Below is a theorem specifying some structure of renormalizations of maps of
Theorem 6. For simplicity we restrict to the case with only one attracting petal.
For this statement and the subsequent one, we will denote Sd the set of maps f as
in Theorem 6 that satisfy its conclusion with this value of d and that have only one
attracting petal. In other words:

Definition 8. Let d ∈ {2, 3, . . .} ∪ {∞}. We denote Sd the set of holomorphic

maps f : U ⊂ Ĉ → Ĉ with a non-linearizable parabolic fixed point with only one
attracting petal, such that if we denote A its immediate parabolic basin, then there
is one and only one singular value in A of the restriction of f to A, and such that:

• (if d =∞) this singular value is an asymptotic value of f |A or
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• (if d <∞) there is a critical point of f |A of degree d.

According to Theorem 6 these cases are mutually exclusive.
There is no specification in the statement below of which normalization is chosen

for the parabolic renomalization R[f ] of f .

Theorem 9 (S., L.-Y.). Consider a map f ∈ Sd. Then the upper or lower renor-

malization R[f ] : V → Ĉ is defined on a simply connected subset of C and has
exactly 3 singular values: the asymptotic values z = 0, z = ∞ and a critical value
z = v ∈ C∗ if d is finite or an asymptotic value z = v ∈ C∗ otherwise. We have
R[f ]−1({0}) = {0}, R[f ]−1({∞}) is empty.

• If d <∞, the set R[f ]−1({v}) consists in regular points and critical points
of degree d, and v is not an asymptotic value.

• If d = ∞, the set R[f ]−1({v}) consists only in regular points, and v is an
asymptotic value.

The following lemma is not optimal but it will be convenient for future reference.

Lemma 10. If v ∈ C∗ and f : U → Ĉ is such that:

• The set of singular values of f is equal to {0, v,∞},
• f(0) = 0 and f ′(0) = 1,
• U ⊂ C.

Then f ∈ Sd for some d ∈ {2, 3, . . .} ∪ {∞}.

Proof. We first prove by contradiction that f cannot be the identity near 0. Oth-
erwise it would be the identity on the component of U containing 0 by analytic
continuation. Then ∂U would be contained in the set of singular values of f . Hence
∂U ⊂ {v,∞}. But then 0 cannot be a singular value, leading to a contradiction.
Hence f has a non-linearizable parabolic point at 0: it has petals.

Since f ′(0) = 1 the petals have period one. We then prove that f can have only
one attracting petal. Let A be the immediate basin of an attracting petal. By
Lemma 87, the restriction of f̃ : A → A has a set of singular values contained in
that of f . But an immediate basin of f cannot contain 0, which is fixed, nor ∞,
which is not in the domain of f , so only v is available as a singular value. Moreover
different immediate basins being disjoint, the singular values that each contains
must be distinct. Hence there can only be one immediate basin, and it contains v
but not 0 nor ∞. �

This applies in particular to the map R[f ] of Theorem 9. Hence we get for each
value of d a class that is stable by parabolic renormalization:

Corollary 11 (S., L.-Y.). For every f ∈ Sd we have R[f ] ∈ Sd.

We make the following conjecture to complement this.

Conjecture 12. Choose and fix any v ∈ C∗. All the maps f ∈ Sd have a struc-
turally equivalent upper renormalizations R[f ], when the latter is normalized so
that v is a singular value (0 and ∞ necessarily are). More precisely they are (I, Y )-
structurally equivalent with Y = C, I being a singleton and the marked point being
the origin. The same holds for the lower renormalization, and the upper one is
structurally equivalent to the conjugate of the lower one by the reflection z 7→ 1/z.

There is a special case for which the conjecture is known to hold. To state it
we need to introduce the rational map Cd, semi-conjugate of Bd by z 7→ −((1 −
z)/(1 + z))2. The map Cd has a parabolic point at 0 with one attracting petal, its
basin is A[Cd] = C \ [0,+∞) and the semi-conjugacy is a bijection from D to A[Cd]
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(see Section 2.2 for details). The horn map of Cd is defined on the complement of
the real line and the domain of the renormalization R[Cd] is D.

The statement below is a corollary of Proposition 3.16 in [LY14] together with
Theorem 6 above.

Theorem 13 (S., L.-Y.). Let d <∞. Then for every map f ∈ Sd whose immediate
basin is a Jordan domain, R[f ] is equivalent to R[Cd] (for the same notion of
equivalence as in Conjecture 12).

To state the next results, we introduce a temporary notation for the structural
equivalence class of Theorem 13.

Definition 14. Let us denote Rd the set of holomorphic maps f that are defined
on an open subset U of C, such that f(0) = 0, f ′(0) = 1 and f is (I, Y )-equivalent
to R[Cd] where, as above, Y = C, I is a singleton and 0 is the marked point.

Another way to interpret Theorem 13 is to say that maps f ∈ Sd whose imme-
diate basin is a Jordan domain satisfy R[f ] ∈ Rd. And Conjecture 12 states that
all maps f ∈ Sd satisfy R[f ] ∈ Rd.

Theorem 13 applies to many maps, for instance:

Theorem 15 (Roesch, Yin). For any polynomial, for any Fatou component U that
is not eventually mapped to a Siegel disk, U is a Jordan domain.

The case of the cauliflower polynomial z 7→ z2 + 1/2 is covered by this theorem.
For this map, Theorem 13 is illustrated in Figure 9.

By Lemma 10, we have (see Proposition 25 for a detailed argument)

Rd ⊂ Sd.
Let us note the following result, that holds on the more general class Sd. (Under

the restriction that the immediate basin is a Jordan domain, it holds in for more
general maps, see Theorem 2.8, in [LY14].)

Lemma 16 (S., L.-Y.). For every f ∈ Sd the domain of the map R[f ] is equal to
its maximal domain of analyticity.

Proof. We include a sketch of the proof with an approach different from [LY14], to
take into account that we do not require the boundary of the immediate basin to
be a Jordan curve. Denote D = DomR[f ]. Recall that by Theorem 9, the map

R[f ] is a covering over V = Ĉ \ {0, v,∞}. Let D′ = R[f ]−1(V ). Since D′ ⊂ D,
the hyperbolic metric over D′ is bigger than over D. It follows that for all ε > 0
there is M < +∞ such that the preimage by Rd of the ε-neighbourhood in Ĉ of
{0, v,∞} is thus a subset of D whose Mε-thickening for the hyperbolic metric of D
covers all D. It implies by commensurability of the hyperbolic metric coefficient to
the inverse distance to the boundary, that preimages by R[f ] of points arbitrarily
close to either 0, v or ∞ accumulate on every point of ∂D. �

The next statement is Theorem 2.8 in [LY14] where the maximal domain of
analyticity condition is removed, the proof being the same.

Theorem 17 (L.-Y.). Consider a holomorphic map f with a one-petal parabolic
fixed point whose immediate basin is a Jordan domain. Then the domain of R[f ]
is a Jordan domain.

The following is Theorem 3.8 in [LY14] (their class P̂ corresponds to our class
Rd).

Theorem 18 (L.-Y.). Let d <∞. Consider a holomorphic map f ∈ Rd. Assume
that the domain of f is a Jordan domain. Then the immediate basin of f is a
Jordan domain,
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This allows to use Theorem 13, so R[f ] ∈ Rd. Together with Theorem 17, this
allows in particular to iterate renormalization under the condition that the domain
of f is a Jordan domain. This is Theorem 3.7 in [LY14]:

Theorem 19 (L.-Y.). Let d < ∞. Assume that f ∈ Rd and that its domain is a
Jordan domain. Then R[f ] ∈ Rd and its domain is a Jordan domain.

In fact we can get rid of the Jordan domain condition in the theorem above
thanks to a limit argument:

Theorem 20. Let d <∞. Assume that f ∈ Rd. Then R[f ] ∈ Rd.

Proof. In this proof we normalize the maps R[f ], f ∈ Rd, so that their critical
value v is a fixed complex number as follows. First we choose R[Cd] so that its
domain is D and its critical value vd is real and positive. Then we ask that R[f ]
has the same critical value vd (c.f. Theorem 9).

Let f ∈ Rd. Up to conjugacy by a rescaling, it takes the form f = f0 ◦ φ−1

where f0 = R[Cd] : D → C and φ : D → U [f ] is a schlicht map. Pick any
sequence of schlicht maps φn : D → Un such that Un is a Jordan domain and φn
tends to φ locally uniformly. For instance φn(z) = φ(rnz)/rn restricted to z ∈ D,
where rn < 1 and rn −→ 1 satisfies these hypotheses. The map fn = f0 ◦ φ−1

n

is defined on the Jordan domain Un and tends to f locally uniformly. It follows
that h[fn] tends to h[f ] locally uniformly on compact subsets of the domain of h[f ].
Hence R[fn] −→ R[f ] uniformly on compact subsets of the domain of R[f ]. We
have seen that Rd ⊂ Sd. By Theorem 18, we can apply Theorem 13 to fn, i.e.
R[fn] = R[Cd]◦ψ−1

n for some schlicht map ψn. The set of schlicht maps is compact
and for any cluster value ψ of the sequence ψn, we have that DomR[f ] ⊂ ψ(D) and
R[f ](z) = R[Cd] ◦ ψ−1(z) holds for all z ∈ Dom(f). (It follows that the germ of
ψ at 0 is uniquely determined, and by analytic continuation of equalities, that ψ is
unique, hence ψn converges. However we do not need that fact). Last, the inclusion
DomR[f ] ⊂ ψ(D) must be an equality, for otherwise R[f ] would have a maximal
domain of holomorphy that is bigger than its domain, contradicting Lemma 16. �

For what we are concerned with in this article, this is the base of everything.

1.4. Inou and Shishikura: giving up part of the structure to gain flexi-
bility. Here is the central gear in the work of Inou and Shishikura:

Theorem 21 (Inou Shishikura). There exists an explicit pair of open subsets A,B
of C and an explicit holomorphic map f0 : B → C with the following properties:

(1) 0 ∈ A, A is compactly contained in B,
(2) A and B are simply connected,
(3) f0 fixes the origin and has derivative 1 there,
(4) f0 has exactly one critical point in B; this critical point has local degree

two, belongs to A, and is mapped to −4/27 by f0,
(5) for any upper renormalization R[f ] of a map f ∈ Sd, there exists a subset

U of DomR[f ] and a holomorphic bijection φ : B → U with φ(0) = 0 and
R[f ]

∣∣
U

= f0 ◦ φ−1,

(6) for any univalent map φ : A→ C with φ(0) = 0 and φ′(0) = 1, there exists
a univalent map ψ : B → C with ψ(0) = 0 and ψ′(0) = 1, such that the
the map f0 ◦ φ−1, which fixes the origin with multiplier one, has an upper
renormalization which has a restriction of the form f0 ◦ ψ−1.

The map f0 has a particularly simple expression: f0(z) = z(1 + z)2. It turns out
that f0 commutes with z 7→ z, thus the theorem holds with the same f0 for lower
renormalization.
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The statement below is a reformulation of their theorem using the language
introduced in the present article. Given a structure B and a sub-structure A, we
will say that the second is a relatively compact sub-structure of the first whenever
maps in A are structurally equivalent to restrictions of maps in B to relatively
compact open subsets of their domains (not just subsets).1

Theorem 22 (Inou Shishikura, reformulated). Let I be a singleton and Y = C.
There exists an explicit pair of (I, Y )-structures A and B with the following prop-
erties:

(1) A is a relatively compact sub-structure of B and B is a sub-structure of the
universal structure Rd of Theorem 20,

(2) ∀(a, f) ∈ A, the map f is defined on a connected and simply connected
Riemann surface and has exactly one critical point, of local degree two; the
same holds for B.

(3) For any map in A whose domain of definition is a subset of C and that
fixes the marked point with multiplier one, its (suitably normalized) upper
parabolic renormalization has at least structure B.

It is also the case for the lower parabolic renormalization, with the same struc-
tures A, B.

Definition 23 (High type numbers). For N ∈ N∗, let HTN be the set of irrationals
whose modified continued fraction satisfies |an| ≥ N , ∀n ∈ N. In settings where N
has been fixed, the set HTN is often called the set of high type numbers. We will
call it here the set of numbers of type ≥ N .

To keep it short, the following corollary, also by Inou and Shishikura, is stated
here with some imprecision concerning the renormalization:

Corollary 24 (Perturbation). There exists N > 0 such that the class of maps
defined in an open subset of C, with structure A and fixing the marked point with
a rotation number θ of type ≥ N , is invariant under a cylinder renormalization
operator (called the near-parabolic renormalization).

They prove more: thanks to the compact inclusion of structure A in B, there is
a form of contraction. Cylinder renormalization was introduced by Yampolsky in
the study of analytic circle homeomorphisms with a critical point.

Consequences of this corollary are numerous and are still being harvested. Its
main quality is that it allows a fine control on the post-critical set of quadratic
polynomials with high type rotation numbers. For instance, Shishikura and Yang
Fei proved that in this case the boundary of the Siegel disk is a Jordan curve [SY16].
It allows to study the hedgehogs and the size of Siegel disks. In [CC15] we proved
the Marmi Moussa Yoccoz conjecture restricted to high type numbers. Cheraghi
has given many other applications [Che13, Che17, AC18, Che19] and [CS15] which
is a progresses on the MLC conjecture. It was also used in [BC12] to prove the ex-
istence of quadratic polynomials with a Julia set of positive Lebesgue measure. We
believe that it can also give a new approach to the results of McMullen [McM98] on
the self similarity of Siegel disks whose rotation number has an eventually periodic
continued fraction expansion2 at the critical point. McMullen used Ghys’ quasicon-
formal surgery procedure as a first step in his proofs, to transfer some properties
that are easier to prove for circle maps. It would be nice to have a more direct
proof, that would adapt to situation, like the exponential maps z 7→ ez + c, where a
quasiconformal surgery does not exist but where self similarity still seems to occur.

1If it holds for some representatives then it holds for all representatives in the equivalence class.
2these rotation numbers are the quadratic irrationals
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1.5. Main Theorem. In this article, we prove the following extension of Inou and
Shishikura’s Theorem.

Main Theorem. Let I be a singleton and Y = C. For all d ∈ N with d ≥ 2, there
exists (I, Y )-structures A and B with the following properties:

(1) A is a relatively compact sub-structure of B and B is a sub-structure of the
universal structure Rd of Theorem 20,

(2) every map in A or in B is defined on a connected and simply connected
Riemann surface,

(3) every map in A or in B has exactly one critical value, and all critical points
have local degree d,

(4) for any map in A whose domain of definition is a subset of C and that fixes
the marked point with multiplier one, the upper parabolic renormalization
has a at least structure B, and the lower parabolic renormalization has at
least structure the conjugate of B by z 7→ z̄, for appropriate normalizations
of the renormalizations.

The structures A and B are obtained by retaining most of the universal structure
(call it U) of Rd. More precisely we choose for B the restriction of a map in U to
a subset of its domain U defined as points having U -hyperbolic distance ≤ L to
the point marked by I, and we prove in Section 3 that for L big enough, there is a
relatively compact sub-structure A of B such that the main theorem holds.

Remark. It should be noted that for d = 2, our theorem can be considered as
weaker than Inou and Shishikura’s. For one thing, maps in our class have much more
structure, so our class is smaller. Second they have many critical points (though
only one critical value), whereas there is only one in Inou and Shishikura’s. This
should not prevent our class, though, to be applied to zd + c as we explain now.
Note that a similar situation occurs for the IS class: a polynomial z2 + c with and
indifferent fixed point of multiplier close to 1 never has a restriction that belongs to
the IS class, but its first cylinder renormalization has some as soon as the multiplier
is close to 0. Here it is the same: a map of the form zd + c never has structure A
or more, but its first cylinder renormalization does if the rotation number is close
enough to 0.

It should be easy to check that the analog of Corollary 24 also holds. We believe
that many of its consequences for quadratic maps therefore carry over to unicritical
polynomials.

About degree three maps:

In [Yan15], Yang Fei has constructed a renormalization invariant class for d = 3,
in the spirit of Inou and Shishikura. In particular it has the advantage of having
only one critical value.

About unisingular maps:

We wonder if one can extend the above work to the case d =∞. There are some
subtleties occurring here.

We do not believe that one can take for B a substructure of g ∈ R[Sd] defined by
a restriction on a compact subset of the domain of g, like we did in the case d <∞,
that would yield a invariant class. The natural idea is to keep instead a whole
connected preimage of a neighborhood of the singular value, which adds a subset
of Dom g that is at least as tangent to its boundary as a horocycle. Unfortunately,
we realized that this does not provide an invariant class either.
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Figure 1: Rotated by 90°, the Julia set of the map z 7→ λ tan z with λ so that the
origin is indifferent with rotation number θ/2 and θ = (

√
5 − 1)/2 is the golden

mean. The Julia set is periodic of period π, we drew only two periods. There also
seems to be an asymptotic similarity by some imaginary translation. There are red
points at the origin and at the two (symmetric) asymptotic values. A few orbits
inside the Siegel disk have been drawn. The Siegel disk seems to be bounded by
a Jordan curve (but not a quasicircle: there must be a dense set of cusps). The
rotation number is θ/2 but the picture has a symmetry of order 2 and quotienting
out, i.e. semi-conjugating by z 7→ z2, gives a transcendental meromorphic map
z 7→ λ2(tan

√
z)2 with rotation number θ at 0, with infinitely many critical points

but that all map to 0, and with only one asymptotic value −λ2.

It shall be noted that some consequences of Inou and Shishikura’s invariant class
for d <∞ will not hold anymore for d =∞: for instance there are unisingular maps
for which the boundary of the Siegel disk is not a Jordan curve. This includes the
exponential z 7→ λ(exp(z)−1) (or equivalently z 7→ ez+κ) when it has an indifferent
periodic point of rotation number in Herman’s class3. Interestingly, there are some
other maps with only one free singular value, with d =∞, and for which the Siegel
disk seems to be more often locally connected (always): for instance the semi-
conjugate of z 7→ eiθ/2 tan z by z 7→ z2, i.e. z 7→ eiθ(tan

√
z)2. See Figure 1 for a

plot of the Julia set and Siegel disk of z 7→ eiθ/2 tan z.
It is to be noted that though the two (essentially) unisingular families λ(ez − 1)

and λ(tan tz)2 have very different Siegel disks for θ = the golden mean, computer
experiments weakly hint at a possible identical asymptotic limit when zooming at
the singular value: there might exist a cylinder renormalization operator with a
fixed point capturing both maps.

3By [Her85] the Siegel disk is unbounded and then by [BW91] it is not locally connected.
Thanks to Lasse Rempe for pointing this out to me.
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Figure 2: Illustration of Theorem 6. Above: zoom on the fat Douady rabbit, the
Julia set of the quadratic map P = e2iπ/3z + z2, which has a parabolic fixed point
with three attracting petals, and acts transitively on them. The Fatou component U
that contains the finite critical point has been colored with the parabolic chessboard,
whose definition is recalled later in the present article. In red, the orbit of the
critical value. On U , P 3 satisfies the hypotheses of the theorem. According to

the conclusion, P 3 is conjugated on U to the Blaschke product B2(z) =
( z+1/3

1+z/3

)2
Below: the chessboard of µ2 ◦ B2 ◦ µ−1

2 , with µ(z) = (z + 1/3)/(1 + z/3), which
is conjugated to B2 and hence to P 3 on U . The conjugacy has to transport the
chessboard and the critical orbit.
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Figure 3: Another illustration of Theorem 6. This time, d = 3. The parabolic
point on the first picture is indicated by a red dot. The orbit of the critical value
is indicated in red on the second picture.

2. Visualizing structures with the chessboard graph

An often used and very useful technique of visualization of ramified covers (and
partial cover structures that are not too messy) consists in cutting the range in
domains, often simply connected, along lines joining singular values, and taking the
pre-image of these pieces, which gives a new set of pieces. The way they connect
together and the way they map to the range gives information about the structure.

2.1. Changes of variables. The map Bd is the composition of the automorphism
µ : z 7→ z+a

1+az of the disk, with a = (d − 1)/(d + 1), followed by pow : z 7→ zd:
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Bd = pow ◦µ. If we conjugate Bd by µ we get the map µ ◦ pow:

B̃d = µ ◦Bd ◦ µ−1 : z 7→ zd + a

1 + azd

which is a Blaschke product too and has its critical point at the origin, the parabolic

point still being at z = 1. As d → ∞, B̃d tends to the constant 1 uniformly on
compact subsets of D.

The map B∞ is the composition of µ : z 7→ i 1−z
1+z (mapping the disk to the upper

half plane) followed by z 7→ exp(2iz). Interestingly, if we conjugate B∞ with µ we
get the trigonometric map:

µ ◦B∞ ◦ µ−1 : z 7→ tan z

whose non-linearizable parabolic fixed point is at the origin and which maps the
upper half plane to itself, the asymptotic value in the upper half plane being i.

2.2. Preferred representative. Theorems 13 and 20 say that all maps satisfy-
ing some assumption have structurally equivalent upper parabolic renormalizations
(appropriately normalized). Their equivalence class, that depends only on d, is
universal in some sense. We will here choose a preferred representative in this

equivalence class, and for this use the maps Bd. A defect of the maps Bd and B̃d,
seen as maps from the Riemann sphere to itself, is that their parabolic point has
two attracting petals instead of one. We prefer to work with a semi-conjugate Cd
of Bd that we introduce now. The map Bd commutes with z 7→ 1/z and with z 7→ z
hence with z 7→ 1/z. It is therefore a well defined map on pairs {z, 1/z}. A first
change of variables u = (1 − z)/(1 + z) maps the unit disk to the right half plane{
z ∈ C

∣∣Re (z) > 0
}

sending the parabolic point to 0 and conjugates Bd to a map
which can be formulated as follows:

u 7→
odd

((
1 + u

d

)d)
even

((
1 + u

d

)d) .
where odd and even refer to the sum of monomials of odd and even power in u in
the polynomial expansion of (1 +u/d)d. For d =∞ we get the ratio of the odd and
even parts of the exponential,

u 7→ tanh(u).

Setting v = −u2 = −((1 − z)/(1 + z))2 identifies pairs {z, 1/z} with single values
of v. There exists a map Cd, rational of degree d if d <∞, entire transcendental if
d =∞, such that the following diagram commutes

Bd //

S

��
S

��
Cd

//

where S(z) = v = −u2 = (i(1− z)/(1 + z))2. If d =∞ we get C∞(v) = (tan
√
v)2.

If d < ∞ the formula is more complicated. The map S is a bijection from the
unit disk to the complement A of [0,+∞] in the Riemann sphere, and sends 1
to 0, −1 to ∞ and 0 to −1. The map Cd has a parabolic fixed point at the
origin with one attracting petal, whose immediate basin is A. By construction Cd
is conjugate on A to the restriction of Bd to D. The extended horn map of Cd is
defined on the complement of a horizontal line. Thus the upper and lower parabolic
renormalizations of Cd are defined on round disks centered on the origin. A lengthy
computation shows that

γ[Cd] =
3

20
· d

2 + 1

d2 − 1
.
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We have not defined in this article a general theory of Fatou coordinates, horn maps
and their normalizations, for parabolic points with more that one attracting petal.
However, in the particular case of Bd, which has two attracting petals, we defined
in Appendix A the objects Φattr[Bd], Ψrep[Bd] and h[Bd]. Let us recall this here.

The unit disk is the (immediate) basin of one of the two attracting petals of
Bd. We let Φattr[Bd] : D→ C be the extended attracting Fatou coordinate for this
petal. The map has also two repelling petals, with vertical axes. We choose the
one on the top and let Ψrep[Bd] denote the corresponding extended repelling Fatou
coordinate. We then let h[Bd] = Φattr ◦Ψrep. It is defined on an upper half plane.

The object for Bd are related to those of Cd as follows:

T ◦ Φattr[Bd] = Φattr[Cd] ◦ S
∣∣
D

S ◦Ψrep[Bd] = Ψrep[Cd] ◦ T ′

T ◦ h[Bd] = h[Cd]
∣∣
H
◦ T ′

where H is the upper half plane on which h[Bd] is defined, T and T ′ are translations
that depends on normalizations, and S is the 2:1 rational map defined a few lines
above, that semi conjugates Bd to Cd. If we choose a normalization for the objects
associated to Cd this induces a normalization for the objects associated to Bd by
declaring that T and T ′ must be the identity:4

Φattr[Bd] = Φattr[Cd] ◦ S
∣∣
D

S ◦Ψrep[Bd] = Ψrep[Cd]

h[Bd] = h[Cd]
∣∣
H
.

Let H[Bd] denote the semi-conjugate of h by E, that we complete by H[Bd](0) =
0. Then H[Bd] is defined and holomorphic on the unit disk. We now define R[Bd]
and a preferred normalization for it:

R[Bd] = A ◦ H[Bd] ◦B

with A and B linear such that: B = id, and R[Bd]
′(0) = 1.

2.3. Dynamical and structural chessboards. Let vf denote the unique singular
value of f |A in the immediate parabolic basin A. The set of singular values of h
over C is of the form v′+Z for v′ = Φ(vf ). Let us cut the range along the horizontal
line v′+R passing through them. To understand the shape of the preimages of this
line and of the upper and lower half planes it bounds, it is useful to work first with
the map Bd. Recall: h is the horn map associated to a dynamical system f with an
immediate parabolic basin A, on which there is a conjugacy ζ : A→ D to the map
Bd, and Φ[Bd] ◦ ζ = τ + Φ[f ]. Thus the preimage Φ[f ]−1(v′ +R) is mapped by the
isomorphism ζ to a universal shape, that depends only on d. The set Φ[f ]−1(v′+R)
is called the parabolic chessboard graph of f on A. The connected components of its
complement in A are called the chessboard boxes (in an actual chessboard they are
called squares but here they have infinitely many corners and not just four). The
chessboard is the name of this decomposition of A into a graph and boxes. Since
the chessboard is universal, it can be well understood by looking only at the maps
Bd. Note that these maps have a singular orbit contained in [0, 1[ and that they
send reals to reals, thus the chessboard graph is also the union of the preimages of
[0, 1[.

4There is a way to extend convention 2 on page 80 for the normalizations, using asymptotic
expansions of Fatou coordinates and the general definition of the iterative residue, see for example

[Ché08], Chapter 1. A remarkable fact is then that these normalizations of Bd and Cd are

compatible: T and T ′ are automatically the identity.
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Figure 4: Light and dark stripes, preimages of vertical strips of width 1 under the

extended attracting Fatou coordinate Φ, for B̃2 and B̃3

Each chessboard box of f is mapped by Φ = Φ[f ] to the upper or the lower half
plane delimited by v′ + R, and we colored them accordingly (yellow and blue in
most illustrations of the present article). The set of singular values of Φ is precisely
{v′−1, v′−2, v′−3, . . .}. These singular values however have also regular preimages,
so these universal structures we are considering are not so simple as ramified covers.
Under the dynamics of f , each box is mapped to a box of the same color, and there
is exactly one box of each color that is fixed by f : these are the ones that have
the singular value in their boundaries. The Fatou coordinate Φ conjugates the
dynamics of f on these two fixed boxes to the dynamics of the translation by 1 on
the upper and lower half planes. The chessboard also tells us about the structure
of Φ as defined in Section 1.2. In view of this, the chessboard in the immediate
basin A is both a dynamical object w.r.t. f and a structural object w.r.t. Φ.

The figures can be enhanced a little bit: let us use two shades of yellow and
two shades of blue in the range of Φ. Use the light shade if the floor integer part
bRe (z− v′)c is even, and the dark shade otherwise. Color points in A according to

Φ(z). Then we get Figure 4 for f = B̃2, B̃3 and B∞. This color scheme is useful
to visualize the pull-back by Φ[f ] of the vertical direction. Under f , a light stripe
is mapped to a dark stripe and vice-versa.

The chessboard graph has no endpoint, and it is closed in A but not compact.
Since we considered the chessboard graph as a subset of C endowed with its topol-
ogy, not as a combinatorial object, there is an ambiguity outside branching points
concerning which points are vertices of valence 2 and which points belong to edges:
the singular value is one such point w. So let us define an abstract graph with
vertices at all preimages of the singular value by π ◦ Φ[f ] : A → C/Z, where
π : C→ C/Z is the canonical projection, and edges as preimages of the horizontal
circle through it.

Remark. We will not make use of it, but it would make sense to consider some
supplementary topological information on the abstract graph, like the cyclic order
induced by the embedding in the plane on edges at every vertex.

The abstract graph and the way it is embedded in A tells us how are glued
together pieces obtained by cutting A along the preimages of the horizontal circle
through the critical value of π ◦Φ[f ]. It also tells us how are glued together pieces
obtained by cutting A along the preimages of the vertical line through this critical
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Figure 5: The extended attracting Fatou coordinates of B̃2 conjugate the restriction

of B̃2 to the two principal chessboard boxes and the segment ]0, 1[, indicated on
the left, to the translation z 7→ z + 1 on a slit plane, as on the right.

value: each of these piece is a union of two light stripes or two dark stripes, glued
along a segment of the graph.

Figure 5 explains how the union of the edges that touch points in the orbit of
the singular value form an infinite line in the graph, and how the union of this line
and of the two chessboard boxes whose closure contain the line, make a domain
where the dynamics is conjugated to the translation by 1 restricted to C\]−∞, 0[.
The bright and dark stripes help to figure out how things are mapped and what
the dynamics is within this domain. This would work for any d ≥ 2, including ∞.

Let us now introduce the chessboard associated to the horn map h. It is defined
using the pre-image of the horizontal line through the set of singular values of h,
and of the upper and lower half plane cut by this line. From the definitions, it
follows that it is also equal to the pre-image by Ψ of the chessboard of f in the
full parabolic basin (the union of all iterated preimages of A by f). This time, it is
not a dynamically invariant object, but it gives information on the structure of h
as defined in Section 1.2.

The next set of pictures, in Figure 6, shows the structure of the horn maps of
Bd. The image of these three pictures by the exponential map z 7→ exp(2πiz) is
shown on Figures 7 and 8 and gives us information about the structure of the upper
renormalization R[Bd] of Bd. One sees that it is also defined on a disk centered on
the origin. For the beauty of the thing, we replaced the dark and light strips by
a lighting scheme that gives the illusion of a texture made of cylinders.5 A more
shameful reason for this change is that the light and dark stripe scheme does not
pass to the quotient.

Recall that H[Bd] denotes the semi-conjugate of h[Bd] by E : z 7→ e2πiz, i.e.
H ◦ E = E ◦ h, completed by H[Bd](0) = 0, and that R[Bd] = A ◦ H[Bd] for some
linear map A. Recall also that there are three singular values of R[Bd]: 0, ∞ and
some third point v. The only preimage of 0 is 0.

The chessboard decomposition for R[Bd] has two equivalent definitions. First
as the preimage by R[Bd] of the decomposition of C into the circle of center 0

5The trick to produce such a computer picture is called normal mapping, it is the same trick
used to give a realistic look in 3D imaging to texture-mapped polygons subjected to a light source.
Some specular reflection reinforces the feeling of relief.
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Figure 6: These two pictures show the structures of the extended horn maps h of
respectively B2 and B3. They are all defined on the complement of a horizontal line;
in each case, we only drew the picture above this line; the full picture is obtained by
reflection through this line, permuting blue↔yellow. The same coloring conventions
apply as in the previous figures: yellow boxes map by h to the upper half plane
delimited by the horizontal line through the singular value, blue boxes to the lower
half plane. The boundaries between dark and light shades of a given color are
mapped by π ◦ h to the vertical line through the critical value, where π : C→ C/Z
denotes the canonical projection.

going through v and the two connected components of its complement, yellow cor-
responding to the inside and blue to the outside. But is is also the image by E of
the chessboard decomposition of h[Bd].

With our coloring convention, the box surrounding 0 is yellow, every blue box is
mapped by R[Bd] to the set |z| > |v| as a universal cover, the yellow box containing
the origin is mapped 1 : 1 to |z| < |v| and every other yellow box is mapped as a
universal cover to |z| < |v| minus the origin.

This can be generalized to the renormalization R[f ] for any f ∈ Sd. It is both:
on one hand the preimage of the decomposition of C into the circle of center 0 going
through the singular value v of R[f ] and the two components of its complement;
on the other hand the image by E of the chessboard of h, subject to the same
restriction, rescaling and possibly inversion if we are performing lower parabolic
renormalization instead of upper, as were done to pass from h to R[f ], and com-
pleted by adding 0. The partition of the domain of R[f ] into two colors and the
graph separating them is called the structural chessboard of R[f ]. It is different
from the dynamical chessboard of R[f ], which is defined only in the basin of its
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Figure 7: Structure of R[B2].

parabolic point z = 0 and only if the normalization of R[f ] is such that 0 is a para-
bolic point of R[f ]. In particular, unlike the dynamical chessboard, the structural
chessboard is not dynamically invariant.

In the case d <∞, notice that there is a tiny loop bounding a small yellow box
containing the origin and that looks like a droplet. When d increases the angle at
the tip of the loop decreases and the tip gets closer to the boundary of the domain
of definition of the map. In the case d =∞, the droplet touches the boundary.

The next picture illustrate Theorems 9 and 13. Figure 9 shows the famous case
dubbed the Cauliflower: this is the Julia set of z 7→ z2 + 1/4. We removed the
colors and drew the boundaries between boxes and the boundaries of the definition
domains. The six images are ordered in a 2×3 rectangle whose first column figures
the dynamical chessboard of f atop and of B2 below. The next column represents
views of their chessboards in repelling Fatou coordinates or, more precisely, two
periods of their preimage by Ψrep. The last column is the projection to C∗ of
the middle column by the map b[f ]−1E : z 7→ b[f ]−1 exp(2πiz) where b[f ] is some
constant used in normalizing R. The vertical arrows are isomorphisms between the
three pairs of domains, mapping graph to graph, respecting box colors (not figured
here) and even better: they are structure isomorphisms for the following respective
maps (properly normalized): the attracting Fatou coordinate for the first column,
the horn map for the second column and the parabolic renormalization for the last
one. This diagram is also commutative if one adds the following self maps of the
six sets: column 1: f , B2, column 2: T1, T1, column 3: Id, Id. From all this we
can build a big commutative diagram, but we do not think that it would be much
readable. Note that the tiny loops in the last column are the images of the big
unbounded square that lie above in both middle images. The image of this square
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Figure 8: Structure of R[B3].

by Ψrep is one of the two f -invariant (resp. B2-invariant) squares (they touch the
fixed point), but the latter has many other preimages by Ψrep.

2.4. Inou and Shishikura’s sub-structure. To finish this visualization chapter,
we present here the structure B of Theorem 22 (Inou-Shishikura’s theorem), and
how B and its sub-structure A fit as sub-structures of R[B2].

The first set of drawings shows one of the ways Inou and Shishikura used to
present it. They defined a Riemann surface with a natural projection over C/Z
as follows: cut the cylinder C/Z so as to retain only the part where Im (z) > −η
with η = 2. (6) Slit this cylinder along the vertical segment from 0 to −ηi. To
this, glue the rectangle Re (z) ∈ ] − 1, 1[ and Im (z) ∈ ] − η, η[, cut along the same
segment. As usual with Riemann surfaces, we glue each side of the segment in one
piece to the opposite side on the other piece. This is represented on the upper left
part of Figure 10. This method is reminiscent of the way Perez-Marco uses to build
structures in his work. Below it in the same figure, is a tentative to picture the
way it projects to the cylinder C/Z, while on its right there is a planar open set
isomorphic to it (conformal moduli are not respected in the figure). In the lower
right corner, there is the image of the lower left by z 7→ exp(2πiz) (rotated by
90 degrees). The right column is a map f with structure B (the marked point is
z = 0). The left part of Figure 11 accurately shows how B sits as a substructure of
the structure of R[B2]. The right part identifies the pieces.

Structure A is a substructure of B, obtained by mapping conformally the domain
of f minus the origin to the complement of the closed unit disk and removing

6There is some flexibility in the value of this lower bound, in [IS04], they proved that their
theorem holds for any real η between 13 and 2 included. Here, we drew the domain only for their
original value η = 2.
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Figure 9: (rotated 90◦) Illustration of Theorems 9 and 13 for f(z) = z2 + 1/4. See
the text page 19 for a description.
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Figure 10: Only the upper left section of this figure is conformally correct. Expla-
nations in the text on page 20.
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Figure 11: Caption in the text. Note that compared to the upper right part of
Figure 10, there is a supplementary corner. The picture is accurate.
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Figure 12: Comparison of A and B. The picture is accurate. Though it is hard to
see, the boundary of the light-toned domain and the boundary of the color-saturated
domain are disjoint.

the interior of some specific and explicitly defined ellipse (see [IS04]). The result,
mapped to the set of Figure 11, is shown on Figure 12.

Recall that R[Bd] is the unit disk D. Let U b V b D be the sub-domains
corresponding to respectively A and B. Inou and Shishikura worked with the
particular sets we just described. It is more natural, though not easy, to take for
U and V a pair of disks centered on the origin. The objective of the present article
is to prove that this works. The downside is that we lose unicriticality of maps in
the class we construct. Yet, it still applies to unicritical polynomials, after taking
one renormalization (they become multicritical, with only one critical value); recall
that even Inou and Shishikura need to take first one iteration of renormalization
of to get a map in their class from a quadratic polynomial anyway. The upside is
that our approach will work for critical points of any degree.
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3. Proof

The element of hyperbolic metric of a connected open subset U of C will be
denoted by ρU (z)|dz| and the corresponding hyperbolic distance by dU (z, z′).

Conventions: The hyperbolic metric on D is chosen to be |dz|
1−|z|2 , and the hyper-

bolic metric on open strict subsets U of C is normalized according to this convention,
i.e. it is the image of the metric of the disk by its identification with the univer-
sal cover of U . With that convention, the hyperbolic metric on H takes the form

|dz|/2Im z. (Some authors prefer using 2|dz|
1−|z|2 on D so that one gets |dz|/Im z on

H.)

3.1. A convenient notation. Given r ∈ ]0, 1[ and a subset U of C conformally
equivalent to D and containing 0, we will denote

U } r =
{
z ∈ U

∣∣ dU (0, z) < dD(0, r)
}
.

Note that U}r = φ(B(0, r)) where φ : D→ U is a conformal isomorphism mapping
0 to 0.

Recall that we denoted E(z) = e2πiz, which is a universal cover from C to C∗.
Given a set of the form V = E−1(U) where U is as above, we will denote

V  r = E−1(U } r).

3.2. Outline. Our main theorem will be proved in two steps. Let us fix in this
section some d ∈ N with d ≥ 2. From now on, parabolic renormalization refers to
upper parabolic renormalization. In Section 2.2 we defined the objects Φattr[Bd],
Ψrep[Bd], h[Bd], H[Bd] and R[Bd] and adopted specific normalizations for them
(except forR[Bd]). In particular, we chose to define h[Bd] on the upper half plane H
only. The mapH[Bd] is defined on D, maps 0 to 0 and satisfiesH[Bd]◦E = E◦h[Bd].
The map R[Bd] is defined as

R[Bd] = bH[Bd]

where b ∈ C∗ is chosen so that R[Bd]
′(0) = 1. In Section 2.2 we introduced a semi-

conjugate Cd of Bd by a 2:1 rational map, such that Cd has only one attracting
petal, and we gave relations between the objects for Bd and the objects for Cd.
Note that R[Bd] coincides with R[Cd] and

DomR[Bd] = D.

In the introduction we introduced, Definition 14, a class Rd that we will also
denote by F :

F = Rd =
{
R[Bd] ◦ φ−1

∣∣φ : D→ C is univalent and φ(z) = z +O(z2)
}
.

Let

Fε =
{
R[Bd] ◦ φ−1

∣∣φ : B(0, 1− ε)→ C is univalent and φ(z) = z +O(z2)
}
.

In other words, F is the invariant class of Shishikura, Lanford, Yampolsky consisting
of maps f with a fixed point at the origin tangent to the identity and such that f is
structurally equivalent to the renormalization of the Blaschke product Bd, and Fε
is a class of maps having only a subset of this structure. The smaller ε, the more
structure. Note that F = F0. To be more precise and to stick to the language
introduced in Section 1.2, let I be a singleton. If we mark the origin by the unique

map I → {0}, maps in Fε are all (I, Ĉ)-structurally equivalent.
The maps f ∈ F have the same set of singular values as R[Bd] and they have

the same nature: {0, v,∞} for some v ∈ C∗ that depends only on d, with 0 and ∞
two asymptotic values, R[f ]−1({0}) = {0}, R[f ]−1({∞}) = ∅ and v is a critical
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value that is not an asymptotic value, and R[f ]−1({v}) consists in regular points
and critical points of degree d.

All maps f ∈ F are tangent to the identity at the origin. For the following
statement, recall that Sd is the class of Definition 8.

Proposition 25.

F ⊂ Sd

Proof. This has already been mentionned in the introduction and follows from
Lemma 10, let us give details: f ∈ F has exactly the same singular values as
R[Bd], hence f ∈ Sd′ for some d′. We also have to check that d = d′. The singular
value of f in the immediate basin A is v which is not an asymptotic value hence
d′ 6= ∞ (see Definition 8). Then by Definition 8 again, f has a critical point of
degree d′ in A, hence d′ = d. �

We will prove the following more precise version of the main theorem:

Theorem 26. The main theorem page 10 holds with B = the structure of maps
f ∈ Fε1 with marked point 0 and A = the substructure Fε0 , for some pair ε0 > ε1.

The class of Schlicht maps is denoted SL, thus F =
{
R[Bd] ◦ φ−1

∣∣φ ∈ SL}.
The two steps are the following:

(1) Contraction: for f ∈ F denote f = R[Bd] ◦ φ−1
1 , φ1 ∈ SL. Then by

Theorem 20, with an appropriate normalization, R[f ] is of the form R[Bd]◦
φ−1

2 , φ2 ∈ SL. We will prove that “the definition of R[f ] on Dom(R[f ])}
(1− ε) uses only iteration of f on Dom(f)} (1− ε′) where ε′ � ε ”.

(2) Perturbation: for a map f ∈ F , we will define a continuous deformation
ft ∈ Ft. Every map in Ft will be a deformation of a map in F . We will
prove that R[ft] has structure at least Fε, provided t ≤ ε′/K for some
K > 1, where ε′ is given by the first step.

Let us give a slightly more detailed formulation of these two steps; we leave here
some imprecisions; they will be fully stated and proven in details in Section 3.7
to 3.10.

Step 1: Let E(z) = e2πiz, Φattr the extended attracting Fatou coordinate of f ,
Ψrep the extended repelling inverse Fatou coordinate of f , and recall that R[f ](z)
can be defined (up to pre and post composition by two linear maps) as

E(Φattr(f
m(Ψrep(u)))),

where u ∈ E−1(z) is chosen so that it belongs to the image of the repelling petal by
the repelling Fatou coordinates and m ∈ N is chosen so that fm(Ψrep(u)) belongs to
the attracting petal. So we are following the orbit of w = Ψrep(u) under iteration of
f from the repelling petal to the attracting petal. The claim is that this orbit stays
in Dom(f) } 1− ε′. Now recall that by the properties of the extended repelling
Fatou coordinates, we have fk(w) = Ψrep(u+k) and that the domain of definition of
Ψrep is invariant by the translation T1. Therefore, using that E−1(DomR[f ]}1− ε)
is equal to the translate by an appropriate complex constant of the domain of the
horn map h, point (1) above can be stated as follows:

Ψrep(Dom(h)  1− ε) ⊂ Dom(f)} 1− ε′.

The relation ε′ � ε will take the form:

log
1

ε′
≤ c′ + c log

(
1 + log

1

ε

)
for some positive constants c, c′ (Proposition 45).
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Step 2: In the perturbation part, given r = 1 − t0 and f ∈ Fr, we define an
element f0 ∈ F together with a smooth interpolation ft, t ∈ [0, t0], between f0 and
f = ft0 . It has the following form:

ft = R[Bd] ◦ φ−1
t .

The map φt is a univalent map, defined on B(0, 1− t) with φt(0) = 0 and φ′t(0) = 1

and is defined as follows: let rt = 1 − t, decompose f(z) = R[Bd] ◦ φ̃−1, let

φ(z) = r−1
t0 φ̃(rt0z), whence φ ∈ SL, and define

φt(z) = rtφ(r−1
t z).

The map φt is an isomorphism from B(0, 1− t) to rt ·Dom(f). In particular φt is
not the restriction7 of φ to B(0, 1− t), and

Dom ft = rt ·Dom f,

and is thus usually not equal to Dom(f)} rt.
Now since f0 = R[Bd] ◦φ−1 belongs to F , its renormalization R[f0] decomposes

as R[Bd] ◦ φ−1
2 for some Schlicht map φ2. By the first step, given ε > 0 and a

point z ∈ DomR[f0] } (1− ε) = φ2(B(0, 1 − ε)), we know that the value of R[f0]
is obtained through iteration under f0 of a point w in the repelling petal of f0,
point whose orbit remains in Dom f0 } 1− ε′ = φ(B(0, 1 − ε′)) with ε′ � ε. We
will then vary t from 0 to t0 and follow by continuity the points in the orbit of w,
not by fixing the initial value, but instead by imposing that their attracting Fatou
coordinate stays the same, where we normalize the attracting Fatou coordinates
(it varies with t since ft does) by putting its critical values at the nonnegative
integers. In particular, w moves with t. A local study shows that the tail of the
orbit will not move much. The motion of the other points will be bounded from
above inductively by iterating backwards along the orbit, until we reach w. We
will measure the motion in terms of the hyperbolic metric on the complement in C
of the post-critical orbit of f0. The study will show (Proposition 66) that there is
some K > 0 independent of f (necessarily K > 1) such that, provided ε′ is small
enough, an orbit that is initially completely contained in Dom(f0)} 1− ε′ survives
all the way as t varies from 0 to ε′/K. Thus R[ft] has at least structure Fε provided

t ≤ ε′/K. The main theorem thus holds for A = (0, f ∈ Fε0) and B = (0, f ∈ Fε1)
with ε0 = ε′/K and ε1 = ε with ε small enough, as ε′ � ε will imply ε0 > ε1.

3.3. Normalizations. In the rest of Section 3, i.e. in the proof of the main theo-
rem, more precisely of Theorem 26,

• normalized Fatou coordinates refer to the normalization by the the asymp-
totic expansion at infinity, convention numbered 2 on page 80,

• Φattr will refer to extended attracting Fatou coordinates, normalized ac-
cording to the same convention,

• Ψrep will refer to extended inverse of the repelling Fatou coordinates that
are normalized according to the same convention,

• h[f ] = Φattr ◦Ψrep,
• R[f ] is the parabolic renormalization, normalized by the critical value (con-

vention numbered 3 on page 81); see details below,

7It would be too much to ask for an interpolation ft = R[Bd]◦φ−1
t for which φt is the restriction

of some φ to B(0, 1 − t). Look for instance at t = r: this would mean that the initial univalent

map φ̃ is the restriction to B(0, r) of the univalent map φ. But there are plenty of univalent maps

φ̃ on B(0, r) that are not the restriction of a univalent map defined on B(0, 1).
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• in the second step, we will use the notation Ψt and Φt to denote the ex-
tended repelling inverse Fatou coordinate and the extended attracting Fa-
tou coordinate of ft, normalized not by their asymptotic expansion but
according to a convention analog to number 3.

Let f satisfy the hypotheses of Theorem 20. Let us call (only in this paragraph)
U the connected component of Dom(h[f ]) that contains an upper half plane and Ξ
the map such that

E ◦ h[f ]
∣∣
U

= Ξ ◦ E.

Then R[f ] = Ma ◦Ξ ◦M−1
b for a pair of linear maps Ma : z 7→ az and Mb : z 7→ bz

that depend on f , hence

Ma ◦ E ◦ h[f ]
∣∣
U

= R[f ] ◦Mb ◦ E.

The constants a and b depend on f .
By Theorem 20 there exists a choice of a and b in the equation above, such that

R[f ] = R[Bd] ◦ φ−1

i.e. such that R[f ] ∈ F . This is the normalization that we choose for R[f ]. We
have R[f ]′(0) = 1 and R[f ] and R[Bd] have the same (unique) critical value, and
these two conditions characterize this choice of normalization. It coincides with
convention numbered 3 on page 81. The class F is stable by renormalization with
this convention:

R : F → F .

3.4. Universality. For later reference, let us mention and prove the following two
universality statements for the repelling extended Fatou coordinates and the horn
map, analog to Theorems 19 and 20.

Proposition 27 (S., L.–Y.). Let d <∞. Recall h = Φattr ◦Ψrep. Let f be either a
holomorphic map as in Theorem 13, i.e. f ∈ Sd and its immediate basin is a Jordan
doman, or as in Theorem 20, i.e. f ∈ F = Rd. Let U [f ] denote the component
of the domain of h[f ] that contains an upper (resp. a lower) half plane. (Up to a
complex rescaling, resp. an inversion and a complex rescaling, the image of U [f ]
by E : z 7→ e2πiz is the domain of the renormalization of f .) Then there is a
conformal isomorphism φ0 : U [f ] → U [Bd] that commutes with T1 and such that
Ψrep[Bd] ◦ φ0 = ζ ◦ Ψrep[f ], where ζ : A[f ] → A[Bd] = D is the conjugacy of the
immediate parabolic basins of the respective fixed attracting petals, mentioned in
Theorem 6.

Proof. First case: for maps as in Theorem 13 this is proved in [LY14]. Second case:
for maps f ∈ Rd, the proof proceeds similarly as the proof of Theorem 20: we
introduce the same sequence fn to which the first case applies. We get a sequence
of conformal isomorphisms φn : U [fn] → U [Bd] that commute with T1 and such
that Ψrep[Bd] ◦ φn = ζn ◦ Ψrep[fn], ζn : A[fn] → A[Bd]. We normalize Ψrep[fn]
by the expansion (convention numbered 2 on page 80), in particular it tends to
Ψrep[f ] on every compact subset of the domain of Ψrep[f ]. By extracting a limit
as in the proof of Theorem 20 we have a conformal map φ commuting with T1

from a simply connected subset U of C with T1(U) = U with Dom Ψrep[f ] ⊂ U and
Ψrep[Bd]◦φ = ζ◦Ψrep[f ]. Again, the inclusion must be an equality for otherwise, by
post-composing by Φattr[Bd] we would get that R[f ] is not defined on its maximal
domain of holomorphy, in contradiction with Lemma 16. �

Lemma 28. For f ∈ F , let vf denote the critical value of f and v′f = Φattr(vf ).

There is a conformal map φ from the upper component U [Bd] of Dom(h[Bd]) to the
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upper component U [f ] of Dom(h[f ]) that commutes with T1 and such that

Tτ ◦ h[f ]
∣∣
U [f ]

= h[Bd] ◦ φ−1

with τ = v′Bd
− v′f and Tτ (z) = z + τ .

Proof. By Corollary 7, Φattr[Bd] ◦ ζ = τ + Φattr[f ]
∣∣
A

for some τ ∈ C and ζ : A→ D
the conjugacy from f on its immediate parabolic basin to Bd. By applying to the
unique critical value of f

∣∣A we get τ = v′Bd
−v′f . By Proposition 27, Ψrep[Bd]◦φ−1 =

ζ ◦Ψrep[f ] for some conformal isomorphism φ : U [Bd]→ U [f ] that commutes with
T1. We conclude using h = Φattr ◦Ψrep. �

3.5. Chessboards. Just before we begin the proofs, let us recall that maps f ∈ F
have a structural chessboard and a dynamical chessboard . The first is a partition of
Dom f that is a pre-image by f of the partition of C∗ cut by the circle of center 0
and passing through the critical value of f . The second is a partition of the basin
(or of the immediate basin) of the parabolic point z = 0 of f , and is f -invariant.
The second is also a structural object w.r.t. Φattr[f ]. See Section 2.3 for more
details.

We defined a chessboard for the horn maps h associated to parabolic points of
maps f ∈ F (more generally to maps f in the class Sd of Definition 8). It is the
preimage in repelling Fatou coordinates of the dynamical chessboard of f and it is
also the preimage by h of the partition of its range cut by a horizontal line. There
is a box that contains an upper half plane, we call it the main upper box of h.
Similarly the box that contains a lower half plane is called the main lower box of
h.

The map φ introduced in Lemma 28 maps the chessboard decomposition of h[Bd]
to the chessboard decomposition of h[f ].

3.6. Toolkit. In this section we redo classical computations on Fatou coordinates
and first terms of their expansion. We add dependence on a map staying in a
compact class and put the emphasis on uniformity of the bounds obtained. The
section mainly serves as a reference for the rest of the text. The trusting reader
may skip it.

3.6.1. Compact classes of parabolic maps with one attracting petal.

Proposition 29. Assume G is a set of holomorphic maps g : D → C with g(z) =
z + cgz

2 + . . ., that G is compact for the topology of local uniform convergence and
that cg is never 0, i.e. that g has one attracting petal. Denote γg the iterative
residue of g. Let logp be the principal branch of the complex logarithm. Then there
exists r0 such that ∀g ∈ G

• the disk Dattr of diameter [0, r0e
iα] where α is the direction of the attracting

axis of g, is contained in the parabolic basin of g; g(Dattr) ⊂ Dattr and every
orbit in the parabolic basin eventually enters Dattr;

• the extended attracting Fatou coordinate of g is injective on Dattr and maps
Dattr to a set of the form

{
z ∈ C

∣∣Re (z) > ζ(Im (z))
}

with ζ : R → R
an analytic function (that depends on g) satisfying ζ(x)/x −→ 0 when
x −→ ±∞;

• on Dattr, the normalized attracting Fatou coordinates Φ of g and the map

Φ̃ : z 7→ −1
cgz
− γg logp

−1
cgz

have a difference uniformly bounded by a quantity

that is independent of g.

The above points also hold if r0 is replaced by any smaller positive real.
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Proof. The techniques in this proof are standard (see [Lav89], [DH85], [Shi00],
[Ché08]). We will insist here on providing uniformity of the bounds as g varies in
G.

By compactness, uniformly on G:

• cg is bounded away from 0: ∃ε > 0 such that ∀g ∈ G, |cg| ≥ ε;
• g is bounded on B(0, 1/2): ∃K > 0 such that ∀g ∈ G, |g| ≤ K on B(0, 1/2).

Also, by Cauchy’s inequality,
|cg| ≤ 4K.

Since |g(z)−z| ≤ K+1/2 on B(0, 1/2), we get |g(z)−z| ≤ K ′|z2| with K ′ = 4K+2,
and in particular g does not vanish on B(0, 1/K ′) except at the origin.

We will make a series of change of variables z 7→ u 7→ w 7→ ξ with

u =
−1

cgz
, w = u− γg logp u, Z = Φ(z)

Where logp denotes the principal branch of the logarithm. We will denote z′ = f(z)
and use the notation u 7→ u′, . . . , Z 7→ Z′ for the dynamical systems z 7→ z′ will be
conjugated to.

The first change of variable is injective on C∗. It maps Dattr to the half plane

Hattr : Re (u) > U0(g) = 1/r0|cg|.
We have the following asymptotic expansion

u′ =
∞
u+ 1 +

γg
u

+O(u−2).

The condition z ∈ B(0, 1/K ′) is equivalent to |u| > K ′/|cg|. Under this condition
the map u 7→ u′ is holomorphic, and depends continuously on g. From compactness
of G, it follows that these restrictions form a compact family too. In particular,
if we further restrict to |u| > 1 + K ′/|cg|, we get by a simple application of the
maximum principle that

|u′ − (u+ 1)| ≤ M1/u

|u′ − (u+ 1 +
γg
u

)| ≤ M2/u
2

for some constants M1,M2 independent of g ∈ G. Thus for r0 ≤ 1/(|cg|max(1 +
K ′/|cg|, 4/M1)), we have

M1

|u|
≤ 1

4

thus
|u′ − (u+ 1)| ≤ 1/4

thus the set Hattr is invariant under the dynamics of u 7→ u′, so Dattr is invariant
under z 7→ z′. It is also easy to see that in the u-coordinate, an orbit tend-
ing to ∞ must eventually get into Hattr. The right hand side of the condition
r0 ≤ 1/(|cg|max(1 +K ′/|cg|, 4/M1)) depends continuously on g and reaches thus a
positive minimum: it is satisfied as soon as r0 ≤ r1 where r1 is independent of g.

The constant γg is finite and depends continuously8 on g. Thus it is bounded
over G, say by Γ:

|γg| ≤ Γ.

The change of variable w = u − γg logp u has derivative 1 − γg/u. It is thus
injective on the convex set Re (u) > 2|γg|. Thus when r0 ≤ r2 where r2 =
ming∈G(1/2|γgcg|) > 0, then ∀g ∈ G, the map u 7→ w is injective on Hattr. We

will require in fact a bit more: r0 ≤ r′0 = r2/2, so that
∣∣∂w
∂u − 1

∣∣ ≤ 1
4 . This implies

that the image of Hattr by u 7→ w is a set that is of the form Re (w) > ζ(Im (w)) for

8because it is equal to 1− a3/c2g if we denote g(z) =
0
z + cgz2 + a3z3 + . . .
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some analytic function ζ : R→ R that depends on g and satisfies |ζ ′(y)| < 1/
√

15.
Moreover, ζ(y)/y −→ 0 when y −→ ±∞ because w ∼ u when |u| → ∞. In this
new coordinates, we get

w′ − w =

∫
[u,u′]

(
1− γg

a

)
da

whence

w′ − w = 1 +
γg
u

+
≤M2

u2
− γg log

(
1 +

1

u
+
≤M1

u2

)
where ≤ M2 means a complex number that depends on u but whose module is
at most M2; we require r0 ≤ r3 where r3 is chosen independent of g and so that
the quantity 1

u + ≤M1

u2 has necessarily modulus < 1/2: recall that 1/u = −cgz
and that |cg| ≤ 4K. We can then apply the following estimate: |a| < 1/2 =⇒
| logp(1 + a)− a| ≤ L0|a|2 for some L0 > 0. Hence (thanks to a cancellation of the
term γg/u)

w′ − w = 1 +
≤M2

u2
+ γg

≤M1

u2
+ γg

≤ (1 + 1/4)2L0

u2

(recall that M1/|u| < 1/4). Thus for some constant M3 independent of g:

|w′ − (w + 1)| ≤ M3

u2
.

The Fatou coordinates can be defined by

Φ(z) = µ+ lim(wn − n)

where µ is a constant (that depends on the normalization) and wn is the n-th iterate
of w under the dynamics. Since Re (un) > Re (u0) + 3

4n and Re (u0) ≥ 1
r0|cg| , using

r0 ≤ r4 = min(r1, r
′
2, r3) we thus get

lim |wn − (w0 + n)| ≤
∑ M3

|un|2
≤
∑ M3(

1
4Kr4

+ 3/4
n

)2 = M4.

Thus |Φ(z) − (µ + w)| ≤ M4 holds on Dattr for all g. The normalizing constant µ
is so that Φ(z) = w + o(1) as z → 0 (iff. w → ∞) and therefore |µ| ≤ M4 whence:
∀g ∈ G, ∀z ∈ Dattr,

|Φ(z)− w| ≤ 2M4.

Recall that Hattr is the image of Dattr in the u-coordinate and that it is equal to
the half plane Re (u) > U0(g) = 1/r0|cg|. Let U4(g) = 1/r4|cg| and H4 be defined by
Re (u) > U4(g). Let Θ : H4 → C, u 7→ Φ(z). Then |Θ(u)− (u− γg logp(u))| ≤ 2M4

and by Cauchy’s inequality, |Θ′(u)−(1−γg/u)| ≤ 2M4/(Re (u)−u4). In particular,
the image of Hattr by u 7→ Z = Φ(z) is of the form Re (Z) > ζ(Im (Z)) for some
function ζ : R → R provided r0 ≤ r5 = r4/(1 + 8M4) so that 2M4/(Re (u) −
u4) ≤ 1/4 and provided r0 ≤ r6 = 1/16KΓ so that |γg/u| ≤ 1/4. The fact that
ζ(y)/y −→ 0 as y −→ ±∞ follows again from |Θ(u)− (u− γg logp(u))| ≤ 2M4.

We can now fix the value of r0 to min(r5, r6) (or any smaller value) and this
gives us a set Dattr that satisfies all points stated in the proposition. �

For reference, let us extract the following point (far from being optimal) from
the proof:

Lemma 30. Under the assumptions of Proposition 29, the change of variable u =
−1/cgz conjugates z 7→ z′ = g(z) to u 7→ u′ satisfying:

∀z ∈ B(0, r0), ∀g ∈ G, |u′ − (u+ 1)| ≤ 1

4
.

Similar arguments provide:
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Proposition 31. Under the same assumptions as in the Proposition 29, let

Drep = −Dattr.

Then for r0 small enough the following holds: ∀g ∈ G,

• there is a branch ` of g−1 defined on a neighborhood of 0 containing Drep

such that `(Drep) ⊂ Drep, Drep is contained in the parabolic basin of `,
every orbit in the parabolic basin of ` eventually enters Drep;

• a normalized repelling Fatou coordinate Φrep for g is defined on Drep; it is
injective on this set and maps it to a domain of the form Re (z) < ζ(Im (z))
for some analytic function ζ;

• Φrep − Φ̃rep is uniformly bounded on Drep by a constant Mrep independent

of g, where Φ̃rep = −1
cgz
− γg logp

1
cgz

(notice the change of sign inside the

log compared to attracting Fatou coordinates);

We will also need a control on the inverse Fatou coordinates, that we easily
deduce from the control on the Fatou coordinates:

Proposition 32. Using the notations of Proposition 29, provided r0 was chosen
small enough, then for all g ∈ G:

• Let Ψ = Φ−1. Then the difference between −1/cgΨ(Z) and Z + γg logZ is
bounded by a quantity independent of g and of Z ∈ Φ(Dattr).
• The domain of definition of Φ−1, i.e. Φ(Dattr), contains the set{

Z ∈ C
∣∣ReZ > ξ(ImZ)

}
where ξ is a function independent of g and satisfying ξ(y) = O(log |y|) as
y −→ ±∞.

Proof. We will use the notations of the proof of Proposition 29. There was a change
of variables u = s(z) = −1/cgz and a bound

|Z − (u− γg logp u)| ≤M
for some constant M independent of g, where Z.

|Z − (u− γg logp u)| ≤M.

There exists C > 0 such that for |z| > C then Γ| logp z| + M < |z|/4 (recall
Γ = sup

g∈G
|γg|), whence if r0 < 1/C sup |cg| then Hattr is contained in |u| > C and

thus: |Θ(u)− u| < |u|/4 i.e. |Θ(u)/u− 1| < 1/4, i.e.

∀Z ∈ Φ(Dattr), |Z/u− 1| < 1/4.

Now

|u− (Z + γg logp Z)| ≤ |Z − (u− γg logp u)|+ |γg|| logp u− logp Z|

≤ M + sup |γg|
∣∣∣logp

u

Z

∣∣∣
≤ M + sup |γg| log

3

2
.

The proof of the second point is similar. Recall that Hattr depends on g, and is
defined by Re z > ag where

ag = 1/r0|cg|.
The image Φ(Dattr is of the form

{
z ∈ C

∣∣Re z > ζ(|Im z|)
}

where ζ : R→ R is an

analytic function that depends on g. Let Θ(u) = Z = Φ(s−1(u)). Then Φ(Dattr) =
Θ(Hattr). The map Θ extends to a neighborhood of the closure of Hattr and still
satisfies |Θ(u)−(u−γg logp u)| ≤M on this closure. The curve ζ(R) is the image of
∂Hattr under this extension of Θ. Let b ∈ R parameterize a point u = ag+ib varying
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on ∂Hattr and and denote x + iy = Θ(ag + ib). Then logp u = log |u| + i argp(u)
and argp(u) < π/2 thus the bound |Θ(u)− (u− γg logp u)| < M yields for the real
and imaginary parts:

|x− (ag − Re (γg) log |ag + ib|)| ≤ M ′ := M + Γπ/2,

|y − (b− Im (γg) log |ag + ib|)| ≤ M ′.

There exists C ′ > 0, independent of g, such that for all b ∈ R, |Im (γ) logp |ag+ib|| ≤
|b|/2+C ′. The second line thus yields |b| ≤ |b|/2+C ′+ |y|+M ′ i.e. |b| ≤ 2|y|+M ′′

for some M ′′. Whence x ≤ ξ(y) := sup(ag) +M ′ + Γ log | sup(ag) + i(2|y|+M ′′)|,
which is independent of g and has the right order of growth w.r.t. y. �

Proposition 33. Under the same assumptions, there exists h > 0 such that for
all g ∈ G, the normalized extended repelling inverse Fatou coordinate Ψrep and the
normalized extended horn map h[g] are defined on a set containing the half planes
Im (z) > h and Im (z) < −h, and injective on the union of those half planes.
Moreover, for all r > 0, there exists h > 0 such that for all g ∈ G, Ψrep maps these
half planes inside the disk B(0, r).

Proof. Let us continue with the notations of the proof of Proposition 29. Note that,
decreasing the value of r0, we can assume that the maps g ∈ G are all injective on
B(0, r0). Without loss of generality we assume r < r0. Let us again work in the
coordinates

u = s(z) = −1/cgz.

Let D′(r) be the disk of diameter [0, reiα] where α is the repelling direction of f .
(In particular Drep = D′(r0).) The set D′(r) is transformed by s into the half plane
H ′ : Re (z) < −1/r|cg|. Let us also denote

H ′0 : Re (z) < −1/r0|cg|.

Recall that if |u| > 1/r0|cg| then |u′ − (u + 1)| < 1/4. To shorten formulas, we

will work with Φurep(u) = Φrep ◦ s−1(u), Φ̃urep(u) = Φ̃rep ◦ s−1(u) = u− γg logp(−u)

and Ψu
rep(Z) = s ◦ Ψrep(Z). Consider the line of slope −1/

√
15 that is tangent to

the disk B(0, 1/r|cg|). Consider open half plane H ′′ above this line: it does not
contain this disk. In particular |u′ − (u + 1)| < 1/4 holds on U and thus H ′′ is
stable: u ∈ H ′′ =⇒ u′ ∈ H ′′. Consider now the vertical bi-infinite strip S of width
5/4 whose rightmost bounding line is the boundary of H ′0. Its image in repelling
Fatou coordinates contains a fundamental domain for the translation z 7→ z + 1.
The intersection of S with H ′′ contains all points u ∈ S with Im (u) > h1 for
some h1 that depends on r and r0 and the lower bound ε on |cg| mentioned at the

beginning of the proof of Proposition 29. Using |Φurep− Φ̃urep| < Mrep and the upper
bound |γg| ≤ Γ, we deduce that Φurep(S ∩H ′′) contains every point of Φurep(S) with
imaginary part ≥ h, where h depends on r and on the other constants but not on
g.
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5/4H ′0

1
r0|cg|

1
r|cg|

H ′′

Recall that Φurep maps the vertical line bounding
H ′0 to a y-graph, i.e. a curve which crosses each hori-
zontal line exactly once. The translate by −1 of this
curve is the image by Φurep of a curve C, preimage
in H ′0 of ∂H ′0 by u 7→ u′. Because of the inequality
|u′ − (u + 1)| < 1/4, we get C ⊂ S. Thus Φurep(S)
contains a domain bounded by a y-graph and and its
translate by −1, i.e. a fundamental domain for the
translation by −1.

Let us prove that the domain of the extended nor-
malized inverse repelling Fatou coordinate Ψrep con-
tains all points at height > h. Recall Ψrep is defined
by extending Φ−1

rep, which is defined only on Φurep(H ′),

by setting Ψrep(Z) = gn(Φ−1
rep(Z − n)) for all n ≥ 0

and all Z ∈ C such that the right hand side is defined. Consider now Z ∈ C.
By the fundamental domain property proved above, there exists m ∈ Z such that
Z −m ∈ Φurep(S). If m ≤ 0 then Z ∈ Φurep(H ′) = Dom(Φ−1

rep) hence Z ∈ Dom Ψrep.
If m ≥ 0 and Im (Z) > h then Im (Z − m) = ImZ > h and thus we have seen
that u−m := (Φurep)−1(Z −m) belongs to H ′′ ∩ S. Since H ′′ is stable, the whole

forward orbit of u−m belongs to H ′′. In particular gm(Φ−1
rep(Z − m)) is defined,

hence Z ∈ Dom Ψrep. We have proven that the half plane
{
Z ∈ C

∣∣ Im (Z) > h
}

is
contained in Dom Ψrep.

Let now Z ∈ C with Im (z) > h and let us prove that Ψrep(Z) ∈ B(0, r) and to
the parabolic basin. Again consider m ∈ Z such that Z −m ∈ Φurep(S). Then in
the case m ≥ 0 we just saw that the whole orbit of u−m is in H ′′, in particular the
m-th iterate, which is equal to Ψu

rep(Z). Thus the point Ψrep(Z) = s−1(Ψu
rep(Z))

belongs to B(0, r). Also, the orbit of u tends to ∞ hence Ψrep(Z) belongs to the
basin of the parabolic point of g. In the case m ≤ 0, then Z ∈ Φrep(D′(r)) and
thus Ψrep(Z) = Φ−1

rep(Z) ∈ D′(r) ⊂ B(0, r). Since moreover Z−m satisfies the first
case and thus the point Ψrep(Z −m) belongs to the parabolic basin, we get that
Ψrep(Z) also belongs to the basin, as it is mapped to the former point by the |m|-th
iterate of g.

The proofs for the lower half plane
{
z ∈ C

∣∣ Im z < −h
}

are similar. Let us prove

injectivity of Ψrep on the union V of
{
z ∈ C

∣∣ Im z < −h
}

and
{
z ∈ C

∣∣ Im z > h
}

.

First, it is injective on U = Φrep(D′(r)), because it is equal to Φ−1
rep there. The

map g is injective on Ψrep(V ) because the latter is contained in B(0, r0). The set
Ψrep(V ) is also stable by g, thus gn is also injective on it. Then, for each n, the
map gn ◦Φ−1

rep ◦T−n is a composition of injective maps on Tn(U)∩V , and coincides
there with Ψrep. Since the union over n of Tn(U) is the whole complex plane, the
claim follows.

Injectivity of h[g] on V is similar, since h[g] is the union over n ≥ 0 of the maps
T−n ◦ Φattr

∣∣
Dattr

◦ gn ◦Ψrep, which are injective when restricted to V . �

Let us introduce a weak notion of convergence of analytic maps: let X, Y be
connected Riemann surfaces and let fn : Un → Y and f : U → Y be analytic
with U and Un open subsets of X. Endow Y with any metric compatible with
its topology. Let us say that fn tends to f if for all compact subset K of U , K
is eventually contained in Un and fn tends to f uniformly on K. This does not
depend on the choice of the metric.9 Note that this does not prevent Un to have a

9This definition has the following equivalent topological formulation. Let X′ =
{0, 1, 1/2, 1/3, 1/4, . . .} × X ⊂ R × X and embed X′ with the topology induced by R × X. Let

W ⊂ X′ be defined by (0, z) ∈ W ⇐⇒ z ∈ U and (1/n, z) ∈ W ⇐⇒ z ∈ Un. Let F : W → Y
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bigger limit than U . In particular, limits are not unique. We will use the following
notation:

fn ⊃−→ f,

which is chosen so to express the fact that f can be contained in limits with a
bigger domain. We do not define an associated topology but we will use the notion
of sequential continuity with respect to that notion of convergence, as illustrated
by the following two properties, whose proofs are left to the reader:

(1) The composition f ◦ g depends continuously on the pair f, g: if fk ⊃−→ f
and gk ⊃−→ g then fk ◦ gk ⊃−→ f ◦ g.

(2) For a fixed n, fn depends continuously on f : if fk ⊃−→ f then fnk ⊃−→ fn.

For the next statement, recall that Φattr and ψrep denote the extended Fatou
functions.

Proposition 34 (continuous dependence). Assume gn : Un → C is a sequence of
holomorphic maps defined on an open subset Un of C containing the origin, with
expansion gn(z) = z+cnz

2+. . . at 0, and with cn 6= 0. Assume g is also of this form
with cg 6= 0 and that gn ⊃−→ g. Then Φattr[gn] ⊃−→ Φattr[g], Ψrep[gn] ⊃−→ Ψrep[g]
and h[gn] ⊃−→ h[g].

Proof. The claim on h = Φattr ◦Ψrep follows from the claims on Φattr and Ψrep.

Recall that Dattr[g] is the disk of diameter [0, r0e
iα[g]] where α[g] is the direction

of the attracting axis of g, and that r0 is independent of g. Hence Dattr[g] depends
continuously on g. A compact set K contained in the parabolic basin of g is mapped
in Dattr[g] by an iterate gk. The latter depends continuously on g when k is fixed.
Since the center and radius of Dattr[g] depend continuously on g, gkn(K) ⊂ Dattr[gn]
for all n big enough. Continuity, as a function of g, of the restriction of Φattr to
Dattr, follows for instance from the third point of Proposition 29 combined with
uniqueness of Fatou coordinates: the sequence Φattr[gn] forms a normal family, and
any extracted limit is a Fatou coordinate for g because the functional equation
Φattr[gn] ◦ gn = T1 ◦Φattr[gn] passes to the limit, and uniqueness of the normalized
Fatou coordinates implies uniqueness of the extracted limit. From the convergence
of Φattr[gn] to Φattr[g] on Dattr[g] we deduce the convergence of Φattr = Φattr[gn] ◦
gkn − k to Φattr[g] ◦ gk − k = Φattr[g] on g−k(Dattr[g]), and hence on the whole
parabolic basin of g.

The proof for Ψrep is similar. �

3.6.2. Transferring to F . Fix some d ∈ {2, 3, . . . ,∞} and recall the definition F ={
R[Bd] ◦ φ−1

∣∣φ ∈ SL}. The conclusions of the previous propositions hold for F .

Indeed, the set of restrictions to D of maps A ◦ f ◦A−1 with A(z) = 4z satisfies the
assumptions of the propositions. First, the set of Schlicht maps SL is compact, and
by Koebe’s one quarter theorem, the domain of their reciprocal contains B(0, 1/4).
The restriction of these reciprocals on B(0, 1/4) forms a compact family. We saw
in Proposition 25 that F ⊂ Sd. In particular, maps in F have only one attracting
petal. This is therefore also the case for the conjugate map A◦f ◦A−1. This proves
the claim.

Call f̃ the restriction of A ◦ f ◦ A−1 to D. The conclusions of the previous

propositions are easily transposed from f̃ back to f because they were all local
(except for Proposition 34, which directly applies): for instance, normalized Fatou

coordinates satisfy Φattr[f̃ ](z) = Φattr(A(z)) for all z in the domain of the left hand
side (it is contained in the domain of the right hand side but not necessarily equal

to it, because f̃ is a restriction). Proposition 34 did not assume that the maps are

defined by F (0, z) = f(z) and F (1/n, z) = fn(z). Then fn ⊃−→ f ⇐⇒ [W is open relative to X
and F is continuous].
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defined on the unit disk, it applies directly, so continuous dependence of Φattr[f ]
and Ψrep[f ] holds without restricting the domain.

Recall h[f ] has the following expansion:

h[f ](z) = z + aup / down + o(1)

as Im (z) −→ ±∞, where aup and adown are two complex constants. For any map
in the class F , denote {0, vf ,∞} its singular values.10 The corresponding map h[f ]
has a set of singular values of the form vh + Z where

vh = vh[f ] = Φattr[f ](vf ).

By Proposition 33 there is a uniform h > 0 such that for all f ∈ F , the domain of
h[f ] contains the half planes Im z > h and Im z < −h.

For any d ∈ {2, 3, . . . ,∞}, the set F is sequentially compact, for the notion
of convergence defined above. By this we mean that every sequence fn ∈ F has
a subsequence fk such that fk ⊃−→ f . (11) A sequentially continuous real valued
function over a sequentially compact set is bounded. This implies the following
proposition.

Proposition 35. For any d ∈ {2, 3, . . . ,∞} over the class F , the following holds:

(1) (bound in the normalized attracting Fatou coordinates)
∃M such that ∀f ∈ F , |Im (vh)| ≤M .

(2) (bound on the horn map at the ends of the cylinder)
∃M such that ∀f ∈ F , |aup[f ]| ≤M and |adown[f ]| ≤M .

(3) (bound in the normalized repelling Fatou coordinates)
∃M such that ∀f ∈ F , the main12 upper and lower chessboard boxes of h[f ]
respectively contain the half planes Im (z) > M and Im (z) < −M .

Proof. The map f ∈ F 7→ vh ∈ C is sequentially continuous by Proposition 34.
The set F being sequentially compact, its image by f 7→ vh is sequentially compact
in C (i.e. compact) thus bounded. The first point follows.

For the second, by periodicity and the maximum principle and according to
the expansion, the distance |h[f ](z) − z| is bounded over Im (z) > h + 1 by its
supremum over a segment of length 1 inside the line Im (z) = h + 1, for instance
the segment [i(h + 1), 1 + i(h + 1)]. Continuous dependence implies the distance
is uniformly bounded as f varies in F . Since aup is the limit of this difference as
Im (z) −→ +∞, this implies the bound on aup. (Alternatively one can use the fact

that aup =
∫ ih+i+1

ih+i
(h(z)− z)dz.) The proof is similar for adown.

For the third, we will use the following trick: first h[f ] is an analytic isomorphism
commuting with T1(z) = z + 1 from the upper and the lower structural boxes to
one of the half plane delimited by vh + R. By Koebe’s one quarter theorem, the
upper box must contain Im (z) > log 4

2π + Im (vh) − Im (aup). The previous bounds
allows to conclude. The proof is similar for the other half plane. �

Let us now prove an independent proposition. Let f be a map in Sd. Then
we can apply Lemma 28 about universality and we know that Φattr : A → C is
structurally equivalent to Φattr[Bd] for some d ∈ {2, 3, . . . ,∞}. The singular values
of Φattr are ∞ and the points of the form Φattr(v)− n with n > 0 (see for instance
Proposition 2 in [BE02], where a notion of ramified cover is used: their proposition
implies that Φattr is a cover outside ∞ and the critical values).

10It turns out that vf is independent of f for a fixed d, but we will not use that fact.
11Note that if we restrict our notion of convergence to F , we recover uniqueness of the limit.
12terminology introduced in Section 3.5
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Proposition 36. Under these conditions, the preimage Γ by Φattr of the horizontal
half line Φattr(v) + [0,+∞[ has a connected component C that is a curve starting
from the singular value of f in A and ending at the parabolic point. It is stable:
f(C) ⊂ C, and contained in the common boundary of the two principal dynamical
chessboard boxes of f .

This curve will be called the principal curve. It contains in particular the orbit
of the singular value of f . Note that all connected components of Γ are curves since
the horizontal half line considered contains no singular value of Φattr.

Proof. It is enough to prove the proposition for Bd, which is easy because the latter
map is real preserving and its singular value is on the real line. Then it transfers
to f by universality: all claims are immediate except the statement that C tends to
the parabolic point. The latter follows for instance from C being the concatenation
of the sucessive images by f of its part from vf to f(vf ). �

Let us go back to maps f ∈ F . As we remarked before, convergence of maps
fn ⊃−→ f where fn and f belong to F is well behaved: limits are unique and
in fact it is equivalent to the classical notion of convergence of a sequence with
respect to a (metrizable) topology making F compact: Indeed, let fn, f ∈ F . Write
fn = R[Bd]◦φ−1

n and f = R[Bd]◦φ−1 with φn and φ ∈ SL (uniquely determined).
Then the following are equivalent:

(1) fn ⊃−→ f ,
(2) for some ε > 0, the map fn tends to f uniformly on B(0, ε),
(3) for some ε > 0, the map φn tends to φ uniformly on B(0, ε),
(4) φn tends to φ uniformly on every compact subsets of D.

A proof of (3) =⇒ (4) is for instance given by compactness of SL together with
analytic continuation of equalities. The last three notions of convergence are easily
metrized and all endow F with the same topology. It is Hausdorff and compact for
this topology. The map SL → F , φ 7→ R[Bd] ◦ φ−1 is hence a homeomorphism.

Recall that we denote 0, vf , ∞ the singular values of f over Ĉ. It turns out
that the class F has been defined so that vf does not depend on f , but let us
temporarily ignore that.

Lemma 37 (uniform bound on the trapping time). For any r > 0, denote Dr[f ]
the disk of diameter [0, reiα] where α is the direction of the attracting axis of f .
There exists n0 ∈ N such that ∀f ∈ F , fn0(vf ) ∈ Dr[f ].

Proof. Consider r′ = min(r, r0) where r0 is provided by Proposition 29. The set
Dr′ [f ] is an attracting petal for f and is contained in Dr[f ]. For each f ∈ F it
takes a finite number of iterates for vf to be trapped by Dr′ [f ]. The same number
of iterates is enough for nearby13 maps in F . By compactness14 of F , it follows
that there is n0 ∈ N such that ∀f ∈ F , ∃n ≤ n0 such that fn(vf ) ∈ Dr′ [f ]. Since
Dr′ [f ] is a trap this implies fn0(z) ∈ Dr′ [f ] and thus ∈ Dr[f ]. �

We will also use a slightly stronger statement:

Lemma 38. There exists n0 ∈ N and η0 > 0 such that ∀f ∈ F , fn0(B(vf , η0)) ∈
Dr[f ].

13We may use the topology on F , in which case it means that the same iterate is enough for
all maps in a neighborhood. Or we may use the notion ⊃−→, in which case it means that for all
sequence fn ⊃−→ f , this iterate is eventually enough.

14cover argument or sequence argument
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Proof. Done by compactness as above, using the following modification of the local
statement, which is immediate by continuity for ⊃−→ of f 7→ fn for a fixed n: for
each f ∈ F and each n such that fn(vf ) ∈ Dr[f ], there is η > 0 such that for all
maps g ∈ F close enough to f the n-th iterate of g sends B(vg, η) in Dr[g]. �

We have not checked if all compactness arguments in the rest of the article can
be reformulated using ⊃−→ only. This is not the main point, however. Moreover,
since there is on F a topology for which convergence of sequences is equivalent to
⊃−→, in the sequel we will use compactness of F for this topology and convergence

of sequences in F w.r.t. this topology. Recall it is a metrizable topology for which
F is compact.

Below, dC refers to the Euclidean distance on C and if U is a open subset of C
whose complement has at least two points, dU denotes the hyperbolic distance on
U . Let C = C[f ] be the curve introduced in Proposition 36.

Lemma 39. For f ∈ F , let PS(f) the orbit of the singular value vf of f . The
following holds:

(1) The sets C[f ] and PS(f) depend continuously on f for the Hausdorff topol-
ogy on compact subsets of C.

(2) sup
{
|z|
∣∣ z ∈ PS(f), f ∈ F

}
< +∞

(3) sup
{
dDom(f)(0, z)

∣∣ z ∈ PS(f), f ∈ F
}
< +∞

(4) inf
{
dC(z, ∂Dom(f))

∣∣ z ∈ PS(f), f ∈ F
}
> 0

Proof. Let us use the same notations as in Lemma 37. For any r ≤ r0, denote
Dr = Dr[f ]: it is an attracting petal for f . Let n0(r) = n0 be provided by
Lemma 37. For a fixed m < n0(r), fm(vf ) depends continuously on f . The

rest of the orbit of vf is contained in Dr. Continuity of PS(f) = PS(f) ∪ {0}
follows, as well as the point 2. For point 4, note that B(0, 1/4) ⊂ Dom(f) (this
follows from Koebe’s 1/4 theorem). Choose now r = min(r0, 1/8).For each fixed
m < n0 = n0(r), the distance from fm(vf ) to ∂Dom(f) reaches a positive minimum
as f varies in F , again by continuity and compactness. For m ≥ n0, this distance is
≥ 1/8. For point 3 first note that, on one hand for m ≥ n0, fm(v) ∈ B(0, 1/8) and
thus dDom(f)(0, f

m(v)) ≤ 1 (better constants can be computed but that is not the
point here). Let us now use the sets O and Oattr introduced in Proposition 36. The
map Φattr is a holomorphic bijection from Oattr to O = C\ ]−∞, v′−1] and the set
X =

{
fm(v)

∣∣ 0 ≤ m < n0

}
is the preimage by this map of v′ + {0, 1, . . . , n0 − 1}).

Therefore the Dom(f) hyperbolic distance from X to B(0, 1/8) is ≤ the hyperbolic
distance in O from v′ to v′ + n0, which is itself < n0. �

3.6.3. Lemmas for the second step. Consider again a class of maps G as in Propo-
sition 29, i.e. G is a set of holomorphic maps g : D→ C with g(z) = z + cgz

2 + . . .,
that is compact for the topology of local uniform convergence and such that cg is
never 0, i.e. g has one attracting petal. In the second step of the proof of the main
theorem, we will need some control on the variation of Fatou coordinates in terms
of the variation of the map. For this we first need to extend Fatou coordinates to
bigger petals, as in [Shi00].

Let θ ∈ [π/2, π] and Ωθ(r) denote the following domain: it contains a right half
plane and is bounded by the arc of circle of center 0, radius r and argument ranging
from −(θ−π/2) to θ−π/2, and by the two half lines continuing this arc tangentially
to the circle (see Figure 13). For θ = π/2 and r = R0[g] = 1/|cg|r0, this domain is
exactly the half plane, image of Dattr in the u-coordinates of g.

Lemma 40. There is r0 such that for all g ∈ G, the change of variable w =
u− γg logp u is injective on the non-convex set Ωπ(R0[g]).
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z-coordinate, Dθ(r0) u-coordinate, Ωθ(r0)

Figure 13: Bigger domains for Fatou coordinates. On the left : z-coordinate and
different domains Dθ(r0) (in this example the attracting axis is the positive reals),
θ − 90° = 0, 30°, 60°, difference between these regions are highlighted in different
colors. On the right, the u-coordinate, with u = −1/cfz, and the corresponding
domains Ωθ(R0). In light green are Dattr and Hattr.

Proof. Let us give a computational but elementary proof of this fact. Write u = reiα

and u′ = r′eiα
′

with α, α′ ∈ ] − π, π[ and note that r, r′ ≥ R0[g] ≥ 1/r0 infg∈G |cg|.
Then |r − r′| ≤ |u − u′| and |eiα − eiα

′ | ≤ |u − u′|/min(r, r′). If |α − α′| ≤ π

(case 1) then |α − α′| ≤ (π/2)|eiα − eiα
′ |. Otherwise (case 2), let us just use

that |α − α′| ≤ 2π. Now w = w′ means u − u′ = γg(log r′ − log r) + γgi(α
′ − α)

whence (case 1) |u − u′| ≤ |γg|(1+π/2)
min(r,r′) |u − u′| therefore u − u′ = 0 provided r0

was chosen big enough (independently of g). Or (case 2) |u − u′| ≤ |γg|
min(r,r′) |u −

u′| + 2π|γg|. In the second case, choose r0 small enough (independently of g) so

that
|γg|

min(r,r′) ≤ 1/2. Then |u − u′| ≤ 4π|γg|. Since α − α′ > π the points u and

u′ must have opposite imaginary part and one of them at least has negative real
part. Since they belong to Ωπ(R0[g]), which does not contain the half strip of
equation

{
z ∈ C

∣∣Re z ≤ 0 and −R0[g] ≤ Im z ≤ R0[g]
}

, we get in particular that
|u − u′| > R0[g]. So if we choose r0 small enough so that, ∀g ∈ G, R0[g] > 4π|γg|,
this is impossible. �

Proposition 41. Let θ ∈ [π/2, π[. Proposition 29 still holds if we replace Dattr with
the domain Dθ(r0)[g] whose image in the u-coordinate is Ωθ(R0[g]) where R0[g] =
1/|cg|r0, and if we replace the condition on ζ by ζ(x) = −|x tan(θ − π/2)| + o(x).
Similar statements hold for repelling Fatou coordinates.

Proof. The proof carries over with little modification. The constant 1/4 has to be
replaced by a smaller constant (by sin θ) when θ is too close to π. Injectivity of
the change of variable w = u− γg logp u on the non-convex set Ωθ(R0) follows from

the previous lemma. For the uniform bound on
∑
M3/|un|2: divide the orbit of

un into three parts, according to Re (un) being in ]−∞,−R0[, in [−R0, R0], or in
]R0,+∞[. In the central part, there is a uniformly bounded number of un. The
two other parts are bounded exactly like before. �

In particular Φattr[g] is defined on a set containing the image of Ωθ(R0[g]) by
u 7→ −1/cgz. Recall that R0[g] is bounded, hence the sets Ωθ(R0[g]) all contain
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Ωθ(R0) for some R0 independent from g. Choose any θ with π/2 < θ < π. Let

Ξ[g](w) = Φ(z),

where u = −1/cgz, w = u − γg logp(u), and Φ is the attracting Fatou coordinate:
we take Ξ defined on the image of Ωθ(R0[g]) by u 7→ w. Note that this change of
coordinates depends on g, but if one chooses any other θ′ < θ, there exists R′2 > 0
such that for all g ∈ G, it contains Ωθ′(R

′
2). By Proposition 41, Ξ[g](w) − w is

bounded by a constant independent of g. Hence there exists R2 > 0 such that for
all g ∈ G, the domain and the range of Ξ[g] contains Ωθ′(R2). Recall that maps in
G are assumed to be defined on D.

The next three lemmas express a form of Lipschitz dependence with respect to
g for Ξ[g], Ξ[g]−1 and Φ[g].

Proposition 42. Let R2 as above. Let r′ ∈]0, 1[. There exists M > 0, R1 > R2

and ε0 > 0 such that for all f, g ∈ G with supB(0,r′) |f − g| ≤ ε0 then ∀w ∈ C with

w ∈ Ωθ′(R1), |Ξ[f ](w)− Ξ[g](w)| ≤M supB(0,r′) |f − g|. (15)

Proof. A trick to shorten the proof is to use holomorphic dependence of Fatou
coordinates w.r.t. the map. Let ‖f − g‖ = supB(0,r′) |f − g|. Let c0 = inf |cg| over
all g ∈ G. Let first ε0 be such that the sum h of a map in G with a holomorphic
map defined on B(0, r′) and with a double root at the origin and sup norm ≤ 2ε0,
satisfies |ch| > c0/2. Let G′ be the union of G and of all the maps of the form ht =
f + t 2ε0

‖f−g‖ (g− f) where t ∈ D, f, g ∈ G and ‖f − g‖ ≤ ε0. Then G′ is compact (for

the topology associated to uniform convergence on compact subsets of B(0, r′)) and,
conjugating its members by z 7→ z/r′ and restricting to D, gives a family satisfying
the hypotheses of Propositions 29 and 41. Using the latter and the same analysis
as in the paragraph that follows it we see that maps h ∈ G′ all have a function Ξ[h]
that is defined on a set containing Ωθ′(R1) for some R1 independent of h. Moreover
this function depends holomorphically on t ∈ D (recall the definition of Φ as a limit
of wn − n and realize that wn depends holomorphically on wn) and its difference
with w 7→ w is uniformly bounded, hence Ξ[ht](w)− Ξ[f ](w) is also bounded. The
proposition follows by Schwarz’s inequality16 applied to t 7→ Ξ[ht](w) − Ξ[f ](w),
specialized to t = ‖f − g‖/2ε0. �

Similarly, Proposition 42 holds word for word with Ξ replaced by Ξ−1, i.e.:

Proposition 43. There exists M > 0, R1 > R2 and ε0 > 0 such that for all
f, g ∈ G with supB(0,r′) |f − g| ≤ ε0 then ∀Z ∈ C with Z ∈ Ωθ′(R1), |Ξ−1[f ](Z) −
Ξ−1[g](Z)| ≤M supB(0,r′) |f − g|.

Proof. This follows from the above proposition applied to some θ′′ between θ and
θ′, and from the fact that, the derivative of Ξg is uniformly bounded17 over g ∈ G.
Computations are left to the reader. �

Remark. Note that since the maps Ξg and Ξ−1
g all differ from identity by a

bounded amount that is independent of g ∈ G, it follows that in both propositions,
by increasing the value of M , we can remove the assumption supB(0,r′) |f −g| ≤ ε0.

From Proposition 42, we deduce the following control, which is somewhat weaker:

15A better bound holds, that decays when w tends to infinity, but it will not be used here.
16We mean: if f : D → C is holomorphic and satisfies f(0) = 0 and sup |f | < +∞ then

|f(z)| ≤ |z| sup |f |.
17increase R2 by 1 and use Cauchy’s formula and the uniform bound on Ξ− id
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Proposition 44 (variation of Fatou coordinates). Let r′ ∈ ]0, 1[. Let R1 be given
by Proposition 42. Let θ′′ < θ′. Then there exists M > 0, R3 > R1 and ε0 > 0 such
that for all f, g ∈ G with supB(0,r′) |f−g| ≤ ε0 and ∀z ∈ C with −1/cfz ∈ Ωθ′′(R3),

then −1/cgz ∈ Ωθ′(R1) and∣∣Φattr[f ](z)− Φattr[g](z)
∣∣ ≤ M

|z|
sup
B(0,r′)

|f − g|.

The same holds for repelling Fatou coordinates.

Proof. Let d = supB(0,r′) |f − g|. The claim −1/cgz ∈ Ωθ′(R1) follows from con-

tinuity of g 7→ cg and its non-vanishing: given any R3 > 1 and θ′′ < θ′, a small
enough d will ensure that the quotient cg/cf is close enough to 1 so that an element
of Ωθ′′(R3) multiplied by cf/cg is still in Ωθ′(R1). Now Φattr[f ](z) = Ξ[f ](w1) and
Φattr[g](z) = Ξ[g](w2) with w1 = u1−γ[f ] logp(u1) and w2 = u2−γ[g] logp(u2) with
u1 = −1/cfz and u2 = −1/cgz. The constants c, 1/c and γ are Lipschitz functions
of f ∈ G w.r.t. the distance d. Now, under the assumption d ≤ ε0, we successively
get |u1 − u2| ≤ M1d/|z|, |w1 − w2| ≤ M2d/|z| (use that | logp u| ≤ M ′2/|z| for
some constant and that u2/u1 = cf/cg is close enough to 1), then we decompose
|Ξ[f ](w1)−Ξ[g](w2)| ≤ |Ξ[f ](w1)−Ξ[g](w1)|+ |Ξ[g](w1)−Ξ[g](w2)| The first term
is dealt with using Proposition 42 and the second term using the fact that there is
a uniform bound on Ξ′. �

Remark.

• Here, the condition supB(0,r′) |f − g| ≤ ε0 cannot be removed.

• Also, in the conclusion |Φattr[f ](z)−Φattr[g](z)
∣∣ ≤ M

|z| supB(0,r′) |f − g|, the

factor 1/|z| cannot be removed because Φattr[f ](z) ∼ −1/cfz and cf varies
with f .

Let us stress again that, though maps in F are not defined on the unit disk,
they are all defined in B(0, 1/4) and the results above easily transfer to F by a
homothety. (See Section 3.6.2.)

3.7. Step 1: contraction argument (i.e. there is a lot of room). Fix d ∈ N
with 2 ≤ d <∞: we now exclude d = +∞. In this section we will define constants
c1, c2, . . . They all depend on d but not on f ∈ F .

Recall that R[Bd] is defined on the unit disk and has derivative one at the origin.
Recall the definition of the set SL of Schlicht maps: univalent holomorphic maps
φ : D → C such that φ(z) = z + O(z2). Recall that F =

{
R[Bd] ◦ φ−1

∣∣φ ∈ SL},
and that for all f ∈ F , the mapR[f ] is again in F , for an appropriate normalization.
Since all maps in F have the same unique critical value, this normalization coincides
with the one numbered 3 on page 81, which we called “by the critical value”.

Let f ∈ F :
f = R[Bd] ◦ φ−1

1

where φ1 ∈ SL. Denote
U1 = φ1(D) = Dom(f).

Let L(ε) be the hyperbolic radius in D of the Euclidean ball B(0, 1− ε):

(1) L(ε) = tanh−1(1− ε) =
1

2
log

2− ε
ε

.

In particular
1

2
log

1

ε
≤ L(ε) ≤ log 2

2
+

1

2
log

1

ε
.

Since R[f ] belongs to F (Theorem 6), there exists φ2 ∈ SL such that:

R[f ] = R[Bd] ◦ φ−1
2 .
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Ψrep[Bd] Ψrep[Bd]

E E

Figure 14: The set C[Bd] (bottom row, light tones) for d = 2 and (left) ε ≈ 0.85
(this is quite high a value for an ε) and (right) ε ≈ 0.22.

The map φ2 is an isomorphism from D to the domain of definition of R[f ].
Denote by A ⊂ U1 the immediate basin of the parabolic fixed point 0 of f .

Let Uu denote the connected component of Dom(h[f ]) that contains an upper half
plane. It is also equal to the connected component of Ψ−1

rep(A) that contains an
upper half plane. Denote by C ⊂ A the following set, which is the object under
study in the present section:

C = C[f ] = Ψrep

(
Uu  (1− ε)

)
(The notation  has been introduced in Section 3.1). We claim it can be rewritten
as

C = φ3(C[Bd])
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where φ3 : D → A is the conformal isomorphism conjugating Bd to f
∣∣
A

. Indeed,

according to Proposition 27, φ3 ◦ Ψrep[Bd] = Ψrep[f ] ◦ φ4 for some conformal map
φ4 from H = Uu[Bd] to Uu[f ], commuting with T1, thus φ4(Uu[Bd]  (1− ε)) =
Uu[f ]  (1− ε).

The set C[Bd], which is equal to Ψrep[Bd](H(ε)) where H(ε) = E−1(B(0, 1− ε))
is the half plane defined by Im z > 1

2π log
(

1
1−ε

)
, depends only on d and ε, not on

f , and is forward invariant under Bd. Figure 14 shows examples of sets C[Bd].
In this section we will prove:

Proposition 45. There exists c, c′ and ξ > 0 (these constants depend on d) such
that for all ε < ξ, there exists ε′ > 0 satisfying

log
1

ε′
≤ c′ + c log

(
1 + log

1

ε

)
such that for all f ∈ F ,

C ⊂ Dom(f)} (1− ε′).

Above, the set C = C[f ] depends also on ε but we did not figure it in the
notation, to avoid clutter. The notation U } r has been introduced in Section 3.1.

We begin with an easy lemma (recall L was defined near Equation (1)):

Lemma 46. The set C[Bd] is contained within hyperbolic D-distance ≤ c2 + L(ε)
of the upper main chessboard box of Bd.

Proof. The upper chessboard box of Bd is the image by Ψrep[Bd] of an open set
that contains a half plane

{
z ∈ C

∣∣ Im (z) > Md

}
and is contained in another half

plane strictly smaller that H. Recall that C[Bd] = Ψrep[Bd](H(ε)) with H(ε) ={
z ∈ C

∣∣ Im (z) > 1
2π log

(
1

1−ε

)}
. For ε big, H(ε) ⊂

{
z ∈ C

∣∣ Im (z) > Md

}
. For

other values of ε, every point in H(ε) can be joined to
{
z ∈ C

∣∣ Im (z) > Md

}
by a

vertical segment of hyperbolic length in H at most 1
2

(
logMd − log

log 1
1−ε

2π

)
. Since

Ψrep[Bd] : H → D contracts hyperbolic metrics and 1
2 log 1

log 1
1−ε

≤ 1
2 log 1

ε ≤ L(ε),

the lemma follows. �

Note that φ3 : D → A is an isometry for the respective hyperbolic metrics, and
that the upper main chessboard box of Bd is mapped by φ3 to the main upper
dynamical chessboard box of A, call it B:

B = φ3(B[Bd]).

See Figure 15. From the lemma above, it follows that the set C = C[f ] under study
is contained within A-hyperbolic distance c2 + L(ε) of B. In order to prove an
estimate concerning the latter set, we first need the following easy consequence of
the compactness of F :

Lemma 47. For all M > 0 there exists c′ > 0 such that for all f ∈ F , the upper
main and the lower main chessboard boxes of h[f ] are both at hyperbolic Dom(h[f ])-
distance ≤ c′ from respectively the half planes Im (z) > M and Im (z) < −M
(intersected with Dom(h[f ]) if necessary).

Proof. The extended normalized horn map of Bd is defined on C \ R. The up-
per/lower main chessboard boxes of h[Bd] are at positive Euclidean distance from
R. Recall (see Section 3.3, in particular Lemma 28) that we have the following:
h[f ]◦φ = Tw[f ]◦h[Bd] where w[f ] = vh[f ]−vh[bd] and φ is an isomorphism commuting
with T1 from H, which is the upper connected component of Domh[Bd], to the upper
connected component of Domh[f ], and that φ maps the chessboard graph of h[Bd]
to that of h[f ]. Therefore, it is enough to prove that φ−1(

{
z ∈ C

∣∣ Im (z) > M
}

)
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B

A

U1

B
0

Figure 15: Some open sets associated to R[P ] with P : z 7→ z + z2: its domain U1,
its parabolic immediate basin A, and the latter’s main upper dynamical box B.
The rightmost column features the dynamical chessboard of A in shades of brown.
The blue and yellow shades depict the structural chessboard of U1.

contains an upper half plane independent of f , and a similar statement for the lower
part. Let us write, as Im (z) −→ +∞:

φ(z) = z + τf + o(1).

From the first point of Proposition 35 if follows that |Im (w[f ])| is bounded over
F . From this and the second point, it follows that |Im (τf )| is bounded over F .
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Now one of Koebe’s inequalities states that ∀f ∈ SL, |f(z)| ≤ |z|
(1−|z|)2 . Equiv-

alently, ∀r ∈ ]0, 1[, f−1
(
B
(
0, r/(1 − r)2

))
⊃ B(0, r). The map T−τf ◦ φ is semi-

conjugate by E to a Schlicht map thus: φ−1(
{
z ∈ C

∣∣ Im (z) > M
}

) contains the

half plane
{
z ∈ C

∣∣ Im (z) > M ′
}

where M ′ = M ′[f ] > 0 is related to M ∈ R by

e2π(M+Im τf ) = e2πM ′ + e−2πM ′ − 2 = 2(cosh(2πM ′)− 1). Since τf is bounded, the
constant M ′[f ] is bounded too. The proof for the lower box is similar. �

Recall U1 denotes the domain of f .

Lemma 48. The box B is contained in a hyperbolic U1-ball of uniform diameter
c7.

Proof. Choose r small enough so that B(0, 2r) ⊂ U1 for all f ∈ F . By Proposi-
tion 33, there is some h > 0 such that for all f ∈ F , the half planes Im (z) > h
and Im (z) < −h are mapped by Ψrep[f ] inside B(0, r). From Lemma 47 the up-
per box is at distance ≤ c7 from

{
z ∈ C

∣∣ Im (z) > h
}

for the hyperbolic metric
of Dom(h[f ]). The map Ψrep : Dom(h[f ]) → A is holomorphic thus a contrac-
tion for hyperbolic metrics, thus the image by Ψrep of the upper chessboard box
is at bounded A-hyperbolic distance of B(0, r) (the latter is not contained in A
but it does not matter) and thus at U1-hyperbolic distance even smaller, since the
inclusion of A in U1 is a contraction too. �

By Lemmas 46 and 48, to fulfill the objectives of Step 1, it is enough to prove that
a path starting from B, contained in A and of A-hyperbolic length ≤ c2 +L(ε) has
a U1-hyperbolic length much smaller than c2 + L(ε). The precise bound obtained
will yield Proposition 45. Note that we will in fact bound the U∗1 -hyperbolic length,
which is bigger that the U1-hyperbolic length, where

U∗1 = U1 \ {0}.

Let us make the following change of coordinates: w = log(z)/2iπ. Let Ã be a
lift of A: it is a connected and simply connected subset of C that does not intersect

its translates Ã + k when k ∈ Z is non-zero. As a consequence, each horizontal
intersects this open set along a union of open segments of length at most 1 (in fact

the sum of lengths is at most 1). Thus the Euclidean distance from any z ∈ Ã to

the boundary of Ã is ≤ 1/2. This implies by Koebe’s 1/4 theorem:

ρÃ(z) ≥ 1/2

(a better bound holds but we do not need it; recall ρU (z)|dz| designates the infini-
tesimal element of hyperbolic metrics on U).

Remark. The set Ã is unbounded upwards, since the image in Ã of an attracting
petal in A is an infinite finger-shaped domain extending upwards. See Figure 16 for

examples. One should not expect Ã to be bounded in the other directions either.
Recall that f ∈ F is characterized by the choice of its domain U1, which can be
any simply connected domain containing the origin with conformal radius 1 w.r.t.

the origin. For well chosen unbounded U1, the set Ã is unbounded downwards.
One could object that since in the applications, the renormalization operator is
iterated, we could restrict to maps in R[F ] instead of F , and that maps in R[F ]
all have a uniformly bounded domain of definition, as follows for instance from
Proposition 35. But this will not prevent unboundedness in the horizontal direction:
even for bounded U1, provided its boundary winds infinitely many times around 0,

carefully chosen U1 will yield a set Ã whose projection on the real line is unbounded.
The latter case is not just a curiosity but does happen for f = R[z 7→ zez], i.e. the
first renormalization of the map g(z) = zez which has a non-linearizable parabolic
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Figure 16: Two examples of lifted immediate parabolic basins Ã for maps f ∈ F .
Top: f = R(z 7→ z + z2), bottom: f = R(z 7→ zez).

point at the origin, and whose set of singular values are the two asymptotic values
∞, 0 and the image g(−1) of the unique critical point −1. Its immediate basin
must contains a singular value, and the only possible one is g(−1). Hence the map
g satisfies the hypotheses of Theorem 6, thus f = R[g] ∈ F . A careful study shows
that the domain of definition of R[g] swirls like above, more precisely that its lifted

immediate basin Ã has infinitely many accesses to infinity by curves asymptotic to
some common horizontal line. The map g does not belong to F but we believe that

for all n > 0, Rn[g], that belongs to F , will have a set Ã with the same properties.
To prove this, one may try and see if there is invariance by R of the following
property for f ∈ F : let c be the main critical point of f (the one on the boundary

of the main upper structural box); let f̃ be a lift of f and let γ be the lift by f̃

starting from c, of the horizontal half line f̃(c) + [0,+∞[, such that γ intersects the
boundary of the upper box only at c; then Re (γ) tends to infinity.



46 ARNAUD CHÉRITAT

Now consider a point z0 ∈ C = φ3(C[Bd]) and consider a path γ of A-length at
most c2 +L(ε) from B to z0. Let us apply f once. Then A is mapped to itself and
so are C and B. The path γ is mapped to a path f(γ) contained in A, from B to
z1 = f(z0), and by the Schwarz-Pick inequality, the A hyperbolic length of f(γ) is
≤ that of γ. Consider a lift γ2 of f ◦ γ by E (the path f(γ) is contained in A, thus
does not meet the origin). The Euclidean length of γ2 is equal to

(2)

∫
γ2

|dz| =
∫
γ2

ρÃ(z)|dz|
ρÃ(z)

≤ 2

∫
γ2

ρÃ(z)|dz| ≤ 2(c2 + L(ε)).

Let us now relate the element of length ρU∗1 (z)|dz| to |d log f(z)/2π|. Let f̃ be

the continuous lift of f by E that fixes Ã: f̃ : Ũ1
def
= E−1(U1)→ C and E◦f̃ = f ◦E.

The inverse of E is the multivalued function E−1(z) = 1
2πi log z. Let ṽ + Z be the

set of critical values of f̃ . The map f̃ has no asymptotic value over C. Denote
by C± the upper half plane and the lower half plane delimited by the horizontal
line through these critical values. For every point z mapped to C± by any branch
of 1

2πi log f , the latter map has inverse branches defined in C±, with image the
f -structural chessboard box containing z. This inverse branch is univalent, except
for z in the little loop around 0 where it is infinite-to one. In all cases, these inverse
branches map in U∗1 and are non-expanding for the respective hyperbolic metrics
as follows:

(3) ρU∗1 (z)|dz| ≤ ρC±(ζ)|d log f(z)/2π|

where ζ is the image of z by the considered branch of 1
2πi log f .

Near the boundary of C±, better estimates hold. For instance:

Lemma 49. There exists c3 > 0 such that for all f ∈ F , the following holds. Let

ṽ be a critical value of f̃ and V be any connected component of the pre-image by f̃
of the square ṽ+ I + iI where I = [−1/2, 1/2]. Then the hyperbolic diameter in U∗1
of E(V ) is ≤ c3.

Proof. Recall the critical values of f̃ , are the elements of ṽ + Z and that its only

asymptotic value over Ĉ is∞. Consider the disk ṽ+D and the component U of f̃−1

that contains V . Then f̃ factors on U as a◦pow ◦b where pow : D→ D is either the
identity or the map z 7→ zd, where a(z) = ṽ+z and where b is an isomorphism from

U to D. Then a−1(V ) = I+iI ⊂ B(0, 1/
√

2) thus (a◦pow)−1(V ) is contained in the

Euclidean ball B(0,
(

1√
2

)1/d

). The map b−1 : D → E−1(U1) is non-expanding for

the respective hyperbolic metrics, and E : E−1(U1) → U∗1 also is, thus the lemma

holds with c3 = the hyperbolic distance in D from 0 to the d-th root of 1/
√

2. �

Another easy lemma:

Lemma 50. Let a, b be two points in the hyperbolic plane H:

Im (a) ≥ 1

2
and Im (b) ≥ 1

2
=⇒ dH(a, b) ≤ log(1 + 2|a− b|).

Proof. Use the following formula for the hyperbolic distance in H:

dH(a, b) = argsh
|b− a|

2
√

Im a Im b
,

and the inequality argsh t ≤ log(1 + 2t). �

So for instance, the hyperbolic distance from i to i + x is a O(log x) when
x −→ +∞, thus much smaller than x. Recall that the geodesic between a and b in
H is an arc of Euclidean circle. For the hyperbolic metric, this arc turns out to be
much shorter than the straight euclidean line.
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Let β0 be the structural U1 chessboard box that is a punctured neighborhood
of the origin. Recall that we denote U∗1 = U1 \ {0}. Consider any structural
U1 chessboard box β. Let us call U1-box the set β ∩ U∗1 . Let us endow U∗1 \
f−1(v) with the infinitesimal metric induced by pulling back the Euclidean metric
by 1

2πi log f . We call this the flat metric. It has a regular and locally flat extension
to a neighborhood of the non-critical preimages of v and is singular precisely at
the critical preimages of v, where it has a conical point of angle 2πd. Let us call
box-Euclidean distance the distance induced on U∗1 by this flat metric. Recall that
if β 6= β0, then 1

2iπ log f is well defined on β and maps it to a half plane C±. It

also maps the U1-box β ∩ U∗1 to the closure of this half plane.
In the sequel, we call b∗ the U1-box that contains a punctured neighborhood of

the origin: b∗ = β0 ∩ U∗1 .

Corollary 51. Consider two points in a U1-box b. Denote de the distance between
these two points for the metric induced by the flat metric restricted to b and dh the
distance between these two points for hyperbolic metric on U∗1 . Then

dh ≤ c′5 + log(1 + c5de).

Proof. Let us apply 1
2πi log f so as to work in a half plane, and to fix ideas, let us

assume it is the half plane C+. If the U1-box b is b∗ then when we lift the two
points we choose these lifts so that their euclidean distance is minimal, so as to
coincides with de. If any of the two points is at distance ≤ 1/2 from the boundary
of C+ then move it up so that it is at distance 1/2: we get a new pair of points in
C+ that corresponds to a new pair of points in b. By Lemma 49, each new point
is at U∗1 -hyperbolic distance ≤ c3 from the former so the U∗1 -hyperbolic distance
between the the points in the pair has changed by at most c3, and by at most
2c3 if we needed to move both points. Similarly, the Euclidean distance between
the points in C+ has changed by at most 1. By Equation (3) the U∗1 -hyperbolic
distance between the two (possibly) new points will be at most their C+-hyperbolic
distance. Using Lemma 50, on the latter we get dh ≤ 2c3 + log(1 + 2(de + 1)) =
(2c3 + log 3) + log(1 + 2

3de). �

Let Ũ1-boxes be defined similarly: these are sets of the form b ∩ Ũ1 where b

is a structural chessboard box of f̃ . The map f̃ is a bijection from such a set

to the closed upper or lower half plane. We can endow Ũ1 with an infinitesimal

box-Euclidean metric, by pulling-back by f̃ the canonical Euclidean metric element

|dz| on the complex plane. Recall that f ◦ E = E ◦ f̃ , thus we get the following

compatibility statements. The projection by E of an Ũ1-box is a U1-box.18 The

box-Euclidean metric element on Ũ1 is the pull-back by E of the box-Euclidean
metric element on U∗1 .

The following result is not used here, but we find it interesting:

Lemma 52. A connected union of U1-boxes that includes b∗ is simply connected if
we add {0} to the union.

Proof. Remove the loop from the parabolic structural chessboard graph of U1. Then
we get a tree (an infinite tree), on which the union retracts to a connected subset,
which is thus simply connected and homotopically equivalent to the union. �

Note that there are paths in U1 reaching the boundary, and whose compact
subsets are of hyperbolic diameter comparable to their box euclidean length: see
Figure 17. An important task is thus to formulate and prove a combinatorial

18The connected components of the preimage of a U1-box by f̃ are Ũ1-boxes with one notable

exception where we get a chain of U1-boxes that meet at corners.



48 ARNAUD CHÉRITAT

Figure 17: A slow path in black, a quick path in red. The first one stays on the
boundary of a single . The other one turns alternately left and right at every corner.
Here speed is to be understood as the order of magnitude of the hyperbolic distance
from the origin, when the curve is followed at constant box-Euclidean speed (on
this picture, it takes the same time to get from a corner to the next one): in the
first case it is logarithmic, in the second case linear.

statement (Lemma 54) about the U1-boxes that the immediate basin A may cross,
and that prevents this kind of behaviour for paths contained in A.

Define a chain of boxes to be a finite sequence b0, b1, . . . , bn of U1-boxes such
that two consecutive elements have non empty intersection, i.e. consecutive boxes
are equal or share a side or a corner within U1. The integer n is called the length
of the chain. With our convention there are n + 1 U1-boxes in a chain of length
n. Define the combinatorial distance between U1-boxes as the minimal length of
chains from one to the other. With our convention, this is a distance.

Lemma 53. Let b, b′ be U1-boxes and consider points x ∈ b and x′ ∈ b′. Then
the box-Euclidean distance L between x and x′ and the combinatorial distance n
between b and b′ satisfy:

n ≤ bLc+ 1.

Proof. First case: L < 1. Recall that the set of critical values of f̃ is of the form

ṽ+Z for some ṽ and that f̃ has no asymptotic value over C. Consider a path γ from
x to x′ and of box-Euclidean length < 1. Let γ̃ be a lift of γ by E. The image of γ̃ by

f̃ has Euclidean length < 1 in the plane. There will therefore exist k ∈ Z such that
γ̃ is completely contained in the plane minus the translate of ]−∞,−1] ∪ [1,+∞[

by ṽ+ k. The connected components of the pre-image by f̃ of such a slit plane are

contained in unions of 2 or 2d of Ũ1-boxes that touch at a common point: this is
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because there is at most one critical value (and no asymptotic value) of f̃ in the
slit plane. Now γ̃ is contained in such a component hence n ≤ 1.

In the general case, we could use that there is a shortest path from x to x′ (see
Lemma 55) but we can do here without that information: consider a path γ from
x to x′ of length close enough to L so as to have the same integer part as L. Let
ε > 0 and cut the path into pieces of length 1− ε, except maybe for the last piece
for which we require length ≤ 1 − ε. Let k be the number of pieces obtained: if ε
small enough, k = bLc+ 1. Let x0, . . . , xk denote the sequence of starting and end
points of these pieces. Let b0 = b, bk = b′ and for 0 < n < k let bn be a U1-box
containing xn. From the first case we get that the combinatorial distance between
bn and bn+1 is ≤ 1 for 0 ≤ n < k. The combinatorial distance between b and b′ is
thus ≤ k. �

For n ≥ 0, consider the set Bn of U1-boxes at combinatorial distance ≤ n of the
U1-box b∗. Note that for n ≥ 2, the set Bn is a infinite union of U1-boxes. The
next lemma is illustrated by Figure 18.

Lemma 54. There exists c4 ∈ N such that ∀f ∈ F , A ⊂ Bc4 .

Proof. Let us consider the principal curve C = C[f ] defined in Proposition 36,
starting from v = vf and ending at 0. We recall it is a connected component
of the preimage by Φattr = Φattr[f ] of Φattr(v) + [0,+∞[, that starts from v and
ends on the parabolic point ( and is contained in the common boundary in A of
the two principal dynamical chessboard boxes of f), that f(C) ⊂ C and hence C
contains the orbit of the critical value. Let us use Proposition 29, that provides a
disk Dattr = Dattr[f ] of uniform diameter r0 contained in the basin of f and which
eventually traps any orbit in the parabolic basin. By Lemma 37, the number of
iterates needed for the critical value v to enter Dattr is bounded over F : ∃n0 ≥ 0
such that ∀f ∈ F , fn0(v) ∈ Dattr[f ]. The second point of Proposition 29 implies
that the subset C′ of C corresponding to Φattr(v) + [n0,+∞[ satisfies C′ ⊂ Dattr.

19

We will also require r0 < |v|. Then the set C′ ⊂ Dattr does not cross the circle
of equation |z| = |v|. Now C is the union of C′ and of a connected component of
the preimage by Φattr of the segment Φattr(v) + [0, n0]. As f varies in F , the maps
Φattr − Φattr(v) all have an inverse branch defined on a common open connected
neighborhood V of the segment S = [0, n0], mapping 0 = Φattr(v)−Φattr(v) back to

v. This family is normal.20 It also avoids 0. Take a lift C̃ of C by E : z 7→ e2πiz. This
is a curve starting from a preimage ṽ of v and ending at∞ tangentially to a vertical
line. The part corresponding to C′ lives in the upper half plane

{
Im (z)

∣∣ Im (ṽ)
}

because we took r0 < |v|. The rest is the image of S by a normal family defined in
V . In particular it has bounded Euclidean length. Let L1 be a bound, independent
of f ∈ F .

There are infinitely many connected component of f−1(C). Consider any. It
consists either in a single curve or in a union of d curves starting from a common

19The restriction of Φattr to the union W of the principal chessboard boxes of A and their
common boundary (minus endpoints) maps W univalently to the complement V of Φattr(v)+]−
∞,−1]. The normalized attracting Fatou coordinate Φ of Proposition 29 necessarily coincides with
Φattr on some smaller petal. Because of the shape of U = Φ(Dattr), we necessarily have U ⊂ V ,
for otherwise one can prove there would be a critical point of f in U , leading to a contradiction
with injectivity of Φ claimed in the second point of Proposition 29. It follows that Dattr ⊂ W ,

and then that Φ = Φattr on Dattr.
20There are many reasons for this; for instance one can use continuity of f 7→ Φattr[f ] together

with compactness of F ; or remark that it is 1-Lipschitz, hence equicontinuous, from the hyperbolic
norm on the chosen neighborhood V of the segment S to the metric |dz|/4|z|, because it maps in
the simply connected set A that avoids 0 so one can use the Schwarz-Pick inequality and Koebe’s

one quarter theorem.
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Figure 18: Example for d = 3. We chose some f ∈ F (more precisely we took the
first renormalization of z 7→ z3+c with c so that there is a fixed point tangent to the
identity). The blue graph is the structural chessboard of f . The origin is marked
by a tiny green dot and the critical value of f by a red one. It is a non-linearizable
parabolic point of f . We drew in brown shades the dynamical chessboard of f in
the immediate basin A of this point. The dark lines are the set f−1(C) where C is
the principal curve (see the text). The light blue set is the component containing A
of Dom(f) minus the all the dark lines that are not contained in A. The picture has
been accurately drawn, the curve C is a small edge part in the black graph, from
the green dot to the red one. It is very close to be a segment. As a consequence,
f−1(C) is formed of curves that are very close to intrinsic verticals of U1-boxes. It
seems therefore that the light blue is completely contained in B2. This is probably
the case for all maps in F for d = 3 because the loop is very small. It may still hold
when d gets close to ∞, but that would require a more detailed specific analysis as
in [IS04], starting from the fact that vf is close to 0 (|vf | = ud only depends on d,
ud ∈ [u2, u∞] and u2 ∼ 1/140, u∞ ∼ 1/20). We decided instead to resort to general
arguments instead: in the proof of Lemma 54 we consider cases where C may be
very far from a segment.
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critical point of f . Each of these curves has a part mapped in C \ C′ by f that
has box-Euclidean length ≤ L1, and a part mapped to C′ by f that is completely
contained in one box. By Lemma 53, the union of U1-boxes visited by the full curve
has

(4) combinatorial diameter ≤ bL1c+ 1.

The lifted immediate basin Ã contains exactly one component of E−1f−1(C) and
is disjoint from all other components. We claim that A is contained in BbL1c+2:
indeed consider the union G1 of the 2d−1 U1-boxes which contain the critical point
in A. It is contained in B1. The immediate basin A contains exactly one component
of f−1(C). Let G2 be the component containing A of the complement in U∗1 of the
union of all other components of f−1(C) (Figure 18 may help). It is enough to
prove that G2 is contained in BbL1c+2.

The boundary of G2 in U∗1 consists in curves all of whose starting points s
are preimages of v. We claim that they all belong to B1. Indeed the curve C is
isotopic in C to the straight segment from v to 0 by an isotopy that does not move
its endpoints. This isotopy extends to the whole Riemann sphere into an isotopy
fixing ∞. The singular values of f are {0, v,∞} and thus the isotopy does not
move the singular values of f . Hence the extended isotopy lifts by f to an isotopy
of U1. This lifted isotopy does not move the points in f−1(v). Now a starting point
s as above can be linked to the unique critical point c0 ∈ b∗ by a path within G2

(except at its starting point s ∈ ∂G2). The lifted isotopy deforms this path into a
path with the same endpoints and that is completely contained in the complement
of f−1([0, v]). The image by f of the new path is contained in C \ [0, v] and goes
from v to v. It is homotopic to a path completely contained |z| > 1. The homotopy
lifts by f . Hence s and c0 are linked by a path contained in a U1-box. Whence the
claim.

Consider any point z ∈ G2. If z belongs to f−1(C) then it belongs to the unique
component of f−1(C) in G2, which is the one attached to the critical point in A,
which belongs to b∗. Hence z ∈ BbL1c+1 by the bound (4) above. Otherwise,

f(z) /∈ C. Then f(z) ∈ H for H = D \ {0} or H = C \ D (if |f(z)| = 1 then either
can be chosen). There is a path γ ⊂ H from f(z) to a point of C \ {0} (which
may be its endpoint v). Let b be the (unique) U1-box containing z and such that
f(b) = H. The path γ lifts by f to a path within b from z to a point w in f−1(C),
and w is either in G2 or in ∂G2. We saw that the component of f−1(C) that w
belong to is attached to a point in f−1(v) that belongs to B1. By the bound (4),
we get that b ∈ BbL1c+2. This ends the proof that G2 ⊂ BbL1c+2. �

Let the combinatorial distance between two points of Dom f̃ be the smallest
combinatorial distance of boxes containing them. Two important facts used in the

proof of the following lemma are that the chessboard graph of Dom f̃ is a tree and

that the boundary in Dom f̃ of a Ũ1-box is a connected subset of this graph.

Lemma 55. For any two points w, z ∈ Dom f̃ then there is a unique shortest
path γ′ from w to z for the box-Euclidean distance. If m denotes the combinatorial
distance from w to z then γ′ can be cut into ≤ m + 1 connected pieces, each of
which stays in some U1-box.

Proof. 21 Let us define a projection from Dom f̃ to the chessboard graph of f̃ as

follows. Recall that each Ũ1-box b is homeomorphically mapped by f̃ to a closed half
plane and that the box-Euclidean metric element is sent to the canonical Euclidean
element |dz| of C. The vertical projection on this half plane to its boundary is

21Special thanks to Arnaud Mortier for a great help in this proof.
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1-Lipschitz and can be conjugated back to a projection from b to its boundary in

Dom f̃ . The union of all these projections for all U1-boxes b is easily seen to match

at the boundary points and corners, and yields a projection function from Dom f̃
to the chessboard graph, which is locally 1-Lipschitz for the box-Euclidean metric
(the only place where checking this claim is not trivial is at corners). In particular
it is 1-Lipschitz for path-length.

Given any path γ from w to z, if the path meets the chessboard graph then the
part from its first intersection with the graph to its last can be projected as above.
The new path is strictly shorter unless the part was already contained in the graph.
This part can be further simplified into an injective path within the graph, strictly
shorter unless it was already injective.

If moreover both w and z belong to a given U1-box c, the first and last point in
the graph are also in c, and since the graph is a tree and the boundary of a U1-box
is a connected subset of this tree, the simplified part is necessarily contained in this
boundary, hence the simplified path is contained in c. We have thus in particular
proved that for any path that is not completely contained in c there is a strictly
shorter path contained in c. Hence the straight segment γ′′ from w to z for the
Euclidean structure on c is the unique shortest box-Euclidean path from w to z

within Dom f̃ . The other conclusions of the lemma are trivial in this case: m = 0
and γ′′ does not need to be cut.

In the rest of the proof of the lemma, we assume that there is no U1-box con-
taining both w and z.

Then, given the simplification of path constructed above, it follows that the
infimum of box-Euclidean lengths of paths between w and z is the same as the
infimum over the set A of paths defined below, and that a path that is not in A
cannot be minimal. The set A consist in paths that are a straight box-Euclidean
line from w to the boundary of its box if w is in the interior of a box, then an
injective path within the graph, then similarly a straight box-Euclidean line to z
if z is in the interior of a box. From the form of A and the fact that the distance
along the graph between two points a and b of the graph is a continuous function
of the pair (a, b), the fact that a minimal distance is reached on A easily follows.
Let us sum up what we have proved so far: there is at least one shortest path, all
shortest paths are in A.

Let Iw be defined as follows: if w is in the graph we let Iw = {w}; otherwise we

let Iw be the boundary in Dom f̃ of the unique U1-box containing w. In the latter
case, Iw is an infinite curve in the graph. The set Iw ∩ Iz is either empty or a point
or a connected curve, of finite or infinite box-Euclidean length.

First case: Iw ∩ Iz is empty or a point. Then there is a unique shortest path
γ′′ within the graph from the set Iw to the set Iz; we allow γ′′ to be reduced to a
single point to include the case when Iw ∩ Iz is a single point. We call w′ the initial
point of γ′′ and z′ the endpoint; as we explained, z′ may be equal to w′. It is also
possible that w = w′, similarly z = z′ is possible. If w 6= w′ then there is a unique
U1-box containing both. Similarly for z and z′. In all cases, the box-straight path
from w to w′, followed by γ′′, followed by the box-straight path from z′ to z is the

unique shortest path in A, and thus the unique shortest path within Dom f̃ . Call
it γ′.

Consider now any U1-box chain b0, . . . , bm with w ∈ b0 and z ∈ bm. We claim
that this chain necessarily covers γ′. Let us prove this claim. Note that the part
of γ′ from w to w′ is contained in b0 and the part from z′ to z in bm. Each bm is
path connected, so by definition of a chain, the union of the bm is path connected.
Consider path from w′ to z′ within this union. Project it on the graph and simplify
it as above. This leads to an injective path from w′ to z′ contained in the graph.
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By uniqueness of injective paths in a tree, this path is equal to γ′′. This proves the
claim

The intersection of a U1-box with the graph is a connected subset of this tree
(it is a curve, infinite in both directions). It follows that the intersection of γ′ with
a U1-box is necessarily a connected portion of γ′. Let us now split γ′ as follows:
choose any U1-box bi containing w, define i1 = i and cut γ′ at the last point where
it is contained in bi1 . Note that the part before the cut is entirely contained in
bi1 . If this cutpoint is not the endpoint of γ′, then a non-trivial sub-part of the
path starting from bi1 belongs to another U1-box bi′ . Define i2 = i′ and cut the
remaining part of the path at the last point where it is contained in bi2 . And so on.
This process necessarily ends (because, for instance, the cut points are contained in
a discrete set, because they are either branch points of the graph or the first or the
last intersection of γ′ with the graph). So we get a finite sequence of U1-boxes bi1 ,
bi2 , . . . , bim′ for some m′ ∈ N∗ and a splitting γ′1, . . . , γ′m′ of γ into connected pieces
with γ′j ⊂ bij for all j ≤ m′. By construction bij+1 6= bij . Now by the property that
the intersection of a U1-box with γ′ is necessarily connected, and the it follows that
no two U1-boxes bij and bik can be equal for j ≥ k+2, for otherwise the whole part
of the path between γ′j and γ′k (included) would be contained in bik , contradicting
the way we built the splitting. Hence m′ ≤ m+ 1.

Second case: Iw ∩ Iz is a connected curve in the graph. Let b be the unique
U1-box containing w and b′ be the same for z. Note that b and b′ are adjacent, and
m = 1. The union b∪ b′ is connected. It consists in the interior of b, the interior of
b′, the common curve, and at most four disjoint pieces of curves in the boundaries
of b or b′, attached to an end point of the common curve. Because the graph is
a tree, all paths in A are contained in b ∪ b′ and all paths in A must meet the
common curve, possibly at an end thereof. It follows that the shortest path in A
from w to z is a straight segment to a point in the common curve, followed by a
straight segment. We have thus cut the shortest path in two pieces satisfying the
conclusion of the lemma, since m+ 1 = 2. �

Let us now go back to the situation we were studying: recall L(ε) was defined at
the beginning of Section 3.7; for convenience we denote L = L(ε); we had a path γ
of A-length at most c2 + L, starting from B and going to some point z0. We are
ready to prove that:

(5) dU∗1 (γ(0), γ(1)) ≤ c′6 + c6 log(1 + L).

Recall that there is a special U1-box b∗ that is a punctured neighborhood of
the origin. Note that b∗ is the only U1-box that has a unique lift by E, which we

denote b̃∗. Let γ̃ be a lift of γ by E and γ2 = f̃ ◦ γ̃. Then γ2 is also a lift of f ◦ γ
by E. The U∗1 -hyperbolic length of γ is equal to the Dom(f̃)-hyperbolic length of
γ̃. The box-Euclidean length of γ̃ is equal to Euclidean length of γ2 and is thus
≤ 2(c2 +L) by Equation (2). By Lemma 54, the path γ is contained in Bc4 . There
is thus for any t ∈ [0, 1] a chain of U1-boxes of length at most c4 from some U1-box
containing γ(t) to b∗. This chain lifts by E into a chain of U1-boxes from γ̃(t) to

b̃∗. Applying this to t = 0 and t = 1, we get that the combinatorial distance22

from γ̃(0) to γ̃(1) is ≤ 2c4. Consider the path γ′ provided by Lemma 55, from γ̃(0)
to γ̃(1), of box-Euclidean length at most that of γ̃, and consisting in p ≤ 2c4 + 1
parts γ′i each contained in some U1-box. Denote Li the box-Euclidean length of γ′i.
Then

∑p
i=1 Li ≤ 2(c2 + L) and in particular Li ≤ 2(c2 + L). By Corollary 51, the

endpoints of γ′i sit at U∗1 -hyperbolic distance ≤ c′5 + log(1 + c5Li) from each other.

22notion defined just before Lemma 55
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Thus, putting it all together:

dU∗1 (γ(0), γ(1)) ≤ dDom f̃ (γ̃(0), γ̃(1))

≤
p∑
i=1

c′5 + log(1 + c5Li)

≤ pc′5 + p log(1 + 2c5(L+ c2))

≤ (2c4 + 1)c′5 + (2c4 + 1) log (1 + 2c5L+ 2c5c2)

≤ c′6 + c6 log (1 + L)

for some constants c6, c′6 that depend only on c2, c4, c5 and c′5, which proves (5).
Because of the inclusion U∗1 ⊂ U1, the U1-hyperbolic distance between γ(0)

and γ(1) will be even shorter. Using Lemma 48, we get that z0 belongs to the
U1-hyperbolic ball of center 0 and radius

L′ = c7 + c′6 + c6 log(1 + L).

Hence the set C object of Proposition 45, which we are proving, is contained in
this hyperbolic ball (see the discussion after Lemma 48). Recall that L = L(ε) =
tanh−1(1− ε). Introduce ε′ ∈ ]0, 1[ such that tanh−1(1− ε′) = L′. Then

C ⊂ φ1(B(0, 1− ε′)).

Now ε′ = 2/(e2L′ + 1) ≥ e−2L′ and L′ = c7 + c′6 + c6 log(1 +L) and L ≤ c1 + 1
2 log 1

ε
so L′ ≤ c′8 + c8 log(1 + log(1/ε)), thus

(6) log
1

ε′
≤ c′9 + c9 log

(
1 + log

1

ε

)
In particular, as ε −→ 0, ε′ also tends to 0 but remains much bigger than ε. This
proves Proposition 45.

3.8. Step 2, I: Perturbation argument. Let us recall the notations introduced
in Section 3.2:

F =
{
R[Bd] ◦ φ−1

∣∣φ : D→ C is univalent and φ(z) = z +O(z2)
}

and

Fε =
{
R[Bd] ◦ φ−1

∣∣φ : B(0, 1− ε)→ C is univalent and φ(z) = z +O(z2)
}

where R[Bd] is the (upper) parabolic renormalization of the Blaschke product,
normalized to be defined on the unit disk. In particular,

F0 = F .

Last, for X ⊂ [0, 1], we will denote

FX =
⋃
x∈X
Fx.

3.8.1. An interpolation. Let ε1 > 0 and f ∈ Fε1 :

f = R[Bd] ◦ φ̃−1

For convenience, we will denote

r′ = 1− ε1

and φ(z) = 1
r′ φ̃(r′z). Then φ ∈ SL (the class of Schlicht maps) and

f(z) = R[Bd](r
′φ−1(z/r′)).
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Let U = φ(D). We will interpolate smoothly between f , which belongs to Fε1 , and
an element of F as follows: for t ∈ [0, 1[, let

φt(z) = rtφ(z/rt) with rt = 1− t.

Then the map φt is an isomorphism from B(0, rt) to rtU . Let

ft(z) = R[Bd] ◦ φ−1
t : rtU → C.

Then

fε1 = f,

and

ft ∈ Ft thus f0 ∈ F .
In the sequel, we will start from knowledge about f0 and transfer it to fε1 , by
continuously increasing t from 0 to ε1.

Using the language of structures that we introduced in Section 1.2, let us stress

that maps in Ft are all (I, Ĉ)-structurally equivalent (I being a singleton and the
origin being the marked point). For t′ > t, the structure of maps in Ft′ is a
sub-structure of that of maps in Ft.

Remark. Though, for t′ > t, ft′ is a sub-structure of ft, it is very unlikely that
the map ft′ would be conjugate to a restriction of ft.

Let us show a non-commuting diagram that the reader may find useful in order
to follow the arguments.

φ−1
0

��

·/rtoo

rt × ·
//

R[Bd]

OO

The map ft consists in turning once around this diagram, starting from the upper
right corner.23

3.8.2. About the critical value. Let T0 be one minus the absolute value of the critical
point of R[Bd] that is closest to 0. Then for all t ∈ [0, T0[, maps in Ft have a unique
critical value.

Lemma 56. There exists T ′1 ∈ ]0, T0[ such for all maps f ∈ F[0,T ′1], the critical
value is attracted to 0.

Proof. By Fatou’s theorem (Theorem 4), this is the case for all maps in F0. The
existence of T ′1 then follows from compactness of F0 and the fact that for a parabolic
map with one petal attracting a given point, nearby parabolic maps will attract
nearby points. �

A consequence of the uniqueness of the critical value is that the extended attract-
ing Fatou coordinate Φattr[ft] has a set of critical values contained in

{
v′ − n

∣∣n > 0
}

where v′ = Φattr[ft](v) and v is the critical value of ft. Unlike the case t = 0, when
t > 0 the map Φattr[ft] probably has a big set of asymptotic values (it is likely that
it contains curves).

3.9. Step 2, II: Following fibers.

23It may at first seem to be better to start from the upper left corner, since the corresponding
composition has a domain U that does not depend on t. However, when we iterate these maps,

we basically go in round circles along a non-commuting diagram again and again, and the author
thinks that it would not simplify the proof that much.



56 ARNAUD CHÉRITAT

3.9.1. A motion of the fibers of the Fatou coordinates and of the renormalized map.
The point of view outlined in Section 3.8.1 can be reversed and we may start from
any map f0 = R[Bd] ◦ φ−1

0 ∈ F , which has the full structure of R[Bd] and perturb
it into the map ft ∈ Ft as before, which has less and less structure as t ∈ [0, 1[
increases. Let us recall how ft is defined:

ft(z) = R[Bd] ◦ φ−1
t with φt(z) = rtφ0(z/rt) and rt = 1− t.

Studying the survival of (part of) the structure of the parabolic renormalization
R[ft] as t increases means following fibers of R[ft].

Recall that R[ft] is defined by

(a−1 ◦ R[ft] ◦ b) ◦ E = E ◦ (Φattr[ft] ◦Ψrep[ft])
∣∣
Wt

with E(z) = e2πiz, Wt is some domain, and a and b are linear maps that depend
on ft and on normalization conventions. Recall that we chose to normalize Fatou
coordinates by their expansion at infinity, and to normalize R[ft] by fixing its
critical value. See Section 3.3 for more details.

To lighten the expressions, let us abbreviate Rt = R[ft] and introduce extended
Fatou coordinates Φt and Ψt of ft, normalized differently from Φattr[ft] and Ψrep[ft],
and so that

Rt ◦ E = E ◦ Φt ◦Ψt

∣∣
Wt
.

We defined in Section 3.8.2 two constants T0 and T ′1 < T0 such that:

• For t ≤ T0, for all f ∈ F , ft has a unique critical value. Let us denote it
by vt.
• For t ≤ T ′1, this point vt is in the domain of definition of Φattr[ft].

Let
Φt(z) = Φattr[ft](z) + βt

where βt = σd − Φattr[ft](vt), so that Φt(vt) does not depend on t and where σd is
a constant that depends only on d and is chosen so that E(σd) is the critical value
of R[bd].

24 For the repelling inverse Fatou coordinate (whose normalization is less
important) we let

Ψt(z) = Ψrep[ft](z − β′t),
for β′t = βt − iπγ[ft] (recall γ is the iterative residue, see Appendix A). Let Φ :
(t, z) 7→ Φt(z), that we define on

Dom Φ =
{

(t, z) ∈ [0, T ′1[×C
∣∣ z ∈ Dom(Φt)

}
.

It is an open subset of [0, T ′1[×C, and Φ is a continuous function of (t, z) by Propo-
sition 34 (in fact, it is analytic, see [Tan00]). Similarly, let

R :

{
DomR → C

(t, z) 7→ Rt(z)

The domain of R is an open subset of [0, T ′1[×C and R is continuous, analytic w.r.t.
z for fixed values of t. (It is also analytic w.r.t. (t, z) but we will not use this fact.)

The critical values of Φt and Rt do not move when t varies (even when some
critical points vanish). It has the following consequence:

Proposition 57 (following part of the structure). Let F = Φ or F = R. Then

• (Lemma 59) fibers of Φ form a foliation that is locally parallelizable over
the first coordinate.

It follows that there exists a function τ : DomF0 → ]0, T ′1] (survival time) and
function ζ(t, z) (fiber follower) such that:

• Dom ζ =
{

(t, z) ∈ [0, T ′1[×Dom(F0)
∣∣ t ∈ [0, τ(z)[

}
24One can for instance take σd = iπγ[Bd] but we will not use this fact.
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• the map τ is lower semi continuous, i.e. for all t ∈ [0, T ′1[ , the set Ut =
τ−1( ]t, T ′1]) ⊂ C is open
• the above two points imply that Dom ζ is an open subset of [0, T ′1[×C and

Dom ζ =
{

(t, z) ∈ [0, T ′1[×C
∣∣ z ∈ Ut}

• the map ζ is continuous
• for each fixed t ∈ [0, T ′1[ , the map z ∈ Ut 7→ ζ(t, z) is holomorphic and

injective
• ∀(t, z) ∈ Dom ζ, F0(z) = Ft(ζ(t, z)), i.e. the map t ∈ [0, τ(z)[7→ (t, ζ(t, z))

follows a fiber of F
• (maximality and uniqueness) consider any continuous map following a fiber

of F as t varies from 0 to some t0, starting from (0, z) ∈ DomF ; then
τ(z) > t0 and the continuous map must coincide with t ∈ [0, t0] 7→ ζ(t, z).

The rest of the present section (Section 3.9.1) is devoted to the proof of the
above proposition. The proof is written for Φ but is the same, word for word, for
R.

Lemma 58. Let (t0, z0) ∈ Dom Φ and assume that z0 is a critical point of Φt0 .
Then there exists a connected neighborhood I of t0 in [0, T ′1[, and r0 > 0 such that
for all t ∈ I, Φt has a unique critical point in B(z0, r0), it moves continuously with
t and its multiplicity does not change.

Proof. We apply Hurwitz’s theorem25 to Φ′t and to Φt (note that Φ′t also depends
continuously on t, by Cauchy’s estimates): let u = Φt0(z0). Take r0 > 0 small
enough so that z0 is the only critical point of Φt0 in B := B(z0, r0), the only
solution of Φt0(z) = u in B, and such that Φt0 maps this disk in B(u, 1/2); there
exists ε0 such that for all t ∈ [0, T ′1[ with |t − t0| < ε0, Φt is defined on B and
maps it in B(u, 1/2); then by Hurwitz’s theorem, there exists 0 < ε < ε0 such that
for |t − t0| < ε, Φt − u has d − 1 critical points counted with multiplicity in B
and d roots in B. Now recall we normalized the maps Φt so that all critical values
belong to Z+ u and u does not depend on t. Since Φt(B) ⊂ B(u, 1/2), this implies
that all critical points of Φt in B map to u. Thus the sum of local degrees of Φt
at preimages of u in B equals d, and the sum of local degrees minus one equals
d− 1: there is exactly one preimage of u, thus exactly one critical point. Moreover,
its local degree is d, thus its multiplicity is constant. Continuous dependence is a
classical application of Hurwitz’s theorem and is left to the reader.26 �

Now consider the fibers of Φ: Xc =
{

(t, z) ∈ Dom Φ
∣∣Φ(t, z) = c

}
. They form a

collection of disjoint closed subsets of Dom Φ. We will prove that this collection is
a locally trivial foliation, in the following precise sense:

Lemma 59 (local trivialization). All (t0, z0) ∈ Dom Φ has an open neighborhood
V in Dom Φ on which a change of variable U : V → V ′ ⊂

open
[0, T ′1[×C of the form

U : (t, z) 7→ (t, u(t, z))

is defined,

25There seems to be several statements called Hurwitz’s theorem. We are referring to the
following: for a sequence of holomorphic functions fn converging uniformly on compact subsets
of an open subset U of C, call its limit f . If D is a disk compactly contained in U and f does not
vanish on the boundary of D then for all n big enough, f and fn have the same number of zeroes
in D, counted with multiplicity.

26There is a more direct proof, with Hurwitz’s theorem used only at the end to deduce conti-
nuity. From the fact that z0 is in a parabolic basin and that all critical points of ft map to the
same point, it follows that the orbit of z0 hits the set of critical points only once. Then one uses
that Φattr = −n+ Φattr ◦ fn, and that Φattr is injective in the petal Dattr[ft] and that the latter

moves continuously with t. Similar arguments can be carried out for R in place of Φ.
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(1) U is a homeomorphism to V ′,
(2) for all t, z 7→ u(t, z) is holomorphic,
(3) ∀c ∈ C, U(Xc) is the intersection of a horizontal with V ′: it is of the form

V ′ ∩ ([0, T ′1[×{w}) for some w ∈ C.

Proof. Case 1: z0 is not a critical point of Φt0 . It is an application of Hurwitz’s
theorem. Since the family Φt depends continuously on t and Φt0 is not locally
constant near z0, one can deduce from Hurwitz’s theorem that the map U = Φ
itself, restricted to an appropriate neighborhood V , will be a local trivialization.
Details are left to the reader.
Case 2: z0 is a critical point of Φt0 . A consequence of Lemma 58, is that we can
factor Φt(z) = (z−ct)dht(z) where ht(z) is a holomorphic function in z, continuous

in (t, z), defined locally and non-vanishing. The map g(t, z) = d
√
ht(z) is defined

locally, and we leave to the reader to check that the map (t, z) 7→ (t, (z− ct)g(t, z))
is a local trivialization. �

Hence connected components of fibers are graphs of continuous functions t 7→ z(t)
defined on connected open subsets of [0, T ′1[. Now, given any z ∈ Dom(Φ0), we
follow its fiber as t increases from 0 as long as possible: this gives a maximal
continuous function t ∈ [0, τ(z)[ 7→ ζz(t) such that ζz(0) = z and Φt(ζz(t)) is
constant. The real number τ(z) belongs to ]0, T ′1]. Uniqueness and maximality
(last point of Proposition 57) follow easily. In the lemma below, the point ζz(t) is
denoted

z〈t〉.

Lemma 60. The following holds:

(1) The function τ is lower semi-continuous, i.e. for all t ∈ [0, T ′1[, the set
Ut = τ−1(]t, T ′1]) ⊂ C is open.

(2) On Ut, the function z 7→ z〈t〉 is holomorphic.

Proof. For a given z ∈ Ut, since t < τ(z), cover the compact set [0, t] by open
subsets on which there is a local trivialization of the fiber z belongs to. Extract a
finite cover. From it, one can build a trivialization like in the previous lemma, but
in a whole neighborhood of z〈[0, t]〉 relative to [0, t]× C. The lemma follows. �

This ends the proof of the Proposition 57.

3.9.2. Objectives. Let f ∈ F and denote by τR[f ] the τ function corresponding to
R in Proposition 57: i.e. τR[f ](z) is the time up to which the fiber of (t, z) 7→
Rt(z) that contains (0, z) can be followed. Recall that R[ft] denotes the parabolic
renormalization of ft, normalized so that the critical value does not move as t varies,
and recall that ft is a specific perturbation of f0 = f . Consider the parabolic
renormalization R[f0] of f0.

Lemma 61. If ∀z ∈ Dom(R[f0]) } (1− ε1), τR[f0](z) > ε0 then R[fε0 ] has a
restriction that belongs to Fε1 .

Proof. The map R[f0] belongs to F , thus it can be written as R[f0] = R[Bd] ◦φ−1
2

where φ2 : D → C is univalent and φ2(z) = z + O(z2). By hypothesis, the set
Uε0 contains Dom(R[f0]) } (1− ε1) = φ2(B(0, 1 − ε1)) (the sets Ut were defined
in Proposition 57 and Lemma 60). According to Proposition 57, the map ζt : z ∈
Ut 7→ ζ(t, z) is a holomorphic bijection to its image, and R[ft](ζ

t(z)) = R[f0](z)
holds on Ut. Apply this to t = ε0: let V = ζε0(φ2(B(0, 1− ε1))), then ζε0 ◦ φ2 is a
structural equivalence, with 0 as a marked point, between the restriction of R[fε0 ]
to V and the restriction of R[Bd] to B(0, 1− ε1). �
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So the Main theorem (more precisely Theorem 26) will be proved if we can prove
the following claim:

Proposition 62 (survival of fibers of R). There exists a pair ε1 < ε0 with ε0 < T ′1
such that for all f0 ∈ F , for all z ∈ Dom(R[f0])} (1− ε1),

τR[f0](z) > ε0.

The constant T ′1 was defined in Section 3.8.2. We will in fact prove more: for all
ε0 small enough, there exists ε1 < ε0 such that the conclusion of the proposition
holds. Better: we can take ε1 � ε0 (see details in Section 3.11).

3.9.3. Restatement of the objectives. Let ε > 0 and consider some

z ∈ Dom(R[f0])} (1− ε).
The map Rt = R[ft] is the semi-conjugate by E of the composition Φt ◦Ψt, but it
can also be viewed differently: recall that the extended Fatou coordinates Φt and
extended inverse Ψt are defined via iteration of ft, using bijective Fatou coordinates
in petals as a starting point. Let Prep be a repelling petal and Φrep be a repelling
Fatou coordinate such that Ψt = Φ−1

rep holds on Φrep(Prep). The value Rt(z) thus
decomposes as follows (see Figure 22 in Appendix A):

Rt(z) = E(Φt(f
m0
t (Ψt(u))))

where E(z) = e2πiz, u ∈ E−1(z) ∩ Φrep(Prep) and m0 = m0(z) ∈ N is chosen so
that fm0

t (Ψt(u)) belongs to the attracting petal. Let us now focus on the initial
situation, at t = 0: consider the f0 bilateral orbit

(n ∈ Z) ωn := Ψ0(u+ n).

It depends on z and on the choice of u ∈ E−1(z) ∩Φrep(Prep). Interestingly, if one
chooses another u ∈ E−1(z)∩Φrep(Prep), we get the same orbit, but with the index
n shifted. According to the first step, if z ∈ Dom(R[f0]) } (1− ε) then the orbit
ωn is contained in Dom(f0)} (1− ε′) = φ0(B(0, 1− ε′)) with ε′ � ε:

∀n ∈ Z, ωn ∈ Dom(f0)} (1− ε′).
Let us again insist on our interpretation of this fact, that is the central idea of the
whole machinery: given f0 ∈ F , the restriction of its renormalized map R0 to a
map with substructure Fε, can be defined using a restriction of the map f0 that
has structure Fε′ , i.e. much less structure. If all maps with structure Fε′ were
restrictions of maps in F we would be done (the main theorem would follow at
once), but this is of course not the case, and this is the reason why we introduced
the interpolation ft. The idea is then the following: since ε � ε′, for t at most ε
or just slightly bigger, the map ft will be extremely close to f0 on a set slightly
bigger than Dom(f0)} (1− ε′). The task is then to check that this is close enough
so that the fibers attached to the orbits ωn survive and thus the Fε-structure of
the parabolic renormalization survives.

Let us now denote τΦ[f ] the τ function corresponding to Φ in Proposition 57.
This proposition also provides a map (t, z) 7→ ζ(t, z), to be interpreted as a motion
of z as t varies. For convenience, in the sequel we will use the notation

z〈t〉 = ζ(t, z).

Lemma 63 (the motion is compatible with the dynamics). ∀z ∈ U0, τΦ(f0(z)) ≥
τΦ(z) and ∀t < τΦ(z), ft(z〈t〉) = f0(z)〈t〉.

Proof. By construction of the extended Fatou coordinates, if (t, z) ∈ Dom Φ then
(t, ft(z)) ∈ Dom Φ and Φ(t, ft(z)) = 1 + Φ(t, z). By hypothesis, the graph of
t ∈ [0, τΦ(z)) 7→ z〈t〉 is contained in Dom Φ hence so is the graph of t ∈ [0, τΦ(z)) 7→
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ft(z〈t〉) and Φ(t, ft(z〈t〉)) = 1 + Φ(t, z〈t〉), and thus remains constant as t varies,
by construction of the motion z〈t〉. This means that t ∈ [0, τΦ(z)) 7→ ft(z〈t〉) is in
the unique fiber of Φ containing f0(z): hence ft(z〈t〉) = f0(z)〈t〉. �

Now for a given t consider the sequence

ωn〈t〉.

It is an orbit of ft, though, depending on t, it may not be defined for all n:

Lemma 64. For all t ∈ [0, T ′1[:

• if ωn〈t〉 is defined (i.e. τΦ(ωn) > t) then ωn+1〈t〉 is defined and ωn+1〈t〉 =
ft(ωn〈t〉),
• ωn〈t〉 is defined when n is big enough.

Proof. Since ωn〈0〉 = ωn is an orbit for f0: ωn+1〈0〉 = f0(ωn〈0〉). The first point fol-
lows from the previous lemma. Informally, the second point states that points deep
enough in the attracting petal can be followed for a long time. Let us apply Proposi-
tion 32 and its companion Proposition 29 to the family of maps G =

{
fs
∣∣ s ∈ [0, t]

}
.

The Fatou coordinates in this proposition are normalized by the expansion. They
thus differ from Φs by the constant βs = σd − Φattr[ft](vt) of Section 3.9.1, which
is bounded for s ∈ [0, t]. Hence there is a map ξ, independent of s ∈ [0, t], such
that the domain of equation Re (z) > ξ(Im (z)) is contained in the image by Φs
of the attracting petal Dattr[fs] (defined in Proposition 29). Choose N1 so that
ωN1
〈0〉 ∈ Dattr[f0]. For N = N1 + k ≥ N1, we have ωN 〈0〉 ∈ Dattr[f0] and

Φ0(ωN 〈0〉) = Φ0(ωN1
) + k hence there is some N2 ≥ N1 such that for all n ≥ N2,

ωn〈0〉 is in the domain of equation Re (z) > ξ(Im (z)). Let us call Ψattr,s the in-
verse of the restriction of Φs to the petal. The function s 7→ Ψattr,s(Φ0(ωn〈0〉))
then defines a motion of ωn〈0〉 within a fiber of Φ, whence the conclusion by the
uniqueness point of Proposition 57. �

The sequence ωn〈t〉 is thus defined either for all n ∈ Z or for all n ≥ N ∈ Z,
where N depends both on t and on the orbit ωn = ωn〈0〉. Proposition 31 provides
a repelling petal Drep[ft] of diameter r0 that varies continuously with ft. Here r0

can be any small enough constant independent of ft. Proposition 62, and thus the
main theorem (more precisely Theorem 26), will follow from:

Proposition 65 (survival of orbits as fibers of Φ, and control). There exists r′0 < r0

and a pair ε1 < ε0 with ε0 < T ′1 such that for all f0 ∈ F , for all z ∈ Dom(R[f0])}
(1− ε1), if we consider the orbit ωn associated to z, then

• for all n ∈ Z
τΦ[f0](ωn) > ε0,

• there exists M ∈ Z such that (t ≤ ε0 and n ≤M) =⇒ ωn〈t〉 ∈ Drep[ft](r
′
0).

Indeed, let Φ+,t be the repelling Fatou coordinates on Drep[ft] such that Ψt ◦
Φ+,t(z) = z holds on Drep[ft]. It depends continuously on t. Consider a point
z ∈ Dom(R0) } 1− ε1 and the f0-orbit ωn associated to z. Let then z(t) =
E(Φ+,t(ωM 〈t〉)). Then z(t) ∈ DomRt and ∀n ≥ M , Rt(z(t)) = E(Φ+,t(ωM 〈t〉)) =
E(Φt(ωn〈t〉) + M − n) = E(Φt(ωn〈t〉)) = E(Φ0(ωn〈0〉)) (the last equality because
we follow a fiber of Φ), i.e. Rt(z(t)) is constant as t varies. Since z(0) = z〈0〉, we
have followed the R-fiber associated to z: z(t) = z〈t〉. In particular τR(z) > ε0.

Again, we will get slightly stronger information on the valid pairs (ε0, ε1) for
Proposition 65, see Section 3.11.
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3.10. Step 2, III: Survival of fibers. In this section, we will prove the following
proposition (see the paragraph just before Proposition 65 for information about the
constant r0):

Proposition 66. There exists K > 0, r′0 < r0 and ε′0 such that for all ε′ < ε′0,
for all f0 ∈ F0, for all f0-orbit ωn indexed by I = Z that tends to 0 in the future
(in an attracting petal) and in the past (in a repelling petal), if the orbit (ωn) is
completely contained in Dom(f)} (1− ε′) then its survival time is at least ε′/K:

∀n ∈ Z, τΦ(ωn) > ε′/K.

Moreover27 there is some M ∈ Z such that ∀n ∈ Z with n ≤ M and ∀t ≤ ε′/K,
ωn〈t〉 ∈ Drep[ft](r

′
0).

Here we do not need to assume that ε′ is related to some ε > 0 like in Proposi-
tion 45.

3.10.1. Local orbits. We first consider those orbits that stay near the parabolic
point, and prove their survival for some uniform time.

Lemma 67 (Survival of local orbits). For all T3 < T ′1 there exists r1 > 0 such that
for all f0 ∈ F0 and for all f0-orbit ωn indexed by I = Z or I = N, if the sequence
(ωn) is contained in B(0, r1), then

• for all n ∈ I, τΦ[f0](ωn) > T3,
• if I = Z, then there exists N ∈ Z such that ∀n ∈ Z with n ≤ N and
∀t ∈ [0, T3] , ωn〈t〉 ∈ Drep[ft](r0).

Proof. Recall the statements and notations of Propositions 29 and 32 and ap-
ply them to the compact set of maps F[0,T3], which yields a value r0. In their
proofs, we introduced the right half plane Hattr[f ], image of the disk Dattr[f ] by
z 7→ s(z) = −1/cfz. The boundary of Hattr is a vertical line of abscissa 1/r0|cf |.
Call R0 the supremum of 1/r0|cf | when f varies over F0. The function Ψattr

was the inverse of Φattr : Dattr → Ψattr(Dattr). It is important to note a dif-
ference: the Fatou coordinates were normalized by they asymptotic expansion in
these propositions, whereas here they are normalized using the critical value v[ft]:
Φt(z) = Φattr[ft](z) + βt where βt = β[ft] = σd − Φattr[ft](v[ft]). Let

z 7→ st(z) = −1/c[ft]z.

Let Ψ̃t = Φ−1
t defined on Φt(Dattr[ft]). Choose any T ′3 ∈ ]T3, T

′
1[. The following

three bounds are finite:

B = sup
f∈F[0,T ′3]

∣∣cf ∣∣, B′ = sup
f∈F[0,T ′3]

|βt| and Γ = sup
f∈F[0,T ′3]

∣∣γ[f ]
∣∣.

Since B′ < +∞, one can translate the estimates given in Propositions 29 and 32

into estimates on Ψ̃t and Φt as follows:

|st(ft(z))− (st(z) + 1)| ≤ 1/4 (∀z ∈ B(0, r0))

|Φt(s−1
t (u))− (u− γ logp u)| ≤ M1

|st ◦ Ψ̃t(Z)− (Z + γ logp Z)| ≤ M2

Dom(Ψ̃t) ⊃
{
Z ∈ C

∣∣ReZ > ξ(ImZ)
}

ξ(y) =
y→±∞

O(log |y|)

where st, γ = γ[ft], Φt and Ψ̃t all depend on ft, but the function ξ and the constants
M1, M2 are independent of f0 and of t. Consider now a real number a > R0 and the

27This constant M will of course not be independent of the orbit (ωn).
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Figure 19: Illustration of the proof of Lemma 67. Both pictures live in the u-plane.
The small circle has radius R0, the big circle radius R1, both are centered on the
origin. The sector S has apex having some real affix a > R0, which we depicted
closer to R0 than to R1. See the text for further description.

sector S ⊂ Hattr defined by arg(z − a) < π/3. By the first estimate above, s−1
t (S)

is stable by ft. By the other estimates, if a is big enough, for all ft ∈ F[0,T ′3], for

all z 6= 0, if s0(z) ∈ S, then Ψ̃t(Φ0(z)) is defined. It follows a fiber of Φ hence by
uniqueness in Proposition 57, τΦ(z) ≥ T ′3 and

z〈t〉 = Ψ̃t(Φ0(z)).

Using the estimate above on Ψ̃t, we get ∀t ∈ [0, T ′3[ , st(z〈t〉) ∈ Hattr[ft] provided
a ≥ A′ for some A′ independent of f0, t and z. Let

u(t) := st(z〈t〉) = st ◦ Ψ̃t(Φ0(z)).

In particular u(0) = s0(z). We then get the following bound on the motion:∣∣u(t)− u(0)
∣∣ ≤M4 log(M ′4 + |u(0)|)

where M4 and M ′4 are independent of t, f0 and z. Indeed, we start from | logp(x)| ≤
π+ log |x| when log |x| > 0. We then use the estimates above to first get |Φ0(z)| ≤
M1 + |u(0)|+ Γπ + Γ log |u(0)| (we can ensure log |u(0)| > 0 by taking a > 1) and
|Φ0(z)| > 1 (take a big enough). Then |u(t)| ≤M2 + |Φ0(z)|+ Γπ+ Γ log |Φ0(z)| ≤
M + M ′|u(0)| for a pair (M,M ′) independent of t, f0, z. Then |u(t) − u(0)| ≤
|u(t)−Φ0(z)|+|Φ0(z)−u(0)|. Last we use for t′ = t and t′ = 0 that |u(t′)−Φ0(z)| ≤
M1 + Γ log |u(t′)|.

So far, we have proved survival of points z with in s0(z) ∈ S, i.e. τΦ(z) ≥ T ′3 > T3.
Figure 19 illustrates the next step of the proof. Let r1 to be chosen later, with
r1 < r0. Let R1 = inf(1/|cfr1|) = 1/(r1 sup |cf |) where the extrema are taken
over f ∈ F[0,T ′3]. Assume zn is an orbit of f0 indexed by N that is contained in

B(0, r1). Then the sequence un = s0(zn) is contained in
{
u ∈ C

∣∣ |u| > R1

}
. If

u0 ∈ S then ∀n ≥ 0, τΦ(z) ≥ T ′3. If u0 /∈ S, let n0 be the smallest positive
integer such that un0

∈ S (there is one, by the first estimate in the list). Since
un0−1 ∈

{
u ∈ C

∣∣ |u| > R1

}
\S and un0 ∈

{
u ∈ C

∣∣ |u| > R1

}
∩S, the first estimate in

the list gives, again, that un0
must belong to the set Λ, depicted in red in Figure 19,
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intersection of
{
u ∈ C

∣∣ |u| > R1

}
with the set of points in S at distance ≤ 5/4 from

∂S. By the bound on the motion, ∀t ∈ [0, T ′3[, un0
(t) belongs to the set Λ′, depicted

in light red, union of balls of center u ∈ Λ and of radius M4 log(M ′4 + |u|). The
map ft still satisfies the first inequality in the list, hence, provided R1 is big enough
then for all f0 and for all t ∈ [0, T ′3[, and for all sequence un as above, there is
an inverse orbit of the conjugate of ft by st, starting from un0

(t) and remaining
in
{
u ∈ C

∣∣ |u| > R0

}
, in fact remaining above or below a domain delimited by the

dotted line on the figure (on which we interrupted the dotted line when it reaches
the repelling petal, delimited by the vertical plain line). By continuity, this orbit
is equal to st(zn〈t〉) and τΦ(zn) ≥ T ′3 > T3, for all n ∈ I = Z or N. If I = Z, let as
above n0 be the smallest relative integer such that un0

∈ S. By the first inequality
it exists, and moreover the inverse orbit un(t), n negative, must enter the repelling
petal (and stay there) as soon as |un0

|+M4 log(M ′4 + |un0
|)+ 3

4 (n−n0) < −R0. �

We can in fact bound their motion.

Lemma 68 (Bound on the motion of local orbits). The following can be added to
the conclusions of Lemma 67:

• ∀t ∈ [0, T3], ∀n ∈ I, let z = ωn: |z〈t〉 − z| ≤ K1|z|t.
The constant K1 is independent of f0, t and z but may depend on T3.

Proof. To shorten the proof we will use holomorphic motions:28 let us extend the
deformations ft to complex values of t in an open neighborhood V of [0, T3] that
does not depend on f0 ∈ F . The hyperbolic length of [0, T3] in V is thus inde-
pendent of f0. For those values of t such that |rt| > 1, where rt = 1 − t, the
map ft is only defined on rtφ0(r−1

t D) instead of rtφ0(D) when |rt| ≤ 1. Those
sets contain a common ball B(0, r) for some r independent of f . By compact-
ness, an analog of Lemma 67 still holds. The function t 7→ z〈t〉 is defined on V
and holomorphic.29 Consider the cone of vertex 0, axis R+ and angle 3π: this is
a Riemann surface over C∗ that is bijectively parameterized in polar coordinates
(r, θ) by ]0,+∞[× ] − 3π/2, 3π/2[. The study made in the previous lemma shows
that, for r1 small enough, the points ωn satisfying the assumptions of the theorem
have a motion ωn〈t〉 such that un(t) := −1/c[ft]ωn〈t〉 stays in this cone when t
varies. The element of hyperbolic metric on the cone has expression c(θ)|du|/r
where c(θ) ≥ c(0) > 0. The movement of u is holomorphic, hence bounded in
this metric by the hyperbolic length of [0, T3] in V . In Euclidean terms, un(t)
has moved by at most Kt|un(0)| for some K independent of f0. Moreover, |un(t)|
and |un(0)| are of comparable size. Going back to ωn〈t〉 = −1/c[ft]un(t), we get
|ωn〈t〉 − ωn〈0〉| ≤ |1/c[ft]un(t) − 1/c[ft]un(0)| + |1/c[ft]un(0) − 1/c[f0]un(0)| ≤
|un(0)− un(t)|/|c[ft]un(0)un(t)|+ |1/c[ft]− 1/c[f0]|/|un(0)|. One concludes recall-
ing c[ft] is not too close to 0 and depends holomorphically on t. �

3.10.2. Contraction. Arguments in this section are standard in holomorphic dy-
namics in complex dimension one.

Let PC(f0) denote the post critical set of f0, i.e. the orbit of the (unique) critical
value. Since this orbit tends to 0, the closure PC(f0) equals PC(f0) ∪ {0}. Let

W0 = C \ PC(f0).

It is well known that inverse branches of f0 are locally contracting for the hyperbolic
metric of W0. Let us recall the argument: f0 is a cover from W ′0 := f−1

0 (W0) to

28It is possible to avoid holomorphic motions completely, by using Propositions 42 and 43 and
the remark that follows, which can themselves be proved without holomorphic motions. However,

that is much longer.
29Hence we have a holomorphic motion, because it is injective w.r.t. z, but we will not use

that fact.
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W0. As such, it is an isometry, at the infinitesimal level, from the hyperbolic
metric of W ′0 to that of W0. Now W ′0 ⊂ W0, and strict inclusion maps are locally
contracting. Recall that for a hyperbolic domain U of C we denote ρU (z)|dz| the
element of hyperbolic metric of U . For z ∈ W ′0, let us denote λ(z) the contraction
factor of f−1

0 from f0(z) to z, measured with the hyperbolic metric element of W0:

λ(z) =
ρW0

(z)

ρW0(f0(z))

∣∣∣∣ dz

df0(z)

∣∣∣∣ ;
it is also equal to the contraction factor at z of the inclusion map from W ′0 to W0:

λ(z) =
ρW0

(z)

ρW ′0(z)
.

The function λ is continuous and takes values in ]0, 1[.
Let us recall that a hyperbolic open subset of the Riemann sphere with an isolated

point a in its complement has a hyperbolic metric coefficient ρ(z) ∼ 1
2|z−a| log 1

|z−a|

as z −→ a 6=∞, or ρ(z) ∼ 1
2|z| log |z| as z −→ a =∞.

Lemma 69. Let zn ∈W ′0 be a sequence.

(1) If zn leaves every compact subset of the open set W ′0∪PC(f0), then λ(zn) −→
0.

(2) If λ(zn) −→ 1 then zn −→ PC(f0).

Proof. We may extract a subsequence and assume zn convergent in the Riemann
sphere.
Point (1): If zn −→ ∞ then ρW0

(z) ∼ 1
2|z| log |z| whereas ρW ′0(z) ≥ ρDom(f0)(z)

and the latter is ≥ 1
4dC(z,∂Dom(f0)) by Koebe’s one quarter theorem. Now since the

domain of f0 is the image of D by a Schlicht map, there is at least one point in its
complement that is at distance at most 1 from 0. Hence dC(z, ∂Dom(f0)) ≤ 1+ |z|.
Putting it all together, we get that ρW0

(z)/ρW ′0(z) −→ 0 as |z| −→ +∞. In the
remaining case: lim zn 6=∞ so ρW0(z) converges to a constant whereas ρW ′0(z) −→
+∞.
Point (2): The function λ is continuous and λ(z) < 1 thus if λ(zn) tends to 1 then
zn leaves every compact subset of W ′0, and we conclude by the previous point. �

Lemma 70 (Definite contraction factor at definite distance of PC). For all δ > 0,
there exists Λ(δ) < 1 such that ∀f ∈ F , ∀z ∈ W ′0, if dC(z, PC(f)) ≥ δ then
λ(z) ≤ Λ(δ).

Proof. If not, there would be sequences fn = R[Bd] ◦ φ−1
n ∈ F and zn ∈ W ′0[fn]

such that dC(zn, PC(fn)) ≥ δ but λ[fn](zn) −→ 1. Let us extract convergent

subsequences and assume that zn −→ z′ ∈ Ĉ and φn −→ φ, thus fn −→ f =
R[Bd] ◦ φ−1. Since PC(f) is contained in a ball B(0, R) with R independent of
f ∈ F (Point 2 of Lemma 39), W0(f) contains V := C \ B(0, R), hence ρW0

(z) ≤
ρV (z) ∼ 1/2|z| log |z| as z −→ ∞. This gives an upper bound like in Point (1)
of Lemma 69, but moreover independent of f ∈ F . It follows that z′ 6= ∞. By
Lemma 39, PC(f) depends continuously on φ thus dC(z′, PC(f)) ≥ δ. Hence
z′ ∈ W0[f ]. Now the marked domains (W0[fn], zn) converge for the Caratheodory
topology on marked domains. Hence their universal cover from (D, 0) with real
positive derivative at the origin converge, and the coefficient of the hyperbolic metric
converges locally uniformly: ρW0[fn](zn) −→ ρW0[f ](z

′). Concerning the marked
domains (W ′0[fn], zn), there are two cases: either z′ ∈ W ′0[f ] in which case there
is Caratheodory convergence to (W ′0[f ], z′) and thus ρW ′0[fn](zn) −→ ρW ′0[f ](z

′); or
z′ /∈ W ′0[f ] in which case we will prove in the next paragraph the following claim:



NEAR PARABOLIC RENORMALIZATION FOR UNICRITICAL HOLOMORPHIC MAPS 65

ρW ′0[fn](zn) −→ +∞. In the first case λ[fn](zn) −→ λ[f ](z′) < 1. In the second
case λ[fn](zn) −→ 0. Both cases lead to a contradiction.

Let us prove the claim. There exists then a point xn ∈ C \W ′0[fn] such that
xn −→ z′. Let r′ = |z′| and let r′′ ≥ 1 be any real such that r′′ 6= r′, for instance
r′′ = r′+ 1. Since the conformal radius w.r.t. 0 of the simply connected set Dom fn
is 1, there exists a point in C\Dom fn of any modulus ≥ 1, in particular a point yn
of modulus r′′. Let Vn = C \ {xn, yn}. Then ρW ′0[fn](zn) ≥ ρVn

(zn). Let φn be the

unique C-affine map sending 0 to xn and 1 to yn and let un = φ−1
n (zn). Then φ′n =

yn − xn and ρC\{0,1} = φ∗n(ρVn) = |φ′n| × ρVn ◦ φn. For n big enough, the sequence
xn − yn is bounded away from 0 (and ∞) thus un −→ 0 thus ρC\{0,1}(un) −→ +∞
and also ρVn

(zn) = ρC\{0,1}(un)/|yn − xn| −→ +∞. �

3.10.3. Putting back the post critical set. The following easy lemma will be useful
in several places.

Lemma 71. There exists a function δ > 0 7→ M(δ) > 0 such that the following
holds. For all f ∈ F , for all z ∈ Dom(f), if dC(z, PC(f)) ≥ δ then

ρW0(f)(z)

ρDom(f)(z)
≤M(δ).

Proof. In this proof, the notation B(z, r) denotes the euclidean ball and PC =
PC(f). By Lemma 39, there is R > 0 such that for all f ∈ F , PC ⊂ B(0, R). Let
U = C \B(0, R). Then for |z| > R:

ρW0(z) ≤ ρU (z) =
1

2|z| log |z|R
.

For any z ∈ W0, since the disk D of center z and radius dC(z, PC) is contained in
W0, we get

ρW0
(z) ≤ ρD(z) =

1

dC(z, PC)
.

By the theory of univalent functions,

ρDom(f)(z) ≥
1

4(1 + |z|)
.

The lemma follows. �

3.10.4. Homotopic length and decomposition. I was introduced to the notion of
homotopic length by reading [CPT12].

For γ a path defined on an interval I containing [a, b], let us denote its restriction
to [a, b] by

γ
∣∣[a, b].

Let us similarly denote

ωn〈[0, t]〉 : s ∈ [0, t] 7→ ωn〈s〉
where ωn is an orbit of f0 as in Section 3.9.3.

To bound the motion of ωn〈t〉 we will look at the homotopic length of the path
ωn〈[0, t]〉 for the hyperbolic metric on W0 = C \ PC(f0). Homotopic length of a
path γ refers to the infimum of W0-hyperbolic lengths of paths homotopic to γ in
W0, where the ends of the path are fixed. It will be denoted

hlenW0
(γ).

By contrast, we denote as follows the usual length of a rectifiable path for the
hyperbolic metric of W0:

lenW0
(γ).
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Last, we will call extent of a path γ defined on [0, t] the quantity

extentW0
(γ) = sup

t′∈[0,t]

hlenW0
(γ
∣∣[0, t′]).

Remark. Homotopic length is also the hyperbolic distance between the starting
point and the end point of a lift of the curve to the universal cover. There are in
particular shortest homotopic paths. The extent of a curve is the smallest radius of
a ball in the universal cover containing a lift of the curve and centered on the initial
point of this lift. If U is connected and γ ⊂ U ( V then the V -homotopic length of
γ is strictly smaller than its U -homotopic length: consider for instance the shortest
homotopic path for V ; its U -length is strictly shorter. If U and V are hyperbolic
Riemann surfaces and f : U → V is a cover then hlenU (γ) = hlenV (f ◦ γ).

Remark. The sequence (ωn〈t〉)n∈N is an orbit of ft, not f0. It may therefore
seem unnatural to measure the motion of t 7→ ωn〈t〉 using the hyperbolic metric
on the complement of PC(f0). However, we found the proof simpler to write that
way. Note that the motion will be evaluated only at some distance from the post
critical points, and in the end it will be small.

Recall that f0 ∈ F decomposes as

f0 = R[Bd] ◦ φ−1
0

with φ0 : D→ U0 a Schlicht map. Let us decompose the map ft as follows:

ft = f0 ◦ σt
where

σt(z) = φ0 ◦ rt ◦ φ−1
0 ◦ r

−1
t

with the notations of Section 3.8.1 and letting rt denote the multiplication by

rt = 1− t.

The map σ0 is the identity restricted to Dom f0. If we interpret σt(z) as a motion
of z as t varies, then it can be viewed as the composition of two motions: (t, z) 7→
(t, r−1

t z) followed by the conjugate by φ0 of the radial motion (t, z) 7→ (t, rtz) on
the unit disk:

σt = µt ◦ r−1
t

with

µt = φ0 ◦ rt ◦ φ−1
0 .

The domain of definition of the reciprocal σ−1
t equals φ0(B(0, rt)) = Dom(f0)} rt

and thus as t varies away from 0, it shrinks.
One way to get a control ωn−1〈s〉 is to do it inductively from a control on ωn〈s〉,

using the relation fs(ωn−1〈s〉) = ωn〈s〉 of Lemma 64. Consider the case where
ωn〈0〉 is not equal to 0 nor to the singular value v of f0. Then ωn〈s〉 /∈ {0, v},
because 0 and v do not move under the fiberwise motion, and Φ-fibers are disjoint.
Recall that the singular values of f0 are precisely 0, ∞ and v. We claim that,
under some condition stated below, the path s ∈ [0, t] 7→ ωn−1〈s〉 is homotopic
(with endpoints fixed) in W0 to the concatenation of the following two paths (see
Figure 20):

• The first path, denoted γ1 = f∗0ωn by a slight abuse of notation, is pa-
rameterised by s ∈ [0, t] and is defined by continuity by γ1(0) = ωn−1〈0〉
and f0(γ1(s)) = ωn〈s〉, i.e. we replaced fs by f0 in fs(ωn−1〈s〉) = ωn〈s〉.
Existence of this path follows from ωn〈s〉 never hitting the singular values
of f0. It ends at some point w′ (which depends on t);
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(x, y) 7→ h(x, y)

ωn−1〈0〉

ωn−1〈t〉
ωn−1

f∗0ωn

w′

σ−1
s (w′)

0 (0, t)

(t, t)

Figure 20: The map h(x, y) = σ−1
y (f∗0ωn(x)) defined on the triangle of inequations

x ∈ [0, t], y ∈ [0, t], y ≤ x induces a homotopy between ωn−1 on [0, t] and the
concatenation of f∗0ωn and s ∈ [0, t] 7→ σ−1

s (w′).

• The second path is γ2 : s ∈ [0, t] 7→ σ−1
s (w′). For it to be defined up to

s = t, we need to assume that w′ ∈ Dom(f0)} (1− t) = φ0(B(0, 1− t)).
The homotopy will be defined by means of a map h defined on the set of (x, y) ∈
[0, t]2 such that y ≤ x by

h(x, y) = σ−1
y (γ1(x)).

For it to be well defined, we will make assumptions on t, on the length of ωn and
on the ε such that ωn−1〈0〉 ∈ Dom(f0) } (1− ε). For it to be a homotopy in W0,
we need to prove that its support does not intersect PC(f0) and for this we will
make further assumptions on t, on the length of ωn and on the Euclidean distance
from ωn−1〈0〉 to PC(f0).

To state these sufficient conditions, we will introduce the following objects and
quantities. For δ > 0 let Vδ[f ] denote the δ-neighborhood of PC(f), i.e. the set
of points whose Euclidean distance to PC(f) is < δ (see Figure 21). According to
Lemma 39, the following quantity is positive:

δ1 := inf
f0∈F0

dC(PC(f0),C \Dom f0)

where dC refers to the Euclidean distance, and the following are finite:

R1 := sup
{
|z|
∣∣ z ∈ PC(f0), f0 ∈ F0

}
,

R2 := sup
{
dDom f0(0, z)

∣∣ z ∈ PC(f0), f0 ∈ F0

}
.

Lemma 72. For all (δ, δ′) with δ′ < δ < δ1, there exists T = T (δ, δ′) > 0 such that
∀f0 ∈ F0, ∀t < T :

• µ−1
t

(
C \ Vδ[f0]

)
∩ Vδ′ [f0] = ∅,

• rt
(
C \ Vδ[f0]

)
∩ Vδ′ [f0] = ∅,

• σ−1
t

(
C \ Vδ[f0]

)
∩ Vδ′ [f0] = ∅.

Proof. We can deduce the third point from the first two, using an intermediary
value δ′′. This may not be optimal30 but it is not the point here. For the second
point, an explicit valid value of T can easily be computed using Lemma 39: assume
z ∈ rt

(
C \ Vδ[f0]

)
∩ Vδ′ [f0]. Then there exists z′ ∈ PC(f0) such that |z − z′| < δ′,

thus |z| < R1 + δ′. Then |z − r−1
t z| ≤ (R1 + δ′)(r−1

T − 1). If T is chosen so that

(R1 + δ′)(r−1
T − 1) < δ − δ′ then r−1

t z cannot belong to C \ Vδ[f0]. For the first
point, let us work by contradiction and assume there is fn ∈ F0, an ∈ C \ Vδ[fn],
bn ∈ Vδ′ [fn] and tn > 0 such that tn −→ 0 and an = µtn(bn). We may assume that

fn −→ f ∈ F0, an −→ a ∈ Ĉ and bn −→ b ∈ C. From |an − bn| > δ − δ′ we get
|a− b| ≥ δ − δ′. Write fn = R[Bd] ◦ φ−1

n and f = R[Bd] ◦ φ−1 . From δ′ < δ1 and

30Near z = 0, the Euclidean motion of σt is of order |z|2, thus smaller than the sum of the
motions of µt and of rt, which are both of order |z|.
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vf 0

Vδ[f ]

Figure 21: A schematic illustration of Dom(f), Dom(f)}r and Vδ[f ]. Scales are not
respected. The outer curve represents the boundary of the domain of some f ∈ F ,
the nearby smooth curve the boundary of the sub-domain Dom(f) } 1− ε. The
post-critical set is indicated by dots, its δ-neighborhood for the Euclidean metric is
Vδ[f ] and its boundary is indicated by thin curves.

R2 < +∞ we deduce that φ−1
n (bn) remains in a compact subset of D thus b belongs

to Dom(f), but then a = µ0(b) = b, a contradiction. �

We will later choose some

δ < δ1.

Let then

d1 = d1(δ) = inf
f0∈F0

dW ′0
(
Vδ/3[f0] , C \ Vδ/2[f0]

)
with W ′0 := f−1

0 (W0). Let also

d′′1 = d′′1(δ) = inf
f0∈F0

df−1(C\{0,v})
(
Vδ/3[f0] , C \ Vδ/2[f0]

)
,

v being the critical value of f0, and note that d′′1 < d1. Using the notation of
Lemma 72 let

T4(δ) = T
(
δ/3 , δ/4

)
so that ∀f0 ∈ F0, ∀t < T4(δ), σ−1

t

(
C \Vδ/3[f0]

)
∩Vδ/4[f0] = ∅. Let `(x) denote the

hyperbolic distance from 0 to x in D:

`(x) = dD(0, x) = argth(x).

It is a bijection from [0, 1[ to [0,+∞[. For a given ε′ > 0, let T5 = T5(δ, ε′) ∈ ]0, 1[
be the unique solution to

`(1− T5) = d1(δ) + `(1− ε′).
Note that the solution T ′′5 of `(1 − T ′′5 ) = d′′1(δ) + `(1 − ε′) satisfies T ′′5 > T5. We
will later look at how T5(δ, ε′) varies as ε′ −→ 0 for a fixed δ. Recall the definition
of extent given at the beginning of the present section on page 66.

Proposition 73. Let t > 0. If we assume that



NEAR PARABOLIC RENORMALIZATION FOR UNICRITICAL HOLOMORPHIC MAPS 69

(1) τΦ(ωn〈0〉) > t,
(2) the path s ∈ [0, t] 7→ ωn〈s〉 is contained in W0,
(3) extentW0(ωn〈[0, t]〉) ≤ d1(δ),
(4) ωn−1〈0〉 ∈ Dom(f0)} (1− ε′),
(5) ωn−1〈0〉 /∈ Vδ/2[f0],
(6) t ≤ T4(δ),
(7) t ≤ T5(δ, ε′),

then τΦ(ωn−1〈0〉) > t and the function h mentioned above is well defined and has
support in W0 (even better: it avoids Vδ/4[f ]). In particular s ∈ [0, t] 7→ ωn−1(s)
is homotopic in W0 to the concatenation γ1 · γ2, of the two paths defined earlier,
page 66. We also have γ1 ⊂ Dom(f0)} (1− T5).

Proof. By (2) the path ωn is contained in C \ {0, v} thus the path γ1, defined as
the pull-back by f0 of ωn〈·〉 starting from ωn−1〈0〉, is well defined. Let t′ ∈ [0, t]:

hlenDom f0(γ1

∣∣
[0,t′]

) < hlenW ′0(γ1

∣∣
[0,t′]

) = hlenW0(ωn〈·〉
∣∣
[0,t′]

) ≤ d1

(the first inequality comes from the strict inclusion W ′0 ⊂ Dom f0, the equality
follows from f0 being a cover from W ′0 to W0, the second inequality comes from
point (3)). In particular the Dom f0-hyperbolic distance from γ1(0) to γ1(t′) is ≤ d1.
Since moreover by (4), dDom f0(0, ωn−1〈0〉) ≤ `(1−ε′) we get that γ1 is contained in
the Dom f0 hyperbolic ball of center 0 and radius d1 + `(1− ε′) = `(1− T5). Hence
γ1 ⊂ Dom(f0) } (1− T5). Hence by (7), γ2 and the map h defined at the same
place are well defined. Let us check that h takes values in W0, i.e. that it avoids
PC(f0). Note that we have already proved that hlenW ′0(γ1

∣∣
[0,t′]

) ≤ d1. In particular

the W ′0-hyperbolic distance from γ1(0) to γ1(t′) is ≤ d1. Together with point (5)
and the definition of d1, it implies that γ1 is contained in C \ Vδ/3[f0]. Point (6)
then implies that γ2 and h take value in C \ Vδ/4[f0], which is contained in W0.
The points h(s, s) and ωn−1〈s〉 are both mapped by fs to the same point: ωn〈s〉,
for which we recall that Φs(ωn〈s〉) stays constant when s varies. The uniqueness
statement in Proposition 57 applied to Φ then implies that τΦ(ωn−1) > t and that
the functions defined on [0, t], s 7→ h(s, s) and s 7→ ωn−1〈s〉, are in fact equal. �

We have the following variation with W0 replaced by C\{0, v} in the hypotheses,
but not in the conclusion:

Proposition 74. Let t > 0. If we assume that

(1) τΦ(ωn〈0〉) > t,
(2) the path s ∈ [0, t] 7→ ωn〈s〉 is contained in C \ {0, v},
(3) extentC\{0,v}(ωn〈[0, t]〉) ≤ d′′1(δ),
(4) ωn−1〈0〉 ∈ Dom(f0)} (1− ε′),
(5) ωn−1〈0〉 /∈ Vδ/2[f0],
(6) t ≤ T4(δ),
(7) t ≤ T ′′5 (δ, ε′),

then τΦ(ωn−1〈0〉) > t and the function h is well defined and avoids Vδ/4[f ]. In
particular it has support in W0 and the path s ∈ [0, t] 7→ ωn−1(s) is homotopic in
W0 to γ1 · γ2. We also have γ1 ⊂ Dom(f0)} (1− T ′′5 ).

Proof. As in the previous proof. �

Lemma 75. Under the conditions of Proposition 73, the W0-homotopic length of
γ1 is at most Λ(δ/3) times the W0-homotopic length of ωn, where Λ(δ/3) < 1 is
given by Lemma 70.

Proof. We have seen that hlenW ′0(γ1) ≤ d1. Consider a shortest path γ homotopic
to γ1 in W ′0: lenW ′0(γ) = hlenW ′0(γ1). It is a geodesic for the hyperbolic metric, in
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particular all its points are at W ′0-hyperbolic distance ≤ d1 from its starting point.
By the definition of d1 this implies that γ is disjoint from Vδ/3[f0]. By Lemma 70,
we have λ(z) ≤ Λ(δ/3) for z in the support of γ, with λ(z) = ρW0

(z)/ρW ′0(z). Thus
hlenW0

(γ1) ≤ lenW0
(γ) ≤ Λ(δ/3) lenW ′0(γ) = Λ(δ/3) hlenW0

(ωn). �

Lemma 76. Under the conditions of Proposition 74, the W0-homotopic length of
γ1 is at most M(δ/3) times the C \ {0, v}-homotopic length of ωn, where M(· · · ) is
given in Lemma 71.

Proof. This done as in the previous lemma, with W ′0 replaced by f−1(C \ {0, v}),
d1 by d′′1 and λ(z) by ρW0

(z)/ρf−1(C\{0,v})(z). By inclusion, the latter quantity is
≤ ρW0

(z)/ρDom f (z) thus ≤M(δ/3). �

The W0-homotopic length of γ2 will be controlled using Lemma 77 below. To
state it we need to introduce another quantity. By Lemma 72 there exists T6 = T6(δ)
such that ∀f0 ∈ F0, ∀t < T6, µ−1

t

(
C\Vδ/4[f0]

)
∩Vδ/5[f0] = ∅ and rt

(
C\Vδ/5[f0]

)
∩

Vδ/6[f0] = ∅.

Lemma 77. For all δ < δ1, there exists K0 = K0(δ) such that under the conditions
of Proposition 73 or 74, and assuming moreover

• t ≤ T6(δ) and t ≤ T5(δ, ε′)/2

then the W0-homotopic length of γ2 is ≤ K0t/T5(δ, ε′).

Proof. Similarly to the proof of the propositions, the condition t < T6 ensures that
there is a homotopy in W0 between γ2 and γ3.γ4 where γ3(s) = µ−1

s (γ2(0)) and
γ4(s) = rsw

′′ where w′′ is the endpoint of γ3. The motion µs is the conjugate by φ0

of the radial motion and we have seen that x := |φ−1
0 (γ2(0))| ≤ 1−T5 (in the case of

Proposition 74 we have x ≤ 1−T ′′5 < 1−T5) thus the length of γ3 for the hyperbolic

metric of φ0(D) = Dom f0 is ≤ dD(x, x
1−t ) ≤ dD(1− T5,

1−T5

1−t ) = 1
2 log

(
1− t

2−T5

1− t
T5

)
≤

1
2 ×− log(1− t

T5
) ≤ t log(2)/T5, the latter because t/T5 ≤ 1/2. Lemma 71 implies

that its W0-length is at most M(δ/5) times this quantity. To bound the W0-length
of γ4, note that it is contained in the complement of Vδ/6, thus ∀z ∈ γ4, ρW0(z) ≤
6/δ. Also, ρW0

(z) ≤ 1/(|z| − R1) where R1 = sup
{
|z|
∣∣ f ∈ F , z ∈ PC(f)

}
. If

|w′′| > 4R1 then since t ≤ 1/2, the whole path γ4 is contained in the complement

of B(0, 2R1) and thus ρW0
≤ 2/|z| whence a W0-length of γ4 that is ≤

∫ |z|
1−t

|z|
2
xdx =

2 log(1/(1− t)) ≤ 4t log 2 because t ≤ 1/2. If |w′′| ≤ 4R1 then the whole euclidean
length of γ4 is ≤ 4R1t hence the W0-length is ≤ (6/δ)4R1t. Recall that T5 < 1. �

Remark. The linearity of the bound w.r.t. t is not crucial for this article: weaker
orders of convergence to 0 would work for our purpose, thanks to the fact that in
Proposition 45, ε′ is much bigger than ε. What will be important is that values of
t for which the bound is a given small constant are much bigger than ε. So how T5

depends on ε will be important too (recall δ will be fixed).

Remark. Lemmas 75 to 77 give an upper bound on the W0-homotopic length of
the curve s ∈ [0, t] 7→ ωn−1〈s〉 on each of its subsegments s ∈ [0, t′] for t′ < t, by
applying Proposition 73 to t′ instead of t. So we get in fact bounds on the extent.
This allows for induction.

3.10.5. Visits in the repelling petal.

Lemma 78. There exists K4 > 0 such that ∀f ∈ F , ∀z ∈ W0, if |z| ≤ 1 then
ρW0(z) ≥ 1/K4|z|.
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Proof. Let us work by contradiction and assume that there exist fn ∈ F and zn ∈ D
such that zn ∈ W0[fn] and ρW0[fn](zn)|zn| −→ 0. Consider the dilatation by 1/zn:

the set z−1
n W0[fn] ⊂ C does not contain 0, but it contains the point 1 and has a

hyperbolic metric coefficient at this point tending to 0 as n → +∞. There would
thus exist Rn, rn > 0 such that Rn > |zn| > rn, such that W0[fn] contains the
annulus

{
z ∈ C

∣∣ rn < |z| < Rn
}

and such that Rn/|zn| −→ +∞ and rn/|zn| −→ 0
(this can be proved by contradiction, using that C minus two points is hyperbolic,
and that inclusion is non-expanding for the hyperbolic metric).

Let us apply Lemma 37 to r = r0 where r0 is provided by Proposition 29. The
point fn0(vf ) belongs to Dr0 [f ]. It depends continuously on f and thus it remains
in a compact subset of C \ {0}. Let an[f ] = −1/cff

n(vf ) where cf is defined in
Proposition 29 and is bounded away from 0 and∞ as f varies in F . Then an0

[f ] also
belongs to a compact set. By Lemma 30, ∀n ≥ 0, 3n/4−A ≤ |an0+n[f ]| ≤ A+5n/4
for a constant A > 0 that is independent of f . It follows that there is A′, A′′ > 0

and n1 ≥ n0 such that for all f ∈ F and for all n ≥ n1, A′

n ≤ |f
n(vf )| ≤ A′′

n .
Hence the aforementioned sequence of annuli cannot exist, which yields a con-

tradiction. �

In coordinates u = −1/cfz this reads ρ−1/(cfW0)(u) ≥ 1/K4|u|.

Proposition 79. There exists r2, T8 and d′1, positive reals, such that for all f0 ∈ F ,
for all n0, n1 ∈ Z with n0 < n1, for all f0-orbit ωn indexed by Z ∩ [n0,+∞[, and
for all t > 0, if

(1) ωn0〈0〉, . . . , ωn1〈0〉 ∈ Drep[f0](r2),
(2) τ(ωn1

) > t,
(3) t ≤ T8,
(4) extentW0

(ωn1
〈[0, t]〉) < d′1,

then τ(ωn0) > t, the paths γ1 and γ2 defined below are well defined, and s ∈
[0, t] 7→ ωn0〈s〉 is homotopic in W0[f0] to their concatenation γ1 · γ2. The path γ1

is the pull-back of s ∈ [0, t] 7→ ωn1〈s〉 by fn1−n0
0 that starts from ωn0〈0〉; the path

γ2 : [0, t] → C is the continuous solution, starting from γ1(t), of fn1−n0
s (γ2(s)) =

const = fn1−n0
0 (γ1(t)) = ωn1

〈t〉.

Proof. Consider the domains Ωθ(R) and Dθ(r0)[g] introduced in Section 3.6.3, with
−1/cgDθ(r0) = Ωθ(1/|cg|r0). We will take some T8 ≤ 1/2. The class of maps
F[0,1/2] is compact and the domain of its members all contain B(0, 1/8), so we can
apply Propositions 41 and 44 to the restriction to D of the conjugates of maps in
this class by z 7→ 8z. Choose θ = 3π/4, θ′ = (θ + π

2 )/2, θ′′ = (θ′ + π
2 )/2, so that

π/2 < θ′′ < θ′ < θ. It was proved in Proposition 41 that for r0 > 0 small enough,
the (invertible) repelling Fatou coordinates of g ∈ F[0,1/2] extend to −Dθ(r0)[g] for
some r0 > 0, and that −Dθ(r0)[g], −Dθ′(r0)[g] and −Dθ′′(r0)[g] are all invariant
by a branch of g−1. By compactness, for r0 small enough, there is only one such
branch. Also, provided r0 has been chosen small enough, it can be checked using
Proposition 29 and Lemma 37 that PC[g] does not intersect −Dθ(r0)[g].

Now choose any r1 < r0, for instance r1 = r0/2 and impose r2 ≤ r1. Let

γ0 : [0, t]→ C, s 7→ ωn1
〈s〉

By assumption its initial point is contained in Dπ/2[f0](r2). By Lemma 78, for d′1
small enough, we are ensured that γ0 is contained in −Dθ′′(r0)[f0] (this is more
easily seen in coordinates u = −1/cf0z: the path stays in a ball of center its
initial point u0 and radius O(d′1|u0|)). Since −Dθ′′(r0)[f0] is stable by a branch
of f−1

0 , the path γ1 is well defined and contained in −Dθ′′(r0)[f0]. Now, as in the
proof of Proposition 73, we set up a triangular homotopy h(x, y) for y ≤ x ≤ t
with fn1−n0

y (h(x, y)) = fn1−n0
0 (γ1(x)) = γ0(x) and h(x, 0) = γ1(x). Taking T8
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small enough, we get −Dθ′′(r0)[f0] ⊂ −Dθ′(r0)[fy] for all y ≤ T8 and all f0 ∈
F . In particular γ0 ⊂ −Dθ′(r0)[fy]. Since the latter is invariant by a branch of
f−1
y , unique and continuously depending on y, it follows that h is well-defined,

continuous, and has support in −Dθ′(r0)[fy]. For T8 small enough, −Dθ′(r0)[fy] ⊂
−Dθ(r0)[f0], hence h takes values in W0[f0]. �

This proof yields more:

Proposition 80 (Complement of Proposition 79). There is some r4 > 0 and
θ′ > π/2 such that under the conditions of the proposition above, and ∀s ∈ [0, t],
−Dθ′ [fs](r4) is a repelling petal for fs and for all k with n0 ≤ k ≤ n1, ωk〈s〉 ∈
−Dθ′ [fs](r4).

Proof. Change the value of n0 to that of k in the previous proposition. Its proof
provided some quantities called r0 and θ′, and proved the claim of the complement
for r4 = r0 and the same value of θ′. �

Note that by infinitesimal contraction of f−1
0 for the hyperbolic metric of W0,

hlenW0
(γ1) < hlenW0

(s ∈ [0, t] 7→ ωn0
〈s〉).

Since γ2 stays far from the boundary of W0, the control we get on its homotopic
length is better than in Lemma 77:

Lemma 81. We can add the following conclusion to the previous lemma

hlenW0
(γ2) ≤ K5t.

Proof. In this proof we will say that a constant is independent if it is independent of
f , of t, of the chosen orbit ωn and of the length n1−n0. We will use = O(expression)
to express a quantity that is at most the expression times a constant that is inde-
pendent. We will write that two quantities are comparable when their quotient is
bounded away from 0 and∞ independently of f , of t, of the chosen orbit ωn and of
the length n1−n0. Let us continue with the notations of the previous proof. In par-
ticular, θ = 3π/4. Note that γ2(y) = h(t, y) and γ2(t) ∈ −Dθ(r0)[f0]. Since there
are sectors −Dθ3(r3)[f0] contained in W0[f0] for θ3 = (θ+π)/2 > θ with r3 indepen-
dent of f0, by imposing r0 < r3, we have ∀z ∈ −Dθ(r0)[f0], B(z, |z|/K) ⊂ W0[f0]
for some K > 1. Hence it is enough to prove that for y ≤ t,

|γ2(y)− γ2(0)| = O(K ′t|γ2(0)|),
in which case, for t < T8, T8 is small enough, the euclidean ball B(γ2(0),K ′t|γ2(0)|)
is contained in W0[f0] and contains γ2 thus γ2 is homotopic in W0[f0] to the straight
segment from γ2(0) to γ2(t) and the latter has a W0[f0]-hyperbolic length at most
its B(γ2(0), |γ2(0)|/K)-hyperbolic length thus at most K5t for T8 small enough. As
in the proof of Proposition 79, let

γ0(s) = ωn1
〈s〉

and let Φrep[fy] be a repelling Fatou coordinate on −Dθ(r0)[fy], normalized by the
expansion.. We have seen in this former proof that γ1 and γ2 and γ0 are contained
in −Dθ′(r0)[fy] for all y ≤ T8, for some constant θ′ = 5π/8 < θ = 3π/4. Then

Φrep[fy](γ2(y)) = Φrep[fy](γ0(t))− (n1 − n0).

Let us denote Repy z = Φrep[fy](z). By taking r0 small enough we can ensure
that for all z ∈ −Dθ(r0)[fy], the quantity Repy z is comparable to 1/z and the

quantity Rep′y(z) is comparable to 1/z2 (use the bound on Φ̃ given in Propo-
sition 29 that extends to Ωθ according to Proposition 41). For y ≤ 1/2, we
have sup|z|<1/16 |f0(z) − fy(z)| ≤ Ky for some K independent of f . We have∣∣Repy γ2(y)−Rep0 γ2(0)

∣∣ =
∣∣Repy γ0(t)−Rep0 γ0(t)

∣∣. Provided r2 has been chosen
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small enough, Proposition 44 gives
∣∣Repy γ0(t)−Rep0 γ0(t)

∣∣ = O(y/|γ0(t)|), as Φrep

is normalized by the expansion. Let ux = −1/(c[f0]γ0(x)) and Zx = Rep0 γ0(x).
The size of the quantities Zx, Z0, ux, u0, 1/γ0(x) and 1/γ0(0) are all comparable.
Similarly, |1/γ2(0)| is comparable to |Rep0 γ2(0)| = |Zt− (n1−n0)|. Note that the
positive integer n1 − n0 can be arbitrarily large. However since Zt is contained in
−Ω3π/4(10) (provided r2 is small enough), there is an independent lower bound on
|Zt− (n1−n0)|/|Zt| thus y/|γ0(t)| = O(y|Z0|) = O(y|Zt|) ≤ O(y|Zt− (n1−n0)|) =
O(y|Rep0 γ2(0)|) = O(y/|γ2(0)|): for some M > 0∣∣Repy γ2(y)− Rep0 γ2(0)

∣∣ ≤My/|γ2(0)|.

Then by Proposition 44 again we get
∣∣Repy γ2(0)−Rep0 γ2(0)

∣∣ ≤M ′y/|γ2(0)| thus∣∣Repy γ2(y)−Repy γ2(0)
∣∣ ≤ ∣∣Repy γ2(y)−Rep0 γ2(0)

∣∣+∣∣Rep0 γ2(0)−Repy γ2(0)
∣∣ ≤

(M+M ′)y/|γ2(0)|. The straight segment from Repy γ2(y) to Repy γ2(0) is contained

in the subset −Ωθ′(R2) of the domain of Rep−1
y and |(Rep−1

y )′(Z)| is comparable

to 1/|Z|2 for Z ∈ −Ωθ′(R2). Using moreover that Repy(Z) is comparable to 1/Z,
we get: provided T8 was chosen small enough, for all y ≤ t, |γ2(y) − γ2(0)| ≤
K ′y|γ2(0)|. �

Lemma 82. If in Proposition 79 we take n0 = −∞, i.e. start from an orbit indexed
by Z such that ωn〈0〉 ∈ Drep[f0](r2) for all n ≤ n1, and leave the other three
assumptions unchanged, then for all α > 0 and all r > 0, ∃n′ ∈ Z such that
∀n ≤ n′, ∀s ∈ [0, t], ωn0

〈s〉 belongs to the sector of apex 0, radius r, and angle α
around the repelling axis of fs.

Proof. In the course of the proof of Proposition 79 we proved that γ0 : s ∈ [0, t] 7→
ωn〈s〉 has a support contained in −Dθ′ [fy](r0) for all y ≤ t. In particular the
function χ : s 7→ −1/cfsγ0(s) takes values in −Ωθ′(1/|cfsr0|). Recall that on this
set, the dynamics differs from the translation by 1 by at most 1/4. The path χ has
compact image. The lemma follows. �

3.10.6. Bounding the motion of orbits (putting it all together). We now have the
tools to prove Proposition 66.

Recall that we are considering an orbit ωn indexed by Z of a map f0 ∈ F ,
eventually captured by an attracting petal in the future, by a repelling petal in
the past, and defined a movement ωn〈t〉 of this sequence, for which it remains an
orbit of ft and so that its attracting Fatou coordinate, normalized by immobilizing
the image of the critical value, remains constant. The starting hypothesis is that
ωn is entirely contained in Dom(f0) } (1− ε′) = φ0(B(0, 1 − ε′)). In particular
condition (4) of Proposition 73 and its analog in Proposition 74 are satisfied for all
n ∈ Z by the assumption.

We will now compute a lower bound for the survival time τ(ωn), that depends
only on ε′.

This will be done by decreasing induction on n, using Propositions 73, 74 and 79
and their complements Lemmas 75 to 77 and 81. The induction hypothesis will
be that the motion of t 7→ ωn〈t〉, measured with the hyperbolic metric of the set
W0[f0], more precisely what we called the extent at the beginning of Section 3.10.4,
is smaller than the constants d1, d′1 and d′′1 appearing in the propositions. The
complements then give a upper bound on the motion of t 7→ ωn−1〈t〉. We will show
that for t small enough, this bound is also less than d1, d′1 and d′′1 , so that the
induction can go on, and we will give a lower bound on how small t needs to be.

Recall r0 is a small enough constant provided by Proposition 29 to 33, and 41.
By Lemma 67, we know the survival of local orbits. More precisely let us choose

T3 = T ′1/2. Lemma 67 yields a value r1. If the whole orbit (ωn〈0〉)n∈Z is contained
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in B(0, r1) then we get the lower bound τ(ωn) ≥ T3. In this simple case, the lower
bound is independent of ε′, so it is even better. In the sequel, we assume that we
are not in this case, i.e. that the orbit (ωn〈0〉)n∈Z leaves B(0, r1) at least once.

Recall that maps f ∈ F all have the same critical value v. We have already
remarked that by compactness of F and Proposition 34 (see also Lemma 38), there
exists η0 such that ∀f ∈ F , B(v, η0) is contained in the basin of the parabolic
point. Recall Drep(r) = Drep[f ](r) denotes the disk of diameter [0, reiθ] where eiθ

points in the direction of the repelling axis of f . Let fN(B(v, r)) denote the union
of B(v, r) and of all its images by iteration of f .

Lemma 83. There exists r3 > 0 and η′0 < η0 such that ∀r ≤ r3, ∀f ∈ F , the set
fN(B(v, η′0)) is disjoint from f(B(0, r)) \B(0, r) and from f(Drep(r)).

Proof. Let r0 be provided by Proposition 29: for all f ∈ F , and all r ≤ r0, Dattr(r)
is stable by f and contained in the parabolic basin. Note that for some r′ small
enough, then for all r small enough, then for all f ∈ F , f(B(0, r)) \ B(0, r) and
f(Drep(r)) are disjoint from Dattr(r

′), as easily follows from Lemma 30 and the
fact that in the change of variable u = −1/cfz, the factor cf is bounded away
from 0 and from ∞. By Lemma 38 there is some n0 and some η′0 > 0 such that
∀f ∈ F , fn0(B(v, η′0)) ⊂ Dattr(r

′), and hence ∀n ≥ n0, fn(B(v, η′0)) ⊂ Dattr(r
′).

By compactness of F again, there is a uniform lower bound on the distance from 0
to fn(B(v, η′0)) as n varies between 0 and n0 − 1 and f varies in F . So the lemma
will hold for r small enough. �

Let T8, d′1 and r2 be provided by Proposition 79. Let

r′0 = min(r0, r1, r2, r3)

and denote
Drep = Drep[f ] = Drep[f ](r′0).

We introduced earlier the δ-neighborhood Vδ[f ] of PC(f). Let B̃(r) = B̃(r)[f ]
be the set of points in B(0, r)\{0} whose forward orbit by f is contained in B(0, r).
Let

Ṽη = Ṽη[f ] = B̃(η) ∪ fN(B(v, η)).

By construction, f(Ṽη) ⊂ Ṽη (do not forget that there is no other preimage of the
origin than itself31).

Lemma 84. The following holds, where D = Drep[f ](η):

(1) ∀η > 0, ∃δ > 0 s.t. ∀f ∈ F , Vδ[f ] ⊂ Ṽη[f ] ∪ (D ∩ f−1(D)),

(2) ∃η2 > 0, ∀η ≤ η2, ∃δ > 0 s.t. ∀f ∈ F , Vδ[f ] ∩ f−1(Ṽη[f ]) ⊂ Ṽη[f ],

Proof. These are again proved by compactness arguments. Let r0 be provided by
Proposition 29 applied to F . Then Dattr[f ](r) is an attracting petal for all r ≤ r0.

(1) The set B̃(η) ∪ (Drep[f ](η) ∩ f−1(Drep[f ](η))) ⊂ Ṽη[f ] ∪ (Drep[f ](η) ∩
f−1(Drep[f ](η))) is a neighborhood of 0 thus contains a ball B(0, r). We
can take a uniform value of r for maps f ∈ F (this can be seen in co-
ordinates u = −1/cfz as in the proof of Proposition 29: the constant cf
is bounded away from 0 and ∞ and the map f is conjugated to a map
u 7→ u′ defined on a uniform neighborhood of ∞ and with |u′ − (u +
1)| < 1/4). We impose δ ≤ r/2. By Lemma 37 for some n0 we have

∀f ∈ F , fn0(vf ) ∈ Dattr[f ](r) and thus ∀n ≥ n0, B(fn(vf ), δ) ⊂ Ṽη[f ] ∪
(Drep[f ](η) ∩ f−1(Drep[f ](η))). Finally by compactness there is a lower
bound on inf

{
δ > 0

∣∣∀f ∈ F , ∀k < n0, B(fk(vf ), δ) ⊂ fk(B(vf , η))
}

.

31And even if there were, it would be sufficient to assume η small enough.
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(2) Let η0 > 0 to be determined below and set η2 = η0/2. Let us assume
by contradiction that for some η ≤ η0/2 there exists sequences δn −→ 0,

fn ∈ F , zn such that zn ∈ Vδn [fn], fn(zn) ∈ Ṽη[fn], zn /∈ Ṽη[fn]. We may
extract a subsequence so that fn −→ f0, and zn −→ z0. If z0 6= 0 then
z0 ∈ PC(f0) (see point (1) of Lemma 39), a fortiori z0 ∈ fN0 (B(vf0 , η))
and thus for n big enough zn ∈ fN0 (B(vfn , η)) by Hurwitz’s theorem, thus

zn ∈ Ṽη[fn], leading to a contradiction. If zn −→ 0 then for n big enough,

let us prove the statement fn(zn) ∈ Ṽη[fn] =⇒ zn ∈ Ṽη[fn], which leads

to a contradiction. Indeed either fn(zn) ∈ B̃(η)[fn] but then as soon as

|zn| < η, the whole orbit of zn by fn is in B(0, η) and thus zn ∈ B̃(η)[fn]

thus zn ∈ Ṽη[fn]. Or fn(zn) ∈ fNn (B(vfn , η)), say fn(zn) ∈ fkn(B(vfn , η)).
For a fixed k, by compactness there is a lower bound on the distance from 0
to fk(B(vf , η0/2)) for k′ < k and f ∈ F . So kn → +∞. Now fn is injective
on B(0, r) for some uniform r ≤ r0. By Lemma 38 there is some n0 and
η0 > 0 such that ∀f ∈ F , we have fn0(B(vf , η0)) ⊂ Dattr[f ](r). As soon
as kn ≥ n0 + 1, both fkn−1

n (B(vfn , η)) and fknn (B(vfn , η)) are contained
in Dattr[f ](r) ⊂ B(0, r), and zn also belongs to B(0, r) for n big enough.
Hence f(zn) ∈ fknn (B(vfn , η)) =⇒ zn ∈ fkn−1

n (B(vfn , η)).

�

Let
η1 = min(η0/2, r0, r1, r2, r3, δ1/2, η

′
0, η2)

where δ1 was defined just before Lemma 72, r2 in Proposition 79, η0, r0 and r′0 =
min(r0, r1, r2, r3) at the beginning of the current section (Section 3.10.6), η′0 and r3

in Lemma 83, η2 in Lemma 84.
Let δ be the smallest of the two values associated to η = η1 by points (1) and (2)

of Lemma 84. Since η1 ≤ r′0 we get Drep[f ](η1) ⊂ Drep[f ](r′0) = Drep[f ] and thus:
∀f ∈ F ,

Vδ[f ] ⊂ Ṽη1 [f ] ∪ (Drep[f ] ∩ f−1(Drep[f ])),(7)

f−1(Ṽη1 [f ]) ∩ Vδ[f ] ⊂ Ṽη1 [f ].(8)

Let d1 = d1(δ), d′′1 = d′′1(δ) and T4 = T4(δ) be the values associated to δ just
before Proposition 73, and T6 = T6(δ) defined just before Lemma 77.

Just before Proposition 73 we also defined T5(δ, ε′), by `(1−T5(δ, ε′)) = d1(δ) +
`(1 − ε′) where `(x) = dD(0, x). Since we just have fixed δ, let us denote T5(ε′) =
T5(δ, ε′). Then

T5(ε′) ∼
ε′→0

K3 ε
′

withK3 = e−2d1(δ) (the value of this constant is not important, nor is its dependence
on δ).

Lemma 85. There exists K2 > 0 and T7 > 0 such that for all f0 ∈ F , for all

z ∈ Ṽη1 [f0], τ(z) > T7 and for all t ≤ T7, the length of the curve x ∈ [0, t] 7→ z〈x〉
is ≤ K2t when measured with the hyperbolic metric of C \ {v, 0}.

Proof. If the starting point z〈0〉 belongs to the part B̃(η1) of Ṽη1 of points whose
orbit never leaves B(0, η1), this follows from Lemma 68 since η1 ≤ r1 and since
ρ(z) := ρC\{0,v}(z) = o(1/|z|) near 0 thus ρ(z)|z| is bounded on B(0, η1) (note that

η1 < η0 < |v|). Otherwise the starting point z〈0〉 belongs to fN0 (B(v, η1)). Note
first that only a finite number of iterates of B(v, η1), bounded independently of f0,
are not already contained in the first part. Moreover, let m − 1 be such a bound.

Then for all k ≤ m, for all z ∈ fk0 (B(v, η1)), z〈t〉 = f
−(m−k)
t ◦ Φ−1

t ◦ Φ0 ◦ fm−k0 (z)

for some inverse branch of f
(m−k)
t . Since we do not hit a critical point, everything
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moves differentiably w.r.t. the pair (t, z). We thus get32 the claimed bound on the
hyperbolic length of the curve z〈t〉 away from v, i.e. if z〈0〉 /∈ B(v, η1). Last, for
starting points z〈0〉 near v, i.e. in B(v, η1), note first that v does not move at all:
v〈t〉 = v. Then |z〈t〉 − z| ≤ K|z − v|t since the function (z, t) 7→ z〈t〉 − z is at least
C2 and vanishes whenever t = 0 or z = v. Since ρ(z) = o(1/|z − v|) near v, the
lemma follows. �

Recall that we are dealing with the case where the sequence n ∈ Z 7→ ωn〈0〉 is
not completely contained in B(0, r1). Together with Lemma 83 and η1 ≤ r1, this
implies that the first point in this orbit that does not belong to B(0, r1) also does

not belong to Ṽη1 [f0]. On the other hand the orbit tends to 0 thus eventually stays

in B(0, η1) hence in B̃(η1)[f0] ⊂ Ṽη1 [f0]. The set Ṽη1 [f0] is mapped in itself by f0.
Therefore there is a unique n+ ∈ Z such that

ωn〈0〉 ∈ Ṽη1 [f0] ⇐⇒ n ≥ n+ .

If we follow the orbit in the past, it eventually stays in Drep = Drep[f0](r′0) in the
past. There is thus a maximal n− ∈ Z such that ∀n ≤ n−, ωn〈0〉 ∈ Drep. Moreover,
n− + 1 < n+ because by Lemma 83, ωn−+1〈0〉 cannot belong to fN(B(v, η1)) and
if ωn−+1〈0〉 were in B(0, η1) then the whole orbit would be contained in B(0, r1).

Between n− and n+, the orbit may visit and leave the repelling petal several
times. Let J denote the set of n ∈ Z with n− < n < n+ and ωn〈0〉 /∈ Drep. This
set is non-empty and its extreme values are n− + 1 and n+ − 1 (these two values
may be equal).

Denote as follows the constant provided by Lemma 70 and used in Lemma 75:

Λ := Λ(δ/3) < 1.

Let now tmax ≤ min(T3, T4, T5/2, T6, T7, T8) to be determined later. Let us work
with t ∈ [0, tmax] and let us do a finite decreasing induction on J . In the process,
more conditions will be imposed on tmax.

Initialization: By Lemma 85, τ(ωn+
) > tmax and for all t ≤ tmax, the length

of γ : s ∈ [0, t] 7→ ωn+
〈s〉 is ≤ K2t when measured with the hyperbolic metric

on C \ {0, v}. Provided K2tmax ≤ d′′1 , we can apply Proposition 74 (in particular
condition (5) of this proposition follows from Equation (8)), thus τ(ωn+−1〈0〉) >
tmax and ∀t ∈ [0, tmax], the path s ∈ [0, t] 7→ ωn+−1〈s〉 is homotopic in W0 to
γ1 · γ2 where γ1 and γ2 are defined in Proposition 74. By Lemma 76, hlenW0

(γ1) ≤
M(δ/3) hlenC\{0,v}(γ) thus ≤ M0K2t with M0 = M(δ/3). And by Lemma 77,
hlenW0

(γ2) ≤ K0t/T5. Let us sum up: we assumed K2tmax ≤ d′′1 and got ∀t ∈
[0, tmax], hlenW0(ωn+−1

∣∣
[0,t]

) ≤M0K2t+K0t/T5. In particular

extentW0(ωn+−1〈[0, tmax]〉) ≤M0K2tmax +K0tmax/T5.

Let us assume moreover that

M0K2tmax +K0tmax/T5 ≤ min(d1, d
′
1)

so that extentW0
(ωn+−1〈[0, tmax]〉) ≤ min(d1, d

′
1).

Induction: Let n ∈ Z satisfying n−+1 < n ≤ n+−1 and either n ∈ J or n−1 ∈
J and assume that we have proved τ(ωn〈0〉) > tmax and extentW0(ωn〈[0, tmax]〉) ≤
min(d1, d

′
1).

By Equation (7), ωn−1〈0〉 /∈ Vδ[f ] thus condition (5) of Proposition 73 is sat-
isfied. Hence we can apply it, and its complements Lemmas 75 and 77 and we
get hlenW0(ωn−1

∣∣
[0,t]

) ≤ Λ min(d1, d
′
1) + K0t/T5. Let us impose on tmax that

Λ min(d1, d
′
1)+K0tmax/T5 ≤ min(d1, d

′
1), so that we get extentW0

(ωn−1〈[0, tmax]〉) ≤
min(d1, d

′
1). If n − 1 ∈ J we can carry on the induction with n − 1. If n − 1 /∈ J ,

32Here we are not using complex values of t.
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let n′ be the first element of J below n and let n1 = n − 1 and n0 = n′ + 1:
n0 ≤ n1. If n0 = n1 we can also carry on the induction with n − 1, because
(n − 1) − 1 ∈ J . If n0 < n1 we can apply Proposition 79 and its complement
Lemma 81: hlenW0

(ωn0

∣∣
[0,t]

) ≤ hlenW0
(ωn1

∣∣
[0,t]

) +K5t. Then we can carry on the

induction with n′, provided we require on tmax that Λ min(d1, d
′
1) + K0tmax/T5 +

K5tmax ≤ min(d1, d
′
1).

In all cases, for the induction to carry on it is enough to assume that

Λ min(d1, d
′
1) +K0tmax/T5 +K5tmax ≤ min(d1, d

′
1).

Post induction: we now know that extentW0
(ωn〈[0, tmax]〉) ≤ min(d1, d

′
1) holds

for n = n−+ 1. We can apply once more Proposition 79 and we get that the rest of
the orbit (for all n ∈ Z with n ≤ n−) is defined at least up to time tmax. Moreover,
by Lemma 82, we get that for all n below some relative integer, possibly much
smaller33 than n−, the full motion takes place in the petal: one of the conclusions
of Proposition 66.

Taking everything into account, we get that the full orbit ωn survives for any
time t satisfying t ≤ tmax for any tmax satisfying tmax ≤ min(T3, T4, T5/2, T6, T7, T8),
tmax ≤ d′′1/K2, tmax ≤ min(d1, d

′
1)/(M0K2 + K0/T5) and tmax ≤ min(d1, d

′
1)(1 −

Λ)/(K0/T5 +K5).
Recall that δ is fixed but not ε′. All constants depend only on δ thus are

fixed, except, as we saw earlier, T5 ∼ K3ε
′ (K3 also depends on δ thus is fixed).

As ε′ −→ 0, the biggest tmax we can take is equivalent to K6T5 where K6 =
min(1/2,min(d1, d

′
1)(1− Λ)/K0).

Hence, for ε′ small enough, the survival time of the full orbit is > K6ε
′:

∀n ∈ Z, τΦ(ωn) > K6ε
′.

This completes the proof of Proposition 66 with K = 1/K6.

3.11. Step 2, Conclusion. Here we will prove Proposition 65 (which is what is
left to prove the main theorem, more precisely Theorem 26), whose statement we
recall:

Proposition. There exists r′0 < r0 and a pair ε1 < ε0 with ε0 < T ′1 such that for
all f0 ∈ F , for all z ∈ Dom(R[f0])} (1− ε1), if we consider the orbit ωn associated
to z, then

• for all n ∈ Z
τΦ[f0](ωn) > ε0,

• there exists M ∈ Z such that (t ≤ ε0 and n ≤M) =⇒ ωn〈t〉 ∈ Drep[ft](r
′
0).

Consider ε1 ∈ ]0, 1[ to be determined later. Let f0 ∈ F , and z ∈ Dom(R[f ]) }
(1− ε1) and apply Proposition 45 to ε = ε1. For this we have to assume ε1 < ξ
for some ξ > 0 given by the proposition. We obtain some ε′ = ε′(ε1) > 0 such
that the associated orbit ωn〈0〉 of f0 is contained in Dom(f0) } (1− ε′). By the
previous section (Proposition 66), ∀n ∈ Z, τΦ(ωn) > ε′(ε1)/K. We can take ε0 =
min(T ′′1 , ε

′(ε1)/K) where T ′′1 < T ′1 is any chosen constant. Since ε′(ε) � ε, for
small enough values of ε1 we have ε0 > ε1. Proposition 66 also provides the second
claim in Proposition 65.

Q.E.D.

Now comes a final set of remarks. Let us call (ε0, ε1) a valid pair whenever
ε1 < ε0 < T ′1 and the proposition holds with these values. Given ε1 small enough,
the set of valid values for ε0 includes the interval ]ε1, ε

′(ε1)/K[. As the right bound

33Proposition 66 claims uniformity w.r.t. t, but not w.r.t. f .
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is � ε1, it is easy to deduce that: ∀ε0 there exists ε1 such that (ε0, ε1) is a valid
pair. Moreover we can take ε1 = o(ε0).

This implies that if one iterates renormalization starting from a map in Fε with
ε small enough, the map Rn[f ] will have at least structure Fεn with 1/εn increasing
faster than any exponential: the structure tends rapidly to the full structure F .

Now, given the specific formula in Proposition 45:

log
1

ε′(ε1)
≤ c′ + c log

(
1 + log

1

ε1

)
and the computations above, we get that we can take ε1 ≤ exp(β −α/ε0) for some
constants α, β > 0, i.e. 1/εn increases at least like an iterated exponential.

Appendix A. Parabolic points

The present section is given only to fix notations and normalizations and is not
an introduction to the subject of parabolic points. We recommend learning it in
any of the classic books introducing holomorphic dynamics, or in [Dou94, Zin97].
The article [BE02] is also instructive and very well illustrated. There is no claim
that any of the statements given in this section is due to the author.

What is understood under the terminology parabolic point has variations, accord-
ing to whether or not linearizable maps are allowed, and according to whether the
allowed values of multiplier should be 1 or any root of unity. So here we will try and
avoid solely mentioning parabolic points and use instead the following terminology:

• Tangent to identity : fixed point whose multiplier is equal to 1.
• Rationally indifferent : fixed (or periodic) whose multiplier is a root of unity.
• non-linearizable parabolic point : irrationally indifferent fixed (or periodic)

point which is not linearizable.

Non-linearizability is the condition to have petals. A parabolic point with petals
will thus be a synonym for a non-linearizable parabolic point.

We will often denote Pattr and Prep attracting and repelling petals of non-
linearizable parabolic points. We denote Φattr and Φrep the attracting and repelling
coordinates, defined un such petals. The extended attracting Fatou coordinate will
be denoted by Φattr too (context should make it clear which one is referred to).
The extended repelling Fatou parametrization will be denoted Ψrep: it satisfies

Ψrep ◦ T1 = f ◦Ψrep.

in the sense that the domains of the two hand sides of the equality are equal and
that the equality holds on this set.

Recall that Fatou coordinates are unique up to addition of constants. The choice
of a Fatou coordinate amoung Φattr + c or Φrep + c, c ∈ C, is called a normalization
thereof. Normalizing Φrep normalizes Ψrep.

One petal: The rest of the present section focuses on non-linearizable parabolic
fixed points with only one attracting petal, i.e. in some chart f has expression

f(z) = z + a2z
2 +O(z3)

with a2 6= 0.

Extended horn maps and parabolic renormalization: In this case, the extended horn
map is the composition

h = Φattr ◦Ψrep

of these extensions. Changing the normalizations of the Fatou coordinates replaces
h with its pre composition and post composition with two unrelated translations.
In Appendix B we discuss examples of what horn maps can be used for.
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H[f ] EE

ΨrepΦattr

f

z ζ

ζ − n
PrepPattr

h[f ](ζ) +m− n

Figure 22: Decomposing h[f ] and H[f ]. For convenience, we have chosen petals
Pattr and Prep whose image in Fatou coordinates are right and left half planes.
Note that the orbit may visit the repelling petal more than one time, and does
not necessarily enter the attracting petal by its leftmost part (the crescent shaped
fundamental domain).

To define a renormalization, we proceed as follows. This definition does not
pretend to be the best one, it is well suited to our purposes. The map h commutes
with T1 and its domain of definition is T1-invariant and contains an upper and a
lower half plane. There is thus a quotient map Dom(h)/Z→ C/Z. Conjugate it by
E : z 7→ e2iπz to a map defined on an open subset of C∗ containing a neighborhood
of 0 and ∞. It can be holomorphically extended at these points, and the extension
fixes 0 and∞. We will denoteH this extension, orH[f ] to emphasize its dependence
on f . For the upper parabolic renormalization of f , denoted R[f ], consider the
restriction of this extension to the connected component of its domain of definition
that contains 0, and possibly pre and post compose it with two linear maps (z 7→
az and z 7→ bz) to be chosen according to conventions. For the lower parabolic
renormalization of f , conjugate first the extension by z 7→ 1/z, then restrict it
to the connected component of the domain of definition containing 0 and finally
compose with linear maps. The reason why we allow for these linear maps is
that we will find it convenient later to use a different normalization for parabolic
renormalization than for Fatou coordinates and the associated horn map.

Another point of view on extended horn maps, and parabolic renormalization: Since
Φattr and Ψrep are defined beyond the petal Pattr and beyond Φrep(Prep) by using
iteration of f , the definition of h[f ] can be reformulated as follows:

• for ζ ∈ Dom(h[f ]), there exists n ∈ N such that ζ − n ∈ Φrep(Prep),
• ζ − n = Φrep(z) for a unique z ∈ Prep,
• there exists m ∈ N such that fm(z) ∈ Pattr,
• h(ζ) = Φattr(f

m(z))−m+ n.

We have illustrated a possible orbit on Figure 22.

The iterative residue: Let

f(z) = z + a2z
2 + a3z

3 + . . .

be the power series expansion of f . The iterative residue of f is the quantity
γ = 1− a3

a22
. It is related to the residue at 0 of the meromorphic form dz

f(z)−z by the

following formula: 1
2πi

∮
dz

f(z)−z = γ − 1. In fact the (multivalued near the origin)
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primitive
∫

dz
f(z)−z + dz

z turns out to be an interesting approximation of the Fatou

coordinates, as their expansions share the same first two terms: as z tends to 0
within a closed sector avoiding the repelling axis for Φ = Φattr or the attracting
axis for Φ = Φrep:

Φ(z) =
−1

a2z
− γ log z + constant +o(1).

Another characterization is in terms of the horn map: there are expansions

h(z) = z + aup + o(1) as Im (z)→ +∞
h(z) = z + adown + o(1) as Im (z)→ −∞

The constants aup and adown depend on the normalization of Fatou coordinates,
but not the quantity aup − adown. It turns out that

aup − adown = −2πiγ.

Interestingly, if we consider the horn map with the normalization number 2 pre-
sented below, then aup = −πiγ and adown = πiγ.

Some normalizations: We will give here three examples of normalizations for the
upper parabolic renormalization R[f ] of f . The first two work well for germs,34

the third makes strong structural assumptions on f . Recall H[f ] denotes the semi-
conjugate of the horn map by the map E : z 7→ e2πiz, extended at 0 and ∞ by
fixing them, and that

R[f ] = A ◦ Hr[f ] ◦B(z)

for some linear maps

A : z 7→ az and

B : z 7→ bz,

where Hr[f ] denotes the restriction of35 H[f ] to the component containing 0 of its
domain. Let

f(z) = z + a2z
2 + a3z

3 + . . .

H[f ](z) = b1z + b2z
2 + . . .

R[f ](z) = b′1z + b′2z
2 + . . .

be their power series expansions. We have b1 ∈ C∗, and b2 ∈ C. The constants b′1
and b′2 can are expressed from a, b, b1 and b2 as follows b′1 = abb1 and b′2 = ab2b2.
Here are our examples of normalizations:

(1) By imposing b′1 = 1 and b′2 = 1: this first approach is easier but assumes
that b2 6= 0. Then there is a unique pair of linear maps A,B such that
R[f ](z) = z + z2 +O(z3).

(2) By normalizing the expansion of the Fatou coordinates and taking R = H:
Fatou coordinates are unique up to addition of a constant. Moreover, the
following limited expansion is valid (even though there is not a convergent
power series expansion in general): on all closed sectors avoiding respec-
tively the repelling and the attracting axis, we have, as z → 0:

Φattr(z) =
−1

a2z
− γ logp

−1

a2z
+ constant +o(1)

Φrep(z) =
−1

a2z
− γ logp

1

a2z
+ constant +o(1)

34We use the word germ in the following meaning: an equivalence class of holomorphic maps
defined near the origin, with f ∼ g if they coincide in some neighborhood of 0. This is equivalent
to f and g having the same power series expansion at the origin.

35For lower renormalization instead of upper, replace H[f ] with s ◦ H[f ] ◦ s where s(z) = 1/z.
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where logp denotes the principal branch of the logarithm. The normal-
ization just consists in adding constants to both Fatou coordinates so as
to cancel the two constants in the above expansions. This normalizes
h = Φattr ◦ Ψrep and we then choose R[f ] = H[f ]. Note that with this
normalization,

h(z) = z − iπγ + o(1) as Im z → +∞ and

h(z) = z + iπγ + o(1) as Im z → −∞.
where γ is the iterative residue.

(3) By the singular value: we will meet later in this article a class of maps whose
renormalizations have a unique critical value.36 Fix a preferred complex
number v ∈ C∗. We then choose the linear map A so as to place the critical
value of R[f ] = A ◦ Hr[f ] ◦ B at v and then B so that A ◦ R[f ] ◦ B has
derivative 1 at the origin.

Each of these conventions has its own advantages. Conventions number 1 and 3 have
the property that R[g ◦ f ◦ g−1] = R[f ] in a neighborhood of 0 for all holomorphic
maps g fixing the origin with g′(0) 6= 0. They also give back a germ R[f ] tangent
to the identity. Number 2 does not necessarily, but it is defined for all f . We will
work with a class of maps satisfying number 3. Our choice in most of the article will
be to normalize Fatou coordinates, the horn map and H[f ] according to number 2,
and the parabolic renormalization R[f ] according to number 3.

Appendix B. What are horn maps good for?

Horn maps occur in at least two ways:

• First as local conjugacy invariants. A complete local conjugacy invariant
of a non-linearizable parabolic germ with one attracting petal is more or
less given by the data of the pair of germs of its horn maps at both ends of
the cylinder (see [Vor81] for precise statements; [MR83] gives an interesting
equivalent point of view).

• Second as limits of cylinder renormalization. If a sequence of maps fn tends
to f and fix the origin with multiplier λn and if 2πi/(λn−1) = Nn+a+o(1)
with Nn ∈ Z, Nn −→ ±∞ and a ∈ C, under some mild supplementary
assumptions, the fixed point of f at the origin is the limit of a pair of fixed
points of fn, the origin and another one, and is possible to draw crescent
shaped domains with tips at these two fixed points delimited by a curve Cn
and its image fn(Cn). The quotient of this domain by identifying z ∈ Cn
with fn(z) is isomorphic as a Riemann surface to the cylinder C/Z. The
first return map from the cylinder to itself then tends, as n −→ +∞, to
the horn map (up to pre and post composition with translations). See
[Lav89, Dou94, Shi98, Shi00, IS04].

The second point justifies why it makes sense to iterate horn maps.
A very important application comes from Lavaurs’ theorem: let σ ∈ C and let

the Lavaurs map gσ be defined as

gσ = Ψrep ◦ Tσ ◦ Φattr

where Tσ(z) = z + σ. Then under the same assumptions as above, fNn
n −→ gσ

for some value of σ that depends on a (and on the chosen normalizations of the
Fatou coordinates). This is why the Lavaurs maps are also called geometric limits
by analogy with the field of Kleinian groups. Application of Lavaurs’s theorem
include parabolic enrichments (understanding the Hausdorff limits of Julia sets of a

36or a unique non-zero singular value
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sequence of polynomials tending to one with a non-linearizable parabolic point), non
local connectedness of some bifurcation loci, and several discontinuity theorems.

Now horn maps are closely related to Lavaurs maps because each are semi-
conjugate of the other. More precisely, consider the following non-commuting dia-
gram:

C

C C
Tσ

Ψrep Φattr

The map gσ is the composition obtained by starting from the top node, and follow-
ing the arrows in a loop back to the starting node. The map hσ := Tσ ◦ h is the
same but starting from the lower left corner.

C

C C
gσ

hσ

Tσ

Ψrep Φattr

Following one resp. two arrows from one corner to another gives a semi-conjugacy
from hσ to gσ resp. from gσ to hσ. The first advantage of horn maps over Lavaurs
maps is that they are easier to understand and have better covering properties in
many applications (the best is to project the extended horn maps, they commute
with T1, down to a dynamical system on C/Z). From this stems a second advantage:
the invariance under parabolic renormalization of some classes of maps, as explained
in Sections 1.3 to 1.5.

Appendix C. A reminder about singular values of maps

Let f : X → Y be a holomorphic map where X and Y are Riemann surfaces.
Let us recall that a singular value of f , as a map from X to Y , is an element z ∈ Y
which has no open neighborhood over which f is a cover37. Every critical value is
singular, as is every asymptotic value38, and it is a simple yet very useful theorem
that the set of singular values is the closure of the set of all critical and asymptotic
values (see for instance39 [Ere13] or Corollary 2.7 in [RGS17]).

It shall be noted that restricting the domain of a map will likely introduce a lot
of singular values: if U ⊂ X, every point in f(∂U) will be a singular value of f as
a map from U to Y . In fact:

Lemma 86 (folk.). Let F : X → Y be holomorphic and denote S its set of singular
values. Assume A ⊂ X and B ⊂ Y are open X and that f(A) ⊂ B. Then the

set of singular values of the restriction f̃ : A→ B of f contains B ∩ f(∂A) and is
contained in f(∂A) ∪ S.

Proof. First inclusion: The set of points in ∂A that are accessible from A is dense in
∂A. If b = f(a) ∈ B with a ∈ ∂A then a is the limit of an ∈ ∂A which is accessible

and f(an) is an asymptotic value of f̃ and tends to b, hence b is a singular value.

37I.e. there is no open subset V of Y containing z s.t. f is a cover from f−1(V ) to V . The
definition is equivalent if we consider only neighborhoods V of z homeomorphic to disks.

38A point z ∈ Y is an asymptotic value whenever there exists a continuous path γ : [0, t[→ X
that leaves every compact of X and whose image by f tends to z.

39The language is slightly different in [Ere13] since he calls singular values the critical or
asymptotical ones. But his Proposition 1 amounts to our claim.
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Second inclusion: it is enough to prove it for critical values and critical points,
since the set of singular values of f̃ is the closure of their union. All critical values
of f̃ are of course critical values of f , hence in S. Consider an asymptotic value b
of f̃ and let γ : [0, 1[ → A with f ◦ γ(t) −→

t→1
b and γ(t) leaves every compact of A.

If the set of accumulation points of γ in X contains more than one point, then f
must be constant on the connected component of Dom f containing γ, and then b
is a singular value. Otherwise either γ leaves every compact of X, and then b is
an asymptotic value of f hence in S, or γ converges to a point a ∈ ∂A, whence
b = f(a) ∈ f(∂A). �

Similarly, enlarging the range Y of f : X → Y will introduce singular values at
boundary points.

As a corollary of Lemma 86, if we restrict f to a parabolic immediate basin, we
do not introduce new singular values:

Lemma 87 (folk.). If f : U ⊂ X → X is a holomorphic map with a non-linearizable
parabolic fixed point p, and if A denotes the union of a cycle of immediate basins
of p, then the set of singular values of f |A : A→ A is contained in the intersection
of A with the set of singular values of f .

Proof. Indeed f(∂A) ∩A = ∅ (here ∂ is relative to U). �
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Summary of notations

· · · [f ] used to emphasize the dependence on f of a given object
A immediate basin of the parabolic point of f ∈ F , page 41
Bd a unicritical Blaschke product with a parabolic point at z = 1, page 4

B̃d another normalization of Bd, page 14
b∗ the U1-box that contains a punctured neighborhood of the origin, page 47
βt constant so that Φt(z) = Φattr[ft](z)+βt has a critical value independent

of t; βt = σd − Φattr[ft](vt), page 56
B the main dynamical upper chessboard box of A, page 42
C a curve through the orbit of the critical value, Proposition 36, page 36
C main object of study of Section 3.7, page 42
Cd a semiconjugate ofBd, so that the parabolic point has only one attracting

petal, page 14
D the open unit disk in C
d1 infimum over F of some hyperbolic distance, page 68
Dom(f) domain of definition of the map f
dU hyperbolic distance w.r.t. U , page 24
E E(z) = e2iπz

f0 an element of F , page 55
F Shishikura’s invariant class, page 24
Fε a class of maps with slightly less structure, page 24
ft a deformation of f0, element of Ft, page 55
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H the upper half plane in C
H[f ] the horn map of f , semi-conjugatedby E, page 79
h[f ] normalized extended horn maps, h[f ] = Φattr ◦Ψrep, page 26
`(x) the hyperbolic distance from 0 to x in D, page 68
λ[f0](z) some contraction factor in W0, page 64
} U } r is the set of points z ∈ U with dU (0, z) < dD(0, r), page 24
 V  r is the set of points z ∈ V with E(z) ∈ E(V )} r, page 24
PC(f) the post critical set of f
R[f ] the upper parabolic renormalization of f , page 79
r2 defined in Proposition 79
ρU element of hyperbolic metric w.r.t. U , page 24
S parabolic renormalization invariant class with the full structure, page 5
σd complex number chosen so that E(σd) is the critical value of R[Bd],

page 56
σt a motion appearing in the decomposition ft = f0 ◦ σt, page 66
SL the class of Schlicht maps, page 2
T0 for f ∈ F[0,T0[ have a (unique) critical value, page 55
T1 z 7→ z + 1
T ′1 for f ∈ F[0,T ′1], the critical value is attracted to 0, page 55
T3 some parameter in Lemma 67, later chosen to be = T ′1/2, page 73
T5 ∃!T5 ∈ ]0, 1[ s.t. `(1− T5) = d1(δ) + `(1− ε′), page 68
U1 domain of f ∈ F , page 40
Uu upper component of Ψ−1

rep(A), also of Dom(h[f ]), page 41
Vδ[f ] the δ-neighborhood of PC(f)

Ṽη[f ] some domain used in the proofs, page 74
W0 the complement in C of the closure of the post critical set of f0, page 63
W ′0 W ′0 = f−1

0 (W0), page 64
Φattr attracting Fatou coordinates; normalized and extended except at the

beginning of Appendix A; normalized by the expansion at infinity in
Section 3

Ψrep repelling inverse Fatou coordinates; same remarks as for Φattr apply
Φt Φt = Φattr[ft] + βt with βt a constant so that the critical value of Φt is

independent of t, page 56
Ψt Ψt(z) = Ψrep[ft](z−β′t) for β′t = βt−iπγ[ft] with γ the iterative residue,

page 56
Ωθ(R) some domain in the coordinates u = −1/cfz, extending the half plane

on which we control the Fatou coordinates, page 37
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