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Abstract. Non-Intrusive Load Monitoring (NILM) seeks to save energy
by estimating individual appliance power usage from a single aggregate
measurement. Deep neural networks have become increasingly popular
in attempting to solve NILM problems. However most used models are
used for Load Identification rather than online Source Separation. Among
source separation models, most use a single-task learning approach in
which a neural network is trained exclusively for each appliance. This
strategy is computationally expensive and ignores the fact that multi-
ple appliances can be active simultaneously and dependencies between
them. The rest of models are not causal, which is important for real-time
application. Inspired by Convtas-Net, a model for speech separation, we
propose Conv-NILM-net, a fully convolutional framework for end-to-end
NILM. Conv-NILM-net is a causal model for multi appliance source sep-
aration. Our model is tested on two real datasets REDD and UK-DALE
and clearly outperforms the state of the art while keeping a significantly
smaller size than the competing models.

Keywords: NILM · Single Channel Source Separation · Deep Learning.

1 Introduction

In 2018, 26.1% of the total energy consumption in EU was attributed to house-
holds. This consumption mainly serves a heating purpose (78.4%). Moreover,
most of the residential energy consumption is covered by natural gas (32.1%)
and electricity (24.7%), while renewables account for just 19.5% [6]. However,
as solar and wind generation rely on weather conditions, challenges due to in-
termittent generation have to be solved, and solutions for energy management
such as demand response and photovoltaic (PV) battery management can play
a key role in this regard. Machine Learning has proven to be a viable solution
for smart home energy management [32]. These methods autonomously control
heating and domestic hot water systems, which are the most relevant loads in a
dwelling, helping consumers to reduce energy consumption and also improving
their comfort.
⋆ Supported by Accenta.ai
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An efficient energy management system has to take into account users habits in
order to anticipate their behaviour. However, comfort is hard to quantify as it
remains purely subjective. We argue that in an energy management context, the
users are the only ones that can offer a proper evaluation of their own comfort.
Hence, a satisfactory hypothesis is to consider that their current behaviour and
habits are the ones that optimise their comfort. Therefore, an efficient energy
management system is one that can anticipate users habits, optimise consump-
tion levels (for example by deciding which source to use, temperature settings
etc.) while offering solutions that alter users known habits as little as possible.

Learning users’ habits in a household is a hard problem mainly regarding data
acquisition. The possible behaviours are diverse, if not unique, while monitor-
ing inhabitants is not acceptable as it is a privacy infringement. From an en-
ergy provider perspective, the only available information is the household’s total
power consumption. A solution is therefore to decompose this consumption into
the consumptions induced by each appliance in the household. The resulting
disaggregated power time series can then be used as an input for a machine
learning algorithm in order to learn consumption habits.

Energy disaggregation (also called non-intrusive load monitoring or NILM) is
a computational technique for estimating the power demand of individual ap-
pliances from a single meter which measures the combined demand of multiple
appliances. The NILM problem can be formulated as follows: Let ȳ(t) the ag-
gregated energy consumption measured at time t. With no loss of generality,
ȳ(t) can represent the active power (The power which is actually consumed or
utilised in an AC Circuit in kW). Then ȳ(t) can be expressed as in:

ȳ(t) =

C∑
i=1

y(i)(t) + e(t) (1)

Where C is the number of appliances, y(i) the consumption induced by appliance
i and e(t) some noise. The aim is to find y(i) given ȳ(t).

There exist two approaches for NILM, namely load identification and source
separation. In the first case, a first step called signature detection corresponds
to the activation of a given appliance then a classification algorithm classifies the
appliance category. The idea behind load identification is to build appropriate
features called load signatures that allow to easily distinguish the referenced
appliance from others within the installation. In the latter case, separation is
directly obtained while retrieving the source signal.

In order to manage a building efficiently, for example using a reinforcement
learning agent, it is necessary to use a model that performs source separation
while being causal. In signal processing, a causal model is a model that performs
the needed task (here source separation) without looking beyond time t rather
than having to look in the future as presented in figure 2. The model can then
be used as a backend for prediction, which is necessary for energy management.
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We propose Conv-NILM-net, a fully convolutional and causal neural network
for end-to-end energy source separation. Conv-NILM-net is inspired from Conv-
TasNet [20], a convolutional model for speech separation. The model does not
require more quantities than active power and disaggregates the signal for mul-
tiple appliances at once. We evaluate it on REDD and UK-DALE datasets,
compared to recent models and achieves state of the art performance. Figure 1
presents an overview of the model and table 1 summarises the notations used
throughout this paper.

Fig. 1: Overview of Conv-NILM-net. It is composed of 2 blocs, the en-
coder/decoder and the separator. The encoder first projects the signal into a
latent space, the separator disaggregates it into C corresponding to each appli-
ance by learning C masks applied to input signal, then the decoder projects the
C signals to the input space

2 Related Work

Most approaches in the literature are load identification approaches that pre-
dict the state of an appliance (on/off) and predict the average consumption of
the given appliance during a certain period of time. Four appliance models are
usually considered:
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Table 1: Summary of notation.
ȳ(t) Aggregated energy consumption at time t, ȳ(t) ∈ RT

C Number of appliances
T Length of a signal
y(i)(t) True energy consumption of appliance i at time t, y(i)(t) ∈ RT

ŷ(i)(t) Predicted energy consumption of appliance i at time t, y(i)(t) ∈ RT

Z latent space representation of the mixture signal, Z ∈ RN×K

mi learned mask for appliance i, mi ∈ RN

si filtered signal from the encoder for appliance i, si ∈ RN

N Number of filters in encoder-decoder
L Length of the filters
B Number of channels in bottleneck and the residual paths’ 1× 1-conv blocks
H Number of channels in convolutional blocks
P Kernel size in convolutional blocks
X Number of convolutional blocks in each repeat
R Number of repeats

– Type I On/off devices: most appliances in households, such as bulbs and
toasters;

– Type II Finite-State-Machines (FSM): the appliances in this category present
states, typically in a periodical fashion. Examples are washer/dryers, refrig-
erators, and so on;

– Type III Continuously Varying Devices: the power of these appliances varies
over time, but not in a periodic fashion. Examples are dimmers and tools.

– Type IV Permanent Consumer Devices: these are devices with constant
power but that operate 24 h, such as alarms and external power supplies.

Current NILM methods work well for two-state appliances, but it is still dif-
ficult to identify some multi-state appliances, and even more challenging with
continuous-state appliances. One of the most noticeable approaches called FHMM
models each appliance as a hidden markov model (HMM) [13]. The HMM of each
appliance is modelled independently, each one contributing to the aggregated
power. AFAMAP [15] extends FHMM by predicting combinations of appliances
working states. In AFAMAP, the posterior is constrained into one state change
per time step. In [26], the authors propose a hierarchical FHMM in order to
stop imposing independence between between appliances. The algorithm takes
the active power as input and performs a clustering of the correlated signals
then trains an HMM on the identified clusters called super devices. During the
disaggregation step, the prediction is done using AFAMAP on the super devices
then the clustering is reversed to find the the original appliance.

A critical step is the construction of load signatures or features that help to
uniquely identify all types of home appliances with different operation modes.
Event-based techniques have been employed to identify turn-on and turn-off
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events using a variety of features like the active and reactive power [31, 2, 8],
current and voltage harmonics [28, 27], transient behaviour particularly during
the activation and/or deactivation [17, 3], current waveform characteristics [30].
Although the existing harmonic-based NILM methods achieved high load iden-
tification accuracy, their applicability is limited. The main drawback of this ap-
proach is that it requires harmonic current signatures with respect to all possible
combinations of devices. Consequently, the complexity of this method increases
exponentially with the number of electrical devices.

Deep Learning approaches have consistently outperformed HMM-based meth-
ods. Indeed, the number of features associated with the complexity induced by
all the possible devices combinations make deep learning a natural candidate
for NILM. In recent years, learning-based approaches were proposed to classify
and directly estimate the power consumption of type-1 and type-2 appliances
from an aggregated signal. Although FHMM-based NILM approaches are exten-
sively used for power disaggregation, their performance is limited to the accu-
rate approximation of appliance actual power consumption especially for type-2
(multi-state) and type-4 (always-on) appliances. Moreover, HMM-based meth-
ods have been reported to suffer from scalability and generalisation, which limits
its real-world application. In contrast to classical event-based and state-based
approaches, deep neural networks are capable of dealing with time complex-
ity issues, scalability issues, and can learn very complex appliance signatures if
trained with sufficient data.

Most recent NILM works employing deep neural networks used 1/6-Hz or 1/3-
Hz sampled active power measurement as an input feature to train various deep
neural networks. such as long short-term memory (LSTM) networks [21, 24], de-
noised autoencoder [11, 1] and Convolutional Neural Networks (CNN) [33, 29].
[11] proposed 3 different neural networks. A convolutional layer followed by an
LSTM to estimate the disaggregated signal from the global one. They also used
a denoising convolutional autoencoder to produce clean signals. The last neural
network estimates the beginning and the end time of each appliance activation
along with the mean consumption of each. [11] performs better than FHMM
however their model was unable to identify multi-state appliances. To solve the
multi-state appliance identification issue, [21] proposed a two-layer bidirectional
LSTM based DNN model. Similarly, [29] proposed a two-step approach to iden-
tify multi-state appliances. They used a deep CNN model to identify the type of
appliances and then used a k-means clustering algorithm to calculate the number
of states of appliances.

Deep Learning also allowed source separation rather than load identification.
This approach is more difficult but offers precise estimation of the consumption
of each appliance in real time which includes continuous state appliances. [33,
9] proposed sequence-to-point learning-based CNN architecture with only active
power as an input feature. In [4] gated linear unit convolutional layers [5] are used
to extract information from the sequences of aggregate electricity consumption.
In [23], the authors used a deep recurrent neural network using multi-feature in-
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put space and post-processing. First, the mutual information method was used
to select electrical parameters that had the most influence on the power con-
sumption of each target appliance. Second, selected parameters were used to
train the LSTM for each target appliance. Finally, a post-processing technique
was used at the disaggregation stage to eliminate irrelevant predicted sequences,
enhancing the classification and estimation accuracy of the algorithm.

In [8], the authors present WaveNILM which is a causal 1-D convolutional neu-
ral network inspired by WaveNet [22] for NILM on low-frequency data. They
used various components of the complex power signal for NILM, current, active
power, reactive power, and apparent power. WaveNILM, requires no significant
alterations whether using one or many input signals. However, most of the ex-
isting DNNs models for NILM use a single-task learning approach in which a
neural network is trained exclusively for each appliance. That is also the case
for WaveNILM. This strategy is computationally expensive and ignores the fact
that multiple appliances can be active simultaneously and dependencies between
them. In [7] the authors introduce UNet-NILM for multi-task appliances’ state
detection and power estimation, applying a multi-label learning strategy and
multi-target quantile regression. The UNet-NILM is a one-dimensional CNN
based on the U-Net architecture initially proposed for image segmentation [25].
However, this model is not causal like WaveNILM.

Conv-NILM-net achieves the best of both worlds as it can handle source sepa-
ration for any type of appliance, for multiple appliances simultaneously, it only
needs the active power (although it is possible to other types of current in the
same time).

3 Conv-NILM-Net

The model aims at separating C individual power sources y(i) ∈ RT , where
i ∈ {1, 2, . . . , C} from a mixture of signals representing the total consumption
ȳ(t) =

∑C
i=1 y

(i)(t)+ e(t) and T is the length of the waveform. Therefore it take
as input a single channel time series corresponding to the total consumption
and outputs C time series corresponding to the consumption of each individual
appliance. In this section, we present and detail our proposed architecture. We
will describe the overall structure before focusing on the separation module.

3.1 Overall structure

Conv-NILM-Net is an adaptation of ConvTas-net [20]. Conv-Tasnet was orig-
inally only designed for speech separation and limited to two speakers. We
propose an adaptation to energy load source separation with theoretically no
limitation to the number of appliances. Our fully convolutional model is train-
able end-to end and uses the aggregated active power as only input making the
training easily deployable (no additional costly features needed).
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Conv-NILM-net architecture consists of two parts: an encoder/decoder, and a
separator. The encoder generates a multidimensional representation of the mix-
ture signal; the separator learns masks applied to this representation to decom-
pose the mixture signal, then the decoder translates the obtained signals from the
encoded representation to the classic active power. The masks are found using a
temporal convolutional network (TCN) consisting of stacked 1-D dilated convo-
lutional blocks, which allows the network to model the long-term dependencies
of the signal while maintaining a small model size.

Using encoder filters of legnth L, the model first segments the input total con-
sumption into K overlapping frames ȳk ∈ RL, k = 1, 2, . . . ,K each of length L
with stride S. ȳk is transformed into a N -dimensional representation, Z ∈ RN×K :

Z = F(w · Ȳ ) (2)

where Y ∈ RL×K and w ∈ RN×K the N learnable basis filters of length L each.
Z represents the latent space representation of the mixture series while F is a
non-linear function. To ensure that the representation is non-negative, Conv-
tasnet [20] uses the rectified linear unit (ReLU). However, this choice leads to a
vanishing gradient behaviour, driving the norm of the gradients towards 0 thus
making the model collapse as it eventually outputs null signals. Therefore, we
replace ReLU with Leaky ReLU and only use ReLU for the last layer of the
separation masks to enforce positive outputs.

The separator predicts a representation for each source by learning a mask in this
latent space. It is performed by estimating C masks mi ∈ RN . The representation
of each source si ∈ RN , is then calculated by applying the corresponding mask
mi to the mixture representation, using element-wise multiplication:

si = Z ⊙mi (3)

In Conv-tasnet as well as in [19], the masks were constrained such that
∑C

i=1 mi =
1. This was applied based on the assumption that the encoder-decoder architec-
ture can perfectly reconstruct the input mixture. indeed, in their model, e(t) = 0,
∀t. This assumption cannot be made in a NILM context, it is therefore relaxed.

The input signal of each source is then reconstructed by the decoder:

ŷ(i) = si · V (4)

where V ∈ RN×L are the decoder filters, each of length L.

3.2 Separation module

The separator is mainly based on a temporal convolutional network (TCN) [16]
and is detailed in figure 3. Temporal convolutions require the use of dilated
convolutions which aim to increase the receptive field. Indeed, pooling or strided
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convolutions are usually implemented for this purpose, however they reduce the
resolution. Dilated convolutions allow exponential expansions of the receptive
field without loss of resolution, while achieving same computation and memory
costs. These are simply implemented by defining a spacing between the values
in a kernel as illustrated in figure 2.

Fig. 2: Causal and dilated convolu-
tions.

Fig. 3: Detailed representation of the
separator.

In [21], the authors used LSTM [18] for NILM. This architecture can handle
long sequences but suffers from the vanishing gradient issue while being com-
putationally costly. We argue that a more efficient approach is to make use of
1D-convolutions. As illustrated in figure 2, convolutions for time series require
future values (compared to the point of reference). During inference, these values
are not accessible making the use of this model unpractical for prediction. This
can be solved by giving a causal formulation to convolutions where the present
value only depends of past ones. Moreover, the implementation is easy as it only
requires an asymetric padding.

However relevant values become sparse. As in [20], Conv-NILM-net uses dilated
layers with exponentially increasing dilation rates. The dilation factors increase
exponentially to ensure a sufficiently large temporal context window to take
advantage of the long-range dependencies in the signal. Therefore the dilation
factors increase exponentially to ensure a sufficiently large temporal context
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window to take advantage of the long-range dependencies in the signal. Therefore
TCN consists of 1-D convolutional blocks with increasing dilation factors. Given
kernels of length L and l layers, the receptive field of Conv-NILM-net is of size
RF = 2l(L− 1).

The output of the TCN is passed to a 1 × 1 conv block for mask estimation.
This block also serves for dimensionality reduction and together with a nonlinear
activation function estimates C mask vectors for the C target sources. The last
layer of the last bloc uses a ReLU activation function to ensure the non-negativity
of the outputs.

Contrary to speech separation, where simultaneous speeches are independent
from one another, it is not the case in NILM context where appliance activations
can be highly dependent. An elegant solution proposed in [10, 4], can be to use
gated linear units (GLU) [5] to replace LeakyReLU activation functions. GLU
allow the model to decide itself the relative importance of the kernels by using
two parallel convolutions with the first followed by a sigmoid which result is then
multiplied with the second convolution. The output of the sigmoid acts like a
mask that activates depending on the input of the second convolution.

MSE, L1, or even SI-SNR [20] losses are often used for NILM or source sep-
aration problems. The MSE takes the average squared error on all time steps
for all disaggregated signals (ie appliances). We found that taking the mean on
appliances is detrimental to the learning process as the error is distributed over
all appliances. Therefore, the signals get mixed and artefacts of most consuming
appliances appear on the remaining ones as illustrated in figure 4. We therefore
choose to sum the error over all appliance rather than averaging it. The window
mean squared error is calculated as:

WMSE =
1

T

T∑
t=0

C∑
i=1

(
ŷ(i)(t)− ȳ(i)(t)

)2

(5)

4 Experimental Methodology, Results, and Discussion

4.1 Datasets and parameters

Our experiments are done on two real-world datasets, Reference Energy Disag-
gregation Dataset (REDD) [14] and UK-DALE [12]. REDD records the power
for 6 houses with sampling frequency of 1Hz for mains meter and 1/3Hz for
appliance-channel meters. We choose to disaggregate the five top appliances for
each building. UK-DALE data set published in 2015, records the power demand
from five UK houses. In each house we record both the whole-house mains power
demand every six seconds as well as power demand from individual appliances
every six seconds.

For REDD, we converted the disaggregated data to 1Hz using linear extrapola-
tion and kept 1/6 Hz frequency for UK-DALE. Usually the data are normalised
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Fig. 4: Outputs of Conv-NILM-net of top 5 appliances of REDD building 1 when
trained using classic MSE. We observe the presence of the artefacts although the
MSE is minimized.

and the series of each appliance are scaled individually. We argue that appliance
scaling is not practical as it is not possible to apply the scaling factors to the
global signal available during inference. Therefore we chose to only use a min-
max scaler for all appliances combined directly on the mixture power signal. In
some contributions like seq2seq and seq2point [9, 33], a sliding window of the
aggregate power is used as the input sequence, and the midpoint of the window
corresponding to the target device reading is used as the output. This prepro-
cessing smooths the power loads and makes the target values to retrieve easier.
All results presented in section 4.3 for these implementations were obtained using
smoothing. The results presented for Conv-NILM-NET were obtained without
smoothing, making the difference in performance even more noticeable.

For UK-DALE dataset, we compare our results to UNET-NILM [7] and seq2point
[9]. The constructed artificial aggregate consumption is obtained by taking the
summation of selected appliances plus additional one appliance (Television in
this setting). For UNET-NILM, the authors used a quantile filter to smooth the
signal. This is not required for Conv-NILM-Net.

In our implementation for Conv-NILM-Net, we used for, each dataset, one day
as input. This means that with 1Hz frequency, the input to Conv-NILM-net was
86400 points for REDD and 14400 for UK-DALE (1/6 Hz). The used parameters
for Conv-NILM net are: N = 32; L = 48; B = 2; H = P = X = 3; R = 2.
The meaning of each notation is made available in table 1 where we kept the
same notation as in [20]. The model was trained for 2000 epochs using 10-fold
cross-validation and a batch size of 5. We used Adam optimiser with an initial
learning rate lr = 0.01, betas = (0.9, 0.999), eps = 0.01.
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4.2 Metrics

We evaluate the performance of the framework using the mean absolute error
(MAE). Estimated accuracy is also a common metric for evaluating disaggre-
gated power.

Est.Acc. = 1−
∑T

t=1

∑C
i=1 |ŷ(i)(t)− ȳ(i)(t)|

2
∑T

t=1

∑C
i=1 ȳ

(i)(t)
(6)

Where ŷ(i)(t) is the predicted power level of appliance i at time t, and ȳ(i)(t)
is the ground truth. The above expression yields total estimated accuracy; if
needed, the summation over i can be removed creating an appliance-specific
estimation accuracy. We also report the Signal Aggregate Error (SAE):

SAE =
|r̂ − r|

r
(7)

where r̂ and r represent the predicted total energy consumption of an appliance
and the ground truth one. SAE measures the total error in the energy within
a period, which is accurate for reporting daily power consumption even if its
consumption is inaccurate in every time point.

4.3 Results on REDD

Table 2 presents the results obtained on REDD dataset for five building. For each
building with disaggregated the top five appliances and reported the MAE, esti-
mated accuracy ans SAE. We tested 3 versions on Conv-NILM-net. We observe
that the causal+GLU tend to perform better on average but its results are very
close to the causal implementation while increasing the number of parameters
dramatically. We therefore tend to prefer the causal version of our model.

Table 3 compares the performance of Conv-NILM-net with state of the art mod-
els on 3 appliances that appear on REDD dataset. These appliances were selected
as they are the only one presented in [34]. We therefore were limited to these
appliance to compare our framework. We observe that our models outperform
the state of the art by a margin. It decreases the MAE by 45% for the fridge,
51% for the microwave and even by 80% for the dishwaser. The best performing
model is the causal model. In the appendix we present some outputs of the model
for buildings 1 to 4 from REDD. These were obtained when disaggregating the
top 5 appliances detailed in the same order as in table 2.

4.4 Results on UK-DALE

Table 4 compares the MAE of our model on UK-DALE dataset with UNET-
NILM and seq2point. Our model outperforms the state of the art on the selected
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Model

Conv-NILM-NET Causal Causal + GLU

Building Appliance MAE Est.Acc SAE MAE Est.Acc SAE MAE Est.Acc SAE

Building 1

Fridge
Washer dryer

Light
Sockets

Dishwasher
Total

0.049
0.005
0.063
0.015
0.006
0.027

0.900
0.937
0.970
0.874
0.916
0.919

0.058
0.074
0.030
0.092
0.102
0.071

0.006
0.002
0.007
0.005
0.002
0.005

0.981
0.993
0.980
0.984
0.993
0.986

0.053
0.088
0.021
0.131
0.095
0.078

0.004
0.002
0.008
0.006
0.003
0.004

0.987
0.990
0.984
0.992
0.997
0.989

0.051
0.103
0.033
0.191
0.070
0.054

Building 2

Fridge
Washer dryer

Light
Sockets

Dishwasher
Total

0.038
0.018
0.012
0.002
0.0006
0.014

0.912
0.914
0.986
0.993
0.997
0.960

0.052
0.109
0.024
0.059
0.115
0.0718

0.032
0.031
0.002
0.001
0.001
0.014

0.939
0.940
0.981
0.991
0.993
0.969

0.068
0.098
0.104
0.032
0.029
0.066

0.041
0.034
0.008
0.006
0.003
0.018

0.956
0.967
0.987
0.990
0.992
0.978

0.054
0.087
0.099
0.058
0.031
0.066

Building 3

Fridge
Washer dryer

Light
Sockets

Dishwasher
Total

0.006
0.007
0.009
0.009
0.007
0.006

0.820
0.997
0.863
0.961
0.960
0.920

0.089
0.061
0.123
0.091
0.085
0.90

0.072
0.003
0.037
0.040
0.032
0.037

0.822
0.993
0.854
0.941
0.940
0.910

0.078
0.065
0.098
0.080
0.096
0.083

0.009
0.004
0.006
0.007
0.005
0.006

0.856
0.993
0.900
0.942
0.989
0.936

0.068
0.087
0.098
0.126
0.078
0.091

Building 4

Fridge
Washer dryer

Light
Sockets

Dishwasher
Total

0.003
0.002
0.002
0.001
0.0006
0.002

0.961
0.947
0.936
0.981
0.994
0.964

0.054
0.105
0.076
0.098
0.132
0.093

0.007
0.016
0.019
0.008
0.002
0.011

0.982
0.933
0.940
0.980
0.995
0.966

0.021
0.087
0.055
0.016
0.098
0.055

0.050
0.031
0.002
0.006
0.020
0.022

0.930
0.954
0.901
0.937
0.892
0.923

0.043
0.056
0.080
0.024
0.069
0.054

Building 5

Fridge
Washer dryer

Light
Sockets

Dishwasher
Total

0.003
0.003
0.0006
0.0006
0.0008
0.002

0.883
0.992
0.999
0.966
0.913
0.950

0.005
0.001
0.0001
0.002
0.004
0.002

0.005
0.0009
0.0001
0.002
0.004
0.002

0.880
0.993
0.999
0.97
0.91
0.95

0.004
0.001
0.002
0.005
0.002
0.002

0.005
0.003
0.002
0.007
0.010
0.005

0.991
0.983
0.977
0.931
0.990
0.974

0.093
0.012
0.10
0.037
0.078
0.064

Table 2: Conv-NILM-Net scaled results on top five appliances REDD dataset.
Best average results are highlighted in bold.

Model Fridge Microwave Dishwasher
seq2point
seq2seq

GLU-Res [4]
CNN-DI[34]

Conv-NILM-NET
Conv-NILM-NET (causal)

Conv-NILM-NET (GLU, causal)

28.104
30.63
21.97
26.801
14.67
14.21
15.02

28.199
33.272
25.202
19.455
9.67
8.51
9.76

20.048
19.449
33.37
17.665
3.56
3.29
3.31

Table 3: MAE results for Buiding 1 of REDD dataset.
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Appliance Model

1D-CNN UNET-NILM Seq2point Ours Ours (causal) Ours (causal + GLU)

Kettle 20.390 16.003 2.16 1.85 1.9 2.5
Freezer 18.583 15.124 8.136 5.32 5.01 6.1

Dish washer 9.884 6.764 3.49 2.42 2.01 2.55
Washing machine 15.758 11.506 4.063 2.3 2.15 2.39

Microwave 9.690 6.475 1.305 0.902 0.91 1.05
Total 14.86 11.174 3.831 2.56 2.40 2.918

Table 4: Experimental results (MAE) in the UK-DALE dataset.

appliances. The causal model performs the best again while the total average is
decreased by 33% compared to seq2pont.

Table 5 compares the size of Conv-NILM-net with state of the art models in terms
of number of parameters. We observe that the fully convolution architecture of
our model along with its particular architecture (encoder/decoder + separator)
allow to obtain state of the art results with a model of approximately 40K
parameters. This also possible because, contrary to other models, we use a unique
loss for only one task. For instance UNET-NILM uses two separate loss functions,
one to detect activation and an other to regress the average consumption while
Seq2point [9] uses bidirectional residual networks which are very deep. It is also
valuable to notice that models like UNET-NILM are specialized on individual
appliances, meaning that in one needs to disaggregate 5 appliances, it requires
5 models, multiplying the number of parameters.

Models # parameters
seq2point 29.2M
seq2seq 29.8M

GLU-Res 1.2M
CNN-DI 738K

Conv-NILM-net 41088

Table 5: number of parameters

Finally, figure 5 presents some results on top five appliances of first 4 building of
REDD dataset. For each building the appliances are presented in the same order
as in table 2. The left panels corresponds to the disaggregated target signals and
the right panels presents the predicted output from Conv-NILM-net.

5 Conclusion

In this work, we presented Conv-NILM-net, an adaptation of Convtas-net to
non intrusive load monitoring. We tested our model on two real world dataset
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(a) building 1 (b) Building 2

(c) Building 3 (d) Building 4

Fig. 5: Selected results on top five appliances of first 4 building of REDD dataset.
For each building the appliances are presented in the same order as in table 2.
The left panels correspond to the disaggregated target signals and the right
panels presents the predicted output from Conv-NILM-net.

and showed that Conv-NILM-net outperforms the state of the art by a margin.
We presented 2 alternate models, one being causal and other using Gated Linear
Units (GLU). These models allowed accurate disaggregation of several appliances
at once while being much more smaller than their existing counterparts. Finally,
the causal model allows consumption prediction and is ideal as input to an energy
management system or a reinforcement learning model. In future work, we will
use causal conv-NILM-net as a prediction model and test it in a reinforcement
learning context. We will also test the GLU augmented model to verify if this
implementation effectively takes into account appliances inter-dependencies and
helps achieve better consumption predictions.
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