
HAL Id: hal-03800577
https://hal.science/hal-03800577

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a Standard Time Series Representation for IoT
based on CBOR Templates

Sebastian Molina Araque, Ivan Martinez, Georgios Papadopoulos, Nicolas
Montavont, Laurent Toutain

To cite this version:
Sebastian Molina Araque, Ivan Martinez, Georgios Papadopoulos, Nicolas Montavont, Laurent
Toutain. Toward a Standard Time Series Representation for IoT based on CBOR Templates. GIIS
2022: Global Information Infrastructure and Networking Symposium, Sep 2022, Argostoli, Kefalonia,
Greece. �10.1109/GIIS56506.2022.9936910�. �hal-03800577�

https://hal.science/hal-03800577
https://hal.archives-ouvertes.fr

Toward a Standard Time Series Representation for IoT

based on CBOR Templates

Sebastian Molina Araque1, Ivan Martinez2, Georgios Z. Papadopoulos3, Nicolas Montavont3, Laurent Toutain3

IMT Atlantique, IRISA, France
1juan.molina-araque@imt-atlantique.fr 2ivan-marino.martinez-bolivar@imt-atlantique.fr

3firstname.lastname@imt-atlantique.fr

Abstract—Nowadays, we are facing an era where the Internet
of Things (IoT) is growing intensively and IoT devices are
being deployed massively. At this point, interoperability with the
information system is a major issue for the accelerated device
deployment. Most of the time, IoT information is presented
as Time Series (TS). However, no standardized representation
format has emerged, while the majority of the studies in the
literature focus on the compression, processing, or prediction
of TS. In this paper, we propose a versatile format for TS
representation based on the Concise Binary Object Representa-
tion (CBOR). This representation exploits CBOR to be compact
thanks to the introduction of deltas to represent measurements,
tags to represent variables, and templates to transform our TS
representation into the data format required by information
systems. Our preliminary results show that the data collected by
IoT devices can be regrouped compactly. Indeed, for the cases
evaluated we have proven that the total amount of data to be
sent can be reduced between 76% and 96% when compared
against JavaScript Object Notation (JSON). Finally, by lowering
the amount of data transmitted while keeping the same amount of
information delivered, our approach has the potential to extend
the battery life of IoT devices and their useful life.

Index Terms—Internet of Things, IoT, Time Series, Interoper-
ability, CBOR, JSON.

I. INTRODUCTION

In 2020 the Internet of Things (IoT) market has grown by
23.1%, and is projected to grow up to 25.4% per year between
2021-2028 [1]. Besides, some other studies forecast 50 billion
devices at the end of the decade [2]. This implies a massive
deployment of IoT devices, which can only be sustained if
the management operation is handled efficiently. Moreover,
considering the large IoT deployment and the considerable
amount of data that collects the IoT devices, the integration
into an information system will become more challenging.

Since the devices are currently chosen and incorporated into
IoT systems during the conception phase rather than afterward,
altering an application may require changing the device. On
the other hand, if new devices are introduced to the market,
the application must be modified to support them.

The majority of IoT data measurements are presented in
TS format. Once again, this representation depends on the
application or the environment in which the system is em-
ployed [3]. Currently, the academic and industrial communities
are focusing rather on compressing or processing the data
produced, and to the best of our knowledge, there is no

compact representation of TS. Indeed, we have observed
that the works from the literature are rather concentrated on
exploiting the TS than efficiently representing it. For instance,
in [4], the authors propose a framework to improve the analysis
of the information produced by IoT sensor devices. This
framework adds contextual and historical information to the
initial TS information. Next, in [5], the authors present a new
compression method of TS for IoT.

In this paper, we propose a versatile format for TS rep-
resentation based on CBOR [6]. This format is compact
and is the first step to decoupling the sensor data format
from the application data format. Our approach uses CBOR
characteristics to represent measurements using: the differ-
ence of the subsequent values (deltas) in the TS and a Tag
Number (TAGN) with a tree format in CBOR to identify
where the values of the variables will be in the TS. Then,
we introduce Variable-based TS (VTS) and Measurements-
based TS (MTS) templates, where the representation of TS
is grouped by variables or measurements, respectively, and
additional information such as the time stamp, sensor iden-
tifiers, and sensor precision, is represented with metadata.
These templates will transform our proposed TS representation
into the data format required by any information system. The
performance evaluation demonstrates that the actual data sent
by IoT devices can be reduced by between 76% and 96%
compared against JSON. Furthermore, when networks such
as LPWAN or Wi-Fi are used, the metadata represents an
additional 2% of the total amount of information sent.

II. TECHNICAL BACKGROUND

This section provides a brief description of the most used
representation formats on the Internet. We will start with
JSON, then we describe the binary data format CBOR, which
is the base of our work. Finally, we give an overview of
SenML; this format allows to represent sensor measurements
and device parameters in a simple form.

A. JavaScript Object Notation (JSON)

JSON, defined in [7], is a data interchange format that
defines a set of rules for the representation and serialization
of structured data. It is a widely used data serialization
format over the internet due to three main reasons: (i) it
is easy to understand and write by humans, (ii) compared

to XML, it is a lightweight data format, and (iii) it uses
conventions commonly used in programming languages while
being language-independent.

JSON defines certain notations to represent structured data.
It is built by a collection of “name/value” pairs, and it can
contain an ordered list of values. Moreover, only objects ({}),
arrays ([]), strings, numbers, ‘true’, ‘false’, and ‘null’ can be
represented as values. Listing 1 shows an example:
{ ‘name’: ‘value’,

‘array’:[1,2,3,4],
‘send’: true }

Listing 1. A JSON example.

B. Concise Binary Object Representation (CBOR)
CBOR was designed by the Internet Engineering Task Force

(IETF) and is specified in [6]. It is a binary data serialization
format based on JSON. Furthermore, CBOR was created with
the following set of goals [8]:

i) CBOR must be able to represent the most common data
formats in internet standards without any ambiguity.

ii) The code for an encoder/decoder must be compact.
iii) Data must be able to be decoded without a schema

description.
iv) The serialization must be reasonably compact.
v) Must apply to constrained nodes and high-volume appli-

cations.
vi) All JSON data types must be supported.

vii) The format needs to be extensible.
Previous work has compared the size of messages serialized

between CBOR and JSON, and CBOR shows a size of around
26% less in Bytes than JSON [9]. As an example, consider
the following array [1,[2,3],[4,5]] [6], JSON needs 15
bytes to represent it, while as seen in Listing 2, CBOR only
needs 8 bytes. This represents a reduction of 53%.
83 # array(3)

01 # unsigned(1)
82 # array(2)

02 # unsigned(2)
03 # unsigned(3)

82 # array(2)
04 # unsigned(4)
05 # unsigned(5)

Listing 2. The CBOR representation of [1,[2,3],[4,5]] in Hexadecimal.

Note that this reduction is not optimized in CBOR for floating
numbers, 0.1 is coded in 3 bytes in JSON and up to 9 bytes
in CBOR. Therefore, using CBOR correctly and with all its
capabilities, it is a potential tool to reduce considerably the
bytes sent by IoT devices.

C. Sensor Measurement List (SenML)
SenML is defined in [10]. It was created to encode sensor

measurements into the media type by processors with limited
capabilities, while also allowing a server processing the data
to save and decode many sensor measurements reasonably
efficiently. The design goal is to be able to send simple
sensor measurements in small packets from a large number
of constrained devices. An example of this data model with
JSON syntax is:

[{ ‘n’:‘urn:dev:ow:10e2073a01080063’,
‘u’:‘Cel’,‘v’:23.1 }]

Listing 3. A single SenML Record example.

When it is needed, and if one message contains multi-
ple measurements, it can be represented as “base values”
in SenML, which allows optimization re-using values per
measurement. An example with base values as ‘base time (bt)’
and ‘base unit (bu)’ is shown below:
[{ ‘bn’: ‘urn:dev:mac:0024befffe804ff1/’,

‘bt’: 1276020076, ‘bu’: ‘A’},
{ ‘n’:‘voltage’, ‘u’:‘V’, ‘v’:120.1},
{ ‘n’:‘current’, ‘t’:-2, ‘v’: 1.5},
{ ‘n’:‘current’, ‘t’:-1, ‘v’: 1.6},
{ ‘n’:‘current’, ‘t’:0, ‘v’: 1.7}]

Listing 4. A SenML Record example with base values.

III. RELATED WORK & PROBLEM STATEMENT

A. Literature Review of Binary Formats

Serialization formats are typically utilized for information
transmission between IoT devices [11]. It refers to the process
of translating data structures or object states into a format
that can be transmitted and reconstructed later. This operation
becomes critical for because it can improve the limited capa-
bilities and life cycle of end devices at the same time [12].
Other binary formats found in the literature are:

i) Messagepack: a concise, widely implemented counted
binary serialization format, similar in many properties to
CBOR, although somewhat less regular. While the data
model can be used to represent JSON data, MessagePack
has also been used in many Remote Procedure Call (RPC)
applications and for long-term storage of data [6].

ii) Binary JSON (BSON): a data format that was developed
for the storage of JSON-like maps (JSON objects) in the
MongoDB database. Its major distinguishing feature is
the capability for an in-place update, which prevents a
compact representation [6].

There have been several binary formats with various ob-
jectives in addition to the two just stated. These objectives
were typically not expressly expressed, though they may
occasionally be inferred from the context in which the format
was first used. Thus, alternative binary formats with compa-
rable objectives include Protocol Buffers designed by Google,
PSON, Smile, and Message Services Data Transmission (MS-
DTP) [13], [14].

B. Problem Statement

Currently, reporting measurement is use-case oriented in a
really simple and trivial manner over IoT devices. To the best
of our knowledge, there is no standard representation for TS in
IoT. Therefore, having such a representation may be beneficial
since it breaks the significant dependency between IoT devices
and cloud applications, which makes IoT devices independent
from the network or application.

Thus, this paper introduces an architecture with a mid-
dleware in charge of regrouping in a compact form the TS
information produced by IoT devices. Then, we introduce two

approaches to improve a template proposed in a current draft
from the IETF [15], as well as a tree representation to indicate
the position of the variables and deltas to represent the values
in a compact manner. Finally, we compare the results of our
work against the JSON in conjunction with CBOR.

IV. THE PROPOSED ARCHITECTURE

Fig. 1 illustrates our vision of the IoT architecture on IoT
networks. We propose to have a middleware between the data
transmission process and the processing information process.
This allows us to focus on the production of interoperable
datasets, which in turn enables a seamless integration of IoT
devices into different information systems without modifying
the actual code of the device.

TS Proxy

TS
 Generator

Device management

Access

Network

CoAP

IP / UDP SCHC

Network
selector

Device
management

5G
 LoraWANWi-Fi

User App

T
S

pr
od

uc
tio

n
an

d
tr

an
sm

is
si

on
 m

an
ag

em
en

t

SCHC

fNS
 sNS
fNS

LoraWAN roaming

Data
Platform

m

essage

Fig. 1. The proposed IoT architecture.

The device user application produces all the data obtained
from the measured values. Then, below the user application is
placed the middleware. The primary function is to compactly
group the data generated by the sensor using a common TS
representation; this is the main contribution of this paper.
Furthermore, this middleware is responsible for selecting the
interface through which the data will be sent, as well as
controlling the volume of data and the frequency of each
measurement depending on the interface, band restrictions, and
the type of measurement.

For Wi-Fi and 5G networks, these data will be sent over
IP/UDP/CoAP to a proxy.

In order to meet the LoRaWAN frame size requirements
and to provide reliability, header compression, fragmentation
and re-transmissions is assured by using the Static Context
Header Compression (SCHC) protocol [16]1. Access networks
such as 5G, Wi-Fi, or LoRaWAN can be selected to send
the compact TS representation. However, all of them will

1It must be noted, that the use of SCHC does not imply a full IP/UDP/CoAP
protocol stack implementation, but since SCHC relies on compression rules,
the device can process these rules directly to limit the footprint [17].

converge into a TS proxy, present at the right in Fig. 1. This
part of the architecture will be in charge of reconstructing
the information sent by the device. Then, it will transform
from a TS standard representation into the data representation
required by the data platform or cloud application, which will
mostly be reconstructed to a specific structure such as SenML
with a JSON format.

V. TS REPRESENTATION WITH CBOR TEMPLATES

Thanks to the extensibility of CBOR and with the help of
the definition of a new tag, [15] it sees the need to define
variables within CBOR to reduce the number of bytes that
are sent [15]. Indeed, the proposed CBOR template allows for
handling variables and, thus, transforming the data represen-
tation, e.g., from JSON to CBOR. Moreover, [15] defines a
CBOR template as a CBOR data item containing one or more
variables. These variables are represented as a CBOR data
item containing a specific identifier, i.e., CBOR tag 42.

A. Static-based Time-Series (STS)

Below, we present the STS [15] proposition through the
following example:

{ ‘name": ‘Carsten Bormann’,
‘place’: 42(0) }

Listing 5. An example in [15]

where:

• 42: The Tag Number (TAGN), which indicates the vari-
able identifier.

• (0): Indicates the position where the value of the variable
is, in this case, the first position of a CBOR array.

When the template from Listing 5 undergoes substitution,
with the variable 0 set to the value “Bremen”, this will result
in the data item as it is depicted in Listing 6:

{ ‘name’: ‘Carsten Bormann’,
‘place’: ‘Bremen’ }

Listing 6. CBOR variable substituted [15].

This example shows that the template from [15] (i.e., Static-
based Time-Series (STS)) handles only static variables. That
means that if the devices require to send 100 values from the
same variable, they will need 100 variables in the template.
Consider that we want to represent the JavaScript Object
Notation (JSON) structure presented in Listing 7, which has
information related to a temperature and humidity sensor
transmitting three measurements at the same time:

[{‘n’:’temperature’,‘u’:‘Cel’, ‘v’: 32},
{‘n’:’humidity’, ‘u’:‘%RH’, ‘v’: 20},
{‘n’:’temperature’,‘u’:‘Cel’, ‘v’: 31},
{‘n’:’humidity’, ‘u’:‘%RH’, ‘v’: 21},
{‘n’:’temperature’,‘u’:‘Cel’, ‘v’: 30},
{‘n’:’humidity’, ‘u’:‘%RH’, ‘v’: 22}]

Listing 7. A JSON structure that will be employed in the rest of the paper.

In this case, the corresponding STS template would be:

[{‘n’:’temperature’,‘u’:‘Cel’,‘v’:42(0)},
{‘n’:’humidity’, ‘u’:‘%RH’,‘v’:42(1)},
{‘n’:’temperature’,‘u’:‘Cel’,‘v’:42(2)},
{‘n’:’humidity’, ‘u’:‘%RH’,‘v’:42(3)},
{‘n’:’temperature’,‘u’:‘Cel’,‘v’:42(4)},
{‘n’:’humidity’, ‘u’:‘%RH’,‘v’:42(5)}]

Listing 8. Example of Listing 7 as a template with CBOR variables.

Then, the CBOR array to be sent undergoes the substitution
is: [32, 20, 31, 21, 30, 22]. However, as previously mentioned,
STS is a static template, which means, if this template receives
a different CBOR data item with a different amount of
measurements (e.g., an array with only 4 measurements [32,
20, 31, 21]), then the template is expecting more values (6
variables) and would not be able to make the substitution.

B. Tree Formatting
In this paper, we propose a tree representation inside the

TAGN, indicating where the values of the variables will be
found in the CBOR data item. This allows the reduction of
the amount of data sent by IoT devices and the introduction of
non-static templates in a further section. Let us now consider
the example presented in Listing 9, this listing contains nested
arrays in four different levels to explain the tree representation:

[[0, 1, 2, 3], [4, 5, [6, 7, 8, 9]], [10, 11]]

Listing 9. Example with nested arrays to explain tree representation.

The tree representation of the previous array in Listing 9 is
depicted in Fig. 2.

[[0, ...],[4, ...[6, ...]],[10, ...]]

[0,1,2,3] [4,5, [6,7,8,9]] [10,11]

0 1 2 3 4 5 [6,7,8,9] 10 11

6 7 8 9

Level 0

Level 1

Level 2

Level 3

Fig. 2. Tree representation in levels of Listing 9.

In this case, If it is necessary to select any value according
to the new representation of the TAGN proposed, the following
values can be selected:

i) Consider the tag represented as TAGN [0,1]: It refers
to the first array of data (TAGN [0,1]), in this case
([0,1,2,3]), and the second position of that array (TAGN
[0,1]). Thus, the referring value is: 1

ii) Consider another tag represented as TAGN [1,2,3]: It is
referring to the second array of data (TAGN [1, 2, 3]),
in this case ([4,5[6,7,8,9]]), inside that array is referring
to the third position (TAGN [1, 2, 3]) which is another
array ([6,7,8,9]), and finally the value present in the fourth
position (TAGN [1, 2, 3]) which is: 9.

iii) Finally, adding the value ‘true’ to the TAGN representa-
tion. This value means that all the values present in the
array will be selected. Thus, consider the tag represented
as TAGN [1, 2, true]: Then, it corresponds to all the
values present in the array placed on [1, 2]:

- [1, 2, 0]: 6, - [1, 2, 1]: 7
- [1, 2, 2]: 8, - [1, 2, 3]: 9

Listing 10. Values selected with TAGN [1, 2, true].

C. Delta Between Measurements
In this section, we introduce the use of deltas in CBOR

templates.
Consider the example of Listing 7. Here, we propose that

the devices will transmit only the difference of the subsequent
measurements, by doing that we reduce the amount of data
sent by IoT devices.

Then, the CBOR data item for the STS template required
to reproduce Listing 7 is: [32, 20, 31, 21, 30, 22]. It uses
10 bytes when transforming with CBOR. Thus, the difference
present in each value for temperature is -1 (32-1 = 31, 31-1
= 30) and humidity is +1 (20+1 = 21, 21+1=22), then only
the first value is needed as a reference. Therefore, the result
array using the delta between measurements is: [32, 20, -1,
1, -1, 1]. Thus, only 8 bytes are used against 10. When using
deltas to represent measurements is more significant when the
values are higher(e.g., [535,537,539,538] uses 13 bytes while
[535,2,2,-1] only uses 7 bytes).

In the rest of the paper, all examples will be expressed in
deltas as described in this section.

D. Variable-based TS (VTS)
Having a representation with CBOR variables and templates

in Section V-A reduces the amount of data sent by IoT devices.
However, it is limited by knowing the exact number of data
items or variables to be replaced.

In this section, we introduce a new value to the TAGN spec-
ification, which allows differentiating when it is not possible
to know how many values are going to be sent inside a CBOR
data item. Thus, it is possible to represent TS data items with
a template and an array of information as follows:
[{‘n’:‘temperature’,‘u’:‘Cel’,‘v’:TAGN[0,true]},
{ ‘n’:‘humidity’, ‘u’:‘%RH’,‘v’:TAGN[1,true]}]

Listing 11. VTS template.

Note that it is possible to identify the CBOR variables
present in the CBOR data item thanks to the tag TAGN, and
the rest of the value indicates the position where the value
will be found following the structure: TAGN([v1, v2, .., vn]).
Where:

i) TAGN is the tag number.
ii) v1, v2, and vn, are the values to specify where it is

possible to find the values for each variable:
a) If ‘true’, it corresponds to the value to select all the

items on the substitution item.
b) If it is a number, it corresponds to the specific position

or array where the value is.
Thus, continuing with the structure of the template pro-

posed, the CBOR data item needed to represent the JSON
structure presented in Listing 7 must be:[[32, -1, -1], [20, 1,
1]]2, and the result when the values are replaced is:

2Review Section V-B and V-C to understand how the template works and
how the CBOR data item was built

[{‘n’:‘temperature’,‘u’:‘Cel’, ‘v’:32},
{‘n’:‘humidity’, ‘u’:‘%RH’, ‘v’:20},
{‘n’:‘temperature’,‘u’:‘Cel’, ‘v’:31},
{‘n’:‘humidity’, ‘u’:‘%RH’, ‘v’:21},
{‘n’:‘temperature’,‘u’:‘Cel’, ‘v’:30},
{‘n’:‘humidity’, ‘u’:‘%RH’, ‘v’:22}]

Listing 12. Final result for VTS with information replaced.

This template allows us to send more or fewer values
if needed thanks to the ‘true’ presented in the TAGN in
Listing 11. Thus, this value allows to send two values for
humidity and two for temperature with the following the
CBOR data item [[32, -1], [20, 1]]2, and when the values
from the CBOR data item are replaced, the result is:
[{‘n’:‘temperature’,‘u’:‘Cel’, ‘v’:32},

{‘n’:‘humidity’, ‘u’:‘%RH’, ‘v’:20},
{‘n’:‘temperature’,‘u’:‘Cel’, ‘v’:31},
{‘n’:‘humidity’, ‘u’:‘%RH’, ‘v’:21}]

Listing 13. Result for VTS sending only two values.

Notice that two arrays are present in the last two examples,
one for each variable (temperature and humidity) independent
of the number of measurements sent. Then this approach is
ordered by variables as shown in Fig. 3.

[32, -1, -1] , [20, 1, 1]

3 measurements
of Temperature

3 measurements
of Humidity

Fig. 3. Explanation for the CBOR data item required in VTS.

E. Measurements-based TS (MTS)

This section introduces MTS as a way to order TS by
measurements. Thus, each measurement inside the CBOR data
item is differentiated by an array, and each internal array
is composed of the values of the variables presented in the
template. In order to continue with the structure present in
Listing 7 the following CBOR template is needed:
[{‘n’:‘temperature’,‘u’:‘Cel’,‘v’:TAGN[true,0]},
{‘n’:‘humidity’, ‘u’:‘%RH’,‘v’:TAGN[true,1]}]

Listing 14. MTS template.

Thus, the following CBOR data item is required to represent
the JSON data values: [[32, 20], [-1,1], [-1,1]]2, in this
case the value ‘true’ over TAGN takes the values 0,1,2,3,42

referring to all arrays present in the CBOR data item. Obtain-
ing the same result as in VTS. Fig. 4 depicts the CBOR data
item grouped by measurements with 3 arrays and 2 values per
measurement.

With MTS it is also possible to send more or less values
depending on the requirements. By employing the same ex-
ample as in VTS, if only two values for humidity (20,21) and
two values for temperature (32,31) are required to transmit,
then, the CBOR data item would be: [[32, 20], [-1, 1]].

Contrary to VTS, two arrays of data are present, instead,
in each intern array the values for each measurement are
present, and the number of arrays represents the number of
measurements taken.

[32, 20] [-1, 1]

First measurement,

1 temperature

1 humidity

Second and third
measurement

1 temperature each
1 humidity each

[-1, 1]

Fig. 4. Explanation for the CBOR data item required in MTS.

F. Metadata

The examples presented until now only show a simple
payload, however, IoT information is much richer. In addition
to the actual measurement of the variable, some use-cases
may need additional information such as: (i) the time stamp,
(ii) sensor identifiers, (iii) sensor precision, etc. To handle
this additional information, we propose to add what we call
‘Metadata’.

To store this metadata we propose to have a map type ({})
in CBOR. It will be present each time a message is created.
It allows us to differentiate between the metadata and the
measurements sent. Thus, the metadata format in MTS and
VTS templates will be represented as follows:
[{METADATA},[32,20],[-1,1],[-1,1]]

Listing 15. Representation of metadata in MTS.

[{METADATA},[32,-1,-1],[20,1,1]]

Listing 16. Representation of metadata in VTS.

Furthermore, the metadata would be present by pairs as an
object in the JSON format (name/value pairs) and using base
values as in SenML.
{ metadata1: value1,

...
metadataN: valueN }

Listing 17. Representation of metadata.

In the following subsections, we will explain the types of
metadata proposed.

1) Time Stamps: Time stamps will be represented by using
two values: (i) a Base Time (bt) with the TAGS 0 and 1
as in [6] and (ii) the Difference Time (dt) representing the
difference in seconds between each measurement based on
‘bt’. If bt is not present in the metadata, the reception time
will be considered instead by default. As for dt, 60 seconds
will be set by default. An example of the time represented in
the metadata is:
{ bt: 1654070400, dt: -1, }

Listing 18. Base time and difference time in metadata.

Listing 18 represents that the first measurement present in
each template was taken on Wednesday, 01 June 2022 at
10:00:00, and the following measurements were taken one
second before, Wednesday, 01 June 2022 09:59:59 for the
second measurement, Wednesday, 01 June 2022 09:59:58 for
the third measurement, etc.

2) Precision: Precision refers to the decimal part of the
floating-point number. Consider 1.258 and 1.25, both are
floating numbers the former has a precision of 3, while the
latter is 2.

Floating-point numbers are not optimized in CBOR, instead,
an integer value would be preferred since it needs less bytes
to represent a value. Hence, if the precision can be indicated,
the decoder can interpret and represent the correct values.

Thus, 1.258 will be represented as the integer 1258 with a
Base Precision (bp) of 3. If bp is present in the metadata all
the variables will have the same precision, and all the other
values for precision will be ignored. However, if bp is not
present in the metadata the value is 2 by default.
{ bp: 3 }

Listing 19. Base precision for all variables.

On the contrary, if all values do not have the same precision,
a precision value per measurement must be present. Thus, the
abbreviation per each precision of each variable would be:
{ bN: value }

Listing 20. Base precision for a specific variable.

Where N is the number of the variable that needs to be
modified. Each variable is identified by the tag and how they
are organized in the template. As seen in Section V, for
both templates, VTS and MTS, the temperature is the first
variable, and humidity is the second one. Accordingly to this,
the abbreviation ‘b0’ modifies the precision of the temperature,
and ‘b1’ modifies the precision of the humidity.

In the next example, the precision of the humidity is
modified to 1, and as bp is not present, the precision for the
temperature is 2:
{ b1: 1 }

Listing 21. Example, base precision for the second variable (humidity).

Thus the final result replacing the values in Listing 11 or 14
with the metadata in Listing 21 is:
[{‘n’:‘temperature’,‘u’:’Cel’, ‘v’:0,32},
{‘n’:‘humidity’, ‘u’:’%RH’, ‘v’:2,0},
{‘n’:‘temperature’,‘u’:’Cel’, ‘v’:0,31},
{‘n’:‘humidity’, ‘u’:’%RH’, ‘v’:2,1},
{‘n’:‘temperature’,‘u’:’Cel’, ‘v’:0,30},
{‘n’:‘humidity’, ‘u’:’%RH’, ‘v’:2,2}]

Listing 22. Final result with a precision of one in humidity and two as bp.

When more precision values than variables are present in
the metadata they are ignored, and only the ones who apply for
each variable are considered. Furthermore, metadata depends
on the application where the IoT device is being used (and
even the sensor).

VI. PERFORMANCE EVALUATION

To evaluate the performance of our proposals, we first
compare the JSON example presented in Listing 7 when trans-
formed into CBOR, STS, MTS, and VTS, then (ii) we take
a real-world data set3 and perform the same transformation,
and (iii) finally, we assess the impact of including metadata
in each message sent.

1) JSON Representation: Consider the JSON representa-
tion example depicted in Listing 7:

[{‘n’:‘temperature’,‘u’:‘Cel’, ‘v’:32},
{‘n’:‘humidity’, ‘u’:‘%RH’, ‘v’:20},
{‘n’:‘temperature’,‘u’:‘Cel’, ‘v’:31},
{‘n’:‘humidity’, ‘u’:‘%RH’, ‘v’:21},
{‘n’:‘temperature’,‘u’:‘Cel’, ‘v’:30},
{‘n’:‘humidity’, ‘u’:‘%RH’, ‘v’:22}]

Listing 23. A JSON representation to be transformed into CBOR, STS, MTS,
and VTS.

To represent all of the data in this JSON, the CBOR
representation requires 139 bytes, whereas the STS template
requires 17 bytes. Following that, as shown in Fig. 5, using
the VTS and MTS approaches, it is possible to further reduce
by approximately 93% (from 139 bytes to 10 bytes) and 92%
(from 139 bytes to 11 bytes), respectively. The STS proposal
reduces the 88%, which is a significant value at the expense
of a non-flexible template.

JSON to CBOR STS MTS VTS
0

20

40

60

80

100

120

140

160

Pa
yl

oa
d

siz
e

(B
)

Fig. 5. The gain in bytes per CBOR template.

2) Performance with real-world data: To test our hypoth-
esis with real data, we used data set 3 from the repository3,
which contains the first 100 measurements of an electrophore-
sis painting plant with 7 sensors sensing every 10 s. This yields
700 measurements.

In this case, even though the STS template is static, it can be
used, but at the expense of a large template, because it would
require 700 variables in the template to replace all of the data.
VTS and MTS, on the other hand, just need a template with
seven variables and the associated TS representation. As a
result, the amount of this data in JSON format serialized with
CBOR is 9294 bytes, compared to 6273 bytes for STS, 2141
bytes for VTS, and 2228 bytes for MTS, a reduction of 32%,
77% percent, and 76%, respectively.

3) Impact of added Metadata: Up until this point, we
have only considered the payload size required to represent
the information in the two previous subsections. Here, we
will look at hypothetical situations to determine how adding

3Time series dataset for CBOR templates, Github: https://github.com/
sebasmol96/Time-Series-data-set-for-CBOR-templates

https://github.com/sebasmol96/Time-Series-data-set-for-CBOR-templates
https://github.com/sebasmol96/Time-Series-data-set-for-CBOR-templates

JSON to CBOR STS MTS VTS
0

2000

4000

6000

8000

10000

Pa
yl

oa
d

siz
e

(B
)

Fig. 6. Payload size per CBOR template for the electrophoresis painting plant.

metadata to each transmission will impact the performance if
we consider the data set from Subsection VI-2.

The Metadata to be sent inside each packet transmission will
be: {bt: 1593982800, dt:10, bp:3} which represents 17 bytes
in CBOR. Thus, we consider 3 cases. One is a LoRaWAN
Network working with a Spread Factor (SF) of 7 and with the
maximum allowed payload size of 222 bytes, then a Wi-Fi
network with a Maximum transmission unit (MTU) of 1468
bytes, and finally an LTE/5G network with an MTU of 1428
bytes.

Table I presents the number of packets that would be sent
per Access Network, as well as the total size in bytes needed
to represent the metadata and its percentage compared to the
value required to transmit all the payload of 9294 bytes.

TABLE I
IMPACT OF ADDED METADATA WITH DIFFERENT ACCESS NETWORKS.

LoRaWAN Wi-Fi LTE/5G
VTS Packets number 10 2 2

Size in Bytes 170 34 34

Percentage (%) 1.9 0.4 0.4

MTS Packets number 11 2 2

Size in Bytes 187 34 34

Percentage (%) 2.1 0.4 0.4

To summarize, the metadata varies between 2.1% and 0.4%
depending on the access network selected to transmit the data.
Furthermore, for STS template it can not be represented and,
for JSON transformed into CBOR is not needed.

VII. CONCLUSIONS AND FUTURE WORK

IoT devices are being deployed massively, and in order to
integrate these devices into information systems, interoperabil-
ity is required. Besides, IoT devices have strong limitations as
processing power, available memory, battery life, and a strong
dependency with cloud applications. This paper proposes a
compact TS representation with templates based on CBOR.

The proposed templates, VTS and MTS, have shown that the
data collected by IoT devices can be regrouped in a compact
manner. Moreover, it reduces between 76% and 96% the total
amount of data that would be sent when compared to JSON.

The results of this proposal have practical implications.
First, reducing the data size sent by the devices is directly
reflected in better battery life. Next, a standard format for
TS breaks the strong dependency between cloud applications
and IoT devices since it can be transformed into any data
representation expected by the data platform. As for future
work, we plan to review the impact of the metadata on the
performance of our templates using real deployments, and
complex data structures.

REFERENCES

[1] F. B. Insights, “Internet of Things (IoT) Market Size, Share & COVID-
19 Impact Analysis, By Component (Platform, Solution & Services),
By End-Use Industry (BFSI, Retail, Government, Healthcare, Manufac-
turing, Agriculture, Sustainable Energy, Transportation, IT & Telecom,
Others), and Regional Forecast, 2021-2028,” accessed: March 2022.

[2] C. Dave Evans, “The Internet of Things. How the Next Evolution of
the Internet Is Changing Everything (white paper),” accessed: January
2022.

[3] A. A. Cook, G. Misirli, and Z. Fan, “Anomaly Detection for IoT Time-
Series Data: A Survey,” IEEE Internet of Things Journal, vol. 7, no. 7,
pp. 6481–6494, 2020.

[4] K. Kenda, B. Kazic, E. Novak, and D. Mladenić, “Streaming Data Fusion
for the Internet of Things,” MDPI AG Sensors, vol. 19, no. 8, pp. 1424–
1450, 2019.

[5] D. Blalock, S. Madden, and J. Guttag, “Sprintz: Time Series Compres-
sion for the Internet of Things,” ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies (IMWUT), vol. 2, no. 93, pp. 1–23, 2018.

[6] C. Bormann and P. Hoffman, “Concise Binary Object Representation
(CBOR),” IETF, RFC 8949, December 2020.

[7] E. T. Bray, “The JavaScript Object Notation (JSON) Data Interchange
Format,” IETF, RFC 8259, December 2017.

[8] E. Ingles-Sanchez, D. Garcia-Carrillo, G. Z. Papadopoulos, N. Mon-
tavont, and A. F. S. Gomez, “Adaptation of EAP-NOOB Method for
LoRaWAN with LO-CoAP-EAP and CBOR,” in Proceedings of the
IEEE Global Internet of Things Summit (GIoTS), 2020.

[9] Ivanovo, “Comparison of JSON Like Serializations – JSON vs UB-
JSON vs MessagePack vs CBOR,” http://zderadicka.eu/comparison-
of-json-like-serializations-json-vs-ubjson-vs-messagepack-vs-cbor/, ac-
cessed: January 2022.

[10] C. Jennings, Z. Shelby, C. Bormann, J. Arkko, and A. Keranen, “Sensor
Measurement Lists (SenML),” IETF, RFC 8428, August 2018.

[11] F. Pereira, R. Correia, P. Pinho, S. I. Lopes, and N. B. Carvalho,
“Challenges in Resource-Constrained IoT Devices: Energy and Commu-
nication as Critical Success Factors for Future IoT Deployment,” MDPI
AG Sensors, vol. 20, no. 22, pp. 6420–6449, 2020.

[12] D. Tomaszuk, R. Angles, Ł. Szeremeta, K. Litman, and D. Cisterna,
“Serialization for Property Graphs,” in Springer. Beyond Databases,
Architectures, and Structures. Paving the Road to Smart Data Processing
and Analysis, 2019, pp. 57–69.

[13] J. J. C.-G. Álvaro Luis, Pablo Casares and M. A. Patricio, “PSON:
A Serialization Format for IoT Sensor Networks,” MDPI AG Sensors,
vol. 21, no. 13, pp. 4559–4576, 2021.

[14] J. C. Viotti and M. Kinderkhedia, “A Survey of JSON-compatible Bi-
nary Serialization Specifications,” arXiv Computing Research Repository
(CoRR), vol. 2, 2022.

[15] C. Bormann and P. Hoffman, “Concise Binary Object Representation
(CBOR) Tag for CBOR Templates,” IETF, DRAFT 02, July 2018.

[16] A. Minaburo, L. Toutain, C. Gomez, D. Barthel, and J. Zuniga, “SCHC:
Generic Framework for Static Context Header Compression and Frag-
mentation,” IETF, RFC 8724, April 2020.

[17] C. Gomez, A. Minaburo, L. Toutain, D. Barthel, and J. C. Zuniga, “IPv6
over LPWANs: Connecting Low Power Wide Area Networks to the
Internet (of Things),” IEEE Wireless Communications, vol. 27, no. 1,
pp. 206–213, 2020.

	Introduction
	Technical Background
	json
	cbor
	senml

	Related Work & Problem Statement
	Literature Review of Binary Formats
	Problem Statement

	The Proposed Architecture
	ts representation with cbor Templates
	sts
	Tree Formatting
	Delta Between Measurements
	vts
	mts
	Metadata
	Time Stamps
	Precision

	Performance Evaluation
	JSON Representation
	Performance with real-world data
	Impact of added Metadata

	Conclusions and Future Work
	References

