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Quinones are redox active organic molecules that have been proposed as an alternative choice to metal-based
materials in electrochemical energy storage devices. Functionalization allows to fine tune not only their
chemical stability but also the redox potential and the kinetics of the electron transfer reaction. However,
reaction rate constant is not solely determined by the redox species but is also impacted by solvent effects. In
this work, we show how the functionalization of benzoquinone with different functional groups impacts the
solvent reorganization free energies of electron transfer half-reactions in acetonitrile. The use of molecular
density functional theory, whose computational cost for studying electron transfer reaction is considerably
reduced compared to state-of-the art molecular dynamics simulations, enables to perform a systematic study.
We validate the method by comparing the predictions of the solvation shell structure and the free energy
profiles for electron transfer reaction to reference classical molecular dynamics simulations in the case of
anthraquinone solvated in acetonitrile. We show that all the studied electron transfer half-reactions follow
Marcus’ description, regardless of functional groups. Consequently, the solvent reorganization free energy
decreases as the molecular size increases.

I. INTRODUCTION

Quinones are a family of organic molecules that can
undergo reversible redox reactions1–6. The capability
of carrying electrons allows them to play an important
role in biological processes such as oxygenic photosyn-
thesis and aerobatic respiratory chain7–10. They have
also been proposed as promising candidates for energy
storage applications, in particular for organic redox-flow
batteries11–18. Such devices would be highly suitable for
stationary storage since they do not use metallic elements
prone to supply risks (such as cobalt) and the reactive
species are stored in separate tanks, allowing for much
longer-term storage than conventional devices such as
Li-ion batteries.

A main advantage of such organic molecules is the ver-
satility of their molecular structure. It allows chemists
to tune their chemical properties according to the de-
sired application. Much effort has been made to un-
derstand the effect of modifying molecular structure on
the redox potential2,19,20 and the possible irreversible
side reactions21–23. For redox-flow battery applications,
understanding how functionalization affects the redox
properties can help to improve the energy density, that
is the amount of energy stored per unit volume and the
cycle-life of the devices. However, reports discussing re-
action kinetics of functionalized quinones, that is related
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to the amount of power a device can deliver, remain very
scarce.4,5,24–27. In particular, the impact of solvent effect
on kinetics is often disregarded.
From a theoretical point of view, Marcus theory is

a widely accepted model of electron transfer reactions
(ETR) that can serve as a good starting point for study-
ing redox reaction kinetics in solution28–36. When the
electronic coupling of oxidised and reduced states is weak,
the electron transfer occurs at the transition state which
corresponds to a set of solvent configurations in which
the reduced and the oxidized state have the same energy.
Using macroscopic electrostatics, Marcus derived a rela-
tion linking the activation free energy to the reaction free
energy and the solvent reorganization free energy, often
denoted λ. This quantity measures the free energy cost
to reorganize the solvent molecules around the reactant
to a configuration that would be in equilibrium with the
product.
Molecular dynamics has long been the method of

choice to investigate the influence of molecular effects
on ETR that are ignored by Marcus macroscopic de-
scription. A few reports have applied these methods to
study quinones37–39. Vandevondele et al. generated tra-
jectories of benzoquinone (BQ) and duroquinone (DQ)
solvated in acetonitrile using classical molecular dynamics
(MD). They then computed the energy cost to reduce the
molecule using electronic density functional theory before
evaluating the exponential part of reaction rate constant37.
Reeves et al. simulated anthraquinone (AQ) and ionic
liquid grafted with anthraquinone solvated in acetonitrile
using ab-initio molecular dynamics (AIMD)38. They re-
ported the free energy profiles computed with simulation
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which could not be interpreted by Marcus theory but
required the use of a two-Gaussian states model40 instead.
However, because the associated solvent configurations
have a low probability, it is a tedious task to properly sam-
ple the region close to the transition state which makes the
construction of free energy profiles computationally de-
manding. We recently proposed an alternative approach
based on molecular density functional theory (MDFT)
which is based on functional minimisation rather than on
statistical sampling, and thus considerably reduces the
computational cost as compared to MD41,42.

In this work, we start by computing the solvation struc-
ture and the free energy profiles of AQ and its reduced
anion (AQ-) in acetonitrile (MeCN) using MD simula-
tions and a recently developed polarizable force field43.
This serves as a benchmark for MDFT calculations us-
ing generic force fields. The results show that MDFT
provides a solvation structure in good agreement with
classical MD simulations as well as a good estimate of
the solvent reorganization free energies. The free energy
profiles of one electron transfer half-reactions of BQ and
DQ and their reduced anions, BQ- and DQ-, solvated in
MeCN are then computed using MDFT. Finally, we carry
a systematic study of solvent reorganization free energies
for several functionalized BQ derivatives modeled with a
generic force field using MDFT.

II. THEORY

A. Marcus theory

Let’s consider a half-cell reduction reaction

Ox + e− = Red (1)

where Ox and Red stand for oxidised and reduced state,
respectively. Based on a transition-state formalism44–48,
the rate constant of the ETR, k, can be written as

k = A exp

(
−∆G‡

kBT

)
(2)

where A is a pre-exponential factor that depends on the
nature of the redox couple and of the solvent, ∆G‡ is the
activation free energy, kB is the Boltzmann constant, and
T is the temperature. Although it is difficult to predict
the absolute values of the standard rate constant from
simulation, one can easily compare the activation free en-
ergy of two reactions to estimate the ratio of their kinetic
constants. This assumes that the pre-exponential factor
A of Equation 2 is similar for a series of molecules having
similar chemical structures which seems a reasonable hy-
pothesis. ∆G‡ can be further separated into inner-sphere
and outer-sphere contributions

∆G‡ = ∆G‡is + ∆G‡os. (3)

The inner-sphere part, ∆G‡is, involves intramolecular
change as well as electronic structure rearrangement of the

FIG. 1. Schematic representation of free energy profile as a
function of a solvent reaction coordinate.

reactant to reach the transition state. The outer-sphere
part, ∆G‡os, is due to rearrangement of solvent molecules
surrounding the solute. In the scope of this paper, we
will only focus on the outer-sphere contribution. Note
that the determination of ∆G‡is would require quantum
chemistry calculations.
Marcus proposed a theoretical framework to estimate

the activation free energy that is connected to the rate con-
stant through Equation 2. This theory allows to compute
the free energy of the oxidized and reduced states as a
function of a solvent reaction coordinate. Such free energy
profiles are schematically represented on Figure 1 where
several quantities that are useful to characterize ETR, in
particular the solvent reorganization free energies, λOx
and λRed, are displayed. λOx (λRed) measures the free
energy cost to rearrange the solvent molecules around the
oxidized (reduced) state until they reach a configuration
that would be in equilibrium with the reduced (oxidized)
state.

Assuming a linear response of the solvent polarization
to a change of electric charge of the solute, Marcus was
able to show that the free energy of the reduced and
oxidized states depend quadratically on the solvent re-
action coordinate. As a result, both free energy profiles
displayed on Figure 1 would be parabolic. Moreover,
the curvature of the parabola for each are connected to
the corresponding reorganization free energy λ. Within
Marcus assumption λOx = λRed and the parabolas have
identical curvature.

The activation free energy depends on the reaction free
energy and the reorganization free energy through

∆G‡os =
(λ+ ∆G)2

4λ
. (4)

In an electrochemical experiment, ∆G can be tuned by
changing the electrode potential, and equation 4 reduces
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to ∆G‡os = λ/4 when ∆G = 0.
Marcus also proposed an analytical approximation for

λ in the case of a spherical solute of radius r33

λ =
e2

8πε0r

(
1

εop
− 1

εs

)
(5)

where e is the elementary charge, ε0 is the vacuum permit-
tivity, εop and εs are respectively the optical and static
dielectric permittivity of solvent. Besides its evident suc-
cess, Marcus theory is based on macroscopic electrostatics
and does not account for effects occurring at the molec-
ular scale. A good way to account for such effects is to
resort to molecular simulations, such as MD.

B. Modelling Electron transfer using classical MD

To compute free energy profiles as displayed on Figure 1
using MD it is essential to define an appropriate solvent
reaction coordinate. Warshel introduced the so-called
vertical energy gap (VEG)49, a choice that has been
widely adopted since then. The VEG, ∆E, is defined
as the difference between the reduced and oxidized state
energies for a given solvent configuration

∆E(RN ) = ERed(RN )− EOx(RN ) (6)

where RN denotes the position of all atoms. In practice,
a set of atomic configurations RN is generated by a MD
simulation of the reduced state. The reduced energies
ERed(RN ) are computed during the MD run. The energy
of the oxidized state, EOx(RN ), can either be computed
on the fly during the simulation or as a post-processing
step by reading the stored atomic configurations. The
probability distribution of the VEG for the reduced state,
PRed(∆E), can then be computed through histogramming.
The same procedure is followed to compute the probability
distribution of the VEG for the oxidized state, POx(∆E).
It is then possible to compute the free energy as a

function of the reaction coordinate

GA(∆E) = −kBT ln(PA(∆E)) + ḠA (7)

where A stands for Ox or Red and ḠA is the minimal free
energy of state A. However, simply using this definition
does not allow to place the two minima with respect to
each other on a free energy diagram. The use of the
vertical energy gap as the reaction coordinate leads to a
linear dependence between the two free energy curves,50

GRed(∆E)−GOx(∆E) = ∆E, (8)

which enables one to establish a relationship between the
origins of the two curves (ḠRed and ḠOx), as well as to
use data from the oxidized (reduced) state trajectory to
build the free energy profile for the reduced (oxidized)
state, i.e. in a very low probability region (even beyond
the transition state).

Despite this enhanced sampling efficiency, it remains
necessary to run long simulations to build the full free
energy profiles. This makes the study of ETR with MD
rather costly which prevents to carry on systematic studies
of the impact of functionalization. Molecular density
functional theory (MDFT) is a liquid state theory that
we have recently shown to be an efficient alternative41 to
tackle this problem.

C. Molecular Density Functional Theory

We first recall here some basic concepts of MDFT but
more detailed descriptions can be found in our previous
works51,52. MDFT is a flavor of classical density functional
theory (cDFT) developed to calculate the solvation free
energy of a solute molecule and the equilibrium solvent
density surrounding it. The solvent is described by its
density field ρ(r,ω) which measures the averaged number
of solvent molecules with an orientation ω per unit volume
at a given position r. The solute molecule interacts with
the solvent through an external potential Vext(r,ω).

Both solute and solvent are modelled by rigid molecules
and therefore there is no intramolecular term in the inter-
action potential.
According to the cDFT principles, for any external

potential, there exists a unique functional of the solvent
density that reaches its minimum for the equilibrium
solvent density and which is equal to the solvation free
energy at this minimum. This functional is split as the
sum of three different contributions

F [ρ] = Fext[ρ] + Fid[ρ] + Fexc[ρ]. (9)

The first two terms in the right-hand side of Equation 9
are the external and ideal contribution. The first one
accounts for the solute-solvent interaction and the second
one is the usual entropic term of the ideal gas. There
exist exact expressions for those two terms which can be
computed with no difficulty51,52.
The last term is the excess functional, Fexc[ρ], which

accounts for the solvent-solvent interactions. There is no
known exact expression for this term that can be used
practically. Approximations are thus required and we will
use here the hyper-netted chain (HNC) functional52 in
which Fexc[ρ] is expressed as a Taylor expansion truncated
at second order around the homogeneous bulk solvent
density ρb.

D. Modeling electron transfer using MDFT

In this section, we recall some basics of the MDFT
framework to study electron transfer reactions. The sol-
vent densities in equilibrium with both redox states and
the corresponding solvation free energies can be directly
computed by functional minimization of the functional
of Equation 4 using the appropriate external potential.
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However, exploring densities corresponding to out-of-
equilibrium states requires a suitable methodology. We
first generate a series of external potentials,

Vη = (1− η)VRed + ηVOx (10)

by linearly interpolating between the external potential
generated by the reduced state, VRed, and the one gener-
ated by the oxidized state, VOx. Minimizing the functional
of Equation 9 with an external potential Vη generates a
solvent density ρη. By analogy with Equation 6 we define
the averaged vertical energy gap associated to this solvent
density

〈∆E〉η =

∫∫
ρη(r,ω)[VRed(r,ω)− VOx(r,ω)]drdω

(11)
= FRed[ρη]− FOx[ρη] (12)

It should be mentioned that 〈∆E〉η is the ensemble aver-
age of the microscopic VEG of Equation 6 over the phase
space associated to Vη. Because there is a one to one
mapping between 〈∆E〉η and ρη, the free energy profile
of the oxidized state can be computed as a function of
this reaction coordinate

FRed(〈∆E〉η) := FRed[ρη]. (13)

A dozen of functional minimisation are typically re-
quired to build the free energy profiles of a redox couple
in a given solvent. The reorganization free energies for
the oxidized and reduced states are respectively

λRed = FRed[ρOx]− FRed[ρRed] (14)
λOx = FOx[ρRed]− FOx[ρOx]. (15)

Their computation only requires two functional minimiza-
tion which is very beneficial when it comes to the investi-
gation of a large amount of solutes.

III. COMPUTATIONAL DETAILS

AIMD simulations were taken from our previous work38,
where the technical details can be found. Classical MD
simulations were performed using the MetalWalls code53
and a recently developed polarizable force field43. The
simulation cells contain one redox molecule (either AQ
or AQ−) and 95 MeCN molecules. Cubic cells were built
using the PACKMOL54 package. A first run was per-
formed in the NPT ensemble at 298 K and 1 bar to reach
the experimental density of MeCN. Then the simulations
were carried out in the NVT ensemble at 298 K with
cubic cells of 20.553 Å3 for a production time of 50 ns
after 1 ns of equilibration. A timestep of 1 fs was used
and the trajectory was saved every 500 fs. The equations
of motion were integrated using the velocity-Verlet algo-
rithm, and the temperature was kept constant using a
chain Nosé-Hoover thermostat55,56. The short-range van

der Waals interactions were calculated with a cutoff value
of 10 Å, while the Ewald summation method was used for
electrostatics interactions (involving the partial charges
and the induced dipoles).
MDFT calculations are performed with an in-house

developed Fortran code. We use a 303 Å3 cubic sim-
ulation box with 125 grid nodes in each direction and
66 orientations per grid point. To compute the density
and polarisation maps of anthraquinone, a cubic cell of
253 Å3 and 1253 grid nodes was used to have the same
resolution than the maps computed with MD. A 3-sites
rigid non-polarizable model is used for MeCN 57. Pre-
liminary solutes molecular structures were first generated
via OpenBabel58 from the canonical SMILES notation
of the molecules. In a second step, we applied the semi-
empirical quantum model, Austin model 1, together with
the bond charge correction (AM1-BCC)59,60 to optimise
the molecular geometry and to find the atomic charges.
Lennard-Jones parameters were taken from the second
generation generalised amber force field (gaff2)61 with
a 10 Å cutoff radius. Both AM1-BCC modelling tool
and gaff2 force fields database distributed within the Am-
berTool software package62 were used. The force field
parameters of quinone anions were chosen applying the
strategy mentioned in ref.43: The structure and the force-
field parameters are kept identical to the oxidized form
but an excess charge of -0.8 e is evenly split between
all non-hydrogen atoms. Note that this excess charge is
reduced to -0.8 e to implicitly account for the electronic
polarisability as is commonly done in non-polarizable
force fields63,64. The nondimensional dipolar polarization
density can be computed from the equilibrium density

P (r,ω) =

∫∫
ρ(r,ω)ωdrdω. (16)

IV. RESULTS AND DISCUSSION

A. Benchmark of MDFT results with MD simulations

We first look at the solvation structure of AQ solvated
in MeCN. The solvent density and the polarization in
the plane of the aromatic rings computed with MDFT
and classical MD are compared in Figure 2 together with
density results obtained using AIMD trajectories. In the
case of MD simulations, these quantities were extracted
from the trajectories using Travis65,66 using a sampling
volume of 0.2×0.2×4.0 Å3, while in MDFT the density is
a direct output from the calculation (averaging in a slab
of width 4 Å in the z direction was made for comparison
purposes).
While the density maps obtained by MD and MDFT

displayed in Figure 2 are very similar, it is quite obvious
that the AIMD one is undersampled. The AIMD simula-
tion was run for 18 ps with the same box as classical MD,
which is a standard simulation time for this method. This
illustrates that the high computational cost associated
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−10

−5

0

5

10

Y
(Å
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FIG. 2. Two dimensional maps of acetonitrile density and polarization maps in the aromatic plane of anthraquinone computed
with ab-initio MD, classical MD and MDFT. Grey, blue, and red circles represent carbon, hydrogen, and oxygen atoms,
respectively. Polarisation is represented by arrows oriented in the direction of the projection of P and whose length is
proportional to ‖P ‖

FIG. 3. Solvent density isosurfaces of (A) AQ and (B) BQ
at 10−2 × n0 calculated by MDFT. Oxygen, hydrogen, and
carbon atoms are displayed in red, cyan and white respectively.

with AIMD prevents it to access the 3D structure of the
solvent around the solute, this is all the more true for
polarization properties which also require a sampling of
orientations.
A closer look into the MD and MDFT density maps

reveals the existence of two solvation shells, the second
one showing few variation in intensity. The first solvation
shell is more structured with the presence of ten basins
of high density. They are all located in the center of the
regions delimited by two vicinal C–H or C=O bonds. The
agreement between MDFT and MD is excellent consid-
ering the force field used for the acetonitrile solvent and
the AQ species differ between the two methods.
We now analyze the polarization density provided by

the classical MD and MDFT. On Figure 2 it is repre-
sented using vectors, which directions show the projection

of the polarization in the plane of the AQ aromatic rings
and which lengths are proportional to the intensity of the
polarization. To improve the readability of the figure, ori-
entations are depicted on a grid 2.5 times looser than the
one used for calculation. Again, a very good agreement
is found between classical MD and MDFT for the predic-
tion of the polarization maps. In the first solvation shell,
MeCN dipoles point towards the oxygen of the carbonyl
groups and outwards the solute around the C–H bonds.
This is an expected behaviour: the negatively charged
oxygen atoms attract the positively charged CH3 frag-
ment of the solvent molecule while the positively charged
hydrogen atoms attract the negatively charged nitrile
fragment. Between C–H bonds and the carbonyl groups,
MeCN dipoles lie almost parallel to the cavity surface
created by AQ as shown in Figure 3A. This cavity surface
is defined as the isosurface on which the solvent density
is at 10−2 × n0 where n0 is the bulk density. The value
of the polarization is considerably reduced in the second
solvation shell because the electric field generated by the
solute is screened by the first solvation shell. The vec-
tors are antialigned with the polarization observed in the
first solvation shell. This comparison proves that MDFT
is able to predict faithfully the structural properties of
solvation around AQ. This is of great interest because
MDFT is far less computationally demanding: it took
more than 100 hours on a 44 core skylake computer to
run the 50 ns MD trajectory that was used to compute
the density and polarization maps displayed in Figure
2B while the MDFT calculation to compute the maps
displayed in Figure 2C took less than 6 minutes on the
same computer.

We now turn to the energetic properties for the electron



6

−150 −100 −50 0 50 100 150

∆E (kJ.mol−1)

−5

15

35

55

75

95
F

re
e

E
n

er
gy

(k
J
.m

ol
−

1
)

A
AQ MD

AQ•− MD

AQ MDFT

AQ•− MDFT

−150 −100 −50 0 50 100 150

∆E (kJ.mol−1)

−5

15

35

55

75

95

F
re

e
E

n
er

gy
(k

J
.m

ol
−

1
)

B
BQ MDFT

BQ•− MDFT

−150 −100 −50 0 50 100 150

∆E (kJ.mol−1)

−5

15

35

55

75

95

F
re

e
E

n
er

gy
(k

J
.m

ol
−

1
)

C
DQ MDFT

DQ•− MDFT

FIG. 4. Free energy profiles of electron transfer half reactions
of (A) AQ and AQ- calculated by classical MD and MDFT,
(B) BQ and BQ-, (C) DQ and DQ- calculated by MDFT. As
described in the text, the vertical energy gaps were shifted by
the same constant value, which was chosen in order to align
the minima for the AQ/AQ− redox couple. Solid lines are fit
of MDFT results using Marcus theory.

transfer half-reaction. We first examine the redox half
reaction between AQ and AQ- solvated in MeCN. Free
energy profiles of the two species are computed with clas-
sical MD using the procedure described in Section IIB.
The same reaction is studied with MDFT where we gener-
ated a series of potential Vη by varying η in Equation 10
between -0.3 and 1.3 by increment of 1/30. Using values
of η > 1 and η < 0 allows to compute the branches of the
free energy profiles in regions corresponding to the left
hand-sign of the negative minimum (reduced state) and
right hand side of the positive minimum (oxidized state).

As mentioned above, the estimation of the free energy
curves from MD allows to calculate the free energy dif-
ference between the two states – the same argument also
applies to MDFT. However, this free energy difference
cannot readily be compared to experimentally measured
potentials unless it can be calibrated with another chem-
ical reaction67. This was made in the case of AIMD by
setting up a computational standard hydrogen electrode6
and more recently a computational Ag/AgCl reference
electrode68. In the present work, the use of classical meth-
ods prevents us from building such absolute scales, so
that we use the AQ/AQ− as a reference. In practice, this
is made by assigning an arbitrary energy constant to the
free electron in Equation 1 so that the minima of the free
energy profiles align for this couple – the same shift is
then used for all the other couples. Yet it is not possible
to comment these free energy differences with respect
to experimental values since our calculations do not in-
clude the dominant intramolecular energy term, which is
properly taken into account in quantum chemistry calcu-
lations2,20. In this work we therefore focus on the value of
the solvent reorganization free energy. Note that applying
a shift to the VEG values has no influence on this quantity.
Moreover, because we concomitantly shift the ensemble
averaged VEG defined in Equation 7, the crossing point
of the two curves is still at < ∆E >η= 0 as it should be
by the definition in Equation 7.

The free energy profiles obtained for the AQ/AQ− cou-
ple using MD and MDFT are compared on Figure 4A.
Overall, the agreement is excellent both for the curvatures
and the position of the minima. To check if this half reac-
tion can be described with Marcus theory we computed
the reorganization free energy of AQ and AQ− with Equa-
tion 14. MD gives a value of 72.3 kJ/mol for both states
while MDFT predicts the reorganization free energies of
66.8 and 69.3 kJ/mol for AQ and AQ−, respectively. The
values of the reorganization free energies differ by less
than 5 % between the two states which implies that this
system can be described with a very good approximation
using Marcus Theory. Thus, we have fitted the MDFT
data using two parabolas with the same curvature (and
hence a single λ), as depicted in Figure 4.

To further test our methodology, we computed the free
energy profiles of the electron transfer involved in the
benzoquinone (BQ) and duroquinone (DQ) redox couples
solvated in MeCN since these systems were already stud-
ied using an ab initio-based approach by VandeVondele
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FIG. 5. Primary molecular structure of (A) 2-BQ, (B) 2,3-
BQ, (C) 2,6-BQ, (D) 2,5-BQ, (E) 2,3,5-BQ, and (F) 2,3,5,6-
BQ derivatives. R’s represent the sites to be substituted by
functional groups.

et al.37. The free energy profiles are respectively plotted
in Figure 4B and 4C. For these redox couples as well,
they are well fitted by pairs of parabolas with identical
curvature indicating that those 2 ETR are well described
by Marcus theory. The reorganization free energies ob-
tained using MDFT are 86.8 kJ/mol for BQ/ BQ-, and
74.0 kJ/mol/DQ and DQ-. They are in good agreement
with the DFT simulations37, from which values of 78.3
and 69.4 kJ/mol were reported for BQ and DQ, respec-
tively. A qualitative agreement is obtained even if the
MDFT results are overestimated by about 10 % with
respect to the AIMD results.

B. Electron transfer of Benzoquinone derivatives

We now take advantage of the computational efficiency
of MDFT to carry on an extensive study of the impact
of functionalization on the electron transfer properties
of quinones. More precisely, we determine the effect of
chemical substitutions by studying the six derivatives
of BQ displayed on Figure 5. These are obtained by
systematically substituting the H atoms with a functional
group. For simplicity, we only consider BQ derivatives
substituted with a single type of functional group. The
chemical functions considered in this work are methyl
(–CH3), ethyl (–CH2CH3), methoxy (–OCH3), amino (–
NH2), hydroxy (–OH), fluoro (–F), chloro (–Cl), thiol
(–SH), and carboxyl (–COOH).

We first calculate the reorganization free energies of
the oxidized and reduced states. As for the benchmark
molecules, they differ by less than 5 % for the whole set of
molecules so that all the redox couples can be considered
as being well described by Marcus theory and attributed
a single λ value. The corresponding reorganization free
energies are displayed on Figure 6. Firstly, we notice
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FIG. 6. Solvent reorganization free energies of functionalized
BQ derivatives as a function of substitution positions. The
notation of primary molecular structures follows those in Fig-
ure 5. The black dashed line is the reorganization free energy
of BQ.

that all the functionalized BQ have a reorganization free
energy lower than that of the parent molecule. There is
also a clear trend of the evolution of the reorganization free
energy with the number of functional groups: the more the
molecule is functionalized the lower is the reorganization
free energy. Finally, there is little difference between
the different di-functional quinones, but we can see that
molecules where the functional groups are in positions
2 and 3 have the highest λ, while molecules where the
functional group are in positions 2 and 5 have the lowest
one. Regarding the influence of the functional group,
sorting them from the highest to lowest reorganization
free energy we obtain the global trend: –F > –OH > –Cl >
–SH > –NH2 > –CH3 > –OCH3 > –COOH > –CH2CH3.

In an attempt to rationalize this behaviour we estimated
the volume of each functional group as the difference of
cavity volume between the monofunctionalized BQ and
BQ. Cavity volume is defined as the volume of the space
where the solvent density is below 10−2 × n0. Examples
of such volumes for AQ and BQ are displayed on Figure 3.
The variation of λ with respect to the volume of functional
groups is displayed in the bottom panel of Figure 7. A
strong correlation between the two quantities is observed
for the whole range of functional groups, with the excep-
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tion of the amino one. Recalling that the activation free
energy, and thus the rate constant of ETR, is connected
to the activation free energy this could be a way to fine
tune the kinetics of the ETR. However, we emphasize that
this approach cannot capture the full picture of the ETR
since internal reorganization of the solute, in particular
due to electronic effects, is neglected. The latter may be
important in the case of complex chemical entities and
affect the kinetics aspect as well.
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FIG. 7. Top: Solvent reorganization free energies of AQ, BQ
and BQ derivatives with respect to the inverse cavity radius,
1/rc. The solid line is a linear regression of the data. Bottom:
Solvent reorganization free energies of mono-functionalized
BQ derivatives with respect to the volume of the functional
group estimated as the difference of cavity volume between
the mono-functionalized BQ and BQ.

Since we have access to the reorganization free energies

and the solvation structure for the full set of functional-
ized molecules, we finally test the relation 5 that links
λ to the solute radius. This is a difficult test since this
relation was derived for spherical solutes, which is clearly
not the case here as evidenced by the molecular structure
displayed in Figure 5 and by the solvent density isosurface
around BQ and AQ displayed in Figure 3. To do so, we
define the cavity radius rc as the radius of a sphere of
identical volume to the cavity created by the solute. The
reorganization free energy is plotted as a function of the
inverse of the cavity radius on the top panel of Figure 7.
The linear relationship between λ et 1/rc is well verified
overall. A linear regression of the data excluding AQ
that has a different aromatic structure gives a slope of
440 kJ Å mol−1. The theoretical value, calculated by
inserting εop = 1 (because molecules are assumed to be
rigid) and εs = 31.6 for the solvent57 into Equation 5,
is 673 kJ Å mol−1. Such a difference is not surprising
considering the non-sphericity of the solute. If we take a
closer look into the difference between functional groups,
we can see that carboxylic, amino, methoxy and hydroxy
groups lead to λ values slightly below the linear regression
yet chloro and fluoro groups have a reverse effect. Func-
tional group with larger dipole moment are thus lying
below the linear regression. However, this effect remains
weak compared to the general trend with respect to the
molecular radius.

V. CONCLUSIONS

In this work we carry a systematic study of the influence
of functionalization on the reorganization free energies of
benzoquinone derivatives. We first validate our method-
ology by carrying on a detailed comparison of the solvent
structural properties around AQ predicted using MDFT
and classical MD. The force fields used in the two methods
differ since (i) molecules are rigid in MDFT while they
are flexible in MD (ii) the solvent model is coarse grained
in MDFT while it is all-atom in MD. Despite these differ-
ences the agreement between the two approaches is very
satisfactory. The density peaks in the first solvation shell
are well reproduced, and more importantly the polariza-
tion maps are highly similar indicating that the solvent
orientation properties are also well captured by MDFT.
The agreement between the two methods is not limited
to the solvation structure since the free energy profiles
computed for both redox states with MD and MDFT are
almost identical. We found that the AQ/AQ− electron
transfer half-reaction is in good agreement with Marcus
prediction since the two species free energy profiles are
well fitted by parabolas of identical curvature. This es-
tablishes MDFT as an appropriate method to study the
ETR of quinone derivatives while it requires 103 less com-
putational times than MD to study the same system. To
be fair, using a non-polarizable force field in MD would
reduce the computational cost by one order of magnitude,
but the gap would remain very large.
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This computational efficiency allows to systematically
study the influence of functionalization on the reorganiza-
tion free energy of electron transfer half reaction involving
BQ derivatives. Here again, we found that the whole set of
molecules considered in this study follows Marcus picture
with identical values for the reorganization free energies
of the oxidized and reduced states. The values of the
reorganization free energy of each functionalized molecule
is lower than the value for the non-functionalized parent
BQ. The more the molecule is functionalized, the lower is
its solvation free energy. Finally, we found a correlation
between the value of the reorganization free energy and
the volume of the functional group. This lead us to check
the linear scaling of the reorganization free energy with
the inverse of the cavity radius. This relation is indeed
verified but with a slope that differs from the theoret-
ical values, the difference being attributed to the non
sphericity of the cavity created by the solute.
Overall, this work shows that MDFT is a suitable

method to account for the functional effects on the solvent
reorganization free energies of electron transfer reaction.
In the future, systematic studies could thus be performed
in order to understand the rate constant of the redox
reactions. Of course having a full picture of the reactions
free energy profile would require to account for internal
degrees of freedom using electronic structure methods. A
promising approach to fully address this problem could
be the QM/MDFT hybrid approach one of us recently
proposed69. In this approach the solute is dealt with at
the quantum level using electronic DFT while the solvent
degrees of freedom are accounted at the classical level
using MDFT. We believe that this method could be the
appropriate compromise between precision and computa-
tional cost to make the calculation of ETR rate constant
in solution feasible in the future.
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